
Methodologies of Symbolic Computation

James Davenport

University of Bath

18–19 September 2018

James Davenport Methodologies of Symbolic Computation 1 / 31



Structure

1 Introduction and History

2 Better straightforward algorithms

3 Modular (Chinese Remainder) algorithms

4 Hensel (p-adic) algorithms

5 Not so straightforward algorithms

6 How the subject works

7 Convergence with AI?

James Davenport Methodologies of Symbolic Computation 2 / 31



Computer Algebra (Symbolic Computation)

“Getting computers to do algebra”

computers by themselves can’t even do arithmetic: there are
only finitely many int in C for example. And

(1 + 1020)− 1020
double−→ 0 whereas

1 + (1020 − 1020)
double−→ 1.

to do Do we really know algorithms? Can you factor
x5 − 2x4 + 8x3 + 3x2 + 6x − 4?

algebra and much geometry can be turned into algebra. So
can much of calculus.

James Davenport Methodologies of Symbolic Computation 3 / 31



The algorithmic need to cover all cases

We are normally taught to solve ax2 + bx + c as

x =
−b ±

√
b2 − 4ac

2a

but in fact the true answer is
a 6= 0 ⇒ x = −b±

√
b2−4ac
2a

a = 0, b 6= 0 ⇒ x = −c/b
a = b = 0, c 6= 0 ⇒ contradiction
a = b = c = 0 ⇒ x = anything

Note that the number of solutions isn’t necessarily 2.

James Davenport Methodologies of Symbolic Computation 4 / 31



Some early history

[But I don’t know anything about Chinese developments]

1948 Manchester Baby is first stored-program computer.

1951 (Cambridge, UK) 180
(
2127 − 1

)2
+ 1 is prime

[MW51].

1952 Elliptic curve calculations on MANIAC [ST92, p.
119].

1953 two US theses [Kah53, Nol53] kicked off the
‘calculus’ side of computer algebra with programs to
differentiate expressions.

1953 (Cambridge, UK) a group theory algorithm was
implemented [Has53].

1958 McCarthy invents LISP [McC60], used for SHRDLU
and Macsyma (and many others).

* These two fields have a common ancestry.

James Davenport Methodologies of Symbolic Computation 5 / 31



How did they split?

Probably best illustrated by looking at integration.

1961 SAINT: heuristic integration “better than a
freshman” [Sla61, Harvard]

1967 SIN: algorithmic integration “algorithmically
complete” [Mos67, M.I.T]

However, “algorithms are better” has its limitations, see [JR10]: if
you want answers such as a human would generate, then you want
to build on human reasoning.

James Davenport Methodologies of Symbolic Computation 6 / 31



Straightforward Algorithms: Fractions are Expensive

a(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x − 5;

b(x) = 3x6 + 5x4 − 4x2 − 9x−21.

b1 =
−5

9
x4 +

127

9
x2 − 29

3
,

b2 =
50157

25
x2 − 9x − 35847

25

b3 =
93060801700

1557792607653
x +

23315940650

173088067517

b4 =
761030000733847895048691

86603128130467228900
.

And they’d be really expensive if we had other variables around, as
we’d have to do g.c.d. calculations to cancel the fractions, or they
would grow greatly.

James Davenport Methodologies of Symbolic Computation 7 / 31



Just fraction-free is also expensive

a(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x − 5;

b(x) = 3x6 + 5x4 − 4x2 − 9x − 21.

b1 = −15 x4 + 381 x2 − 261

b2 = 6771195 x2 − 30375 x − 4839345

b3 = 500745295852028212500 x + 1129134141014747231250

b4 = 7436622422540486538114177255855890572956445312500

But any old fool can see that there are common factors!

James Davenport Methodologies of Symbolic Computation 8 / 31



So remove common factors

a(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x − 5;

b(x) = 3x6 + 5x4 − 4x2 − 9x − 21.

b1 = −5 x4 + 127 x2 − 87 Cancelled 3

b2 = 5573 x2 − 25 x − 3983 Cancelled 1215= 35 · 5
b3 = 1861216034 x + 4196869317 Cancelled 316 · 55 · 2
b4 = 1

This is in fact a perfectly reasonable algorithm for Z[x ], and, if I
didn’t know better (see later) is the one I would use for Z[x ].
But all those pp are a great many g.c.d. in R, and if R = S [y ],
many more computations over S , and if S = T [z ] . . .
All those cancellations (apart from the 2) were of leading
coefficients. It turns out we can predict these.

