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What is the derivative of sin x?

f (x) = lim
δ→0

(
sin(x + δ)− sin(x)

δ

)

∀ε > 0∃Dε : δ < Dε ⇒
∣∣∣∣f (x)− sin(x + δ)− sin(x)

δ

∣∣∣∣ < ε

sin(x + δ)− sin(x) = cos(x) sin(δ)− sin(x)(1− cos(δ)) so we can
make the choice f (x) = cos(x). We can then take
Dε = 1

2 min(
√
ε, 1), and some simple algebra shows the result.

Did any of you do that?

Did any of you take Dε = min(
√
ε,1)

2 max(| cos(x)|,| sin(x)|,1) to allow for x ∈ C?
Or did you “just know it”?
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What is the integral:
∫ π/2

0 cos x?

I = lim
|∆|→0

S∆ [cos(x)] = lim
|∆|→0

S∆ [cos(x)]

(∆ ranges over all dissections of [0, π/2])
Does anyone actually do this?
Can anyone actually do this?
Or do we say “well, we have proved that sin′ = cos, so

∫
cos = sin,

and therefore the answer is sin π
2 − sin 0 = 1?

We might say “therefore, by the Fundamental Theorem of
Calculus, . . . ”
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What is the Fundamental Theorem of Calculus?

Indeed, what is calculus?

. . . the deism of Liebniz over the dotage of Newton . . .
[Babbage, chapter 4]

I claim that calculus is actually the interesting fusion of two,
different subjects.

What you learned in calculus, which I shall write as Dεδ: the
“differentiation of ε–δ analysis”. Also d

dεδx , and its inverse

εδ

∫
.

What is taught in differential algebra, which I shall write as
DDA: the “differentiation of differential algebra”. Also d

dDAx ,

and its inverse DA

∫
.
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Dεδ (for functions R→ R)

Define CL(f , x0) (the “Cauchy Limit”) as

CL(f , x0) = lim
h→0

f (x0 + h)− f (x0)

h

and Dεδ(f ) = λx .CL(f , x). Then the following are theorems.

Dεδ(c) = 0 ∀c constants.

CL(f + g , x0) = CL(f , x0) + CL(g , x0), so
Dεδ(f + g) = Dεδ(f ) + Dεδ(g).

CL(fg , x0) = CL(f , x0)g(x0) + f (x0) CL(g , x0), so
Dεδ(fg) = Dεδ(f )g + fDεδ(g).

Dεδ(λx .f (g(x))) = Dεδ(g)λx .Dεδ(f )(g(x)). (Chain rule)
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DDA (for any ring R of characteristic 0)

Definition: DDA : R → R is a derivation on R if it satisfies:

DDA(f + g) = DDA(f ) + DDA(g)

DDA(fg) = DDA(f )g + fDDA(g)

Corollaries:

DDA(c) = 0 for all c algebraic over 〈1〉.
DDA( f

g ) = DDA(f )g−fDDA(g)
g2 .

DDA extends uniquely to algebraic extensions.

Note that there is no Chain Rule as such, since composition is not
necessarily a defined concept on R.
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A note on the word “constant”

We said

DDA(c) = 0 for all c algebraic over 〈1〉.
“constants differentiate to 0”

By abuse of language, we say that anything that differentiates to
zero is a “constantDA”.
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How are the two subjects related?

If we define DDA(x) = 1, then DDA is defined on Z[x ], and
extends to Q(x) and indeed Q(x).

If we interpret (denoted I) Q(x) as functions R→ R, then DDA

can be interpreted as Dεδ, i.e.

I(DDA(f )) = Dεδ(I(f ))

(at least up to removable singularities).
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An aside on interpretation

Consider L := (x−1)2

x2−1
and R := x−1

x+1 .

As elements of Q(x) they are equal, since L− R = 0
x2−1

= 0.
But as formulae (viewed as algorithm specifications), L(1)=“divide
by zero error”, whereas R(1) = 0.
Hence the warning about removable singularities!
Also, note that −1 is not a removable singularity!
In the case of Q(x), every element has a “most continuous
formula”, so interpreting this as R→ R can’t go wrong.
We use I∗ to indicate “interpretation with removable singularities
removed”, since there isn’t always a formulaic way of doing so.
Indeed, there may be no way of interpreting without singularities,
as in z 7→

√
z : C→ C.
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εδ

∫
(for functions R→ R)

