
What might “understand a

function” mean?

James H. Davenport

Department of Computer Science

University of Bath

Bath BA2 7AY England

J.H.Davenport@bath.ac.uk

June 27, 2007



The claim is often made (these days gener-

ally informally) that a given computer algebra

system “understands” sin, or some other func-

tion. Here we ask three questions.

1. What does this mean?

2. What might it mean?

3. How should a system “understand” a new

function?
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Notation: throughout this paper, the term

‘function’ means a function from R to R or

C to C. The principles apply to functions Rn

to R or Cn to C, but we shall not consider such

functions here. C will denote an arbitrary field

of constants (of characteristic zero), and x will

be the variable of differentiation/integration.
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θ is said to be elementary over a differential
field K if one of the following is true:

(a) θ is algebraic over K;

(b) θ′ = η′/η for some η ∈ K (we write θ =
log η);

(c) θ′ = η′θ for some η ∈ K (we write θ =
exp η).

The object f is said to be elementary over K if
it can be expressed in some K(θ1, . . . θn) with
each θi elementary over K(θi . . . θi−1). If K is
omitted, C(x) is assumed.
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θ is said to be Liouvillian over a differential

field K if one of the following is true:

(a) θ is algebraic over K;

(b) θ′ = η for some η ∈ K (we write θ =
∫

η);

(c) θ′ = η′θ for some η ∈ K (we write θ =

exp η).

The object f is said to be Liouvillian over K if

it can be expressed in some K(θ1, . . . θn) with

each θi Liouvillian over K(θi . . . θi−1). If K is

omitted, C(x) is assumed.
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So far

no functions!
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Let K be a field of functions in R → R (or

C → C). f(x), a function from R → R (or

C → C) is said to be an elementary (resp. Li-

ouvillian) function if it lies in some elementary

(resp. Liouvillian) extension K(θ1, . . . θn) of K.

However, even this is not enough.
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Let K be a field of functions in R → R (or

C → C). f(x), a function from R → R (or

C → C) is said to be a proper elementary (resp.

Liouvillian) function if it lies in some elemen-

tary (resp. Liouvillian) extension K(θ1, . . . θn)

of K, where each is θi proper elementary (resp.

Liouvillian) over K(θi . . . θi−1), and, for each x

where both are defined,

(f ′)(x) = lim
ε→0

f(x + ε)− f(x)

ε
. (1)

Furthermore, we require that the right-hand

side of (1) be defined almost everywhere.
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As examples of the various pathologies that

can occur, we give the following examples, where

K is the field Q(x) of rational functions C → C

equipped with the derivation induced by x′ = 1.

1. K(θ) where θ′ = 1
x. Here θ is merely an

abstract symbol, not a function at all.

2. K(θ) where θ′ = 1
x and θ : x 7→ 0. Here

θ is elementary, and a function, but not a

proper elementary function since equation

(1) is violated.
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3. K(θ) where θ′ = 1
x and θ : x 7→

{
1 x ∈ Q

0 x /∈ Q
.

Here equation (1) is satisfied, but this falls
foul of the last clause.

4. K(θ = log(x) + 42) where θ′ = 1
x. This is

a proper elementary function, even though
it is not “what we all mean by” logx.

5. K(θ) where θ′ = 1
x and θ : x 7→ logx +{

0 x > 0

−iπ x < 0
. As a function R → R this

is log |x|, and is a proper elementary func-
tion in our sense. Whether it is “what we
all mean by” logx has been debated else-
where.



What does it mean?

1. Numerical evaluation. Generally speaking,

if the input is real, this means real evalua-

tion where possible. To do numerical eval-

uation, one has to choose the branch cuts

(if there are any) of the relevant function.

2. Plotting — generally a consequence of the

above, though more can in fact be done if

the function is better “understood”.

* So far, no algebra!

9



3. Differentiation. This property is generally

hard-coded for some functions, with an ex-

tension mechanism for others, e.g. defin-

ing diff/f for a function f in Maple, or giv-

ing a symbol a !*DF property in REDUCE.

4. Integration. This is the difficult one.

* This slide, no values, only algebra!



5. Special values. This is not the same as
numerical evaluation: sin(π) = 0, whereas

sin(3.14159265358 . . .26433) = 8.327×10−26.

This is a case where the precise nature,
and the adherence, of the branch cuts is
critical: log(−1.0+εi) might be near either
of πi or −πi, but log(−1) has to be πi.

6. Simplification. Some of this is built in, e.g.
for even/odd functions: other simplifica-
tions can be invoked via commands such
as expand or collect, or by giving functions
properties.

* Branch cuts!
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So what do we need to know?

1. The algebraic properties — these are easy

(post Moses/Risch);

2. Implicit, functional, knowledge of the branch

cuts — even a Fortran programmer can do

this;

3. Explicit knowledge of the branch cuts —

so far not treated in any algebra system to

my knowledge.
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How is a function defined?

* Hacked together by some guy(s)!

1. By explicit formulae, normally composition.

2. By indefinite integration.

3. By first order linear differential equations.

4. By higher order linear differential equations.

5. By functional equations.

6. By non-linear differential equations.

7. by definite integrals.

12



• By explicit formulae, normally composition.

! log log sinx : R → R is in fact the ‘unde-

fined’ function.

h(x) =

{
f(g(x)) g(x) well-defined

limy→x f(g(y)) otherwise.
(2)

Expecting a system to perform (2) automati-

cally is, in the author’s opinion, expecting too

much.
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By indefinite integration

1. This gives us evaluation subject to not

introducing a branch cut.

2. Risch–Bronstein gives a test for ‘novelty’.

3. Integration is hard.

4. Special values are definite integration —

hard.

5. Further Integration is hard — see paper.

6. Even/Odd simplification OK — rest harder.
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By first-order l.o.d.e.

In general, one would consider a y defined by

y′ + fy = g. (3)

Let F =
∫

f and y = z exp(−F ). Then (3)

becomes

z′ exp(−F )− fz exp(−F ) + fz exp(−F ) = g,

(4)

i.e. z′ = g exp(F ). Hence

y = exp(−F )
∫

(g exp(F )) , (5)

and the problem is reduced to the previous one.
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By higher-order l.o.d.e.

• Even absolute ‘novelty’ is hard: the the-
ory just about generalises to second-order
equations.

• Relative novelty is a problem. Jν are solu-
tions of

x2y′′ + xy′ + (x2 − ν2)y = 0, (6)

whereas jn is defined as solutions of

x2y′′ + 2xy′ + (x2 − n(n + 1))y = 0. (7)

! No known general solution.
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Function/Non-linear equations

For example, yey = x, whose solution is the

Lambert W function. Not Liouvillian, but can

also be defined by a non-linear differential equa-

tion: W ′(x) = W (x)
(1+W (x))x.

Just as log has infinitely many variants, sep-

arated by 2kπi, which can be chosen to have

a common branch cut,so W has infinitely many

branches, but the description is somewhat hairier.

17



By definite integration

The classic example of this is the Γ function,

defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt. (8)

This is continuous over the whole of the com-

plex plane, except for z = 0,−1,−2 . . ..

Many “simplification rules” are erroneous in

places.
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Conclusion

There has been comparatively little systematic
work in this area: an early attempt was Moses,
but little has been done in this direction. Per-
haps the most interesting is MeunierSalvy.

To define functions completely, one has to know
the branch cuts and their behaviour, and noth-
ing has been done about automating this —
largely because there is no consistent philoso-
phy here. Indeed, it would be a significant step
forward to have a system capable of checking
that a definition of, say, a proper Liouvillian
function and its branch cuts was consistent.
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