Comprehensive Gröbner Systems and QE

James Davenport

University of Bath

3 December 2019
$\mathcal{J}=$ http://people.bath.ac.uk/masjhd/JHD-CA.pdf JHD's interpretations: notes (A) etc. at end

Example

Consider first the example of $H_{1}:=\{x+1, u y+x\} \subset \mathbf{Q}[u, x, y]$. Under any term order with $x<y$, this forms a (zero-dimensional) Gröbner base in $\mathbf{Q}(u)[x, y]$.
However, if we substitute $u=0$, we get $\{x+1, x\}$, which is not a Gröbner base at all.
If we consider instead $H_{2}:=\{x+1$, uy -1$\}$, which is equivalent in $\mathbf{Q}(u)[x, y]$, substituting $u=0$ gives us $\{x+1,-1\}$, which is a Gröbner basis (admittedly redundant) equivalent to $\{-1\}$ - no solutions. In fact H_{2} is what we want - a Gröbner basis which is comprehensive in the informal sense that it is valid, not only for symbolic u, but for all values of u.

Definition

Definition

Let K be an integral domain, $R=K\left[u_{1}, \ldots, u_{m}\right]$ and
$T=R\left[x_{1}, \ldots, x_{n}\right]$, and fix an ordering \prec on the monomials in x_{1}, \ldots, x_{n}. Let G be a finite subset of T. G is said to be a Comprehensive Gröbner basis if, for all fields K^{\prime} and all ring homomorphisms $\sigma: R \rightarrow K^{\prime}$ (extended to homomorphisms $\sigma: T \rightarrow K^{\prime}\left[x_{1}, \ldots, x_{n}\right]$), $\sigma(G)$ is a Gröbner basis (under \prec) in $K^{\prime}\left[x_{1}, \ldots, x_{n}\right]$.

It is not obvious that these exist, but they do [Wei92, Theorem 2.7].

At least in principle, K could be \mathbf{Z} and K^{\prime} could be \mathbf{F}_{p}, but I haven't seen this explored, and most people assume K is a field.

Algebraic Partitions

Definition

Let K be an integral domain, $R=K\left[u_{1}, \ldots, u_{m}\right]$ and $S \subseteq K^{m}$. A finite set $\left\{S_{1}, \ldots, S_{t}\right\}$ of nonempty subsets of S is called an algebraic partition of S if it satisfies the following properties
(1) $\bigcup_{i=1}^{t} S_{i}=S$.
(2) $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$.
(3) For each $i, S_{i}=V_{K}\left(I_{i}^{(1)}\right) \backslash V_{K}\left(I_{i}^{(2)}\right)$ for some ideals $I_{i}^{(1)}, I_{i}^{(2)}$ of R, where $V_{K}(I)$ is $V(I) \cap K^{m}$.
Each S_{i} is called a segment.
Note the close relationship with triangular sets: S_{i} would be referred to as a quasi-variety. But regular chains deals with very specific quasi-varieties: $V(T) \backslash V(\operatorname{lc}(T))$.
Note that K needn't be algebraically closed: again not much explored until now.

Comprehensive Gröbner System

Definition

Let $\left\{S_{1}, \ldots, S_{t}\right\}$ be an algebraic partition of $S \subseteq K^{m}$, let $T=R\left[x_{1}, \ldots, x_{n}\right]$, and fix an ordering \prec on the monomials in x_{1}, \ldots, x_{n}. Let F be a finite subset of T. A finite set
$\mathcal{G}:=\left\{\left(S_{1}, G_{1}\right), \ldots,\left(S_{s}, G_{s}\right)\right\}$ satisfying the following properties is called a comprehensive Gröbner system (CGS) of F over S with parameters u_{1}, \ldots, u_{m} w.r.t. \leq :
(1) Each G_{i} is a finite subset of (F);
(2) For each $\bar{c} \in S_{i}, G_{i}(\bar{c}):=\left\{g\left(\bar{c}, x_{1}, \ldots, x_{n}\right) \mid g\left(\bar{u}, x_{1}, \ldots, x_{n}\right)\right.$ $\left.\in G_{i}\right\}$ is a Gröbner basis of the ideal $\left(F(\bar{c})\right.$ in $C\left[x_{1}, \ldots, x_{n}\right]$ with respect to \prec, where

