
Proving an Execution of an Algorithm Correct?

James Davenport
masjhd@bath.ac.uk

University of Bath

16 February 2023

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 1 / 20



SAT solving

The quintessenial NP-complete problem: Given a Boolean
statement Φ(x1, . . . , xn) produce

either f : {xi} 7→ {T ,F} such that
Φ(f (x1), . . . , f (xn)) = T (a satisfying assignment)
⊥ indicating that no satisfying assignment exists.

The first can be verified easily enough: what about the second?
Since at least 2016, contestants in the annual SAT contests have
been required to produce proofs (occasionally > 100GiB!) in
DRAT format, which can be checked (Marijn says there are
subtleties to “easy” checking).

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 2 / 20



Integration

P is algebra professor, S is awkward student

P e−x2 has no integral.

S But in analysis the professor proved that every
continuous function has an integral.

P I meant that there was no formula for the integral.

S But in statistics the professor used erf(x) and
everything seemed OK.

P I meant that there was no elementary formula, in
terms of exp, log and the solution of polynomial
equations.

S How do you prove that?

P Differential Algebra!

S What’s that?

P A field K equipped with ′ : K → K such that
(a+ b)′ = a′ + b′ and (ab)′ = a′b + ab′.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 3 / 20



Algebraic Theory of Integration [Rit48, Rit50]

Given f ∈ K = Q(x , θ1, . . . , θn) where x ′ = 1 and each θi is
elementary over Q(x , θ1, . . . , θi−1) (need decidable [Ric68])
produce

either F in some elementary extension L of K such that
F ′ = f (an elementary integral)

or ⊥ indicating that no such elementary integral exists.

The first can be verified: what about the second?

� The verification isn’t necessarily trivial: there are
issues of simplification of elementary functions.

� Because of branch cuts, F might not denote a
continuous function R → R, despite the student’s
memory of analysis [CDJW00].

The Heaviside function differentiates to 0, so it’s a
“constant” in terms of differentiable algebra.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 4 / 20



Liouville’s Principle [Lio35, Rit50]

Looking for any elementary might seem like “needle in a haystack”.

Theorem (Liouville’s Principle)

Let f be a expression from some expression field K . If f has an
elementary integral over K , it has an integral of the following form:∫

f = v0 +
n∑

i=1

ci log vi , (1)

where v0 belongs to K , the vi belong to K̂ , an extension of K by a
finite number of constants algebraic over constK , and the ci
belong to K̂ and are constant.

Alternatively

f = v ′0 +
n∑

i=1

ci
v ′i
vi
. (2)

Only a single bale of hay! Proof by equating coefficients in f = F ′.
James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 5 / 20



Risch’s idea [Ris69]

f , g ∈ Q(x , θ1, . . . , θn) where each θi is either

logarithmic θ′i =
u′i
ui
, ui ∈ Q(x , θ1, . . . , θi−1).

exponential θ′i = u′iθi , ui ∈ Q(x , θ1, . . . , θi−1).

Induct on n, that we can∫
Solve (or ⊥) f = v ′0 +

∑n
i=1 ci

v ′
i
vi

Risch o.d.e. Solve (or ⊥) y ′ + fy = g for y ∈ Q(x , θ1, . . . , θn).

In both cases, the algorithm is a fairly messy “comparison of
terms” argument, and the Risch o.d.e. for exponential θn was a
“similarly”, which wasn’t quite [Dav86].
The “mess” comes in showing that every case is covered, and that
the “bug fix” in [Dav86] is complete: each individual case is fairly
straightforward.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 6 / 20



Producing a proof of ⊥
1 Have a formal proof of Liouville’s Principle.

� I haven’t done this formally, but it doesn’t look outrageous:
it’s all algebra in [Rit48].

2 At each comparison of terms, spit this out in a form that a
theorem-prover can digest.

� Again, I haven’t done this, but I did have an implementation
in Axiom which produced a (very stylised) informal proof.

Note that I am not considering the case of θi algebraic. θ1
algebraic is in [Dav81], but there is much more mathematics
involved in finding the ci , vi or proving they don’t exist. More
general is in [Bro90, Bro91], again more mathematics.
“Mathematics” may reduce to “is a divisor on an elliptic curve a
torsion divisor”, and ⊥ here is hard.

Thanks to this conference, I knew I should talk to Anne
Baanen.

