How Much Mathematics Does an Internet User Use

James H. Davenport

Hebron & Medlock Professor of Information Technology
University of Bath

16 March 2010
“Google” — a new word?

I met this woman last night at a party and I came right home and googled her.
2001 N.Y. Times 11 Mar. Ill. 12/3

Part of the *Oxford English Dictionary*’s definition of this verb.
Googol

\[10^{100} = 10,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000
\]

The name “googol” was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. Oxford English Dictionary

We chose our system name, Google, because it is a common spelling of googol, or \(10^{100}\) and fits well with our goal of building very large-scale search engines.

How does Google choose what to show
“I’m feeling lucky” is often right

James Davenport

Davenport in the robes of a Cambridge PhD, wearing the Bronze Medal of the University of Helsinki (awarded 2001). Davenport lecturing at RISC (Austria) in 2007.

Professor James Davenport

Departments: Computer Science and Mathematical Sciences
Job Title: Hebron & Medlock Professor of Information Technology and (until 2005) University Director of Information Technology
Founding Editor-in-Chief LMS Journal of Computation and Mathematics: submit papers/queries here.

The first Ontario Research Chair in Computer Algebra
Former Royal Society Industrial Fellow.

Until June 2008, Director of Studies for undergraduates, and would still like them to speak English. He co-ordinates the Sun Campus Ambassador programme for the campus: the current ambassador is Anupriya Balikai, and the Bath group's pages are here. He represents the University on the Bristol Military Education Committee.

Works in Computer Algebra, where he is an author of a textbook, many papers and presentations. He has been Project Chair of the European OpenMath Project and its successor Thematic Network, with responsibilities for aligning OpenMath and MathML, where he gave (2/Oct/2008) a talk on the problems of differentiation, wrote a paper on conditions, and is producing Content Dictionaries and supervised a Reduce-based OpenMath/MathML translator. He is organising the OpenMath workshop. He was also Treasurer of the European Mathematical Trust.

He chairs the Research Committee's Working Party on Powerful Computing: report here. There was a training course run by NAG on 17-19 September: details here. A similar course is being run in Bristol 23-25 March: register here or contact Caroline Gardiner M.Sc. (Bath).

In July 2007 he visited Hagenberg im Muehlkreis, at a variety of meetings: his notes are here. In January/February 2008 he visited the Third Joining Educational Mathematics workshop in Barcelona. The slides of his talk are here, and his (partial) notes are here. On 18 February 2008 there was a special seminar in Bristol in honour of Clifford Cocks: his notes are here. In July 2008 he visited Birmingham (U.K.), at a variety of meetings: his notes are here.

Academic Year 2008/2009: in Semester 1 he is teaching CM30070: Computer Algebra and CM30078/50123: Advanced Networking. In Semester 2 he is on sabbatical at the University of Waterloo. See some photographs here.

Whereas it has a lot to choose from
How do we decide which pages to choose

(It isn’t luck!)
The basic idea is obvious, with hindsight.
Choose the page with more links to it.

\[
\begin{array}{cc}
A & B \\
\downarrow & \nearrow \\
C & D
\end{array}
\]

Obviously D is more popular than C.
In practice, we also have to decide where to start: since we are going to solve these equations iteratively, we decide that at each iteration, with probability $d \approx 0.85$ we follow a link, and probability $1 - d$ we just choose a page at random.
But the Web is much more complicated!

\[\begin{array}{cc}
A & B \\
\downarrow & \downarrow \\
C & D \\
\downarrow & \downarrow \\
E & F \\
\downarrow & \downarrow \\
G & H \\
\end{array}\]

E and F each have only one link to them, but, since D is more popular than C, we should regard F as more popular than E (and H as more popular than G).
But the Web is much more complicated!

And constantly changing.

Now E is more popular than F. And G is more popular than H, even though nothing has changed for G itself.
But the Web is much much more complicated!

