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Setting

Quite often Satisfiability Modulo Theories (SMT), but also more
general Quantifier Elimination (QE) settings.

Table: My dictionary

SMT Computer Algebra

Real Arithmetic Polynomial Algebra
Note that neither really likes division

SATisfiable A witness to the Variety ̸= ∅
UNSATisfiable Variety = ∅
Quantifier-free All variables under ∃
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Cylindrical Algebraic Decomposition

Problem (Quantifier Elimination)

Given a quantified statement about polynomials fi ∈ Q[x1, . . . , xn]

Φj := Qj+1xj+1 · · ·QnxnΦ(fi ) Qi ∈ {∀, ∃} (1)

produce an equivalent Ψ(gi ) : gi ∈ Q[x1, . . . , xj ]: “equivalent” ≡
“same real solutions”.

Solution [Col75]: produce a Cylindrical Algebraic Decomposition of
Rn such that each fi is sign-invariant on each cell, and the cells are
cylindrical: ∀i , α, β the projections Px1,...,xi (Cα) and Px1,...,xi (Cβ)
are equal or disjoint. Each cell Ci has a sample point si (again
cylindrical) and then the truth of Φ in a cell is the truth at a

sample point, and ∀xr becomes
∧

xr samples

etc.
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Plus/Minus of CAD

+ Solves the problem given, e.g.
∀x∃yf > 0 ∧ (g = 0 ∨ h < 0)

− The same structure solves all other problems with the
same polynomials and order of quantified variables,
e.g. ∀yf = 0 ∨ (g < 0 ∧ h > 0)

− Current algorithms can be misled by spurious
solutions. Consider {x2 + y2 − 2, (x − 6)2 + y2 − 2}.
Because x = 3, y = ±

√
−7 is a common zero,

current algorithms wrongly regard x = 3 as a critical
point (which it would be over C2).
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The original complexity

When Collins [Col75] produced his Cylindrical Algebraic

Decomposition algorithm, the complexity was O
(
d22n+8

m2n+6
)
l3k ,

where n is the number of variables, d the maximum degree of any
input polynomial in any variable, m the number of polynomials
occurring in the input, k the number of occurrences of polynomials
(essentially the length) and l the maximum coefficient length.
From now on omit l , k, and assume classical arithmetic.
Given m polynomials of degree d in xn, we consider PC :

1 O(md) coefficients (degree ≤ d)

2 O(md) discriminants and subdiscriminants (degree ≤ 2d2)

3 O(m2d) resultants and subresultants (degree ≤ 2d2)

Then make square-free etc., and repeat.

(m, d) ⇒ (m2d , 2d2) ⇒ (2m4d4, 8d4) ⇒ (32m8d12, 128d8) ⇒ · · ·

This feed from d to m causes the d22n+O(1)
.
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McCallum’s Notational Idea [McC84]

Problem (Square-free Decomposition)

Generally a good idea, and often necessary. But one polynomial of
degree d might become O(

√
d) polynomials, but on the other

hand the degree might not reduce. Hence (m, d) gets worse.

Say that a set of polynomials is (M,D) if it can be partitioned into
≤ M sets, with the sum of the degrees in each set ≤ D. This is
preserved under square-free, relatively prime, and even complete
factorisation, and behaves well w.r.t. resultants etc.
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Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of res(f , g) at (α1, . . . , αn)
means that f and g cross above there, but the multiplicity of the
crossing is determined by the vanishing of subresultants.
Hence we may need the subresultants to determine the finer points
of the geometry if the resultant vanishes on a set of positive
dimension.
Given (M,D) polynomials in xn, we consider PM :

1 (MD,D) coefficients (equally, (M,D2))

2 (M, 2D2) discriminants

3 (O(M2), 2D2) resultants

(O(M2), 2D2) in all

Ths works for order-invariance, rather than sign-invariance, as long
as no polynomial, original or computed, is identically zero on a set
of positive dimension (“well-oriented”).
Note the curiosity that a stronger result has a faster algorithm.
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Lower bounds

Suppose Φ0(x , y) defines y = f0(x). Let Φi (xi , yi ) :=

∃zi∀xi−1, yi−1

 (yi−1 = yi ∧ xi−1 = zi )
∨

(yi−1 = zi ∧ xi−1 = xi )

 ⇒ Φi−1(xi−1yi−1).

(2)
Then Φi (x , y) defines y = fi (x) = fi−1(fi−1(x)).
Using this “trick”, we build large formulae quickly:

[DH88] d2n/5+O(1)
: (split) complexes,

f0 := (yℜ + iyℑ) = (xℜ + ixℑ)
4 − 1

[BD07] m2n/3+O(1)
: reals, f0 := y =

{
2x (x < 1

2)
2− 2x (x ≥ 1

2)

[BD07] Hence doubly exponential even for factored sparse
polynomials.

Note that we have O(n) alternations of quantifiers: this is
necessary [Bas99, for example]
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But straight SMT is purely ∃
Hence these bounds don’t apply.
However, as long as we are using repeated resultants, the degree
will grow doubly exponentially. There are alternatives to cylindrical
algebraic decomposition.

Virtual Term Substitution [Wei88, Wei97, Koš16]: eliminates
∃yΦ(x1, . . . , xn, y) to Ψ(x1, . . . , xn) provided y occurs at most
linear/quadratic/cubic in Φ.