$$
F(\bar{c}):=\left\{f\left(\bar{c}, x_{1}, \ldots, x_{n}\right) \mid f\left(\bar{u}, x_{1}, \ldots, x_{n}\right) \in F\right\}
$$

(3) For each $\bar{c} \in S_{i}, \operatorname{lc}(g)(\bar{c}) \neq 0$ for any element g of G_{i}. In addition, if each $G_{i}(\bar{c})$ is a minimal (reduced) Gröbner basis, G is said to be minimal (reduced). Being monic is not required. The question of local canonicity is discussed in [KY20].

Example Revisited

In the setting of the first example, we partition \mathbf{Q} as
$\left\{S_{1}:=\{0\}, S_{2}:=\mathbf{Q} \backslash S_{1}\right.$. The Gröbner basis corresponding to S_{2} is either H_{1} or H_{2} (or any other variant), and these are Gröbner bases by the gcd Criterion as long as the leading term of $u y+x$ is $u y$. Hence $u=0$ is a special case, and our polynomials are $\underbrace{u y}+x$ and $x+1$, whose S-polynomial (or indeed reduction) is $=0$
$(\underbrace{u y}_{=0}+x)-(x+1)=\underbrace{u y}_{=0}-1$. So the Gröbner basis
corresponding to S_{1} is $\{u y-1\}$.
Note the trick of "remembering" the phantom uy.
Let $\mathcal{F}(S)$ be the defining formula for S.

Computing a CGS

Computing a Comprehensive Gröbner System is conceptually straightforward: we start with the trivial partition $\{S\}$, and run Buchberger's Algorithm. Every time we have to decide on the zeroness or not of a leading coefficient, either in the $S\left(g_{i}, g_{j}\right) \xrightarrow{*}{ }^{G} h$ step or in deciding whether $h=0$ (directly or via the Criteria), and that decision depends on the u_{i}, i.e. whether a polynomial p in the u_{i} is zero or not, we split our set $S_{i}=V_{K}\left(l_{i}^{(1)}\right) \backslash V_{K}\left(I_{i}^{(2)}\right)$ into $S_{i^{\prime}}=V_{K}\left(I_{i}^{(1)} \cup\{p\}\right) \backslash V_{K}\left(I_{i}^{(2)}\right)$ and $S_{i^{\prime \prime}}=V_{K}\left(I_{i}^{(1)}\right) \backslash V_{K}\left(l_{i}^{(2)} \cup\{p\}\right)$ and continue Buchberger's Algorithm over each set separately, but keeping the apparently zero terms. In practice, the same polynomials p keep cropping up, and substantial ingenuity is needed to reduce or eliminate duplication. Again very similar to Regular Chains in terms of the duplication problem.

How are they connected?

Very simply.

Theorem ([Wei92, Proposition 3.4(i)])

If $\mathcal{G}:=\left\{\left(S_{1}, G_{1}\right), \ldots,\left(S_{s}, G_{s}\right)\right\}$ is a Comprehensive Gröbner System for F over S, then $G^{\prime}:=\bigcup_{i=1}^{s} G_{i}$ is a Comprehensive Gröbner Basis for F over S.