1. The real Web contains (lots of) loops.
2. The real Web is utterly massive — no-one, not even Google, really knows how big.
3. The real Web keeps changing.
4. The real Web is commercially valuable, so there are incentives to manipulate it.
The real Web contains loops

Nevertheless, we could, *in principle* write down a set of (linear) equations for the popularity of each page, which would depend on the popularity of the pages which linked to it, which would depend on the popularity of the pages which linked to it

\[
PR(A) = \frac{1 - d}{N} + d \sum_{P_i \text{ links to } A} \frac{PR(P_i)}{L(P_i)}
\]

where \(L(P_i) \) is the number of links out of page \(P_i \). Let

\[
l_{i,j} = \begin{cases}
0 & \text{if } P_i \text{ doesn’t link to } P_j \\
\frac{1}{L(P_i)} & \text{otherwise}
\end{cases}
\]

Then we could solve these equations.
The real Web contains loops (2)

These equations have a name: they are the equations for the **principal eigenvector** of the modified adjacency matrix of the Web:

$$PR = \begin{pmatrix}
\frac{1-d}{N} & dl_{1,2} & \ldots & dl_{1,N} \\
dl_{2,1} & \frac{1-d}{N} & \ldots & dl_{2,N} \\
\vdots & \vdots & \ddots & \vdots \\
dl_{N,1} & dl_{N,2} & \ldots & \frac{1-d}{N}
\end{pmatrix} PR$$

The genius of Brin and Page was to realise that these equations *could* be solved, and in a distributed and iterative manner. It’s known as the “Page Rank” algorithm. Solving these equations is what makes Google work! So it’s not really “I’m feeling lucky”, it’s “I believe in the principal eigenvector”!
Assume the routers R_1 and R_2 have total capacity 1 each.

What is the best way of allocating bandwidth to the various flows $A_1 \rightarrow A_2$, $B_1 \rightarrow B_2$ and $C_1 \rightarrow C_2$? Of course, it all depends what you mean by “best”.
Network Most Efficient

A and B each get 1, and C nothing.

\[
\begin{array}{ccccccc}
C_1 & \quad 0 & \quad 0 & \quad 0 & \quad 0 & \quad C_2 \\
\downarrow 1 & \quad \downarrow 1 & \quad \downarrow 1 & \quad \downarrow 1
\end{array}
\]

Total flow 2, but C might feel aggrieved.
Max–min Fairness

The worst-off person gets as much as possible. Each flow gets $1/2$.

\[
\begin{align*}
C_1 & \xrightarrow{1/2} R_1 & A_1 & \xrightarrow{1/2} B_1 \\
\downarrow 1/2 & & \downarrow 1/2 & \\
\downarrow 1/2 & & \downarrow 1/2 & \\
A_2 & & B_2 & \\
\end{align*}
\]

Total flow 1.5, but C is getting twice as much routing done for him as A and B are. A and B might feel aggrieved.
Proportional Fairness

Each flow gets the same amount of effort from the routers. A and B each get $2/3$, and C gets $1/3$.

\[
\begin{array}{c}
C_1 & \xrightarrow{1/3} & A_1 \\
\downarrow 2/3 & & \downarrow 2/3 \\
\downarrow 2/3 & & \downarrow 2/3 \\
A_2 & & B_2 \\
\end{array}
\]

\[
\begin{array}{c}
R_1 & \xrightarrow{1/3} & B_1 \\
\downarrow 2/3 & & \downarrow 2/3 \\
\end{array}
\]

\[
\begin{array}{c}
R_2 & \xrightarrow{1/3} & C_2 \\
\downarrow 2/3 & & \downarrow 2/3 \\
\end{array}
\]

Total flow is now $\frac{5}{3} \approx 1.66$, better than max-min, but not as good as the flow where C gets nothing.
But in the real world

- Routers and links have widely different capacities
- The network is much more complicated, and always changing
- No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen (earlier; published 1988) was shown in 1997 to converge to proportional fairness.
A wishes to send x to B.

A and B each think of a random number, say a and b.

A’s action
- multiply x by a

Message
- xa

B’s action
- multiply message by b

$xb(a) = xab$

divide message by a
- xb

divide message by b

In practice, to avoid guessing, and numerical errors, x, a and b are whole numbers modulo some *large* prime p.
Eavesdropper computes \(\frac{xa \cdot xb}{xab} = x \).
So replacing the padlocks by numbers has given the eavesdropper the chance of doing arithmetic.
Numbers rather than Padlocks (II)

Let’s be more subtle.

A’s action Message B’s action
raise x to power a

raise message to power b

$(x^b)^a = (x^a)^b$

take ath root of message

take bth root of message

Surely this frustrates the eavesdropper?
But what about logarithms?

