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Set Membership

S:={z€A|P()}

where A is a set for which membership is “ob-
vious'’, e.g. by construction, and P is some

predicate, which will generally involve some ex-
istential quantifiers.
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Given some = € A, produce

either an effective proof of P(x)

or a proof of =P(x).

In general, it is the second part of the problem
that is the hard one, at least for “natural’ P.
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(Discuss how it's expressed)
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Not solve the problem
(Discuss how it's expressed)

S:={k€Nggqq|TIneN,peP k=2"—p}.

We do not know if this is Ngygqq Or not, merely

that any element of Ngygq \ S is greater than
219.

Note that even the humble 7 has, as its least
representation in S,

7 = 239 _ 549755813881.
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Buchberger If the p; are Grobner, reduction
to non-zero implies non-membership.

1 N



Constructivity?

e Testing for a Grobner basis is constructive.

e Also, we can compute Grobner bases.

(Essentially a pre-conditioning)
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Hence or consists ot

1. A proof that (p1,...

,pm) IS Groebner
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2. A reduction of f to an irreducible non-zero.

1 AN



Hence or consists ot

1. A proof that (p1,...,pm) is Groebner
2. A reduction of f to an irreducible non-zero.

3. (A proof that the p, correspond to the orig-
inal question g;)



Hence or consists ot

1. A proof that (p1,...,pm) is Groebner
2. A reduction of f to an irreducible non-zero.

3. (A proof that the p, correspond to the orig-
inal question g;)

1, 2 probably exist in the computation;

1 ~



Hence or consists ot

1. A proof that (p1,...,pm) is Groebner
2. A reduction of f to an irreducible non-zero.

3. (A proof that the p, correspond to the orig-
inal question g;)

1, 2 probably exist in the computation;

3 is implicit in *my GB algorithm is correct”,
and would probably need to be re-proved (qj —>“(kp_)
O suffices).
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L-Integration In 1904

Problem 1 For given f €1

either exhibit g € T such that f = ¢

or return failed (g might exist, but hadn't
been found),

and a successful program was one which did
not return failed when a freshman could see
the answer.
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Z-Integration in 1970 (Risch, Moses etc.)

Problem 2 For given f (normally f € 1)

either exhibit g € T such that f = ¢

or demonstrate that no such g exists.

This is generally implemented for Z elementary
transcendental (modulo the constant problem),
but the or generally has to be taken on trust.

1 0



Liouville's Theorem (1835)
Risch's Algorithm (1969)



Liouville's Theorem (1835)
Risch's Algorithm (1969)

If an elementary integral exists, then the orig-

inal function must be of a certain form:
/ 4 vl
f — Vo + Z Civ_za

=1 1

with vg € K, c; e C={g€ K | g =0}, v; € CK
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Hard to explain to the user

For example Maple 11 says merely

If Maple cannot find a closed form ex-
pression for the integral, the function
call is returned.

This is complicated by the "greedy salesman
problem’” — the salesman wants the most pow-
erful integrator, not the best-defined integra-
tor.
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Implications for CA systems as oracles.

Either generally pretty good, but could do bet-
ter.

Or (trust me) Mixed: GB exposes the algo-
rithmicity; integration etc. generally doesn't.

Or (and here’s the proof) Pretty poor.
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Calculemus
et demonstrationes monstremus
(Let us calculate/prove
and show the proofs)



