The unreasonable effectiveness of algebra (but don't take it for granted)

James Davenport

University of Bath (visiting Waterloo)

11 June 2009

What is the derivative of $\sin x$?

$$f(x) = \lim_{\delta \to 0} \left(\frac{\sin(x+\delta) - \sin(x)}{\delta} \right)$$

$$f(x) = \lim_{\delta \to 0} \left(\frac{\sin(x + \delta) - \sin(x)}{\delta} \right)$$
$$\forall \epsilon > 0 \exists D_{\epsilon} : \delta < D_{\epsilon} \Rightarrow \left| f(x) - \frac{\sin(x + \delta) - \sin(x)}{\delta} \right| < \epsilon$$

$$f(x) = \lim_{\delta \to 0} \left(\frac{\sin(x+\delta) - \sin(x)}{\delta} \right)$$
$$\forall \epsilon > 0 \exists D_{\epsilon} : \delta < D_{\epsilon} \Rightarrow \left| f(x) - \frac{\sin(x+\delta) - \sin(x)}{\delta} \right| < \epsilon$$
$$\sin(x+\delta) - \sin(x) = \cos(x)\sin(\delta) - \sin(x)(1-\cos(\delta)) \text{ so we can make the choice } f(x) = \cos(x).$$

$$f(x) = \lim_{\delta \to 0} \left(\frac{\sin(x+\delta) - \sin(x)}{\delta} \right)$$
$$\forall \epsilon > 0 \exists D_{\epsilon} : \delta < D_{\epsilon} \Rightarrow \left| f(x) - \frac{\sin(x+\delta) - \sin(x)}{\delta} \right| < \epsilon$$

 $\sin(x + \delta) - \sin(x) = \cos(x)\sin(\delta) - \sin(x)(1 - \cos(\delta))$ so we can make the choice $f(x) = \cos(x)$. We can then take $D_{\epsilon} = \frac{1}{2}\min(\sqrt{\epsilon}, 1)$, and some simple algebra shows the result.

$$f(x) = \lim_{\delta \to 0} \left(\frac{\sin(x + \delta) - \sin(x)}{\delta} \right)$$
$$\forall \epsilon > 0 \exists D_{\epsilon} : \delta < D_{\epsilon} \Rightarrow \left| f(x) - \frac{\sin(x + \delta) - \sin(x)}{\delta} \right| < \epsilon$$

 $\sin(x + \delta) - \sin(x) = \cos(x)\sin(\delta) - \sin(x)(1 - \cos(\delta))$ so we can make the choice $f(x) = \cos(x)$. We can then take $D_{\epsilon} = \frac{1}{2}\min(\sqrt{\epsilon}, 1)$, and some simple algebra shows the result. Did any of you do that?

$$f(x) = \lim_{\delta \to 0} \left(\frac{\sin(x + \delta) - \sin(x)}{\delta} \right)$$

 $orall \epsilon > 0 \exists D_{\epsilon} : \delta < D_{\epsilon} \Rightarrow \left| f(x) - \frac{\sin(x + \delta) - \sin(x)}{\delta} \right| < \epsilon$

$$\begin{split} & \sin(x+\delta) - \sin(x) = \cos(x)\sin(\delta) - \sin(x)(1-\cos(\delta)) \text{ so we can} \\ & \text{make the choice } f(x) = \cos(x). \text{ We can then take} \\ & D_{\epsilon} = \frac{1}{2}\min(\sqrt{\epsilon}, 1), \text{ and some simple algebra shows the result.} \\ & \text{Did any of you do that?} \\ & \text{Did any of you take } D_{\epsilon} = \frac{\min(\sqrt{\epsilon}, 1)}{2\max(|\cos(x)|, |\sin(x)|, 1)} \text{ to allow for } x \in \mathbb{C}? \end{split}$$

$$f(x) = \lim_{\delta \to 0} \left(\frac{\sin(x+\delta) - \sin(x)}{\delta} \right)$$
$$\forall \epsilon > 0 \exists D_{\epsilon} : \delta < D_{\epsilon} \Rightarrow \left| f(x) - \frac{\sin(x+\delta) - \sin(x)}{\delta} \right| < \epsilon$$

$$\begin{split} & \sin(x+\delta) - \sin(x) = \cos(x)\sin(\delta) - \sin(x)(1 - \cos(\delta)) \text{ so we can} \\ & \text{make the choice } f(x) = \cos(x). \text{ We can then take} \\ & D_{\epsilon} = \frac{1}{2}\min(\sqrt{\epsilon}, 1), \text{ and some simple algebra shows the result.} \\ & \text{Did any of you do that?} \\ & \text{Did any of you take } D_{\epsilon} = \frac{\min(\sqrt{\epsilon}, 1)}{2\max(|\cos(x)|, |\sin(x)|, 1)} \text{ to allow for } x \in \mathbb{C}? \\ & \text{Or did you "just know it"?} \end{split}$$

What is the integral: $\int_0^{\pi/2} \cos x$?