What is naturally defined is integration over an interval I . We let
D stand for sub-divisions d1 = a < d2 < · · · < dn = b of I = [a, b],
and |D| for the largest distance between neighbouring points in D,
i.e. maxi (di+1 − di ). Let

SD =
∑

i (di+1 − di ) maxdi+1≥x≥di
f (x);

SD =
∑

i (di+1 − di ) mindi+1≥x≥di
f (x);

Then εδ

∫
I f = lim inf |D|→0 SD = lim sup|D|→0 SD if both exist and

are equal.
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Consequences: Fundamental Theorem of Calculus (FTCεδ)

Define εδ

∫ b
a f =

{
εδ

∫
[a,b] f a ≤ b

−εδ
∫

[b,a] f a > b

(If we’re not careful, we wind up saying “[2,1] is the same set as
[1,2] except that if you integrate over it you have to add a −
sign”. What we really have here is the beginnings of contour
integration. Apostol theorem 1.20 states that if g(x) ≤ f (x) for
every x in [a, b], then∫ b

a
g(x)dx ≤

∫ b

a
f (x)dx ,

and here a < b is implicit.)
FTCεδ: εδ

∫
[a,b] Dεδf = f (b)− f (a).

Or: Dεδ(λx .εδ
∫ x
a f ) = f (if the εδ

∫
exists).

(Of course, this is normally stated without the λ.)
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DA
∫

: FTC becomes a definition

FTCDA: define DA

∫
f to be any g such that f = DDAg .

If g and h are two such integrals, then DDA(g − h) = 0, i.e. “g
and h differ by a constant”.
One difficulty is that this is really a “constantDA” (something
whose DDA is zero), and, for example, a Heaviside function is a
constantDA, though not a constant in the usual sense.



DA
∫

: FTC becomes a definition

FTCDA: define DA

∫
f to be any g such that f = DDAg .

If g and h are two such integrals, then DDA(g − h) = 0, i.e. “g
and h differ by a constant”.
One difficulty is that this is really a “constantDA” (something
whose DDA is zero), and, for example, a Heaviside function is a
constantDA, though not a constant in the usual sense.



DA
∫

: FTC becomes a definition

FTCDA: define DA

∫
f to be any g such that f = DDAg .

If g and h are two such integrals, then DDA(g − h) = 0, i.e. “g
and h differ by a constant”.

One difficulty is that this is really a “constantDA” (something
whose DDA is zero), and, for example, a Heaviside function is a
constantDA, though not a constant in the usual sense.



DA
∫

: FTC becomes a definition

FTCDA: define DA

∫
f to be any g such that f = DDAg .

If g and h are two such integrals, then DDA(g − h) = 0, i.e. “g
and h differ by a constant”.
One difficulty is that this is really a “constantDA” (something
whose DDA is zero), and, for example, a Heaviside function is a
constantDA, though not a constant in the usual sense.



Will the real FTC please stand up?

FTC (as it should be taught).
If g = DA

∫
f , and I(g) is continuous on [a, b], then

εδ

∫ b

a
I(f ) = I(g)(b)− I(g)(a).

Note the caveat on continuity: g : x 7→ arctan
(

1
x

)
is discontinuous

at x = 0 (limx→0− arctan
(

1
x

)
= −π

2 whereas
limx→0+ arctan

(
1
x

)
= π

2 ), which accounts for the invalidity of
deducing that the integral of a negative function is positive —∫ 1

−1

−1

x2 + 1
= I(g)(1)− I(g)(−1) =

π

4
− −π

4
=
π

2
> 0.



Will the real FTC please stand up?

FTC (as it should be taught).

If g = DA

∫
f , and I(g) is continuous on [a, b], then

εδ

∫ b

a
I(f ) = I(g)(b)− I(g)(a).

Note the caveat on continuity: g : x 7→ arctan
(

1
x

)
is discontinuous

at x = 0 (limx→0− arctan
(

1
x

)
= −π

2 whereas
limx→0+ arctan

(
1
x

)
= π

2 ), which accounts for the invalidity of
deducing that the integral of a negative function is positive —∫ 1

−1

−1

x2 + 1
= I(g)(1)− I(g)(−1) =

π

4
− −π

4
=
π

2
> 0.



Will the real FTC please stand up?

FTC (as it should be taught).
If g = DA

∫
f , and I(g) is continuous on [a, b], then

εδ

∫ b

a
I(f ) = I(g)(b)− I(g)(a).

