
What are the rules of “elementary algebra”

James Davenport & Chris Sangwin

Universities of Bath & Birmingham

7 July 2010



Setting

I A relatively traditional mathematics course, at, say first-year
undergraduate level.

I But Computer-Aided Assessment is in use.

I One such example is WeBWorK, another is MapleTA.

I “Harness the power of technology to improve teaching and
learning” [AMS Notices, June 2009].



Web-based Assessment and Testing Systems

“Homework software has the potential to handle the grading of
homework at a low cost. While this software has the limitation of
requiring a concise answer — an algebraic expression or a
multiple-choice response — it also has an important advantage
over hand grading. Namely, if a student’s answer to a problem is
wrong, the student learns of the mistake immediately and can be
allowed to try the problem or a similar problem repeatedly until the
right answer is obtained.” [AMS]



Automatically generated problems

Means automatically generated answers and marking schemes.

I Parsing the student’s answer (non-trivial — see next slide)

I Is the student’s answer mathematically correct?

I Is the student’s answer pedagogically correct?

I So what mark does it get (assuming we are doing more than
true/false marking)?

Marking other than true/false was not discussed by the AMS, but
seems important to us.



Typical computer aided assessment

Figure: STACK system [?]



Phase 1: Addition and Multiplication only
This is (close to) AC-rewriting. We can distinguish levels:

1. Textual identity. Here x+ y and x+y are different (space).
Similarly x+10 and x+010 are different (leading zero).

2. Equality after lexical analysis. Above examples are the same,
but not x+y*z versus x+(y*z).

3. Equality as binary parse trees. This would consider x+y*z and
x+(y*z) as the same. However, this interpretation would
distinguish x+(y+z) from (x+y)+z, being respectively the
trees

+
↙ ↘

x +
↙ ↘

y z

and

+
↙ ↘

+ z
↙ ↘

x y

.

Being based on binary parse trees, it requires an operator
precedence rule (is + left-associative or right-associative) to
decide which of these becomes the representation of x+y+z.



Phase 1: Addition and Multiplication (continued)
1. Textual identity.

2. Equality after lexical analysis.

3. Equality as binary parse trees. However, this interpretation
would distinguish x+(y+z) from (x+y)+z.

4. We can avoid this if we allow n-ary trees, parsing x+y+z as

+
↙ ↓ ↘

x y z
, (1)

but this is now a third tree, different from the two above.

5. Solved if we flatten the associative operators + and *, which
would transform both trees into the tree in (1).

6. But “the rules of elementary algebra” include the facts that +
and × are commutative, as well as associative. So compare
the children of a + (or *) node as (multi)sets, rather than as
lists, so now the tree in (1) has the same children, admittedly
in a different order, as the trees for y+(z+x) etc.



Addition and Multiplication (further)

Beyond this we are in the realm of computer algebra, rather than
syntactic manipulation.

7. We remove identity elements: i.e. we remove 0 from the
arguments of + and 1 from the arguments of ×. Where
necessary, we flatten to remove operations which end up with
a single argument. For example

+
↙ ↘

x 0
⇒

+
↓
x
⇒ x .

8. We combine all numerical terms in the arguments of + and
×, and (for the sake of user presentation) order the result so
that any number appears first for × and last for +.

9. We apply the distributive law (of multiplication over addition).



So far, so good

Depending on the precise definition of “obviously equal”,
somewhere between levels 6 and 9 lies a system that gets many
examples “right”, in the sense that the user is not upset that the
system refuses to recognise as equal expressions in + and * that are
“obviously equal”.
However, the grammar of even elementary algebra is larger than
this, and includes − (in both unary and binary forms) and /.
Practically any system for processing mathematics has to deal with
these, and their impact on the problem of “equality modulo the
usual rules of elementary algebra”.
It might be thought that / and (binary) - posed the same
problems, being the inverse operations to * and + respectively, but
in fact the unary operators behave differently.



Subtraction

Here we have both unary and binary -. We seem to make the
transformation a-b→a+(-b) at a very early stage in our mental
processing.
Hence the expression a-b-c is thought of as a+(-b)+(-c), and, in
levels 4 and beyond, becomes the tree

+
↙ ↓ ↘

a − −
↓ ↓
b c

.