James Davenport Methodologies of Symbolic Computation 9 / 31



Subresultant Polynomial Remainder Seq [Bro71a, Bro71b]

1: procedure SREuclid(f , g) . Almost the g.c.d. of a, b ∈ R[x ]
2: if deg(f ) < deg(g) then
3: a0 ← pp(g); a1 ← pp(f );
4: else
5: a0 ← pp(f ); a1 ← pp(g);
6: end if
7: δ0 ← deg(a0)− deg(a1);
8: β2 ← (−1)δ0+1; ψ2 ← −1;i ← 1;
9: while ai 6= 0 do

10: ai+1 = prem(ai−1, ai )/βi+1;
11: δi ← deg(ai )− deg(ai+1); i ← i + 1;

12: ψi+1 ← (− lc(ai−1))δi−2 ψ
1−δi−2

i ;

13: βi+1 ← − lc(ai−1)ψ
δi−1

i+1 ;
14: end while
15: return pp(ai−1) . The gcd is this, up to a factor in R
16: end procedure

James Davenport Methodologies of Symbolic Computation 10 / 31



Trivial g.c.d. modulo 5

Write P5 to signify the polynomial P considered as a polynomial
with coefficients modulo 5. P = gcd(A,B) implies that P5 divides
A5. Similarly, P5 divides B5, and therefore it is a common divisor
of A5 and B5.
But calculating the g.c.d. of A5 and B5 is fairly easy:

A5(x) = x8 + x6 + 2x4 + 2x3 + 3x2 + 2x ;
B5(x) = 3x6 + x2 + x + 1;
C5(x) = rem(A5(x),B5(x)) = A5(x) + 3(x2 + 1)B5(x) = 4x2 + 3;
D5(x) = rem(B5(x),C5(x)) = B5(x) + (x4 + 4x2 + 3)C5(x) = x ;
E5(x) = rem(C5(x),D5(x)) = C5(x) + xD5(x) = 3.

Thus A5 and B5 are relatively prime, which implies that P5 = 1. As
the leading coefficient of P has to be one, we deduce that P = 1.

James Davenport Methodologies of Symbolic Computation 11 / 31



Diagrammatic illustration of Modular GCD Algorithm

desired gcd computation
Z[x ] - - - - - - - - - - - - - - - - - -> Z[x ]

k×reduce ↓ ↑
interpret
& check

Zp1 [x ]
gcd−→ Zp1 [x ]

...
...

...

Zpk [x ]
gcd−→ Zpk [x ]

 C.R.T.−→ Z′p1···pk [x ]

Z′p1···pk [x ] indicates that some of the pi may have been rejected by
the compatibility checks, so the product is over a subset of

p1 · · · pk .

James Davenport Methodologies of Symbolic Computation 12 / 31



More generally

gcd could be almost any algorithm that works over the integers.
But we always have these questions.

1 Are there ”good” reductions from R?

* A weak answer is that the algorithm over the integers can
only test finitely many numbers for = 0, so avoiding their
prime factors is sufficient

2 How can we tell if Ri is good?

3 How many reductions should we take?

4 How do we combine?

* Generally Chinese Remainder Theorem, with Farey
reconstruction [WGD82] if we want rationals. But we need to
know what to combine.

5 How do we check the result?

� Generally very problem-dependent

James Davenport Methodologies of Symbolic Computation 13 / 31



Polynomial Factorisation

At the beginning, I asked “Do we really know algorithms?

Can you factor f := x5 − 2x4 + 8x3 + 3x2 + 6x − 4?”

Well, of course
f · (x − 1) = x6 − 3x5 + 10x5 − 5x3 + 3x2 − 10x + 4 =
(x3 − 1) ∗ (x3 − 3x2 + 10x − 4),

so f = (x2 + x + 1) ∗ (x3 − 3x2 + 10x − 4),

and it’s not hard to see that both factors are irreducible.

Hardly an algorithm!

Can’t we work modulo primes p?

And in fact there are good algorithms for polynomial
factorisation modulo p.

So onward to modular methods?

James Davenport Methodologies of Symbolic Computation 14 / 31



The questions

1 Are there “good” reductions from R?

� factorpi is not the image of some factorZ so the “avoid finitely
many divide by 0” argument doesn’t work.

2 How can we tell if Ri is good?

* Not obvious

3 How many reductions should we take?

* As for g.c.d. (Landau–Mignotte)?

4 How do we combine?

� Which factor modulo p1 belongs with which factor modulo p2
belongs with which factor modulo p3 . . . ?

5 How do we check the result?

� Not obvious, especially assertions of irreducibility.