What is the integral: $\int_0^{\pi/2} \cos x$?

$$I = \lim_{|\Delta| \to 0} \overline{S}_{\Delta} \left[\cos(x) \right] = \lim_{|\Delta| \to 0} \underline{S}_{\Delta} \left[\cos(x) \right]$$

(Δ ranges over all dissections of $[0, \pi/2]$)

What is the integral: $\int_0^{\pi/2} \cos x$?

$$I = \lim_{|\Delta| \to 0} \overline{S}_{\Delta} \left[\cos(x) \right] = \lim_{|\Delta| \to 0} \underline{S}_{\Delta} \left[\cos(x) \right]$$

(Δ ranges over all dissections of $[0, \pi/2]$) Does anyone actually do this?

$$I = \lim_{|\Delta| \to 0} \overline{S}_{\Delta} \left[\cos(x) \right] = \lim_{|\Delta| \to 0} \underline{S}_{\Delta} \left[\cos(x) \right]$$

(Δ ranges over all dissections of $[0, \pi/2]$) Does anyone actually do this? *Can* anyone actually do this?

$$I = \lim_{|\Delta| \to 0} \overline{S}_{\Delta} \left[\cos(x) \right] = \lim_{|\Delta| \to 0} \underline{S}_{\Delta} \left[\cos(x) \right]$$

(Δ ranges over all dissections of $[0, \pi/2]$) Does anyone actually do this? *Can* anyone actually do this? Or do we say "well, we have proved that $\sin' = \cos$, so $\int \cos = \sin$, and therefore the answer is $\sin \frac{\pi}{2} - \sin 0 = 1$?

$$I = \lim_{|\Delta| \to 0} \overline{S}_{\Delta} \left[\cos(x) \right] = \lim_{|\Delta| \to 0} \underline{S}_{\Delta} \left[\cos(x) \right]$$

(Δ ranges over all dissections of $[0, \pi/2]$) Does anyone actually do this? *Can* anyone actually do this? Or do we say "well, we have proved that $\sin' = \cos$, so $\int \cos = \sin$, and therefore the answer is $\sin \frac{\pi}{2} - \sin 0 = 1$? We might say "therefore, by the Fundamental Theorem of Calculus, ..."

What is the Fundamental Theorem of Calculus?

What is the Fundamental Theorem of Calculus?

Indeed, what is calculus?

... the deism of Liebniz over the dotage of Newton ... [Babbage, chapter 4]

... the deism of Liebniz over the dotage of Newton ... [Babbage, chapter 4]

I claim that calculus is actually the interesting fusion of *two*, *different* subjects.

... the deism of Liebniz over the dotage of Newton ... [Babbage, chapter 4]

I claim that calculus is actually the interesting fusion of *two*, *different* subjects.

• What you learned in calculus, which I shall write as $D_{\epsilon\delta}$: the "differentiation of ϵ - δ analysis". Also $\frac{d}{d_{\epsilon\delta}x}$, and its inverse $_{\epsilon\delta}\int$.

... the deism of Liebniz over the dotage of Newton ... [Babbage, chapter 4]

I claim that calculus is actually the interesting fusion of *two*, *different* subjects.

- What you learned in calculus, which I shall write as $D_{\epsilon\delta}$: the "differentiation of ϵ - δ analysis". Also $\frac{d}{d_{\epsilon\delta}x}$, and its inverse $_{\epsilon\delta}\int$.
- What is taught in differential algebra, which I shall write as D_{DA} : the "differentiation of differential algebra". Also $\frac{d}{d_{DA}x}$, and its inverse $_{DA} \int$.

$D_{\epsilon\delta}$ (for functions $\mathbf{R} \to \mathbf{R}$)

$$CL(f, x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

and $D_{\epsilon\delta}(f) = \lambda x. \operatorname{CL}(f, x).$

$$CL(f, x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$CL(f, x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

and $D_{\epsilon\delta}(f) = \lambda x. \operatorname{CL}(f, x)$. Then the following are theorems. • $D_{\epsilon\delta}(c) = 0$ $\forall c$ constants.

$$CL(f, x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- $D_{\epsilon\delta}(c) = 0$ $\forall c$ constants.
- $\operatorname{CL}(f+g, x_0) = \operatorname{CL}(f, x_0) + \operatorname{CL}(g, x_0)$, so $D_{\epsilon\delta}(f+g) = D_{\epsilon\delta}(f) + D_{\epsilon\delta}(g)$.