Let $\sigma(M)$ be the number of positive eigenvalues of M minus the number of negative ones.
Let I be a zero dimensional ideal in a polynomial ring $K[\bar{x}]$ with d roots (counted with multiplicity), $h \in K[\bar{x}]$. There is a $d \times d$ symmetric matrix M_{h}^{l} such that

$$
\sigma\left(M_{h}^{\prime}\right)=\#\left(\left\{\bar{c} \in V_{\mathbf{R}}(I) \mid h(\bar{c})>0\right\}\right)-\#\left(\left\{\bar{c} \in V_{\mathbf{R}}(I) \mid h(\bar{c})<0\right\}\right)
$$

In particular $\sigma\left(M_{1}^{\prime}\right)=\#\left(V_{\mathbf{R}}(I)\right)$.
The recipe for M_{h}^{l} is given in [FIS15].
I am not sure what happens if h is zero at a root of $I-I$ think the matrix is singular.

Let I be a zero dimensional ideal and h_{1}, \ldots, h_{I} be polynomials of $K[\bar{x}]$. For new variables $\bar{z}=z_{1}, \ldots, z_{l}$ let J be an ideal of $K[\bar{x}, \bar{z}]$ defined by $J=I+\left\langle z_{1}^{2}-h_{1}, \ldots, z_{I}^{2}-h_{I}\right\rangle$. Then the following equation holds.

$$
\sigma\left(M_{1}^{J}\right)=2^{\prime} \#\left(\left\{\bar{c} \in V_{\mathbf{R}}(I) \mid h_{1}(\bar{c})>0, \ldots, h_{l}(\bar{c})>0\right\}\right)>0 .
$$

JHD notes that M will be a $d 2^{\prime} \times d 2^{\prime}$ matrix: the 2^{\prime} comes from counting $\pm \sqrt{h_{i}}$

"Lemma 7" [FIS15]

Let I be a zero dimensional ideal and h_{1}, \ldots, h_{l} be polynomials of $K[\bar{x}]$. For new variables $\bar{z}=z_{1}, \ldots, z_{l}$ let J be an ideal of $K[\bar{x}, \bar{z}]$ defined by $J=I+\left\langle z_{1} h_{1}-1, \ldots, z_{l} h_{l}-1\right\rangle$. Then the following equation holds.

$$
\#\left(V_{\mathbf{R}}(J)\right)=\#\left(\left\{\bar{c} \in V_{\mathbf{R}}(I) \mid h_{1}(\bar{c}) \neq 0, \ldots, h_{l}(\bar{c}) \neq 0\right\}\right) .
$$

"Lemma 9" [FIS15]

Let I be a zero dimensional ideal and h_{1}, \ldots, h_{l} be polynomials of $K[\bar{x}]$. For new variables $\bar{z}=z_{1}, \ldots, z_{l}$ let J be an ideal of $K[\bar{x}, \bar{z}]$ defined by $J=I+\left\langle z_{1}^{2}-h_{1}, \ldots, z_{I}^{2}-h_{l}\right\rangle$. Then the following equation holds.

$$
\sigma\left(M_{1}^{J}\right)>0 \Leftrightarrow \#\left(\left\{\bar{c} \in V_{\mathbf{R}}(I) \mid h_{1}(\bar{c}) \geq 0, \ldots, h_{l}(\bar{c}) \geq 0\right\}\right)>0 .
$$

Again a $d 2^{\prime} \times d 2^{\prime}$ matrix.

Let M be a real symmetric $d \times d$ matrix and $\chi(x)=x^{d}+\sum a_{i} x^{i}$ be its characteristic polynomial. Let $S_{+}(M)$ be the number of sign changes in the coefficients of $\chi(x)$, and $S_{-}(M)$ in $\chi(-x)$. Then S_{+}is the number of positive roots of χ, and S_{-}the number of negative ones.

$$
\underbrace{\#\left(V_{\mathbf{R}}(I)\right)=\sigma\left(M_{1}^{\prime}\right)}>0 \Leftrightarrow S_{+}\left(M_{1}^{\prime}\right) \neq S_{-}\left(M_{1}^{\prime}\right)
$$

We can write $S_{+}\left(M_{1}^{l}\right) \neq S_{-}\left(M_{1}^{\prime}\right)$ as a quantifier-free formula in the a_{i} : call this $I_{d}\left(a_{d-1}, \ldots, a_{0}\right)$.
No statements made about the complexity of this.

