
Introduction
Developing TTICAD
TTICAD in Practice

Beyond Equational Constraints in
Cylindrical Algebraic Decomposition

James Davenport
University of Bath

Joint work with: Russell Bradford, Matthew England,
Scott McCallum and David Wilson

2013 SIAM Conference on
Applied Algebraic Geometry

Colorado State Universty.
1–4 August 2013

Supported by EPSRC Grant EP/J003247/1.
James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Outline

1 Introduction
Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

2 Developing TTICAD
Motivation
New Projection Operator
Important Technicalities

3 TTICAD in Practice
Implementation in Maple
Experimental Results
Conclusions

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Outline

1 Introduction
Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

2 Developing TTICAD
Motivation
New Projection Operator
Important Technicalities

3 TTICAD in Practice
Implementation in Maple
Experimental Results
Conclusions

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a partition of Rn

into cells arranged cylindrically (meaning their projections by
dropping trailing coordinates are either equal or disjoint) such that
each cell is defined by a semi-algebraic set.

Defined by Collins who gave an algorithm to produce a
sign-invariant CAD for a set of polynomials, meaning each
polynomial had constant sign on each cell.

Originally motivated for use in quantifier elimination. Has also
been applied directly on problems as diverse as algebraic
simplification and robot motion planning, essentially because the
output is very explicit.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a partition of Rn

into cells arranged cylindrically (meaning their projections by
dropping trailing coordinates are either equal or disjoint) such that
each cell is defined by a semi-algebraic set.

Defined by Collins who gave an algorithm to produce a
sign-invariant CAD for a set of polynomials, meaning each
polynomial had constant sign on each cell.

Originally motivated for use in quantifier elimination. Has also
been applied directly on problems as diverse as algebraic
simplification and robot motion planning, essentially because the
output is very explicit.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a partition of Rn

into cells arranged cylindrically (meaning their projections by
dropping trailing coordinates are either equal or disjoint) such that
each cell is defined by a semi-algebraic set.

Defined by Collins who gave an algorithm to produce a
sign-invariant CAD for a set of polynomials, meaning each
polynomial had constant sign on each cell.

Originally motivated for use in quantifier elimination. Has also
been applied directly on problems as diverse as algebraic
simplification and robot motion planning, essentially because the
output is very explicit.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Projection and lifting

Collins algorithm has two main phases:
Projection A projection operator is applied repeatedly to the

polynomials, each time producing a new set of
polynomials in one less variable.

Lifting A CAD of R is produced using the roots of the
univariate polynomials and intervals between.
Over each cell: the bivariate polynomials are
evaluated at a sample point, a stack is built
consisting of sections (the roots) and sectors
(the intervals). Together these are a CAD of R2.

...
Repeated until a CAD of Rn is constructed.

The projection operator is defined so the CAD is sign-invariant.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Projection example

The projection operator
applied to the sphere
identifies the circle. The
projection operator applied
to the circle identifies two
points on the real line.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Projection and lifting

Collins algorithm has two main phases:
Projection A projection operator is applied repeatedly to the

polynomials, each time producing a new set of
polynomials in one less variable.

Lifting A CAD of R is produced using the roots of the
univariate polynomials and intervals between.
Over each cell: the bivariate polynomials are
evaluated at a sample point, a stack is built
consisting of sections (the roots) and sectors
(the intervals). Together these are a CAD of R2.

...
Repeated until a CAD of Rn is constructed.

The projection operator is defined so the CAD is sign-invariant.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Lifting example

A CAD of R2 which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Lifting example

A CAD of R2 which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Lifting example

A CAD of R2 which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Lifting example

A CAD of R2 which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Lifting example

A CAD of R2 which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Lifting example

A CAD of R2 which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

CAD is powerful — too powerful

A CAD to resolve ∃y∀z f (x , y , z) = 0 ∧ g(x , y , z) > 0 will also
resolve
∀y∃z f (x , y , z) = 0 ∧ g(x , y , z) > 0
∀y∀z f (x , y , z) < 0 ∨ g(x , y , z) = 0
∃z f (x , y , z) = 0⇒ g(x , y , z) > 0

and any other formula where the quantified variables occur in the
same order.
As a consequence, CAD is doubly exponential in the number of
variables [DH88, BD07]

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

CAD of a formula

Most applications of CAD relate not just to polynomials, but
formulae containing them. A key approach to improving CAD is to
take the structure of these formulae into account.
PartialCAD The input is a quantified formula rather than the

polynomials within. Stack construction is aborted if
the value of the quantified formula on the whole
stack is already apparent.

CAD with equational constraint The input is a formula and
equation logically implied by the formula. The
projection operator is modified so that the other
polynomials are guaranteed sign invariant only on
those cells of the CAD where the equational
constraint is satisfied.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Truth invariance

A CAD is truth-invariant with respect to a formula if the formula
has constant truth value on each cell. Such a CAD could in theory
be produced using far fewer cells than a CAD sign-invariant for the
polynomials involved.

