### Proving an Execution of an Algorithm Correct?

James Davenport masjhd@bath.ac.uk

University of Bath

16 February 2023

The quintessenial NP-complete problem: Given a Boolean statement  $\Phi(x_1, \ldots, x_n)$  produce

either  $f : \{x_i\} \mapsto \{T, F\}$  such that  $\Phi(f(x_1), \dots, f(x_n)) = T$  (a satisfying assignment)  $\perp$  indicating that no satisfying assignment exists.

The first can be verified easily enough: what about the second? Since at least 2016, contestants in the annual SAT contests have been required to produce proofs (occasionally > 100GiB!) in DRAT format, which can be checked (Marijn says there are subtleties to "easy" checking).

## Integration

- ${\sf P}$  is algebra professor,  ${\sf S}$  is awkward student
  - P  $e^{-x^2}$  has no integral.
  - S But in analysis the professor proved that every continuous function has an integral.
  - P I meant that there was no formula for the integral.
  - S But in statistics the professor used erf(x) and everything seemed OK.
  - P I meant that there was no *elementary* formula, in terms of exp, log and the solution of polynomial equations.
  - S How do you prove that?
  - P Differential Algebra!
  - S What's that?
  - P A field K equipped with ':  $K \to K$  such that (a+b)' = a'+b' and (ab)' = a'b+ab'.

# Algebraic Theory of Integration [Rit48, Rit50]

Given  $f \in K = \mathbf{Q}(x, \theta_1, \dots, \theta_n)$  where x' = 1 and each  $\theta_i$  is elementary over  $\mathbf{Q}(x, \theta_1, \dots, \theta_{i-1})$  (need *decidable* [Ric68]) produce

either F in some elementary extension L of K such that F' = f (an elementary integral)

or  $\perp$  indicating that no such elementary integral exists.

The first can be verified: what about the second?

The verification isn't necessarily trivial: there are issues of simplification of elementary functions.



Because of branch cuts, F might not denote a continuous function  $\mathbf{R} \rightarrow \mathbf{R}$ , despite the student's memory of analysis [CDJW00].

The Heaviside function differentiates to 0, so it's a "constant" in terms of differentiable algebra.

# Liouville's Principle [Lio35, Rit50]

Looking for any elementary might seem like "needle in a haystack".

#### Theorem (Liouville's Principle)

Let f be a expression from some expression field K. If f has an elementary integral over K, it has an integral of the following form:

$$\int f = v_0 + \sum_{i=1}^n c_i \log v_i, \qquad (1)$$

where  $v_0$  belongs to K, the  $v_i$  belong to  $\hat{K}$ , an extension of K by a finite number of constants algebraic over const K, and the  $c_i$  belong to  $\hat{K}$  and are constant.

Alternatively

$$f = v_0' + \sum_{i=1}^n c_i \frac{v_i'}{v_i}.$$
 (2)

Only a single bale of hay! Proof by equating coefficients in f = F'.

## Risch's idea [Ris69]

 $f, g \in \overline{\mathbf{Q}}(x, \theta_1, \dots, \theta_n)$  where each  $\theta_i$  is either logarithmic  $\theta'_i = \frac{u'_i}{u_i}$ ,  $u_i \in \overline{\mathbf{Q}}(x, \theta_1, \dots, \theta_{i-1})$ . exponential  $\theta'_i = u'_i \theta_i$ ,  $u_i \in \overline{\mathbf{Q}}(x, \theta_1, \dots, \theta_{i-1})$ . Induct on n, that we can

$$\int$$
 Solve (or  $\perp$ )  $f = v'_0 + \sum_{i=1}^n c_i \frac{v'_i}{v_i}$ 

Risch o.d.e. Solve (or  $\perp$ ) y' + fy = g for  $y \in \overline{\mathbf{Q}}(x, \theta_1, \ldots, \theta_n)$ . In both cases, the algorithm is a fairly messy "comparison of terms" argument, and the Risch o.d.e. for exponential  $\theta_n$  was a "similarly", which wasn't quite [Dav86]. The "mess" comes in showing that every case is covered, and that

the "bug fix" in [Dav86] is complete: each individual case is fairly straightforward.

