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6—0 1)

F(x) = lim (Si”(XH) Sin(x)>

_sin(x + ) —sin(x)
5

sin(x + d) — sin(x) = cos(x) sin(d) — sin(x)(1 — cos(J)) so we can

make the choice f(x) = cos(x). We can then take

D. = 1 min(\/€, 1), and some simple algebra shows the result.
Did any of you do that?

Did any of you take D, = min(y/c.1) y to allow for x € C7

— 2max(| cos(x)],| sin(x)|,1
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What is the derivative of sin x7

_ sin(x + 0) — sin(x)

F(x) = |
(x) 52 ( 4]

_sin(x + ) —sin(x)

5

sin(x + d) — sin(x) = cos(x) sin(d) — sin(x)(1 — cos(J)) so we can
make the choice f(x) = cos(x). We can then take

D. = 1 min(\/€, 1), and some simple algebra shows the result.

Did any of you do that? _

Did any of you take D, = min(y/c.1) y to allow for x € C7

" 2max(| cos(x)],| sin(x)|,1

Or did you “just know it"?

V6>03D€:5<D€:>‘f(x) <€
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What is the integral: fow/z cos x7?

I = | I||r20 S [cos(x)] = |A|I|T>0 S [cos(x)]
(A ranges over all dissections of [0, 7/2])

Does anyone actually do this?

Can anyone actually do this?

Or do we say “well, we have proved that sin’ = cos, so fcos = sin,
and therefore the answer is sin 5 —sin0 = 17

We might say “therefore, by the Fundamental Theorem of
Calculus, ..."
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What is the Fundamental Theorem of Calculus?

Indeed, what is calculus?

... the deism of Liebniz over the dotage of Newton ...
[Babbage, chapter 4]

| claim that calculus is actually the interesting fusion of two,
different subjects.
@ What you learned in calculus, which | shall write as D.s: the
“differentiation of =0 analysis”. Also ﬁ, and its inverse
€ f
e What is taught in differential algebra, which [ shall write as
Dpa: the “differentiation of differential algebra”. Also ﬁix'
and its inverse py |.



D.s (for functions R — R)



D.s (for functions R — R)

Define CL(f, xp) (the “Cauchy Limit") as

f h)—f
CL(f, x0) = lim (o + z (o)

and D.s(f) = Ax. CL(f, x).



D.s (for functions R — R)

Define CL(f, xp) (the “Cauchy Limit") as

f h)—f
CL(f, x0) = lim (o + z (o)

and D.s(f) = Ax. CL(f,x). Then the following are theorems.



D.s (for functions R — R)

Define CL(f, xp) (the “Cauchy Limit") as

f h)—f
CL(f, x0) = lim (o + /)1 (o)

and D.s(f) = Ax. CL(f,x). Then the following are theorems.
@ Ds(c)=0 V¢ constants.



D.s (for functions R — R)

Define CL(f, xp) (the “Cauchy Limit") as

f(XO —+ h) — f(Xo)

L(f =i
CL(f:x0) PRl h
and Da;(f) AX. CL(f x). Then the following are theorems.

c)= V¢ constants.

f+ ) = CL(f, x0) + CL(g, x0), so
f+ ) = Des(f) + Des(g)-

6
o CL
D.s
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D.s (for functions R — R)

Define CL(f, xp) (the “Cauchy Limit") as

CL(f,x0) = lim "ot b= To)

and Da;(f) Ax. CL(f, x). Then the following are theorems.
Des(c) = V¢ constants.
+g,Xo) CL(f, x0) + CL(g, x0), s
(

° CL(
Des(f + &) = Des(f) + Des(g)-

° CL(fg,xo) CL(f, x0)g(x0) + f(x0) CL(g, x0), so
Des(fg) = Des(f)g + fDes(8)-

o Dus(\x.F(g(x))) = Des(g)Ax.Dus(F)(g(x)). (Chain rule)
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Dpa (for any ring R of characteristic 0)

Definition: Dpa : R — R is a derivation on R if it satisfies:
® Dpa(f +g) = Dpa(f) + Dpa(g)
o Dpa(fg) = Dpa(f)g + fDpa(g)

Corollaries:

@ Dpa(c) =0 for all c algebraic over (1).

Dpa(f)g—D,
° DDA(é) _ Dpa( )gg2 DA (g)
@ Dpa extends uniquely to algebraic extensions.
Note that there is no Chain Rule as such, since composition is not
necessarily a defined concept on R.
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A note on the word “constant”

We said
@ Dpa(c) =0 for all c algebraic over (1).
@ ‘“constants differentiate to 0"

By abuse of language, we say that anything that differentiates to
zero is a “constantpa”.
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How are the two subjects related?

If we define Dpa(x) =1, then Dpy is defined on Z[x], and

extends to Q(x) and indeed Q(x).
If we interpret (denoted Z) Q(x) as functions R — R, then Dpy

can be interpreted as D, i.e.

Z(Dpa(f)) = Des(Z(f))

(at least up to removable singularities).
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An aside on interpretation

. -
Consider L := ( ) and R := X—H

As elements of Q( ) they are equal, since L — R = x2(11 =0.

