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Set Membership

S := {x ∈ A | P (x)}

where A is a set for which membership is “ob-

vious”, e.g. by construction, and P is some

predicate, which will generally involve some ex-

istential quantifiers.
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Effective Set Membership

Given some x ∈ A, produce

either an effective proof of P (x)

or a proof of ¬P (x).

In general, it is the second part of the problem

that is the hard one, at least for \natural" P .
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Not solve the problem

(Discuss how it’s expressed)

S := fk 2 N
odd

j 9n 2 N; p 2 P k = 2

n

� pg :

We do not know if this is N
odd

or not, merely

that any element of N
odd

n S is greater than

219.

Note that even the humble 7 has, as its least

representation in S,

7 = 2

39

� 549755813881:
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Not solve the problem

(Discuss how it’s expressed)

S := {k ∈ Nodd | ∃n ∈ N, p ∈ P k = 2n − p} .

We do not know if this is Nodd or not, merely

that any element of Nodd \ S is greater than

219.

Note that even the humble 7 has, as its least

representation in S,

7 = 239 − 549755813881.
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Ideal Membership

(p
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=

;

\ideal membership" = \�nd the f

i

"

Either �nd the f

i

, e.g. by repeated reduction.

Or ??

Buchberger If the p

i

are Gr�obner, reduction

to non-zero implies non-membership.
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Ideal Membership

(p1, . . . , pm) =


m∑

i=1

fipi : fi ∈ k[x1, . . . , xn]


“ideal membership” = “find the fi”
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Ideal Membership

(p1, . . . , pm) =


m∑

i=1

fipi : fi ∈ k[x1, . . . , xn]


“ideal membership” = “find the fi”

Either find the fi, e.g. by repeated reduction.

Or ??

Buchberger If the pi are Gröbner, reduction

to non-zero implies non-membership.
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Constructivity?

• Testing for a Gröbner basis is constructive.

• Also, we can compute Gröbner bases.

(Essentially a pre-conditioning)

11



Hence or consists of

1. A proof that (p

1

; : : : ; p

m

) is Gr�oebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the p

i

correspond to the orig-

inal question q

i

)

1, 2 probably exist in the computation;

3 is implicit in \my GB algorithm is correct",

and would probably need to be re-proved (q

j

!

�

(p

i

)

0 su�ces).
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Hence or consists of

1. A proof that (p1, . . . , pm) is Gröebner

2. A reduction of f to an irreducible non-zero.

3. (A proof that the pi correspond to the orig-

inal question qi)

1, 2 probably exist in the computation;

3 is implicit in “my GB algorithm is correct”,

and would probably need to be re-proved (qj →∗(pi)
0 suffices).
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I-Integration in 1964

Problem 1 For given f ∈ I

either exhibit g ∈ I such that f = g′

or return failed (g might exist, but hadn’t

been found),

and a successful program was one which did

not return failed when a freshman could see

the answer.
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I-Integration in 1970 (Risch, Moses etc.)

Problem 2 For given f (normally f ∈ I)

either exhibit g ∈ I such that f = g′

or demonstrate that no such g exists.

This is generally implemented for I elementary

transcendental (modulo the constant problem),

but the or generally has to be taken on trust.
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Liouville’s Theorem (1835)

Risch’s Algorithm (1969)

If an elementary integral exists, then the orig-

inal function must be of a certain form:

f = v

0

0

+

n

X

i=1

c

i

;

with v

0

2 K, c

i

2 C = fg 2 K j g

0

= 0g, v

i

2 CK
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Liouville’s Theorem (1835)

Risch’s Algorithm (1969)

If an elementary integral exists, then the orig-

inal function must be of a certain form:

f = v′0 +
n∑

i=1

ci
v′i
vi

,

with v0 ∈ K, ci ∈ C = {g ∈ K | g′ = 0}, vi ∈ CK
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Hard to explain to the user

For example Maple 11 says merely

If Maple cannot �nd a closed form ex-

pression for the integral, the function

call is returned.

This is complicated by the \greedy salesman

problem"| the salesman wants the most pow-

erful integrator, not the best-de�ned integra-

tor.
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Hard to explain to the user

For example Maple 11 says merely

If Maple cannot find a closed form ex-

pression for the integral, the function

call is returned.

This is complicated by the “greedy salesman

problem” — the salesman wants the most pow-

erful integrator, not the best-defined integra-

tor.
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Implications for CA systems as oracles.

Either generally pretty good, but could do bet-

ter.

Or (trust me) Mixed: GB exposes the algo-

rithmicity; integration etc. generally doesn't.

Or (and here's the proof) Pretty poor.
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Calculemus
et demonstrationes monstremus

(Let us calculate/prove

and show the proofs)
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