Basic QE setting [FIS15]: MainQE($S, \phi)$

We consider an "innermost block" in this form (C):

$$
\exists \bar{x}\left(\begin{array}{c}
f_{1}(\bar{y}, \bar{x})=0 \wedge \cdots f_{r}(\bar{y}, \bar{x})=0 \wedge \\
p_{1}(\bar{y}, \bar{x})>0 \wedge \cdots p_{s}(\bar{y}, \bar{x})>0 \wedge \\
q_{1}(\bar{y}, \bar{x}) \neq 0 \wedge \cdots q_{t}(\bar{y}, \bar{x}) \neq 0
\end{array}\right)
$$

$f_{i}, p_{j}, q_{k} \in \mathbf{Q}[\bar{y}, \bar{x}] \backslash \mathbf{Q}[\bar{y}]$.
Let \bar{z}, \bar{w} be new variables with $\bar{z}, \bar{w} \succ \bar{x}$.
Let $\mathcal{G}=\left(S_{i}, G_{i}\right)$ be a CGS (parameters \bar{y}) over $S(\mathrm{~A})$ for

$$
\{f_{1}, \ldots, f_{r}, \underbrace{z_{1}^{2} p_{1}-1, \ldots, z_{s}^{2} p_{s}-1}_{\text {forcing positive }}, \underbrace{w_{1} q_{1}-1, \ldots, w_{t} q_{t}-1}_{\text {forcing nonzero }}\}
$$

Claim

Each G_{i} will be
$\left\{f_{1}^{\prime}, \ldots, f_{r^{\prime}}^{\prime}, u_{1} z_{1}^{2}-p_{1}^{\prime}, \ldots, u_{s} z_{s}^{2}-p_{s}^{\prime}, v_{1} w_{1}-q_{1}^{\prime}, \ldots, v_{t} w_{t}-q_{t}^{\prime}\right\}$.
Our answer will be $\bigvee_{i} \Psi_{i}\left(S_{i}, G_{i}\right)$: next two slides explain Ψ_{i}.

G_{i} zero-dimensional (\bar{z}, \bar{w} irrelevant for dimension)

If $G_{i}=(1)$ then we return false. Otherwise recall
$G_{i}=\left\{f_{1}^{\prime}, \ldots, f_{r^{\prime}}^{\prime}, u_{1} z_{1}^{2}-p_{1}^{\prime}, \ldots, u_{s} z_{s}^{2}-p_{s}^{\prime}, v_{1} w_{1}-q_{1}^{\prime}, \ldots, v_{t} w_{t}-q_{t}^{\prime}\right\}$.
Let $I=\left\langle f_{1}^{\prime}, \ldots, f_{r^{\prime}}^{\prime}\right\rangle$,

$$
\chi(x)=\prod_{\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}} \chi_{\left(p_{1}^{\prime} / u_{1}\right)^{e_{1}}, \ldots,\left(p_{s}^{\prime} / u_{s}\right)^{e_{s}}}^{\prime}(x)=x^{2^{s} d}+\sum_{0}^{2^{s} d-1} a_{i} x^{i} .
$$

The answer is $\Psi_{i}:=\mathcal{F}\left(S_{i}\right) \wedge I_{2^{s} d}\left(a_{i}\right)$.
JHD: at least that's my reconstruction. I can't see where the w_{i} (the $\neq 0$) terms come in. Also, the subscript of χ_{\ldots}^{\prime}, the characteristic polynomial of M_{\ldots}^{l}, is not a polynomial.

