
Effective Set Membership in

Computer Algebra

James H. Davenport

Department of Computer Science

University of Bath

Bath BA2 7AY England

J.H.Davenport@bath.ac.uk

July 30, 2008



Set Membership

S := {x ∈ A | P (x)}

where A is a set for which membership is “ob-

vious”, e.g. by construction, and P is some

predicate, which will generally involve some ex-

istential quantifiers.

1



Effective Set Membership

Given some x ∈ A, produce

either an effective proof of P (x)

or a proof of ¬P (x).

In general, it is the second part of the problem

that is the hard one, at least for \natural" P .

2



Effective Set Membership

Given some x ∈ A, produce

either an effective proof of P (x)

or a proof of ¬P (x).

In general, it is the second part of the problem

that is the hard one, at least for “natural” P .

3



Not solve the problem

(Discuss how it’s expressed)

S := fk 2 N
odd

j 9n 2 N; p 2 P k = 2

n

� pg :

We do not know if this is N
odd

or not, merely

that any element of N
odd

n S is greater than

219.

Note that even the humble 7 has, as its least

representation in S,

7 = 2

39

� 549755813881:

4



Not solve the problem

(Discuss how it’s expressed)

S := {k ∈ Nodd | ∃n ∈ N, p ∈ P k = 2n − p} .

We do not know if this is Nodd or not, merely

that any element of Nodd \ S is greater than

219.

Note that even the humble 7 has, as its least

representation in S,

7 = 2

39

� 549755813881:

5



Not solve the problem

(Discuss how it’s expressed)

S := {k ∈ Nodd | ∃n ∈ N, p ∈ P k = 2n − p} .

We do not know if this is Nodd or not, merely

that any element of Nodd \ S is greater than

219.

Note that even the humble 7 has, as its least

representation in S,

7 = 239 − 549755813881.

6



Ideal Membership

(p

1

; : : : ; p

m

) =

8

<

:

m

X

i=1

f

i

p

i

: f

i

2 k[x

1

; : : : ; x

n

]

9

=

;

\ideal membership" = \�nd the f

i

"

Either �nd the f

i

, e.g. by repeated reduction.

Or ??

Buchberger If the p

i

are Gr�obner, reduction

to non-zero implies non-membership.

7



Ideal Membership

(p1, . . . , pm) =


m∑

i=1

fipi : fi ∈ k[x1, . . . , xn]


“ideal membership” = “find the fi”

Either �nd the f

i

, e.g. by repeated reduction.

Or ??

Buchberger If the p

i

are Gr�obner, reduction

to non-zero implies non-membership.

8



Ideal Membership

(p1, . . . , pm) =


m∑

i=1

fipi : fi ∈ k[x1, . . . , xn]


“ideal membership” = “find the fi”

Either find the fi, e.g. by repeated reduction.

Or ??

Buchberger If the p

i

are Gr�obner, reduction

to non-zero implies non-membership.

9



Ideal Membership

(p1, . . . , pm) =


m∑

i=1

fipi : fi ∈ k[x1, . . . , xn]


“ideal membership” = “find the fi”

Either find the fi, e.g. by repeated reduction.

Or ??

Buchberger If the pi are Gröbner, reduction

to non-zero implies non-membership.

10



Constructivity?

• Testing for a Gröbner basis is constructive.

• Also, we can compute Gröbner bases.

(Essentially a pre-conditioning)

11



Hence or consists of

1. A proof that (p

1

; : : : ; p

m

) is Gr�oebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the p

i

correspond to the orig-

inal question q

i

)

1, 2 probably exist in the computation;

3 is implicit in \my GB algorithm is correct",

and would probably need to be re-proved (q

j

!

�

(p

i

)

0 su�ces).

12



Hence or consists of

1. A proof that (p1, . . . , pm) is Gröebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the p

i

correspond to the orig-

inal question q

i

)

1, 2 probably exist in the computation;

3 is implicit in \my GB algorithm is correct",

and would probably need to be re-proved (q

j

!

�

(p

i

)

0 su�ces).

13



Hence or consists of

1. A proof that (p1, . . . , pm) is Gröebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the p

i

correspond to the orig-

inal question q

i

)

1, 2 probably exist in the computation;

3 is implicit in \my GB algorithm is correct",

and would probably need to be re-proved (q

j

!