Level 6 would then regard this as equal to the tree from a-c-b.
It would, however, also regard this as equal to the expression
-b+a-c. Logically, one cannot object to this, but nonetheless we
“tend to prefer” one of the other forms. Convention urges
minimality here, since the other forms require one less symbol.



Negation in Parse Trees

Does -x*y parse as

-(x*y)

−
↓
∗

↙ ↘
x y

or

(-x)*y

∗
↙ ↘

− y
↓
x

?

These are “obviously equal”.



Our solution

In STACK we replace “unary minus” by multiplication by a special
token, hereafter U . Hence -(x*y), (-x)*y and x*(-y) become
the trees

∗
↙ ↘
U ∗

↙ ↘
x y

,

∗
↙ ↘

∗ y
↙ ↘
U x

and

∗
↙ ↘
x ∗

↙ ↘
U y

respectively.
In the presence of flattening and commutativity of *, these trees
are regarded as equal.



What about (-x)*(-y)?

This corresponds to the tree

∗
↙ ↘

↙ ↘
∗ ∗

↙ ↘ ↙ ↘
U x U y

, (2)

which is equivalent to the tree from -(-(x*y)) and many other
variants with (multi)set of children {U ,U , x , y}, but not equivalent
to the tree from x*y until we get to level 7.
Algebraically U behaves like −1, but is distinguished from it at this
level so as not to be confused with an explicit −1 entered by the
user, i.e. -x*y versus x*(-1)*y.



Division
We use “reduction to the unary case”, even though the surface
representation is different. We consider a unary reciprocal operator
R, and regard x/y as generating the tree

∗
↙ ↘

x R
↓
y

.

We need one further rule

“R distributes over multiplication”, i.e.

R
↓
∗

↙ ↘
x y

⇒

∗
↙ ↘

R R
↓ ↓
x y

.



Division continued
(x/y)/z, x/y/z and x/(y*z) all generate

∗
↙ ↓ ↘

x R R
↓ ↓
y z

:

x/(y/z) generates

∗
↙ ↓ ↘

x R R
↓ ↓
y R

↓
z

,

Doesn’t simplify at level 6, but R(R(z))⇒ z should be readily
available in the toolkit of an exercise writer (e.g. at level 7).



(Integer) Powers

The first challenge is that the distributive law for exponentiation
over multiplication

(ab)c = acbc

seems different from the distributive law for multiplication over
addition: we do not regard (xy)2 as better or worse than x2y2.
This is easily implemented as a tree transformation:

^

↙ ↘
∗ z

↙ ↘
x y

⇒

∗
↙ ↘

↙ ↘
^ ^

↙ ↘ ↙ ↘
x z y z

.



(Integer) Powers continued

We do not regard
(
x
y

)2
as better or worse than x2

y2 . The previous

transformation automatically leads to

^

↙ ↘
∗ z

↙ ↘
x R

↓
y

⇒

∗
↙ ↘

↙ ↘
^ ^

↙ ↘ ↙ ↘
x z R z

↓
y

,

but this is not quite what was desired.
It is tempting to try to “fix” this by rules taking R(x)y to R(xy ).



(Integer) Powers continued

However, we accept that R is really raising to the power −1, and
introduce the rules

^

↙ ↘
R z
↓
x

,

R
↓
^

↙ ↘
x z

⇒

^

↙ ↘
x ∗

↙ ↘
U z

.

1/x^(-2) is then represented as xU∗U∗2.
Author choice whether to regards 1/x^(-2) as a clumsy expression
which does not deserve to be simplified, or work at level 7, in
which case U ∗ U ∗ z ⇒ z (or the pair U ∗ U ⇒ 1 and 1 ∗ z ⇒ z)
need to be added to the ruleset.



Conclusion

I Straight AC rewriting of +, * is relatively easy

I Adding - and / is not easy

But the “unary operator” technique seems promising

I Integer powers aren’t that easy, but doable

I There are good mathematical reasons why using non-integer
powers is harder!