$\exists \phi: G_{i}>0$-dimensional (\bar{z}, \bar{w} irrelevant for dimension)

$\bar{u}:=$ maximal independent variables $\left(\bar{x}, G_{i}, \succ\right)$. (B)
If $\bar{u}=\bar{x}$ return $\operatorname{SYNRAC}(\mathcal{F}(S) \wedge \exists \bar{x} \phi)$ [Wei98]
$\bar{x}^{\prime}:=\bar{x} \backslash \bar{u} ; \phi_{1}:=\operatorname{Free}\left(\phi, \bar{x}^{\prime}\right) ; \phi_{2}:=\operatorname{NonFree}\left(\phi, \bar{x}^{\prime}\right)$;
$\varphi:=\phi_{1} \wedge \operatorname{Recurse}\left(S_{i}, \exists \bar{x}^{\prime} \phi_{2}\right)$
JHD: I think this means φ now only contains \bar{u}-variables Let $\varphi_{1} \vee \cdots \vee \varphi_{\text {, }}$ be a disjunctive normal form of φ. (C) for $1 \leq j \leq /$ do

$$
\begin{aligned}
& \varphi_{j}^{(1)}:=\operatorname{Free}(\varphi, \bar{u}) ; \varphi_{j}^{(2)}:=\operatorname{NonFree}\left(\varphi_{j}, \bar{u}\right) ; \\
& \psi_{j}:=\varphi_{j}^{(1)} \wedge \operatorname{Recurse}\left(S_{i}, \exists \bar{u} \phi_{j}^{(2)}\right)
\end{aligned}
$$

Return $\Psi:=\mathcal{F}\left(S_{i}\right) \wedge\left(\psi_{1} \vee \cdots \vee \psi_{l}\right)$
JHD: "Recurse" goes right back to the MainQE, note that call (1) has pushed the \bar{u}-variables into being parameters (I think) (D).
But somehow S_{i} gets lost in these recursions: I hope I've added it in the right place. Their Theorem 16 states that this does terminate - far from obvious (F).

JHD notes

(A) Recursing with S is, I think, my interpolation to make sense of the recursions we'll see later. S initially is $\mathbf{R}^{\# \bar{y}}$.
(B) There's a lot of freedom here: ML?
(e) Note that our main recursion is on ϕ in conjunctive normmal form (CNF), whereas here we convert to disjunctive normal form (DNF) and implicitly back at the end of the block. Since CNF \leftrightarrow DNF naïvely is exponential, this would provide an exponential blowup at each \exists / \forall boundary, similar to [DH88].
(D) Therefore this recursion is on strictly fewer variables, since $\operatorname{dim}>0$.
(e) Therefore this recursion is on strictly fewer variables, since $\bar{u} \neq \bar{x} . \varphi_{j}^{(1)}$ is free of \bar{u} by construction, and free of \bar{x}^{\prime} since it comes from ϕ_{1}, so actually belongs in an outer block. We might ask why such things exist, but they could be generated by the recursion.
(c) But the two previous notes are probably key.

Bibliography I

國 J．H．Davenport and J．Heintz．
Real Quantifier Elimination is Doubly Exponential．
J．Symbolic Comp．，5：29－35， 1988.
目 R．Fukasaku，H．Iwane，and Y．Sato．
Real Quantifier Elimination by Computation of Comprehensive Gröbner Systems．
In D．Robertz，editor，Proceedings ISSAC 2015，pages 173－180， 2015.
© D．Kapur and Y．Yang．
An Algorithm for Computing a Minimal Comprehensive Gröbner Basis of a Parametric Polynomial System．
https：／／arxiv．org／abs／2003．07957， 2020.
囦 P．Pedersen，M．－F．Roy，and A．Szpirglas．
Counting Real Zeroes in the Multivariate Case．
In Proceedings MEGA＇92，pages 203－224， 1993.

Bibliography II

國 V. Weispfenning.
Comprehensive Gröbner Bases.
J. Symbolic Comp., 14:1-29, 1992.

圊 V. Weispfenning.
A New Approach to Quantifier Elimination for Real Algebra.
Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 376-392, 1998.