$$CL(f, x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- $D_{\epsilon\delta}(c) = 0$ $\forall c \text{ constants.}$
- $\operatorname{CL}(f + g, x_0) = \operatorname{CL}(f, x_0) + \operatorname{CL}(g, x_0)$, so $D_{\epsilon\delta}(f + g) = D_{\epsilon\delta}(f) + D_{\epsilon\delta}(g).$
- $\operatorname{CL}(fg, x_0) = \operatorname{CL}(f, x_0)g(x_0) + f(x_0)\operatorname{CL}(g, x_0)$, so $D_{\epsilon\delta}(fg) = D_{\epsilon\delta}(f)g + fD_{\epsilon\delta}(g).$

$$CL(f, x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- $D_{\epsilon\delta}(c) = 0$ $\forall c \text{ constants.}$
- $\operatorname{CL}(f + g, x_0) = \operatorname{CL}(f, x_0) + \operatorname{CL}(g, x_0)$, so $D_{\epsilon\delta}(f + g) = D_{\epsilon\delta}(f) + D_{\epsilon\delta}(g).$
- $\operatorname{CL}(fg, x_0) = \operatorname{CL}(f, x_0)g(x_0) + f(x_0)\operatorname{CL}(g, x_0)$, so $D_{\epsilon\delta}(fg) = D_{\epsilon\delta}(f)g + fD_{\epsilon\delta}(g).$
- $D_{\epsilon\delta}(\lambda x.f(g(x))) = D_{\epsilon\delta}(g)\lambda x.D_{\epsilon\delta}(f)(g(x))$. (Chain rule)

Definition: $D_{DA} : R \to R$ is a *derivation* on R if it satisfies: • $D_{DA}(f + g) = D_{DA}(f) + D_{DA}(g)$

- $D_{\mathrm{DA}}(f+g) = D_{\mathrm{DA}}(f) + D_{\mathrm{DA}}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

- $D_{\mathrm{DA}}(f+g) = D_{\mathrm{DA}}(f) + D_{\mathrm{DA}}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

- $D_{\mathrm{DA}}(f+g) = D_{\mathrm{DA}}(f) + D_{\mathrm{DA}}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

Corollaries:

- $D_{\mathrm{DA}}(f+g) = D_{\mathrm{DA}}(f) + D_{\mathrm{DA}}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

Corollaries:

• $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.

.

- $D_{\mathrm{DA}}(f+g) = D_{\mathrm{DA}}(f) + D_{\mathrm{DA}}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

Corollaries:

•
$$D_{\mathrm{DA}}(c) = 0$$
 for all c algebraic over $\langle 1 \rangle$.

•
$$D_{\mathrm{DA}}(\frac{f}{g}) = \frac{D_{\mathrm{DA}}(f)g - fD_{\mathrm{DA}}(g)}{g^2}$$

- $D_{\mathrm{DA}}(f+g) = D_{\mathrm{DA}}(f) + D_{\mathrm{DA}}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

Corollaries:

- $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.
- $D_{\mathrm{DA}}(\frac{f}{g}) = \frac{D_{\mathrm{DA}}(f)g fD_{\mathrm{DA}}(g)}{g^2}$.
- D_{DA} extends uniquely to algebraic extensions.
Definition: $D_{DA} : R \rightarrow R$ is a *derivation* on R if it satisfies:

- $D_{\rm DA}(f+g) = D_{\rm DA}(f) + D_{\rm DA}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

Corollaries:

- $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.
- $D_{\mathrm{DA}}(\frac{f}{g}) = \frac{D_{\mathrm{DA}}(f)g fD_{\mathrm{DA}}(g)}{g^2}$.
- D_{DA} extends uniquely to algebraic extensions.

Definition: $D_{DA} : R \rightarrow R$ is a *derivation* on R if it satisfies:

- $D_{\mathrm{DA}}(f+g) = D_{\mathrm{DA}}(f) + D_{\mathrm{DA}}(g)$
- $D_{\mathrm{DA}}(fg) = D_{\mathrm{DA}}(f)g + fD_{\mathrm{DA}}(g)$

Corollaries:

- $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.
- $D_{\mathrm{DA}}(\frac{f}{g}) = \frac{D_{\mathrm{DA}}(f)g fD_{\mathrm{DA}}(g)}{g^2}.$
- D_{DA} extends uniquely to algebraic extensions.

Note that there is no Chain Rule as such, since composition is not necessarily a defined concept on R.

A note on the word "constant"

• $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.

- $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.
- "constants differentiate to 0"

- $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.
- "constants differentiate to 0"

- $D_{\mathrm{DA}}(c) = 0$ for all c algebraic over $\langle 1 \rangle$.
- "constants differentiate to 0"

By abuse of language, we say that anything that differentiates to zero is a "constant_{\rm DA}".

If we define $D_{DA}(x) = 1$, then D_{DA} is defined on Z[x], and extends to Q(x) and indeed $\overline{Q(x)}$.

If we define $D_{DA}(x) = 1$, then D_{DA} is defined on $\mathbf{Z}[x]$, and extends to $\mathbf{Q}(x)$ and indeed $\overline{\mathbf{Q}(x)}$. If we interpret (denoted \mathcal{I}) $\mathbf{Q}(x)$ as functions $\mathbf{R} \to \mathbf{R}$, then D_{DA} can be interpreted as $D_{\epsilon\delta}$, i.e.