# Producing a proof of $\perp$

- Have a formal proof of Liouville's Principle.
- I haven't done this formally, but it doesn't look outrageous: it's all algebra in [Rit48].
  - At each comparison of terms, spit this out in a form that a theorem-prover can digest.

Again, I haven't done this, but I did have an implementation in Axiom which produced a (very stylised) informal proof.

Note that I am *not* considering the case of  $\theta_i$  algebraic.  $\theta_1$ algebraic is in [Dav81], but there is much more mathematics involved in finding the  $c_i$ ,  $v_i$  or proving they don't exist. More general is in [Bro90, Bro91], again more mathematics. "Mathematics" may reduce to "is a divisor on an elliptic curve a torsion divisor", and  $\perp$  here is hard.

Thanks to this conference, I knew I should talk to Anne Baanen.

And now done, but we should keep talking.

# Real Quantifier Elimination [Tar51, Sei54]

Let each  $Q_i$  be one of the quantifiers  $\forall, \exists$ . Real Quantifier Elimination problem is the following: given a statement

$$\Phi_0 := Q_1 x_{1,1}, \dots, x_{1,k_1} \cdots Q_{a+1} x_{a+1,1}, \dots, x_{a+1,k_{a+1}} \Phi(y_i, x_{i,j}), \quad (3)$$

where  $\Phi$  is a Boolean combination of equalities and inequalities between real polynomials  $P_{\alpha}(y_i, x_{i,j})$ , produce a Boolean combination  $\Psi$  of equalities and inequalities between polynomials  $Q_{\beta}(y_i)$  which is equisatisfiable, i.e.  $\Psi$  is true if and only  $\Phi_0$  is true. If all the polynomials  $Q_{\beta}(y_i)$  in  $\Psi(y_i)$  have integer coefficients, we call  $\Psi(y_i)$  a Tarski formula.

- Proved decidable in 1950s
- First feasible solution by [Col75] through Cylindrical Algebraic Decomposition

Fix coordinates in  $\mathbb{R}^n$  consistent with quantifier order. Given a set of polynomials  $\{p_\alpha\}$  in  $\overline{Q}[x_1, \ldots, x_n]$ , produce a finite set of cells  $C_i \subset \mathbb{R}^n$  which is:

Cylindrical  $\forall i, j, k \operatorname{Proj}_{\mathbf{R}^k}(C_i), \operatorname{Proj}_{\mathbf{R}^k}(C_i)$  are equal or disjoint;

Algebraic Defined by polynomials in  $\overline{Q}[x_1, \ldots, x_n]$ ;

Decomposition disjoint and cover  $\mathbf{R}^n$ ;

Sampled each cell has a sample point  $s_i$  (cylindrical); such that on each cell every  $p_{\alpha}$  is sign-invariant (+, -, 0). Then the truth of  $\Phi$  is invariant on a cell, and we can write down  $\Psi$  as the union of those cells where  $\Phi_0$  is true at the sample point. Unfortunately QE is doubly exponential in n [DH88], so CAD's worst case must be, and in practice CAD nearly always is.

# Challenges with Cylindrical Algebraic Decomposition

- CAD doesn't care about the quantifiers (other than variable order), in particular ∃x<sub>1</sub>,..., x<sub>n</sub>Φ (the SAT problem) isn't treated as a special case.
- As formulated, it doesn't care about the Boolean structure of Φ.

When it's  $(p_1 = 0) \land \Phi'$  we can do better [McC99].

Even if this is only part of  $\Phi$ , we can use an equality [EBD15].

- If f, g, h have degree d,  $\operatorname{res}_{y}(\operatorname{res}_{z}(f, g), \operatorname{res}_{z}(f, h))$  has degree  $O(d^{4})$ , even though there are only  $O(d^{3})$  common solutions f(x, y, z) = g(x, y, z) = h(x, y, z).
- !  $f(x, y, z_1) = g(x, y, z_1)$ ;  $f(x, y, z_2) = h(x, y, z_2)$ . Note that these points *are* relevant for cylindricity in the worst case, and are used in [DH88].
- Major improvements to CAD import more mathematics, up to "Puiseux with parameters" [MPP19].
- Despite attempts [CM10], there is no formal proof of correctness of even basic Collins.