Brown employed truth invariance to simplify sign-invariant
CADs / PartialCADs.
The use of a reduced projection operator with respect to an
equational constraint produces a CAD which is not
sign-invariant but truth-invariant.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Truth-table invariance

Given a sequence of quantifier free formulae (QFF) we define a
truth table invariant CAD (TTICAD) as a CAD such that each
formulae has constant truth value on each cell.

We give an algorithm to construct TTICADs for sequences of
formulae which each has an equational constraint. This:

will (in general) produce far fewer cells than the sign-invariant
CAD for the polynomials involved;
does not require calculation of the sign-invariant CAD first.

We achieve this by extending the theory of equational constraints.

The algorithm has been implemented in Maple and shows
promising experimental results.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Outline

1 Introduction
Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

2 Developing TTICAD
Motivation
New Projection Operator
Important Technicalities

3 TTICAD in Practice
Implementation in Maple
Experimental Results
Conclusions

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Simple motivating example

Consider the polynomials:

f1 := x2 + y2 − 1 g1 := xy − 1
4

f2 := (x − 4)2 + (y − 1)2 − 1 g2 := (x − 4)(y − 1)− 1
4

We wish to find the regions of R2 where the formula Φ is true:

Φ := (f1 = 0 ∧ g1 < 0) ∨ (f2 = 0 ∧ g2 < 0)

We could solve the problem using a full sign-invariant CAD for
{f1, g1, f2, g2), Qepcad and Maple would both use 317 cells.
This identified 20 points on the real line.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: graph of polynomials

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Simple motivating example

Consider the polynomials:

f1 := x2 + y2 − 1 g1 := xy − 1
4

f2 := (x − 4)2 + (y − 1)2 − 1 g2 := (x − 4)(y − 1)− 1
4

We wish to find the regions of R2 where the formula Φ is true:

Φ := (f1 = 0 ∧ g1 < 0) ∨ (f2 = 0 ∧ g2 < 0)

We could solve the problem using a full sign-invariant CAD for
{f1, g1, f2, g2}. Qepcad and Maple would both use 317 cells.
This identified 20 points on the real line.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: sign-invariant CAD

All curve intersections identified.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Simple motivating example continued

We could instead employ the theory of equational constraints.

Although Φ has no explicit equational constraint the equation
f1f2 = 0 is implied implicitly.

Using the functionality in Qepcad this gives a CAD with 249
cells. This identifies 16 points on the real line.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: CAD with equational constraint

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: CAD with equational constraint

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: CAD with equational constraint

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

New projection operator for TTICAD

Let A = {Ai}ti=1 be a list of irreducible bases for the polynomials in
a sequence of QFFs and E = {Ei}ti=1 non-empty subsets Ei ⊆ Ai .

We define the reduced projection of A with respect to E , as:

PE(A) :=
⋃t

i=1PEi (Ai ) ∪ Res×(E)

where

PEi (Ai ) = P(Ei ) ∪ {resxn (e, a)}e∈Ei , a∈Ai\Ei

P(A) = {disc(a), coeffsxn (a), resxn (a, b)}a,b∈A

Res×(E) = {resxn (e, ê) | ∃i , j : e ∈ Ei , ê ∈ Ej , i < j , e 6= ê}

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Using the operator to build a TTICAD

Full technical details of our algorithm to produce a TTICAD of Rn

are given in [BDE+13], along with a formal verification.
Key points:

Apply the reduced projection once to find projection
polynomials P in n − 1 variables.
Use McCallum’s verified algorithm to build a sign-invariant
CAD of Rn−1 for P.
Perform a final lift with respect to the equational constraints.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: TTICAD

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: TTICAD

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: TTICAD

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).

All three CADs together.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Example: TTICAD

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).

TTICAD only

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Important technicalities

We highlight a couple of important technicalities:
1 We used McCallum’s algorithm to produce the CAD of Rn−1

as this gives a CAD which is order-invariant.
This stronger condition is require to conclude that the output
of our algorithm is a TTICAD.

2 McCallum’s operator and hence his algorithm are only valid
for use when the input is well-oriented, (finite number of
nullification points for all projection polynomials).

3 Hence our new projection operator and algorithm requires a
similar condition:

A is well oriented with respect to E if the equational constraints
have a finite number of nullification points and P is well-oriented.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Motivation
New Projection Operator
Important Technicalities

Important technicalities

We highlight a couple of important technicalities:
1 We used McCallum’s algorithm to produce the CAD of Rn−1

as this gives a CAD which is order-invariant.
This stronger condition is require to conclude that the output
of our algorithm is a TTICAD.

2 McCallum’s operator and hence his algorithm are only valid
for use when the input is well-oriented, (finite number of
nullification points for all projection polynomials).

