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The claim is often made (these days gener-
ally informally) that a given computer algebra
system “understands’” sin, or some other func-
tion. Here we ask three questions.

1. What does this mean?
2. What might it mean?

3. How should a system “understand” a new
function?



Notation: throughout this paper, the term
‘function’ means a function from R to R or
C to C. The principles apply to functions R"
to R or C™ to C, but we shall not consider such
functions here. C will denote an arbitrary field
of constants (of characteristic zero), and = will
be the variable of differentiation/integration.



¢ IS sald TO be elementary over a difrerential
field K if one of the following is true:

(a) 0 is algebraic over K;

(b) 0/ = n'/n for some n € K (we write § =
logn);

(c) 9 = n'6 for some n € K (we write 0 =
expn).

The object f is said to be elementary over K if
it can be expressed in some K(61,...60,) with
each 0; elementary over K(6;...6,_1). If K is
omitted, C'(x) is assumed.



¢ IS sald TO Dbe Liouvilllan over a dirtrerential
field K if one of the following is true:

(a) 0 is algebraic over K;
(b) ¢/ =n for some n € K (we write 0 = [n);

(c) 9 = n'6 for some n € K (we write § =
expn).

The object f is said to be Liouvillian over K if
it can be expressed in some K(61,...60,) with
each 6; Liouvillian over K(0;...0;,_1). If K is
omitted, C'(x) is assumed.



So far
no functions!



Let K be a field of functions in R — R (or
C — C). f(x), a function from R — R (or
C — C) is said to be an elementary (resp. Li-
ouvillian) function if it lies in some elementary
(resp. Liouvillian) extension K(61,...6,) of K.

However, even this is not enough.



Let K be a field of functions in R — R (or
C — C). f(x), a function from R — R (or
C — C) is said to be a proper elementary (resp.
Liouvillian) function if it lies in some elemen-
tary (resp. Liouvillian) extension K(61,...60n)
of K, where each is 0; proper elementary (resp.
Liouvillian) over K(6;...0;_1), and, for each x
where both are defined,
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Furthermore, we require that the right-hand
side of (1) be defined almost everywhere.



As examples of the various pathologies that
can occur, we give the following examples, where
K is the field Q(x) of rational functions C — C
equipped with the derivation induced by ' = 1.

1. K(0) where ¢/ = 1. Here ¢ is merely an

abstract symbol, not a function at all.

2. K(0) where ¢ =1 and 6 : z — 0. Here
0 is elementary, and a function, but not a
proper elementary function since equation
(1) is violated.



x € Q

x¢Q
Here equation (1) is satisfied, but this falls
foul of the last clause.

1
3. K(0) where 9’=%and 6:xn—>{o

4. K(0 = log(z) + 42) where ¢/ = % This is
a proper elementary function, even though
it is not “"what we all mean by" logx.

5. K(0) where ¢/ = 1 and 0 : z — logz +

{O, a:>0_ As a function R — R this
—m o x <0

is log |x|, and is a proper elementary func-
tion in our sense. Whether it is “what we
all mean by" logx has been debated else-
where.



What does it mean?

1. Numerical evaluation. Generally speaking,
if the input is real, this means real evalua-
tion where possible. To do numerical eval-
uation, one has to choose the branch cuts
(if there are any) of the relevant function.

2. Plotting — generally a consequence of the
above, though more can in fact be done if
the function is better “understood”.

* So far, no algebral



3. Differentiation. This property is generally
hard-coded for some functions, with an ex-
tension mechanism for others, e.g. defin-
ing diff/f for a function £ in Maple, or giv-
ing a symbol a '*xDF property in REDUCE.

4. Integration. This is the difficult one.

* This slide, no values, only algebral



S. dSpecial values. 1 Nnis Is not the same as
numerical evaluation: sin(w) = 0, whereas

sin(3.14159265358...26433) = 8.327x10 2%,

This is a case where the precise nature,
and the adherence, of the branch cuts is
critical: log(—1.04¢€7) might be near either
of mi or —mi, but log(—1) has to be .

6. Simplification. Some of this is built in, e.q.
for even/odd functions: other simplifica-
tions can be invoked via commands such
as expand Or collect, or by giving functions
properties.

* Branch cuts!
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SO what do we need ToO KNow ¢

1. The algebraic properties — these are easy
(post Moses/Risch);

2. Implicit, functional, knowledge of the branch
cuts — even a Fortran programmer can do
this;

3. Explicit knowledge of the branch cuts —
so far not treated in any algebra system to
my knowledge.



HOW IS a Tunction dertined ¢

* Hacked together by some guy(s)!

N o o & b =

By explicit formulae, normally composition.
By indefinite integration.

By first order linear differential equations.
By higher order linear differential equations.
By functional equations.

By non-linear differential equations.

by definite integrals.
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e By explicit formulae, normally composition.

l loglogsinz : R — R is in fact the ‘unde-
fined’ function.

f(g(x)) g(x) well-defined
h(x) =1 . .
limy—z f(g(y)) otherwise.
(2)
Expecting a system to perform (2) automati-
cally is, in the author’s opinion, expecting too
much.
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By Indetinite Integration

. T his gives us evaluation subject to not
introducing a branch cut.

. Risch—Bronstein gives a test for ‘novelty’.
. Integration is hard.

. Special values are definite integration —
hard.

. Further Integration is hard — see paper.

. Even/Odd simplification OK — rest harder.
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By first-order |.0.d.e.

In general, one would consider a y defined by

v + fy=y. (3)
Let F = [f and y = zexp(—F). Then (3)
becomes
7 exp(—F) — fzexp(—F) + fzexp(—F) =g,
(4)
i.e. 2/ = gexp(F). Hence
y=exp(—F) [ (gexp(F)),  (5)

and the problem is reduced to the previous one.
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BY higher-order [.0.d.e.

e Even absolute ‘novelty’ is hard: the the-
ory just about generalises to second-order

equations.

e Relative novelty is a problem. J, are solu-
tions of

2%y +ay' + (z° —v*)y=0,  (6)
whereas j, is defined as solutions of

22y + 22y’ + (2° —n(n+ 1))y =0. (7)

I No known general solution.
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Function/Non-linear equations

For example, ye¥Y = x, whose solution is the
Lambert W function. Not Liouvillian, but can
also be defined by a non-linear differential equa-

tion: W/'(z) = (1+M1;§8’)):c'

Just as log has infinitely many variants, sep-
arated by 2kmz, which can be chosen to have
a common branch cut,so W has infinitely many
branches, but the description is somewhat hairier.
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By definite integration

The classic example of this is the [ function,
defined by

M(z) = /OOO t#~Le~tdt. (8)

This is continuous over the whole of the com-
plex plane, except for z =0,—-1,—-2....

Many “simplification rules” are erroneous in
places.
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Conclusion

There has been comparatively little systematic
work in this area: an early attempt was Moses,
but little has been done in this direction. Per-
haps the most interesting is MeunierSalvy.

To define functions completely, one has to know
the branch cuts and their behaviour, and noth-
ing has been done about automating this —
largely because there is no consistent philoso-
phy here. Indeed, it would be a significant step
forward to have a system capable of checking
that a definition of, say, a proper Liouvillian
function and its branch cuts was consistent.
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