 $\mathcal{I}(D_{\mathrm{DA}}(f)) = D_{\epsilon\delta}(\mathcal{I}(f))$

If we define $D_{DA}(x) = 1$, then D_{DA} is defined on $\mathbf{Z}[x]$, and extends to $\mathbf{Q}(x)$ and indeed $\overline{\mathbf{Q}(x)}$. If we interpret (denoted \mathcal{I}) $\mathbf{Q}(x)$ as functions $\mathbf{R} \to \mathbf{R}$, then D_{DA} can be interpreted as $D_{\epsilon\delta}$, i.e.

 $\mathcal{I}(D_{\mathrm{DA}}(f)) = D_{\epsilon\delta}(\mathcal{I}(f))$

(at least up to removable singularities).

Consider
$$L := \frac{(x-1)^2}{x^2-1}$$
 and $R := \frac{x-1}{x+1}$.

Consider $L := \frac{(x-1)^2}{x^2-1}$ and $R := \frac{x-1}{x+1}$. As elements of $\mathbf{Q}(x)$ they are equal, since $L - R = \frac{0}{x^2-1} = 0$. Consider $L := \frac{(x-1)^2}{x^2-1}$ and $R := \frac{x-1}{x+1}$. As elements of $\mathbf{Q}(x)$ they are equal, since $L - R = \frac{0}{x^2-1} = 0$. But as formulae (viewed as algorithm specifications), L(1)= "divide by zero error", whereas R(1) = 0. Consider $L := \frac{(x-1)^2}{x^2-1}$ and $R := \frac{x-1}{x+1}$. As elements of $\mathbf{Q}(x)$ they are equal, since $L - R = \frac{0}{x^2-1} = 0$. But as formulae (viewed as algorithm specifications), L(1)= "divide by zero error", whereas R(1) = 0. Hence the warning about removable singularities! Consider $L := \frac{(x-1)^2}{x^2-1}$ and $R := \frac{x-1}{x+1}$. As elements of $\mathbf{Q}(x)$ they are equal, since $L - R = \frac{0}{x^2-1} = 0$. But as formulae (viewed as algorithm specifications), L(1)= "divide by zero error", whereas R(1) = 0. Hence the warning about removable singularities! Also, note that -1 is *not* a removable singularity! Consider $L := \frac{(x-1)^2}{x^2-1}$ and $R := \frac{x-1}{x+1}$. As elements of $\mathbf{Q}(x)$ they are equal, since $L - R = \frac{0}{x^2-1} = 0$. But as formulae (viewed as algorithm specifications), L(1)= "divide by zero error", whereas R(1) = 0. Hence the warning about removable singularities! Also, note that -1 is *not* a removable singularity! In the case of $\mathbf{Q}(x)$, every element has a "most continuous formula", so interpreting this as $\mathbf{R} \to \mathbf{R}$ can't go wrong. Consider $L := \frac{(x-1)^2}{x^2-1}$ and $R := \frac{x-1}{x+1}$. As elements of $\mathbf{Q}(x)$ they are equal, since $L - R = \frac{0}{x^2 - 1} = 0$. But as formulae (viewed as algorithm specifications), L(1)= "divide" by zero error", whereas R(1) = 0. Hence the warning about removable singularities! Also, note that -1 is *not* a removable singularity! In the case of $\mathbf{Q}(x)$, every element has a "most continuous" formula", so interpreting this as $\mathbf{R} \rightarrow \mathbf{R}$ can't go wrong. We use \mathcal{I}^* to indicate "interpretation with removable singularities" removed", since there isn't always a formulaic way of doing so.

Consider $L := \frac{(x-1)^2}{x^2-1}$ and $R := \frac{x-1}{x+1}$. As elements of $\mathbf{Q}(x)$ they are equal, since $L - R = \frac{0}{x^2 - 1} = 0$. But as formulae (viewed as algorithm specifications), L(1)= "divide" by zero error", whereas R(1) = 0. Hence the warning about removable singularities! Also, note that -1 is *not* a removable singularity! In the case of $\mathbf{Q}(x)$, every element has a "most continuous" formula", so interpreting this as $\mathbf{R} \rightarrow \mathbf{R}$ can't go wrong. We use \mathcal{I}^* to indicate "interpretation with removable singularities" removed", since there isn't always a formulaic way of doing so. Indeed, there may be *no* way of interpreting without singularities, as in $z \mapsto \sqrt{z} : \mathbf{C} \to \mathbf{C}$.

$_{\epsilon\delta}\int$ (for functions $\mathbf{R} ightarrow\mathbf{R}$)

What is naturally defined is integration over an interval *I*. We let *D* stand for sub-divisions $d_1 = a < d_2 < \cdots < d_n = b$ of I = [a, b], and |D| for the largest distance between neighbouring points in *D*, i.e. $\max_i(d_{i+1} - d_i)$.

