OpenMath in a (Semantic) Web

James H. Davenport Department of Computer Science University of Bath Bath BA2 7AY England J.H.Davenport@bath.ac.uk Thanks to JEM for inviting me

February 1, 2008

Some history (1)

OpenMath started life as a protocol for communication between computer algebra systems. It has since expanded in scope to include communication between:

- Computer algebra systems;
- Reasoning systems (theorem provers);
- Pedagogical tools;
- Mathematical databases;
- Layout systems such as IAT_EX .

Lack of human involvement is the key.

Some history (2)

The world-wide web developed as a means of communicating between human beings, even if many of the 'pages' were generated by computers. This has led to strategies such as

- "if it's ambiguous ask the user"
- "if it's ambiguous pick the most likely"
- "ambiguity? what's that??".

The belief that there's a browser driven by a human being is the key.

Some history (3)

Much hype about a 'semantic web' — what might it mean for mathematics?

- The semantics *must* not need a human being to interpret.
- The presentation *must* be capable of adapting to the user's culture (anglosaxon/french, normal/EE etc.).
- There *should* not be a split between 'meant for humans' and 'meant for machines'.

Semantics

We tend to think, and non-mathematicians are very prone to think, that the semantics of mathematics are well-defined and universal, and that mathematical notation represents this universally.

- [0,1) or [0,1[?
- Arctan or arctan?
- N or $\mathbf{N} \cup \{\mathbf{0}\}$?
- i or j?
- $n = O(n^2)$ so $O(n^2) = n?$

[0,1) or [0,1[?

<OMS name="interval_co" cd="interval1"/> represents the content. The rendering is not specified at all.

Arctan or arctan?

• <OMS name="arctan" cd="transc1"/> is a (specific) single-valued function.

• <OMS name="arctan" cd="transc3"/> is a multivalued function.

Which is represented by arctan and which by Arctan is up to the renderer.

N or $N \cup \{0\}$?

Here OpenMath has to make a decision, and in fact <OMS name="N" cd="setname1"/> is $\{0, 1, 2, ...\}$. However, there *should* be a representation of $\{1, 2, ...\}$.

i or j?

• Electrical engineers will need to customise their renderers!

• The plus side is that they will therefore have access to mathematics not especially directed at them!!

$$n = O(n^2)$$
 so $O(n^2) = n?$

Well, every mathematician 'talks the talk' that this isn't really "=", but " \in ", but only one 'walks the walk'. The solution is

whose semantics are those of \in , but whose rendering is that of =.

Surface or Deep Structure?

• I carry the book.

• I carried the book.

• The book was carried by me.

Surface or Deep Structure?

- I carry the book.
- [Ego] fero librum.
- I carried the book.
- [Ego] tuli librum.
- The book was carried by me.
- Liber latus meo est.

Surface or Deep Semantics?

• $a_1 \cup a_2 \cup a_3$

• \bigcup { a_1, a_2, a_3 }

•
$$\bigcup_{i=1}^{3} a_i$$

Surface or Deep Semantics? The OpenMath View

- $a_1 \cup a_2 \cup a_3$
- <OMS name="union" cd="set1"/>

•
$$\bigcup$$
{ a_1, a_2, a_3 }

- <OMS name="big_union" cd="set3"/>
- Or <OMS name="apply_to_list" cd="fns2"/>

•
$$\bigcup_{i=1}^{3} a_i$$

- big_union ON make_list

Surface or Deep Semantics? The MathML View

- $a_1 \cup a_2 \cup a_3$
- <apply> <union/> <i> a_1 </i>...</apply>
- $\cup \{a_1, a_2, a_3\}$
- <apply> <union/> <bvar>i</bvar> <domain ...> <set> <i>a1</i>...</set>
- $\bigcup_{i=1}^{3} a_i$
- <apply> <union/> <bvar>i</bvar> <lowlimit>...

Surface or Deep Semantics? ∪'s comparison

MathML seems to have one symbol, which represents (slightly clumsily in the second case) \bigcup 's deep semantics. OpenMath seems to have different symbols for the different surface semantics.

Note that $\cup \{\{a\}, \{b\}\} = \{\{a\}, \{b\}\}\}$, while $\cup \{\{a\}, \{b\}\} = \{a, b\}$, so some clumsiness is inevitable in the second case.

Surface or Deep Semantics?

•
$$a_1 + a_2 + a_3$$

• $\Sigma\{a_1, a_2, a_3\}$ (??)

•
$$\sum_{i=1}^{3} a_i$$

Surface or Deep Semantics? The OpenMath View

•
$$a_1 + a_2 + a_3$$

- <OMS name="plus" cd="arith1"/>

•
$$\Sigma\{a_1, a_2, a_3\}$$
 (??)

- <OMS name="apply_to_list" cd="fns2"/>

•
$$\Sigma_{i=1}^3 a_i$$

- <OMS name="sum" cd="arith1"/>

Surface or Deep Semantics? The MathML View

- $a_1 + a_2 + a_3$
- <apply> <plus/> <i> a_1 </i>...</apply>
- $\Sigma\{a_1, a_2, a_3\}$ (??)
- <apply> <sum/> <bvar>i</bvar> <domain ...> <set> <i>a1</i>...</set>
- $\sum_{i=1}^{3} a_i$
- <apply> <sum/> <bvar>i</bvar> <lowlimit>...

Surface or Deep Semantics? Σ 's comparison

This is clearly mathematics' form of an irregular verb. Mathematics' answer to a deponent verb is presumably ∏, the 'big' version of ⁢.

Ordinary mathematical notation finds the second case "unusual". In this case, MathML looks much more like OpenMath — surface semantics.

Conclusion

• 'Deep semantics' is very appealing, but

 $\cup \{\{a\}, \{b\}\} = \{\{a\}, \{b\}\} \bigcup \{\{a\}, \{b\}\} = \{a, b\}$ shows that it is ambiguous, even if *humans* rarely care.

 Disentangling the various uses of MathML's <union/> is problematic: some systems might be able to handle straight-forward cases, but not those with bound variables involved. • Mathematics itself has irregular verbs, even if most constructs are 'regular'.

• One question is whether irregularity can be solved purely at the notational level, e.g.

<OMS name="apply_to_list" cd="fns2"/> <OMS name="plus" cd="arith1"/>

is recognised as Σ . If so, how do we tell the difference between conditional convergence and absolute convergence? • If you don't think this matters, does the difference between Riemann integrals and Cauchy Principal Value integrals matter?

• Can you explain the difference?

 Is it possible to formalise 'deep semantics', as MathML sometimes tries to do, or should we stick with OpenMath's 'surface semantics'?