�

(p

i

)

0 su�ces).

14



Hence or consists of

1. A proof that (p1, . . . , pm) is Gröebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the pi correspond to the orig-

inal question qi)

1, 2 probably exist in the computation;

3 is implicit in \my GB algorithm is correct",

and would probably need to be re-proved (q

j

!

�

(p

i

)

0 su�ces).

15



Hence or consists of

1. A proof that (p1, . . . , pm) is Gröebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the pi correspond to the orig-

inal question qi)

1, 2 probably exist in the computation;

3 is implicit in \my GB algorithm is correct",

and would probably need to be re-proved (q

j

!

�

(p

i

)

0 su�ces).

16



Hence or consists of

1. A proof that (p1, . . . , pm) is Gröebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the pi correspond to the orig-

inal question qi)

1, 2 probably exist in the computation;

3 is implicit in “my GB algorithm is correct”,

and would probably need to be re-proved (qj →∗(pi)
0 suffices).

17



I-Integration in 1964

Problem 1 For given f ∈ I

either exhibit g ∈ I such that f = g′

or return failed (g might exist, but hadn’t

been found),

and a successful program was one which did

not return failed when a freshman could see

the answer.
18



I-Integration in 1970 (Risch, Moses etc.)

Problem 2 For given f (normally f ∈ I)

either exhibit g ∈ I such that f = g′

or demonstrate that no such g exists.

This is generally implemented for I elementary

transcendental (modulo the constant problem),

but the or generally has to be taken on trust.

19



Liouville’s Theorem (1835)

Risch’s Algorithm (1969)

If an elementary integral exists, then the orig-

inal function must be of a certain form:

f = v

0

0

+

n

X

i=1

c

i

;

with v

0

2 K, c

i

2 C = fg 2 K j g

0

= 0g, v

i

2 CK

20



Liouville’s Theorem (1835)

Risch’s Algorithm (1969)

If an elementary integral exists, then the orig-

inal function must be of a certain form:

f = v′0 +
n∑

i=1

ci
v′i
vi

,

with v0 ∈ K, ci ∈ C = {g ∈ K | g′ = 0}, vi ∈ CK

21



Hard to explain to the user

For example Maple 11 says merely

If Maple cannot �nd a closed form ex-

pression for the integral, the function

call is returned.

This is complicated by the \greedy salesman

problem"| the salesman wants the most pow-

erful integrator, not the best-de�ned integra-

tor.

22



Hard to explain to the user

For example Maple 11 says merely

If Maple cannot find a closed form ex-

pression for the integral, the function

call is returned.

This is complicated by the \greedy salesman

problem"| the salesman wants the most pow-

erful integrator, not the best-de�ned integra-

tor.

23



Hard to explain to the user

For example Maple 11 says merely

If Maple cannot find a closed form ex-

pression for the integral, the function

call is returned.

This is complicated by the “greedy salesman

problem” — the salesman wants the most pow-

erful integrator, not the best-defined integra-

tor.

24



Implications for CA systems as oracles.

Either generally pretty good, but could do bet-

ter.

Or (trust me) Mixed: GB exposes the algo-

rithmicity; integration etc. generally doesn't.

Or (and here's the proof) Pretty poor.

25



Implications for CA systems as oracles.

Either generally pretty good, but could do bet-

ter.

Or (trust me) Mixed: GB exposes the algo-

rithmicity; integration etc. generally doesn't.

Or (and here's the proof) Pretty poor.

26



Implications for CA systems as oracles.

Either generally pretty good, but could do bet-

ter.

Or (trust me) Mixed: GB exposes the algo-

rithmicity; integration etc. generally doesn’t.

Or (and here's the proof) Pretty poor.

27



Implications for CA systems as oracles.

Either generally pretty good, but could do bet-

ter.

Or (trust me) Mixed: GB exposes the algo-

rithmicity; integration etc. generally doesn’t.

Or (and here’s the proof) Pretty poor.

28



Calculemus
et demonstrationes monstremus

(Let us calculate/prove

and show the proofs)

29



Calculemus
et demonstrationes monstremus

(Let us calculate/prove

and show the proofs)

30



Calculemus
et demonstrationes monstremus

(Let us calculate/prove

and show the proofs)

31