What is naturally defined is integration over an interval *I*. We let *D* stand for sub-divisions $d_1 = a < d_2 < \cdots < d_n = b$ of I = [a, b], and |D| for the largest distance between neighbouring points in *D*, i.e. $\max_i(d_{i+1} - d_i)$. Let

•
$$\overline{S_D} = \sum_i (d_{i+1} - d_i) \max_{d_{i+1} \ge x \ge d_i} f(x);$$

What is naturally defined is integration over an interval *I*. We let *D* stand for sub-divisions $d_1 = a < d_2 < \cdots < d_n = b$ of I = [a, b], and |D| for the largest distance between neighbouring points in *D*, i.e. $\max_i(d_{i+1} - d_i)$. Let

•
$$\overline{S_D} = \sum_i (d_{i+1} - d_i) \max_{d_{i+1} \ge x \ge d_i} f(x);$$

•
$$\underline{S_D} = \sum_i (d_{i+1} - d_i) \min_{d_{i+1} \ge x \ge d_i} f(x);$$

What is naturally defined is integration over an interval *I*. We let *D* stand for sub-divisions $d_1 = a < d_2 < \cdots < d_n = b$ of I = [a, b], and |D| for the largest distance between neighbouring points in *D*, i.e. $\max_i(d_{i+1} - d_i)$. Let

•
$$\overline{S_D} = \sum_i (d_{i+1} - d_i) \max_{d_{i+1} \ge x \ge d_i} f(x);$$

•
$$\underline{S_D} = \sum_i (d_{i+1} - d_i) \min_{d_{i+1} \ge x \ge d_i} f(x);$$

Then $_{\epsilon\delta} \int_I f = \liminf_{|D| \to 0} \overline{S_D} = \limsup_{|D| \to 0} \underline{S_D}$ if both exist and are equal.

Define
$$_{\epsilon\delta}\int_{a}^{b}f = \begin{cases} _{\epsilon\delta}\int_{[a,b]}f & a \leq b \\ -_{\epsilon\delta}\int_{[b,a]}f & a > b \end{cases}$$

Define
$$_{\epsilon\delta}\int_{a}^{b}f = \begin{cases} {}^{\epsilon\delta}\int_{[a,b]}f & a \leq b \\ -{}^{\epsilon\delta}\int_{[b,a]}f & a > b \end{cases}$$

(If we're not careful, we wind up saying "[2,1] is the same set as [1,2] except that if you integrate over it you have to add a - sign". What we really have here is the beginnings of contour integration.

Define
$$_{\epsilon\delta}\int_{a}^{b}f = \begin{cases} \epsilon\delta\int_{[a,b]}f & a \leq b\\ -\epsilon\delta\int_{[b,a]}f & a > b \end{cases}$$

(If we're not careful, we wind up saying "[2,1] is the same set as [1,2] except that if you integrate over it you have to add a - sign". What we really have here is the beginnings of contour integration. Apostol theorem 1.20 states that if $g(x) \le f(x)$ for every x in [a, b], then

$$\int_a^b g(x)dx \leq \int_a^b f(x)dx,$$

and here a < b is implicit.)

Define
$$_{\epsilon\delta}\int_{a}^{b}f = \begin{cases} \epsilon\delta\int_{[a,b]}f & a \leq b\\ -\epsilon\delta\int_{[b,a]}f & a > b \end{cases}$$

(If we're not careful, we wind up saying "[2,1] is the same set as [1,2] except that if you integrate over it you have to add a - sign". What we really have here is the beginnings of contour integration. Apostol theorem 1.20 states that if $g(x) \le f(x)$ for every x in [a, b], then

$$\int_a^b g(x)dx \le \int_a^b f(x)dx,$$

and here a < b is implicit.) FTC_{$\epsilon\delta$}: $_{\epsilon\delta} \int_{[a,b]} D_{\epsilon\delta} f = f(b) - f(a)$.

Define
$$_{\epsilon\delta}\int_{a}^{b}f = \begin{cases} \epsilon\delta\int_{[a,b]}f & a \leq b\\ -\epsilon\delta\int_{[b,a]}f & a > b \end{cases}$$

(If we're not careful, we wind up saying "[2,1] is the same set as [1,2] except that if you integrate over it you have to add a - sign". What we really have here is the beginnings of contour integration. Apostol theorem 1.20 states that if $g(x) \le f(x)$ for every x in [a, b], then

$$\int_a^b g(x)dx \le \int_a^b f(x)dx,$$

and here a < b is implicit.) FTC_{$\epsilon\delta$}: $_{\epsilon\delta} \int_{[a,b]} D_{\epsilon\delta}f = f(b) - f(a)$. Or: $D_{\epsilon\delta}(\lambda x \cdot _{\epsilon\delta} \int_{a}^{x} f) = f$ (if the $_{\epsilon\delta} \int$ exists).