3 Hence our new projection operator and algorithm requires a
similar condition:

A is well oriented with respect to E if the equational constraints
have a finite number of nullification points and P is well-oriented.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Outline

1 Introduction
Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

2 Developing TTICAD
Motivation
New Projection Operator
Important Technicalities

3 TTICAD in Practice
Implementation in Maple
Experimental Results
Conclusions

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Implementations

There are various existing implementations of CAD including
Qepcad, Maple, Mathematica. But none output
order-invariant CADs.

We built our own implementation on Maple. Developed a
package ProjectionCAD for use in Maple 16 and 17. Available
to download freely from: http://opus.bath.ac.uk/35636/

Can produce CADs sign-invariant (using McCallum or Collins’
operators), order invariant, with equational constraint and
truth-table invariant. Also provides heuristics for formulation.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Experiments I

First compared our implementation of TTICAD with our
implementation of sign-invariant CAD using McCallum’s operator.

TTICAD cell counts and timings usually an order of
magnitude lower.
One example with the same cell count: the equational
constraint occurred as a projection factor of the projection set
for the other constraints.
Two examples where a sign-invariant CAD could be
constructed while a TTICAD cannot: an equational constraint
was nullified.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Experiments I

First compared our implementation of TTICAD with our
implementation of sign-invariant CAD using McCallum’s operator.

TTICAD cell counts and timings usually an order of
magnitude lower.
One example with the same cell count: the equational
constraint occurred as a projection factor of the projection set
for the other constraints.
Two examples where a sign-invariant CAD could be
constructed while a TTICAD cannot: an equational constraint
was nullified.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Experiments II

Next compared our TTICAD implementation with Qepcad-B
(v1.59), Maple (v16) and Mathematica (v9).

Mathematica certainly the quickest although TTICAD often
produces fewer cells. Mathematica produces cylindrical
formulae rather than CADs and uses powerful heuristics.
TTICAD usually produces far fewer cells than Qepcad or
Maple, even when Qepcad produces partial CADs.
Some examples of theoretical failure for TTICAD where others
complete.
Timings vary according to example. TTICAD competing well
with Qepcad and Maple, but usually slower.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Conclusions

TTICAD theory offers great advantages over both
sign-invariant CAD and CAD with equational constraint.
Allows for an unoptimised implementation to compete with
the state of the art.
The timings for our implementation could certainly be
improved using established techniques.
Preferable would probably be the incorporation of TTICAD
into the well-established software.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Conclusions

TTICAD theory offers great advantages over both
sign-invariant CAD and CAD with equational constraint.
Allows for an unoptimised implementation to compete with
the state of the art.
The timings for our implementation could certainly be
improved using established techniques.
Preferable would probably be the incorporation of TTICAD
into the well-established software.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Future Work

Can we widen the input specification to allow some QFFs
without equational constraint?

YES: By treating all constraints in that QFF with the importance
reserved for equational constraints.

Can we use improved projection at more than the first level /
make use of more than one equational constraint from a QFF?
Can we avoid unnecessary lifting if the truth of a clause is
already known?
What can be done when the input is not well-oriented?

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Future Work

Can we widen the input specification to allow some QFFs
without equational constraint?

YES: By treating all constraints in that QFF with the importance
reserved for equational constraints.

Can we use improved projection at more than the first level /
make use of more than one equational constraint from a QFF?
Can we avoid unnecessary lifting if the truth of a clause is
already known?
What can be done when the input is not well-oriented?

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Future Work

Can we widen the input specification to allow some QFFs
without equational constraint?

YES: By treating all constraints in that QFF with the importance
reserved for equational constraints.

Can we use improved projection at more than the first level /
make use of more than one equational constraint from a QFF?
Can we avoid unnecessary lifting if the truth of a clause is
already known?
What can be done when the input is not well-oriented?

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Further Information I

S. McCallum
An improved projection operator for cylindrical algebraic
decomposition.
Quantifier Elimination and Cylindrical Algebraic
Decomposition, pages 242–268, Springer, 1998.

S. McCallum
On Projection in CAD-based Quantifier Elimination with
Equational Constraints.
Proc. ISSAC ’98, pages 145–149, ACM, 1998.

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Cylindrical algebraic decompositions for boolean combinations.
In Proceedings ISSAC 2013, pages 125–132, 2013.

James Davenport CADs for Boolean Combinations



Introduction
Developing TTICAD
TTICAD in Practice

Implementation in Maple
Experimental Results
Conclusions

Further Information II

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.
J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

Contact Details
J.H.Davenport@bath.ac.uk

http://staff.bath.ac.uk/masjhd/

James Davenport CADs for Boolean Combinations


	Introduction
	Cylindrical Algebraic Decomposition
	CAD for Boolean Combinations

	Developing TTICAD
	Motivation
	New Projection Operator
	Important Technicalities

	TTICAD in Practice
	Implementation in Maple
	Experimental Results
	Conclusions