And now done, but we should keep talking.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 7 / 20



Real Quantifier Elimination [Tar51, Sei54]

Let each Qi be one of the quantifiers ∀, ∃. Real Quantifier
Elimination problem is the following: given a statement

Φ0 := Q1x1,1, . . . , x1,k1 · · ·Qa+1xa+1,1, . . . , xa+1,ka+1Φ(yi , xi ,j), (3)

where Φ is a Boolean combination of equalities and inequalities
between real polynomials Pα(yi , xi ,j), produce a Boolean
combination Ψ of equalities and inequalities between polynomials
Qβ(yi ) which is equisatisfiable, i.e. Ψ is true if and only Φ0 is true.
If all the polynomials Qβ(yi ) in Ψ(yi ) have integer coefficients, we
call Ψ(yi ) a Tarski formula.

Proved decidable in 1950s

First feasible solution by [Col75] through Cylindrical Algebraic
Decomposition

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 8 / 20



Cylindrical Algebraic Decomposition [Col75]

Fix coordinates in Rn consistent with quantifier order.
Given a set of polynomials {pα} in Q[x1, . . . , xn], produce a finite
set of cells Ci ⊂ Rn which is:

Cylindrical ∀i , j , k ProjRk (Ci ),ProjRk (Ci ) are equal or disjoint;

Algebraic Defined by polynomials in Q[x1, . . . , xn];

Decomposition disjoint and cover Rn;

Sampled each cell has a sample point si (cylindrical);

such that on each cell every pα is sign-invariant (+,−, 0).
Then the truth of Φ is invariant on a cell, and we can write down
Ψ as the union of those cells where Φ0 is true at the sample point.
Unfortunately QE is doubly exponential in n [DH88], so CAD’s
worst case must be, and in practice CAD nearly always is.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 9 / 20



Challenges with Cylindrical Algebraic Decomposition

CAD doesn’t care about the quantifiers (other than variable
order), in particular ∃x1, . . . , xnΦ (the SAT problem) isn’t
treated as a special case.
As formulated, it doesn’t care about the Boolean structure of
Φ.√
When it’s (p1 = 0) ∧ Φ′ we can do better [McC99].√
Even if this is only part of Φ, we can use an equality [EBD15].

If f , g , h have degree d , resy (resz(f , g), resz(f , h)) has degree
O(d4), even though there are only O(d3) common solutions
f (x , y , z) = g(x , y , z) = h(x , y , z).

! f (x , y , z1) = g(x , y , z1); f (x , y , z2) = h(x , y , z2). Note that
these points are relevant for cylindricity in the worst case, and
are used in [DH88].
Major improvements to CAD import more mathematics, up to
“Puiseux with parameters” [MPP19].
Despite attempts [CM10], there is no formal proof of
correctness of even basic Collins.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 10 / 20



Cylindrical Algebraic Coverings I [ADEK21]

For purely existential problems ∃xk , . . . , xnΦ.
σi ,j ∈ {=, <,≤, >,≥}, but for exposition, assume all
σi ,j ∈ {<,>}.

1 Φ = (p1,1σ1,10 ∧ · · · ) ∨ (p2,1σ2,10 ∧ · · · ) ∨ · · ·
2 Commute ∃ and ∨ and treat each disjunct Φi separately
So we don’t care where p1,1 and p2,1 meet. Doesn’t change

asymptotics, but may well be useful in practice.
3 Choose a sample point (s1, . . . , s

(1)
n ).

4 If this satisfies Φi return SAT (and witness)

5 Otherwise ∃j : pi ,j(s1, . . . , s
(1)
n ) ̸σi ,j0. Remember j with

(s1, . . . , s
(1)
n ).

6 Compute largest interval In,1 = (l , u) such that
∀xn ∈ (l , u)pi ,j(s1, . . . , xn) ̸σi ,j0.

7 If In,1 ̸= R choose s
(2)
n /∈ I1. If (s1, . . . , s

(2)
n ) satisfies Φi return

SAT (and witness).
8 Repeat steps 5–7 until (s1, . . . , sn−1,R) is covered.
* Some intervals might be redundant, so prune

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 11 / 20



Cylindrical Algebraic Coverings II [ADEK21]

9 Each of In,i defines an oval in (s1, . . . , sn−2, x , y) space which
cover (s1, . . . , sn−1,R).

10 Compute largest interval In−1,1 = (l , u) such that
∀xn−1 ∈ (l , u) the In,i cover (s1, . . . , sn−2, xn−1,R).

11 If In−1,1 ̸= R choose a different value of sn−1, /∈ In−1,1.

12 Repeat steps 4–11 until (s1, . . . , sn−2,R) is covered.

13 Repeat, decreasing the dimension, until we’re covered the
whole of the x1-axis (or we get SAT).

Termination isn’t entirely obvious, but each cell we compute
contains at least one cell (the cell its sample point is in) from a
CAD for the same polynomials, and the CAD itself is finite.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 12 / 20



How might these be verifiable?