Define
$$_{\epsilon\delta}\int_{a}^{b}f = \begin{cases} \epsilon\delta\int_{[a,b]}f & a \leq b\\ -\epsilon\delta\int_{[b,a]}f & a > b \end{cases}$$

(If we're not careful, we wind up saying "[2,1] is the same set as [1,2] except that if you integrate over it you have to add a - sign". What we really have here is the beginnings of contour integration. Apostol theorem 1.20 states that if $g(x) \le f(x)$ for every x in [a, b], then

$$\int_a^b g(x)dx \le \int_a^b f(x)dx,$$

and here a < b is implicit.) FTC_{$\epsilon\delta$}: $_{\epsilon\delta} \int_{[a,b]} D_{\epsilon\delta}f = f(b) - f(a)$. Or: $D_{\epsilon\delta}(\lambda x \cdot_{\epsilon\delta} \int_{a}^{x} f) = f$ (if the $_{\epsilon\delta} \int$ exists). (Of course, this is normally stated without the λ .)

$_{DA} \int$: FTC becomes a definition

FTC_{DA}: define $_{DA} \int f$ to be any g such that $f = D_{DA}g$.

FTC_{DA}: **define** $_{DA} \int f$ to be any g such that $f = D_{DA}g$. If g and h are two such integrals, then $D_{DA}(g - h) = 0$, i.e. "g and h differ by a constant". FTC_{DA}: **define** $_{DA} \int f$ to be any g such that $f = D_{DA}g$. If g and h are two such integrals, then $D_{DA}(g - h) = 0$, i.e. "g and h differ by a constant".

One difficulty is that this is really a "constant_{DA}" (something whose D_{DA} is zero), and, for example, a Heaviside function is a constant_{DA}, though not a constant in the usual sense.

Will the real FTC please stand up?

FTC (as it *should* be taught).

FTC (as it *should* be taught). If $g = {}_{\mathrm{DA}} \int f$, and $\mathcal{I}(g)$ is continuous on [a, b], then

$$_{\epsilon\delta}\int_{a}^{b}\mathcal{I}(f)=\mathcal{I}(g)(b)-\mathcal{I}(g)(a).$$
FTC (as it *should* be taught). If $g = {}_{DA} \int f$, and $\mathcal{I}(g)$ is continuous on [a, b], then

$$_{\epsilon\delta}\int_{a}^{b}\mathcal{I}(f)=\mathcal{I}(g)(b)-\mathcal{I}(g)(a).$$

Note the caveat on continuity: $g: x \mapsto \arctan\left(\frac{1}{x}\right)$ is discontinuous at x = 0 ($\lim_{x \to 0^-} \arctan\left(\frac{1}{x}\right) = \frac{-\pi}{2}$ whereas $\lim_{x \to 0^+} \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$),

FTC (as it *should* be taught). If $g = {}_{DA} \int f$, and $\mathcal{I}(g)$ is continuous on [a, b], then

$$_{\epsilon\delta}\int_{a}^{b}\mathcal{I}(f)=\mathcal{I}(g)(b)-\mathcal{I}(g)(a).$$

Note the caveat on continuity: $g: x \mapsto \arctan\left(\frac{1}{x}\right)$ is discontinuous at x = 0 ($\lim_{x\to 0^-} \arctan\left(\frac{1}{x}\right) = \frac{-\pi}{2}$ whereas $\lim_{x\to 0^+} \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$), which accounts for the invalidity of deducing that the integral of a negative function is positive —

$$\int_{-1}^{1} \frac{-1}{x^2+1} = \mathcal{I}(g)(1) - \mathcal{I}(g)(-1) = \frac{\pi}{4} - \frac{-\pi}{4} = \frac{\pi}{2} > 0.$$

Rescuing the Fundamental Theorem of Calculus

Of course, another $_{DA} \int \frac{-1}{x^2+1}$ is $h(x) = \arctan\left(\frac{1}{x}\right) + H(x)$ where $H(x) = \begin{cases} 0 & x < 0 \\ -\pi & x > 0 \end{cases}$ is a constant $_{DA}$. This has a removable singularity at x = 0.

Rescuing the Fundamental Theorem of Calculus

Of course, another $_{DA} \int \frac{-1}{x^2+1}$ is $h(x) = \arctan\left(\frac{1}{x}\right) + H(x)$ where $H(x) = \begin{cases} 0 & x < 0 \\ -\pi & x > 0 \end{cases}$ is a constant $_{DA}$. This has a removable singularity at x = 0. $\mathcal{I}^*(h)$ is continuous, so FTC is appropriate and

$$\int_{-1}^{1} \frac{-1}{x^2+1} = \mathcal{I}(h)(1) - \mathcal{I}(h)(-1) = \left(\frac{\pi}{4} - \pi\right) - \frac{-\pi}{4} = -\frac{\pi}{2} < 0.$$

 $\arctan\left(\frac{1}{x}\right) + H(x)$ can also be rewritten as $\frac{\pi}{2} - \arctan(x)$.