# Cylindrical Algebraic Coverings I [ADEK21]

For purely existential problems  $\exists x_k, \ldots, x_n \Phi$ .  $\sigma_{i,i} \in \{=, <, \leq, >, \geq\}$ , but for exposition, assume all  $\sigma_{i,i} \in \{<,>\}.$  $\Phi = (p_{1,1}\sigma_{1,1}0\wedge\cdots)\vee(p_{2,1}\sigma_{2,1}0\wedge\cdots)\vee\cdots$ **2** Commute  $\exists$  and  $\lor$  and treat each disjunct  $\Phi_i$  separately So we don't care where  $p_{1,1}$  and  $p_{2,1}$  meet. Doesn't change asymptotics, but may well be useful in practice. Schoose a sample point  $(s_1, \ldots, s_n^{(1)})$ . • If this satisfies  $\Phi_i$  return SAT (and witness) **5** Otherwise  $\exists j : p_{i,i}(s_1, \ldots, s_n^{(1)}) \neq_{i,i} 0$ . Remember *j* with  $(s_1 \quad s_n^{(1)})$ **(** Compute largest interval  $I_{n,1} = (I, u)$  such that  $\forall x_n \in (I, u) p_{i,i}(s_1, \ldots, x_n) \ \phi_{i,i}(0).$ If  $I_{n,1} \neq \mathbf{R}$  choose  $s_n^{(2)} \notin I_1$ . If  $(s_1, \ldots, s_n^{(2)})$  satisfies  $\Phi_i$  return SAT (and witness).

- **3** Repeat steps 5–7 until  $(s_1, \ldots, s_{n-1}, \mathbf{R})$  is covered.
  - \* Some intervals might be redundant, so prune

# Cylindrical Algebraic Coverings II [ADEK21]

- Each of I<sub>n,i</sub> defines an oval in (s<sub>1</sub>,..., s<sub>n-2</sub>, x, y) space which cover (s<sub>1</sub>,..., s<sub>n-1</sub>, R).
- **(**) Compute largest interval  $I_{n-1,1} = (I, u)$  such that  $\forall x_{n-1} \in (I, u)$  the  $I_{n,i}$  cover  $(s_1, \ldots, s_{n-2}, x_{n-1}, \mathbf{R})$ .
- **1** If  $I_{n-1,1} \neq \mathbf{R}$  choose a different value of  $s_{n-1}$ ,  $\notin I_{n-1,1}$ .
- **2** Repeat steps 4–11 until  $(s_1, \ldots, s_{n-2}, \mathbf{R})$  is covered.
- Repeat, decreasing the dimension, until we're covered the whole of the x<sub>1</sub>-axis (or we get SAT).

Termination isn't entirely obvious, but each cell we compute contains at least one cell (the cell its sample point is in) from a CAD for the same polynomials, and the CAD itself is finite.

## How might these be verifiable?

This is still work in progress, and there is more than one option

- A. Verifying each (non-redundant) calculation in reverse
  - For each  $I^{(1)} = (I_1, r_1)$  as an interval of  $\mathbb{R}^1$  prove that it's covered because
  - **②** For each  $I^{(2)} = (I_2, r_2)$  covering the cylinder above  $I^{(1)}$  prove that  $I^{(1)} \times I^{(2)}$  is covered because
  - 3 . . .
  - For each I<sup>(n)</sup> = (I<sub>n</sub>, r<sub>n</sub>) covering the cylinder above I<sup>(1)</sup> × I<sup>(2)</sup> × ··· prove that I<sup>(1)</sup> × I<sup>(2)</sup> × ··· × I<sup>(n)</sup> is covered by the p<sub>j</sub> we remembered for that sample point.
  - B Reverse-engineering a rough "CAD".
    - Sor each sample point (s<sub>1</sub>,..., s<sub>n</sub>) check that the corresponding cuboid I<sup>(1)</sup> × I<sup>(2)</sup> × ··· I<sup>(n)</sup> is contained within the p<sub>i</sub> ∉<sub>j</sub>0 region.
    - Verify that these cuboids are arranged cylindrically, and are complete.