This is still work in progress, and there is more than one option

A. Verifying each (non-redundant) calculation in reverse
1 For each I (1) = (l1, r1) as an interval of R1 prove that it’s

covered because
2 For each I (2) = (l2, r2) covering the cylinder above I (1) prove

that I (1) × I (2) is covered because
3 . . .
4 For each I (n) = (ln, rn) covering the cylinder above

I (1) × I (2) × · · · prove that I (1) × I (2) × · · · × I (n) is covered by
the pj we remembered for that sample point.

B Reverse-engineering a rough “CAD”.
1 For each sample point (s1, . . . , sn) check that the

corresponding cuboid I (1) × I (2) × · · · I (n) is contained within
the pj σ̸j0 region.

2 Verify that these cuboids are arranged cylindrically, and are
complete.

Need Resultants and inequalities, but no topology.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 13 / 20



Thoughts

UNSAT, or its equivalent, can be a bigger challenge than
positive answers.

Completeness proofs of algorithms can be challenging.

But in some cases, we may not need the completeness proof.

(At least not in all cases).

This may require more book-keeping in the algorithm, to keep
the “hints” that drove us this way.

Possibly (e.g. algebraic integration) we may not be able to
prove UNSAT in all circumstances.

? is this still valuable?

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 14 / 20



Bibliography I

E. Ábrahám, J.H. Davenport, M. England, and G. Kremer.
Deciding the Consistency of Non-Linear Real Arithmetic
Constraints with a Conflict Driven Search Using Cylindrical
Algebraic Coverings.
Journal of Logical and Algebraic Methods in Programming
Article 100633, 119, 2021.

M. Bronstein.
Integration of elementary function.
J. Symbolic Comp., 9:117–173, 1990.

M. Bronstein.
The Algebraic Risch Differential Equation.
In Proceedings ISSAC 91, pages 241–246, 1991.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 15 / 20



Bibliography II

R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt.
According to Abramowitz and Stegun, or arccoth needn’t be
uncouth.
SIGSAM Bulletin 2, 34:58–65, 2000.

C. Cohen and A. Mahboubi.
A Formal Quantifier Elimination for Algebraically Closed
Fields.
In S. Autexier et al., editor, Proceedings CICM 2010, pages
189–203, 2010.

G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 16 / 20



Bibliography III

J.H. Davenport.
On the Integration of Algebraic Functions, volume 102 of
Springer Lecture Notes in Computer Science.
Springer Berlin–Heidelberg–New York (Russian ed. MIR
Moscow 1985), 1981.

J.H. Davenport.
On the Risch Differential Equation Problem.
SIAM J. Comp., 15:903–918, 1986.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 17 / 20



Bibliography IV

M. England, R. Bradford, and J.H. Davenport.
Improving the Use of Equational Constraints in Cylindrical
Algebraic Decomposition.
In D. Robertz, editor, Proceedings ISSAC 2015, pages
165–172, 2015.

J. Liouville.
Mémoire sur l’intégration d’une classe de fonctions
transcendantes.
Crelle’s J., 13:93–118, 1835.

S. McCallum.
On Projection in CAD-Based Quantifier Elimination with
Equational Constraints.
In S. Dooley, editor, Proceedings ISSAC ’99, pages 145–149,
1999.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 18 / 20



Bibliography V

S. McCallum, A. Parusiński, and L. Paunescu.
Validity proof of Lazard’s method for CAD construction.
J. Symbolic Comp., 92:52–69, 2019.

D. Richardson.
Some Unsolvable Problems Involving Elementary Functions of
a Real Variable.
Journal of Symbolic Logic, 33:514–520, 1968.

R.H. Risch.
The Problem of Integration in Finite Terms.
Trans. A.M.S., 139:167–189, 1969.

J.F. Ritt.
Integration in Finite Terms: Liouville’s Theory of Elementary
Methods.
Columbia University Press, 1948.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 19 / 20



Bibliography VI

J.F. Ritt.
Differential Algebra.
Colloquium Proceedings vol. XXXIII. American Mathematical
Society, 1950.

A. Seidenberg.
A new decision method for elementary algebra.
Ann. Math., 60:365–374, 1954.

A. Tarski.
A Decision Method for Elementary Algebra and Geometry.
2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination
and Cylindrical Algebraic Decomposition (ed. B.F. Caviness &
J.R. Johnson), Springer-Verlag, Wein-New York, 1998, pp.
24–84., 1951.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 20 / 20