 $\arctan\left(\frac{1}{x}\right) + H(x)$ can also be rewritten as $\frac{\pi}{2} - \arctan(x)$. In this case $\frac{\pi}{2} - \arctan(x)$ is a "most continuous formula". $\arctan\left(\frac{1}{x}\right) + H(x)$ can also be rewritten as $\frac{\pi}{2} - \arctan(x)$. In this case $\frac{\pi}{2} - \arctan(x)$ is a "most continuous formula". (except at ∞ , where the original $\arctan\left(\frac{1}{x}\right)$ is continuous!). $\arctan\left(\frac{1}{x}\right) + H(x) \text{ can also be rewritten as } \frac{\pi}{2} - \arctan(x).$ In this case $\frac{\pi}{2} - \arctan(x)$ is a "most continuous formula". (except at ∞ , where the original $\arctan\left(\frac{1}{x}\right)$ is continuous!). What about $\arctan\left(\frac{z-1}{z+1}\right)$? arctan $\left(\frac{1}{x}\right) + H(x)$ can also be rewritten as $\frac{\pi}{2} - \arctan(x)$. In this case $\frac{\pi}{2} - \arctan(x)$ is a "most continuous formula". (except at ∞ , where the original $\arctan\left(\frac{1}{x}\right)$ is continuous!). What about $\arctan\left(\frac{z-1}{z+1}\right)$? An equivalent is

$$\arctan\left(rac{z-1+\sqrt{z^2+6\,z-7}}{2(z-1)}
ight) - \arctan\left(rac{z-1+\sqrt{z^2+6\,z-7}}{2(z-1)}+1
ight)$$

arctan $(\frac{1}{x}) + H(x)$ can also be rewritten as $\frac{\pi}{2} - \arctan(x)$. In this case $\frac{\pi}{2} - \arctan(x)$ is a "most continuous formula". (except at ∞ , where the original arctan $(\frac{1}{x})$ is continuous!). What about arctan $(\frac{z-1}{z+1})$? An equivalent is

$$\arctan\left(\frac{z-1+\sqrt{z^2+6\,z-7}}{2(z-1)}\right) - \arctan\left(\frac{z-1+\sqrt{z^2+6\,z-7}}{2(z-1)}+1\right)$$

or $-\arctan\left(\frac{2z-1+z^2}{-2z-1+z^2}\right)$ - $\arctan(z)$, where the singularities are at $-1 \pm \sqrt{2}$ (and ∞), or

arctan $(\frac{1}{x}) + H(x)$ can also be rewritten as $\frac{\pi}{2} - \arctan(x)$. In this case $\frac{\pi}{2} - \arctan(x)$ is a "most continuous formula". (except at ∞ , where the original arctan $(\frac{1}{x})$ is continuous!). What about arctan $(\frac{z-1}{z+1})$? An equivalent is

$$\arctan\left(\frac{z-1+\sqrt{z^2+6\,z-7}}{2(z-1)}\right) - \arctan\left(\frac{z-1+\sqrt{z^2+6\,z-7}}{2(z-1)}+1\right)$$

or $-\arctan\left(\frac{2z-1+z^2}{-2z-1+z^2}\right)$ - $\arctan(z)$, where the singularities are at $-1 \pm \sqrt{2}$ (and ∞), or Still an unsolved problem (Rioboo, ...).

But I'm not interested in all this DA stuff

• Surely most people (even engineers) do $_{\epsilon\delta}\int$ etc.

- Surely most people (even engineers) do $_{\epsilon\delta}\int$ etc.
- They may *think* they do, but in practice they $do_{DA} \int$ even when intending to do $_{\epsilon\delta} \int$.

- Surely most people (even engineers) do $_{\epsilon\delta}\int$ etc.
- They may *think* they do, but in practice they $do_{DA} \int$ even when intending to do $\epsilon_{\delta} \int$.
- What is $\lim_{h\to 0} \frac{1}{h} \left((1+h) \cos^2(1+h) \cos^2 1 \right)$?

- Surely most people (even engineers) do $_{\epsilon\delta}\int$ etc.
- They may *think* they do, but in practice they $do_{DA} \int$ even when intending to do $\epsilon \delta \int$.
- What is $\lim_{h\to 0} \frac{1}{h} \left((1+h) \cos^2(1+h) \cos^2 1 \right)$?
- If you immediately said $\cos^2(1) 2\sin(1)\cos(1)$

- Surely most people (even engineers) do $_{\epsilon\delta}\int$ etc.
- They may *think* they do, but in practice they $do_{DA} \int$ even when intending to do $_{\epsilon\delta} \int$.
- What is $\lim_{h\to 0} \frac{1}{h} \left((1+h) \cos^2(1+h) \cos^2 1 \right)$?
- If you immediately said $\cos^2(1) 2\sin(1)\cos(1)$
- I bet you actually did $D_{DA}(x \cos^2 x)|_{x=1}$.

- Surely most people (even engineers) do $_{\epsilon\delta}\int$ etc.
- They may *think* they do, but in practice they $do_{DA} \int$ even when intending to do $_{\epsilon\delta} \int$.
- What is $\lim_{h\to 0} \frac{1}{h} \left((1+h) \cos^2(1+h) \cos^2 1 \right)$?
- If you immediately said $\cos^2(1) 2\sin(1)\cos(1)$
- I bet you actually did $D_{DA}(x \cos^2 x)|_{x=1}$.
- (If you said -.617370845, you probably had Maple on your Blackberry, and *it* did that.)