Note the caveat on continuity: g : x 7→ arctan
(

1
x

)
is discontinuous

at x = 0 (limx→0− arctan
(

1
x

)
= −π

2 whereas
limx→0+ arctan

(
1
x

)
= π

2 ), which accounts for the invalidity of
deducing that the integral of a negative function is positive —∫ 1

−1

−1

x2 + 1
= I(g)(1)− I(g)(−1) =

π

4
− −π

4
=
π

2
> 0.



Will the real FTC please stand up?

FTC (as it should be taught).
If g = DA

∫
f , and I(g) is continuous on [a, b], then

εδ

∫ b

a
I(f ) = I(g)(b)− I(g)(a).

Note the caveat on continuity: g : x 7→ arctan
(

1
x

)
is discontinuous

at x = 0 (limx→0− arctan
(

1
x

)
= −π

2 whereas
limx→0+ arctan

(
1
x

)
= π

2 ),

which accounts for the invalidity of
deducing that the integral of a negative function is positive —∫ 1

−1

−1

x2 + 1
= I(g)(1)− I(g)(−1) =

π

4
− −π

4
=
π

2
> 0.



Will the real FTC please stand up?

FTC (as it should be taught).
If g = DA

∫
f , and I(g) is continuous on [a, b], then

εδ

∫ b

a
I(f ) = I(g)(b)− I(g)(a).

Note the caveat on continuity: g : x 7→ arctan
(

1
x

)
is discontinuous

at x = 0 (limx→0− arctan
(

1
x

)
= −π

2 whereas
limx→0+ arctan

(
1
x

)
= π

2 ), which accounts for the invalidity of
deducing that the integral of a negative function is positive —∫ 1

−1

−1

x2 + 1
= I(g)(1)− I(g)(−1) =

π

4
− −π

4
=
π

2
> 0.



Rescuing the Fundamental Theorem of Calculus

Of course, another DA

∫ −1
x2+1

is h(x) = arctan
(

1
x

)
+ H(x) where

H(x) =

{
0 x < 0

−π x > 0
is a constantDA. This has a removable

singularity at x = 0.

I∗(h) is continuous, so FTC is appropriate and∫ 1

−1

−1

x2 + 1
= I(h)(1)− I(h)(−1) =

(π
4
− π

)
− −π

4
= −π

2
< 0.
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“Most continuous expressions” revisited

arctan
(

1
x

)
+ H(x) can also be rewritten as π

2 − arctan(x).

In this case π
2 − arctan(x) is a “most continuous formula”.

(except at ∞, where the original arctan
(

1
x

)
is continuous!).

What about arctan
(

z−1
z+1

)
? An equivalent is

arctan

(
z − 1 +

√
z2 + 6 z − 7

2(z − 1)

)
−arctan

(
z − 1 +

√
z2 + 6 z − 7

2(z − 1)
+ 1

)

or − arctan
(

2 z−1+z2

−2 z−1+z2

)
− arctan(z), where the singularities are at

−1±
√

2 (and ∞), or . . . .
Still an unsolved problem (Rioboo, . . . ).
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But I’m not interested in all this DA stuff

Surely most people (even engineers) do εδ

∫
etc.

They may think they do, but in practice they do DA

∫
even

when intending to do εδ

∫
.

What is limh→0
1
h

(
(1 + h) cos2(1 + h)− cos2 1

)
?

If you immediately said cos2(1)− 2 sin(1) cos(1)

I bet you actually did DDA(x cos2 x)|x=1.

(If you said −.617370845, you probably had Maple on your
Blackberry, and it did that.)
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Conclusions

We already know that εδ

∫
is a powerful world model

DA

∫
is well-implemented and very powerful

“e−x2
has no integral” means “has no DA

∫
in terms of

already known functions”

I does map from one to the other, often very effectively

but not always!
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I crops up elsewhere

Claim
√

1− z2 =
√

1− z
√

1 + z .
Squaring both sides gives 1− z2 = (1− z)(1 + z), so there is some
interpretation in which it is true.

What about
√

z2 − 1
?
=
√

z − 1
√

z + 1.
The same arguments apply and there is some interpretation of√

z2 − 1,
√

z − 1 and
√

z + 1 in which it is true, but when z = −2
we get

√
3 =
√
−3
√
−1, so there is no interpretation of

√
as

such, consistent with
√
−n =

√
−1
√

n even for n ∈ N, for which it
is true.
There is no interpretation of

√
as such for which both are true.

I interprets individual functions, such as
√

1 + z , and there is no
general composition.
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