James Davenport Methodologies of Symbolic Computation 15 / 31



These are real issues

x4 + 1 is irreducible, but factors as two quadratics modulo
every prime

Not unique: “Swinnerton-Dyer polynomials” [SD70]

x4 + 3 factors as

x4 + 3 =
(
x2 + 2

)
(x + 4) (x + 3) mod 7; (1)

x4 + 3 =
(
x2 + x + 6

) (
x2 + 10 x + 6

)
mod 11. (2)

So really

x4 + 3 =
(
x2 + 2

) (
x2 + 5

)
mod 7, (3)

Do we pair
(
x2 + x + 6

)
with

(
x2 + 2

)
or
(
x2 + 5

)
? Both

seem feasible, and both are correct. Modulo 77, we do not
have unique factorisation.

James Davenport Methodologies of Symbolic Computation 16 / 31



We need a different idea

Write fp to mean f (mod p) etc., and fp2 = fp + pf2 etc.
Suppose we are factoring f as f = gh and we know gp, hp such
that fp = gphp (mod p). Then
fp2 = gp2hp2 = gphp + p(gph2 + hpg2) + p2g2h2. Then

fp2 − gphp

p
≡ gph2 + hpg2 (mod p) (4)

(4) is linear in the unknowns g2 and h2, and can be solved
efficiently for unique g2, h2 as long as their degrees are less than
gp, hp. Similarly we can solve from fp3 = gp3hp3 to get a linear
equation in the unknowns g3 and h3, and so on.
Eventually we know gpn , hpn such that pn > 2LM, where LM is the
Landau–Mignotte bound on factors of f , and so gpn should be g
etc.
This process is known as Hensel Lifting and lets us go from a
solution modulo p to one modulo pn

James Davenport Methodologies of Symbolic Computation 17 / 31



Diagrammatic illustration of Hensel Algorithms

R
calculation

- - - - - - - - - - - - - - - - - - - - - - - - -> R

k×reduce ↓ ↑
interpret
& check

R1
calculation−→ R1

...
...

...

Rk
calculation−→ Rk

 choose−→ Rl
grow−→ R̂l

where Rl is one of R1, . . . ,Rk .

James Davenport Methodologies of Symbolic Computation 18 / 31



Not straightforward (I): Gröbner

Gröbner bases [Buc65] can be seen as doing for nonlinear
equations what Gaussian elimination does for linear equations.
But there are genuine complications.

1 {x2 − 1, y2 − 1, (x − 1)(y − 1)} defines (−1, 1), (1,−1), (1, 1)
as three points, but it takes three equations in two unknowns
to define precisely that.

2 {(x + 1− y)(x − 6 + y), (x + 1− y)(y − 3)} defines
x = y − 1 (a straight line) and the point (3, 3).

Complexity can be doubly-exponential in the number of variables
[Yap91, Chi09]. Nevertheless, these are a major algorithmic step
forward.

James Davenport Methodologies of Symbolic Computation 19 / 31



Not straightforward (II): Integration

[Mos67] was based on theory by Risch [Ris69], making algorithmic
ideas of Liouville [Lio35].
The key idea can be seen in “e−x

2
has no integral”.

Analysis Clearly there is: e−x
2

is continuous

Algebra There is no formula that differentiates to e−x
2

* Saying “erf” is cheating because that’s the definition
of erf.

Hence computers implementing this algorithm can do what 99% of
humans, probably even 99% of mathematicians, cannot, and prove
things unintegrable.
Or find some quite surprising results [Dav86]:

=

James Davenport Methodologies of Symbolic Computation 20 / 31



Methodology of Computer Algebra

There is little doubt that, in the minds of most researchers, the
ideal computer algebra paper consists of a problem statement, a
new algorithm, a complexity analysis and a few validating
examples.
However, these complexity results tend to be in the dense setting,
while most practical work is done in the sparse setting. In that
setting many of these problems are NP-hard (even g.c.d. on
univariate polynomials [Pla78]) or have even doubly-exponential
worst-case bounds [Yap91, DH88].
The SAT community handles its NP-completeness by annual
contests and large suites of benchmarks, which computer algebra
has hitherto been weak at.

James Davenport Methodologies of Symbolic Computation 21 / 31



Is it time for SC to look again at AI?

SAT handles NP-completeness far better than SC does.

Also will generally try several approaches to a problem,
whereas algebra systems tend not to

This makes algebra systems much less suitable as black
boxes

Order (of variables, say) is inherent when we come to
compute, though not in the problem statement. This
can really matter [BD07, DSS04].

Heuristics to choose these and other parameters are
under-researched (but see [Eng18]).

What is SC’s equivalent of the Hammer methodology?

Or What should SC’s equivalent of the Hammer
methodology be?

James Davenport Methodologies of Symbolic Computation 22 / 31



Questions?