• We already know that $_{\epsilon\delta}\int$ is a powerful world model

- We already know that $_{\epsilon\delta}\int$ is a powerful world model
- $_{DA}\int$ is well-implemented and very powerful

- We already know that $_{\epsilon\delta}\int$ is a powerful world model
- DA ∫ is well-implemented and very powerful
 "e^{-x²} has no integral" means "has no DA ∫ in terms of already known functions"

- We already know that $_{\epsilon\delta}\int$ is a powerful world model
- $_{DA}\int$ is well-implemented and very powerful
- " e^{-x^2} has no integral" means "has no $_{DA}\int$ in terms of already known functions"
- $\bullet \ \mathcal{I} \ \textit{does} \ \text{map}$ from one to the other, often very effectively

- \bullet We already know that $_{\epsilon\delta}\int$ is a powerful world model
- $_{\rm DA}\int$ is well-implemented and very powerful
- " e^{-x^2} has no integral" means "has no $_{DA}\int$ in terms of already known functions"
- $\bullet \ \mathcal{I} \ \textit{does}$ map from one to the other, often very effectively
- but not always!

${\mathcal I}$ crops up elsewhere

Claim $\sqrt{1-z^2} = \sqrt{1-z}\sqrt{1+z}$.

Claim $\sqrt{1-z^2} = \sqrt{1-z}\sqrt{1+z}$. Squaring both sides gives $1-z^2 = (1-z)(1+z)$, so there is *some* interpretation in which it is true. Claim $\sqrt{1-z^2} = \sqrt{1-z}\sqrt{1+z}$. Squaring both sides gives $1-z^2 = (1-z)(1+z)$, so there is *some* interpretation in which it is true. What about $\sqrt{z^2-1} = \sqrt{z-1}\sqrt{z+1}$. Claim $\sqrt{1-z^2} = \sqrt{1-z}\sqrt{1+z}$. Squaring both sides gives $1-z^2 = (1-z)(1+z)$, so there is *some* interpretation in which it is true. What about $\sqrt{z^2-1} = \sqrt{z-1}\sqrt{z+1}$. The same arguments apply and there is *some* interpretation of $\sqrt{z^2-1}$, $\sqrt{z-1}$ and $\sqrt{z+1}$ in which it is true, *but* Claim $\sqrt{1-z^2} = \sqrt{1-z}\sqrt{1+z}$. Squaring both sides gives $1-z^2 = (1-z)(1+z)$, so there is *some* interpretation in which it is true. What about $\sqrt{z^2-1} \stackrel{?}{=} \sqrt{z-1}\sqrt{z+1}$. The same arguments apply and there is *some* interpretation of $\sqrt{z^2-1}$, $\sqrt{z-1}$ and $\sqrt{z+1}$ in which it is true, *but* when z = -2 we get $\sqrt{3} = \sqrt{-3}\sqrt{-1}$, so there is *no* interpretation of $\sqrt{-n}$ as such, consistent with $\sqrt{-n} = \sqrt{-1}\sqrt{n}$ even for $n \in \mathbf{N}$, for which it is true. Claim $\sqrt{1-z^2} = \sqrt{1-z}\sqrt{1+z}$. Squaring both sides gives $1-z^2 = (1-z)(1+z)$, so there is *some* interpretation in which it is true. What about $\sqrt{z^2-1} \stackrel{?}{=} \sqrt{z-1}\sqrt{z+1}$. The same arguments apply and there is *some* interpretation of $\sqrt{z^2-1}$, $\sqrt{z-1}$ and $\sqrt{z+1}$ in which it is true, *but* when z = -2 we get $\sqrt{3} = \sqrt{-3}\sqrt{-1}$, so there is *no* interpretation of $\sqrt{-n}$ as such, consistent with $\sqrt{-n} = \sqrt{-1}\sqrt{n}$ even for $n \in \mathbf{N}$, for which it is true.

There is *no* interpretation of $\sqrt{}$ as such for which both are true.

Claim $\sqrt{1-z^2} = \sqrt{1-z}\sqrt{1+z}$. Squaring both sides gives $1-z^2 = (1-z)(1+z)$, so there is *some* interpretation in which it is true. What about $\sqrt{z^2-1} \stackrel{?}{=} \sqrt{z-1}\sqrt{z+1}$. The same arguments apply and there is *some* interpretation of $\sqrt{z^2-1}$, $\sqrt{z-1}$ and $\sqrt{z+1}$ in which it is true, *but* when z = -2 we get $\sqrt{3} = \sqrt{-3}\sqrt{-1}$, so there is *no* interpretation of $\sqrt{-n}$ as such, consistent with $\sqrt{-n} = \sqrt{-1}\sqrt{n}$ even for $n \in \mathbf{N}$, for which it is true.

There is *no* interpretation of $\sqrt{-}$ as such for which both are true. \mathcal{I} interprets individual functions, such as $\sqrt{1+z}$, and there is no general composition.