But as formulae (viewed as algorithm specifications), L(1)="divide
by zero error”, whereas R(1) = 0.

Hence the warning about removable singularities!

Also, note that —1 is not a removable singularity!

In the case of Q(x), every element has a “most continuous
formula”, so interpreting this as R — R can't go wrong.

We use Z* to indicate “interpretation with removable singularities
removed”, since there isn't always a formulaic way of doing so.
Indeed, there may be no way of interpreting without singularities,
asinz— /z:C—C.
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e | (for functions R — R)

What is naturally defined is integration over an interval /. We let
D stand for sub-divisions di =a < dr < --- < d, =bof | =[a,b],
and |D| for the largest distance between neighbouring points in D,
i.e. max,-(d,-+1 — d,) Let

° % = Zi(di+1 - di) MaXd; 1 >x>d f(X);

i SiD = Zi(diJrl - di) mindi+12XZdi f(X);

Then 5 f, f=Ilim inf|D|H0$ = lim sup|D|_,057D if both exist and
are equal.
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Consequences: Fundamental Theorem of Calculus (FTC,)

€d f[a,b] f a<b

Define . b=
0 fa {—65 f[b,a] f a>b

(If we're not careful, we wind up saying “[2,1] is the same set as
[1,2] except that if you integrate over it you have to add a —
sign”. What we really have here is the beginnings of contour
integration. Apostol theorem 1.20 states that if g(x) < f(x) for
every x in [a, b], then

/ab g(x)dx < /ab f(x)dx,

and here a < b is implicit.)

FTCE(;: ) f[a,b] De(gf = f(b) — f(a)

Or: Des(Ax.cs [2 f) = f (if the (5 [ exists).

(Of course, this is normally stated without the \.)
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pa J: FTC becomes a definition

FTCpa: define pa [ f to be any g such that f = Dpag.

If g and h are two such integrals, then Dpa(g — h) =0, i.e. “g
and h differ by a constant”.

One difficulty is that this is really a “constantpa” (something
whose Dpj is zero), and, for example, a Heaviside function is a
constantpp, though not a constant in the usual sense.
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Will the real FTC please stand up?

FTC (as it should be taught).
If g =pa [ f, and Z(g) is continuous on [a, b], then

b
5 / () = Z(g) (b) — T(g)(2)-

Note the caveat on continuity: g : x — arctan (1) is discontinuous

at x =0 (lim,_,o- arctan (%) = - whereas
lim,_ o+ arctan (%) = %), which accounts for the invalidity of

deducing that the integral of a negative function is positive —

1 o - . _
/_1 x2il =) -Z(e)-1) =4~ =5 >0
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Rescuing the Fundamental Theorem of Calculus

Of course, another pa [ 715 is h(x) = arctan (}) + H(x) where

0 0
H(x) = *<Visa constantpa. This has a removable

-1 x>0
singularity at x = 0.
Z*(h) is continuous, so FTC is appropriate and

/1 = =Z(h)(1) ~Z(h)(-1) = (F —7) = 5 = —5 <.

_1X2—|—1
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“Most continuous expressions” revisited

arctan (1 )+ H( ) can also be rewritten as 5 — arctan(x).
In this case 7 — arctan(x) is a “most continuous formula”.
(except at oo, where the original arctan (%) is continuous!).

What about arctan ( +1)? An equivalent is

2(z-1)

2(z-1)

(z—1+\/22—|—6z—7> <Z—1—|—\/22—|—6Z—
arctan —arctan

or — arctan <

2z—1422

—2z—-1+422

—1£+/2 (and o), or

Still an unsolved problem (Rioboo, ...).

) — arctan(z), where the singularities are at

")
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But I'm not interested in all this DA stuff

Surely most people (even engineers) do s [ etc.

They may think they do, but in practice they do pa [ even
when intending to do s |

What is limp_o + ((1 4 h) cos?(1 + h) — cos? 1)?
If you immediately said cos?(1) — 2sin(1) cos(1)
| bet you actually did Dpa (x cos? x)|x—1.

(If you said —.617370845, you probably had Maple on your
Blackberry, and it did that.)
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Conclusions

We already know that 5 [ is a powerful world model

pa  is well-implemented and very powerful

w_—x2 . ” “w .
@ “e™™ has no integral’ means “has no DAf in terms of
already known functions”

Z does map from one to the other, often very effectively

but not always!
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I crops up elsewhere

Claim v1—-22=+1—-2z\1+z.

Squaring both sides gives 1 — z? = (1 — z)(1 + z), so there is some
interpretation in which it is true.

What about v/z2 — 1;\/2 — 1z + 1.

The same arguments apply and there is some interpretation of
Vz2 —1,v/z—1 and v/z+ 1 in which it is true, but when z = —2
we get V3= v/—3+/—1, so there is no interpretation of Vo as
such, consistent with v/—n = y/—1/n even for n € N, for which it
is true.

There is no interpretation of Vo as such for which both are true.
7 interprets individual functions, such as v/1 + z, and there is no
general composition.