A’s action: raise x to power a

Message: x^a

B’s action: raise message to power b

$(x^b)^a = (x^a)^b$

take ath root of message

Message: x^b

take bth root of message

Eavesdropper computes

$$\log(x^a) \cdot \log(x^b) = \frac{a \log(x) \cdot b \log(x)}{ab \log(x)} = \log(x).$$

Essentially the same trick as before, but with logarithms!
Do logarithms exist?

Remember that we are working modulo a *large* prime p. For simplicity, I will take $p = 41$, since it’s small enough, and logs base 7, so that $\log(7) = 1$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Do logarithms exist?

Remember that we are working modulo a large prime p. For simplicity, I will take $p = 41$, since it’s small enough, and logs base 7, so that $\log(7) = 1$.

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & 1 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\end{array}
\]

So $\log(49) = 2$, but $49 = 1 \cdot 41 + 8 \equiv 8$ since we are working modulo 41, and $\log(7 \cdot 8) = 3$, but $7 \cdot 8 = 56 \equiv 15$, so $\log(15) = 3$.
Do logarithms exist?

Remember that we are working modulo a large prime p. For simplicity, I will take $p = 41$, since it's small enough, and logs base 7, so that $\log(7) = 1$.

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & & & & & & & & & \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\text{3} & & & & & & & & & \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\end{array}
\]

And we can fill in: $8 \cdot 8 = 64 \equiv 23$, so $\log(23) = 4$. Also $8 \cdot 15 = 120 \equiv -3 = 38$ so $\log(38) = 2 + 3 = 5$ and $\log(9) = 10$.
Do logarithms exist?

Remember that we are working modulo a *large* prime p. For simplicity, I will take $p = 41$, since it’s small enough, and logs base 7, so that $\log(7) = 1$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

$15^2 \equiv 20$, so $\log(20) = 6$. $20^2 = 400 \equiv 31$, so $\log(31) = 12$.
Do logarithms exist?

Remember that we are working modulo a large prime p. For simplicity, I will take $p = 41$, since it’s small enough, and logs base 7, so that $\log(7) = 1$.

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & & & & & & & & & \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
& & & & & & & & & \\
& & & & & & & & & \\
3 & & & & & & & & & \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
& & & & & & & & & \\
& & & & & & & & & \\
4 & & & & & & & & & \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
& & & & & & & & & \\
12 & & & & & & & & & \\
\end{array}
\]

and we can keep going, but it’s a tedious process. $O(\sqrt{N})$ methods are known, and indeed $O(e^{c\sqrt{\log N\log\log N}})$, but it’s still tedious!
But it takes three messages

Can we do better? Let \(x \) be a **public** number.
Again, A and B choose random numbers \(a \) and \(b \).

<table>
<thead>
<tr>
<th>A’s action</th>
<th>Message</th>
<th>B’s action</th>
</tr>
</thead>
<tbody>
<tr>
<td>raise (x) to power (a)</td>
<td>(x^a x^b)</td>
<td>raise (x) to power (b)</td>
</tr>
</tbody>
</table>

\[\left(x^b \right)^a \left(x^a \right)^b \]

Now they are *both* in possession of \((x^a)^b = (x^b)^a \), which can be used as the key for any standard cipher.
This is *one* reason why secure websites display a padlock: to assure you that they have gone through this process between *your* browser and the web site: so the *communication* is secure.
RSA encryption (the other main family) provides a way of signing messages — I have a public key and a secret one, and only the secret key will let me produce things that the public key verifies. Hence my browser contains the public key for various “root certificate authorities”, which sign, either directly or via “subordinate certification authorities”, the certificate of the site you are connecting to.
So this guarantees the Internet is honest?

Not quite. What do we know?

+ A secure communications channel (Diffie–Hellman)

 If we believe the roots keys in our browser, the honesty of the relevant root authority, the honesty of any subordinates

+ that we are talking to the right web site.

– Nothing about how honestly that site behaves!

But we should be able to prove who it was.
A few lessons

1. Always check for the padlock, which indicates that the data should be secure *between* you and the far end.
2. If possible, use *your* browser — your laptop/ BlackBerry/ whatever is safer than a browser in an Internet cafe.
3. If you do use an Internet cafe, make sure you reboot the machine afterwards — not a guarantee, but definitely safer.