Need Resultants and inequalities, but no topology.

- UNSAT, or its equivalent, can be a bigger challenge than positive answers.
- Completeness proofs of algorithms can be challenging.
- But in some cases, we may not need the completeness proof.
- (At least not in all cases).
- This may require more book-keeping in the algorithm, to keep the "hints" that drove us this way.
- Possibly (e.g. algebraic integration) we may not be able to prove UNSAT in all circumstances.
- ? is this still valuable?

# Bibliography I

E. Ábrahám, J.H. Davenport, M. England, and G. Kremer. Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Conflict Driven Search Using Cylindrical Algebraic Coverings.

Journal of Logical and Algebraic Methods in Programming Article 100633, 119, 2021.

M. Bronstein.

Integration of elementary function.

J. Symbolic Comp., 9:117–173, 1990.

M. Bronstein.

The Algebraic Risch Differential Equation. In *Proceedings ISSAC 91*, pages 241–246, 1991.

# **Bibliography II**

- R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt. According to Abramowitz and Stegun, or arccoth needn't be uncouth. SIGSAM Bulletin 2, 34:58–65, 2000.
- C. Cohen and A. Mahboubi.

A Formal Quantifier Elimination for Algebraically Closed Fields.

In S. Autexier *et al.*, editor, *Proceedings CICM 2010*, pages 189–203, 2010.

#### G.E. Collins.

Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition.

In Proceedings 2nd. GI Conference Automata Theory & Formal Languages, pages 134–183, 1975.

# **Bibliography III**

#### J.H. Davenport.

On the Integration of Algebraic Functions, volume 102 of Springer Lecture Notes in Computer Science. Springer Berlin-Heidelberg-New York (Russian ed. MIR Moscow 1985), 1981.

J.H. Davenport. On the Risch Differential Equation Problem. *SIAM J. Comp.*, 15:903–918, 1986.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

# **Bibliography IV**

M. England, R. Bradford, and J.H. Davenport. Improving the Use of Equational Constraints in Cylindrical Algebraic Decomposition.

In D. Robertz, editor, *Proceedings ISSAC 2015*, pages 165–172, 2015.

J. Liouville.

Mémoire sur l'intégration d'une classe de fonctions transcendantes.

Crelle's J., 13:93-118, 1835.

#### S. McCallum.

On Projection in CAD-Based Quantifier Elimination with Equational Constraints.

In S. Dooley, editor, *Proceedings ISSAC '99*, pages 145–149, 1999.

# Bibliography V

S. McCallum, A. Parusiński, and L. Paunescu.
Validity proof of Lazard's method for CAD construction.
J. Symbolic Comp., 92:52–69, 2019.

#### D. Richardson.

Some Unsolvable Problems Involving Elementary Functions of a Real Variable.

Journal of Symbolic Logic, 33:514-520, 1968.

R.H. Risch.

The Problem of Integration in Finite Terms. *Trans. A.M.S.*, 139:167–189, 1969.

### J.F. Ritt.

Integration in Finite Terms: Liouville's Theory of Elementary Methods.

Columbia University Press, 1948.

# **Bibliography VI**

#### IF Ritt

#### Differential Algebra.

Colloquium Proceedings vol. XXXIII. American Mathematical Society, 1950.

### A. Seidenberg.

A new decision method for elementary algebra. Ann. Math., 60:365-374, 1954.

A. Tarski.

A Decision Method for Elementary Algebra and Geometry. 2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination and Cylindrical Algebraic Decomposition (ed. B.F. Caviness & J.R. Johnson), Springer-Verlag, Wein-New York, 1998, pp. 24-84., 1951.