Example (Dense g.c.d.s 1: [Sch03])

gcd(xpq − 1︸ ︷︷ ︸
f (x)

, xp+q − xp − xq + 1︸ ︷︷ ︸
g(x)

) = (xp−1)(xq−1)
x−1 =

xp+q−1 − xp+q−2 ± · · · − 1︸ ︷︷ ︸
h(x)

.
(5)

Example (Dense g.c.d.s 2)

Therefore

gcd(f (x1)f (x2) · · · f (xk), g(x1)g(x2) · · · g(xk)) = h(x1) · · · h(xk),
(6)

and the righthand side has (2 min(p, q))k terms, whereas the
arguments to gcd have 2k and 4k terms.

James Davenport Methodologies of Symbolic Computation 23 / 31



Bibliography I

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

E.R. Berlekamp.
Factoring Polynomials over Large Finite Fields.
Math. Comp., 24:713–735, 1970.

W.S. Brown.
On Euclid’s Algorithm and the Computation of Polynomial
Greatest Common Divisors.
In Proceedings SYMSAC 1971, pages 195–211, 1971.

James Davenport Methodologies of Symbolic Computation 24 / 31



Bibliography II

W.S. Brown.
On Euclid’s Algorithm and the Computation of Polynomial
Greatest Common Divisors.
J. ACM, 18:478–504, 1971.

B. Buchberger.
Ein Algorithmus zum Auffinden des Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal.
PhD thesis, Math. Inst. University of Innsbruck, 1965.

A.L. Chistov.
Double-exponential lower bound for the degree of any system
of generators of a polynomial prime ideal.
St. Petersburg Math. J., 20:983–1001, 2009.

James Davenport Methodologies of Symbolic Computation 25 / 31



Bibliography III

J.H. Davenport.
On the Risch Differential Equation Problem.
SIAM J. Comp., 15:903–918, 1986.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

A. Dolzmann, A. Seidl, and Th. Sturm.
Efficient Projection Orders for CAD.
In J. Gutierrez, editor, Proceedings ISSAC 2004, pages
111–118, 2004.

James Davenport Methodologies of Symbolic Computation 26 / 31



Bibliography IV

M. England.
Machine Learning for Mathematical Software.
In J.H. Davenport, M. Kauers, G. Labahn, and J. Urban,
editors, Proceedings Mathematical Software — ICMS 2018,
pages 165–174, 2018.

C.B. Haselgrove.
Implementations of the Todd-Coxeter Algorithm on EDSAC-1.
Unpublished, 1953.

D.J. Jeffrey and A.D. Rich.
Reducing Expression Size Using Rule-Based Integration.
In S. Autexier et al., editor, Proceedings CICM 2010, pages
234–246, 2010.

James Davenport Methodologies of Symbolic Computation 27 / 31



Bibliography V

H.G. Kahrimanian.
Analytic differentiation by a digital computer.
Master’s thesis, Temple U Philadelphia, 1953.

J. Liouville.
Mémoire sur l’intégration d’une classe de fonctions
transcendantes.
Crelle’s J., 13:93–118, 1835.

J. McCarthy.
Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I.
Comm. ACM, 3:184–195, 1960.

J. Moses.
Symbolic Integration.
PhD thesis, M.I.T. & Project MAC TR-47, 1967.

James Davenport Methodologies of Symbolic Computation 28 / 31



Bibliography VI

J.C.P. Miller and D.J. Wheeler.
Large Prime Numbers.
Nature, 168:838, 1951.

J. Nolan.
Analytic differentiation on a digital computer.
Master’s thesis, Math. Dept. M.I.T., 1953.

D.A. Plaisted.
Some Polynomial and Integer Divisibility Problems are
NP-Hard.
SIAM J. Comp., 7:458–464, 1978.

R.H. Risch.
The Problem of Integration in Finite Terms.
Trans. A.M.S., 139:167–189, 1969.

James Davenport Methodologies of Symbolic Computation 29 / 31



Bibliography VII

A. Schinzel.
On the greatest common divisor of two univariate polynomials,
I.
In A Panorama of number theory or the view from Baker’s
garden, pages 337–352. C.U.P., 2003.

H.P.F. Swinnerton-Dyer.
Letter to E.H. Berlekamp.
Mentioned in [Ber70], 1970.

J. Slagle.
A Heuristic Program that Solves Symbolic Integration
Problems in Freshman Calculus.
PhD thesis, Harvard U., 1961.

James Davenport Methodologies of Symbolic Computation 30 / 31



Bibliography VIII

J.H. Silverman and J. Tate.
Rational Points on Elliptic Curves.
Springer-Verlag, 1992.

P.S. Wang, M.J.T. Guy, and J.H. Davenport.
p-adic Reconstruction of Rational Numbers.
SIGSAM Bulletin, 16(2):2–3, 1982.

C.K. Yap.
A new lower bound construction for commutative Thue
systems with applications.
J. Symbolic Comp., 12:1–27, 1991.

James Davenport Methodologies of Symbolic Computation 31 / 31