� The degrees in Ψ may be the square of the degrees in Φ, so
it’s not as applicable as it looks.

* Implemented as a pre-processor to Lazard-CAD in Maple
[Ton21].

QE by Comprehensive Gröbner Systems (CGS) [Wei98] (with
a recent exploration in [FIS15]). Implemented in SYNRAC
(only?), but fast: [Ton21].

� Almost nothing is known about the complexity of CGS.√
Operates block-at-a-time, and is fast in practice [Ton21].
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But isn’t Bézout’s degree bound singly exponential in n?

Indeed so, but it applies to ∃x2 . . . ∃xnf1 = 0 ∧ · · · fn = 0.
[McC99] showed that Quantifier Elimination on

Qj+1xj+1 · · ·Qnxn (f = 0 ∧ Φ(gi )) Qi ∈ {∀,∃} (3)

allowed reducing the double exponent of m by 1.
Extended by [BDE+16] to cases where f = 0 only governed parts
of the formula
Also [McC01] extended to

Qj+1xj+1 · · ·Qnxnf1 = 0 ∧ · · · ∧ fr = 0 ∧ Φ(gi ) (4)

and, under assumptions of primitivity, [EBD15] used this to reduce
the double exponent of m by r .
But the double exponent of d is still there, and this conflicts with
Bézout.
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Iterated Resultants [BM09, ED16]

Consider resy (resx(f1, f2), resx(f1, f3)). This has degree O(d4),
again apparently contradicting Bézout. Consider the roots

O(d3) z : ∃y , x : f1(x , y , z) = f2(x , y , z) = f3(x , y , z)

O(d4) z : ∃y , x1, x2 :
f1(x1, y , z) = f2(x1, y , z)
∧f1(x2, y , z) = f3(x2, y , z)

These last are (generally) not roots of
resy (resx(f1, f2), resx(f2, f3))

Hence a potentially complicated scheme of gcds of
resultants

BB Instead, compute a Gröbner base of the fi
But Aren’t Gröbner bases doubly exponential?

Yes but only in the codimension [MR13], so we require
that the fi really reduce the dimension (and we can’t
extend this to the partial equation constraint setting
of [BDE+16])

And we require that all the polynomials thus appearing
are primitive.
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Complexity of Gröbner Bases etc.

But Aren’t Gröbner bases doubly exponential?

Yes but only in the codimension [MR13]

Resultant If k polynomials determine a variety of co-dimension
k , then the multiresultant has singly exponential
degree.

Issue The problem seems to be embedded components, as
in [MM82, MR13], so maybe we should rule these
out.

Weak asymptotic complexity? As in [AL17], but I have no proof.

However [Chi09] claims “Double-exponential lower bound for
the degree of any system of generators of a
polynomial prime ideal”. I have found nobody who
understands this paper.
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Referee: “primitivity is an artificial constraint”

Indeed, it’s certainly a tedious constraint.
The key construct from lower bounds in (2) was

Li := (yi−1 = yi ∧ xi−1 = zi ) ∨ (yi−1 = zi ∧ xi−1 = xi ) (5)

This can be rewritten as L′i := (yi−1 − yi )(yi−1 − zi ) = 0 ∧ (yi−1 − yi )(xi−1 − xi )︸ ︷︷ ︸
imprimitive

= 0

∧(xi−1 − zi )(yi−1 − zi ) = 0 ∧ (xi−1 − zi )(xi−1 − xi ) = 0

 (6)

Let Qi := ∃zi∀xi−1, yi−1 and consider QiLi ⇒ (Qi−1Li−1 ⇒ Φi−2).
We can rewrite this as

QiQi−1¬L′i ∨ ¬L′−1 ∨ Φi−2, (7)

and its negation is

¬Φi := Q iQ i−1L
′
i ∧ L′−1 ∧ ¬Φi−2, (8)

so the [DH88, BD07] examples are purely conjunctions of
imprimitive equational constraints [DE16].
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The Lazard projection [Laz94, MPP19]

PL is very similar to PM (only needs leading and trailing
coefficients).
What is guaranteed is Lazard-invariance, not order-invariance.
Like order-invariance, Lazard-invariance is stronger than
sign-invariance.
The lifting process is different: if a polynomial is nullified, we divide
its evaluation on the nullifying variety through by the nullifying
multiple (and therefore locally lift w.r.t. a different polynomial).
Does any of this equational constraint work generalise to the
Lazard projection? Apparently so [Nai21].
There’s a further improvement to the Lazard projection in [BM20],
which if anything makes the equational constraint work more
efficient [DNSU23].
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Cylindrical Algebraic Coverings I [ADEK21]

For purely existential problems ∃xk , . . . , xnΦ.
σi ,j ∈ {=, <,≤, >,≥}, but for exposition, assume all
σi ,j ∈ {<,>}.

1 Φ = (p1,1σ1,10 ∧ · · · ) ∨ (p2,1σ2,10 ∧ · · · ) ∨ · · ·
2 Commute ∃ and ∨ and treat each disjunct Φi separately
So we don’t care where p1,1 and p2,1 meet. Doesn’t change

asymptotics, but may well be useful in practice.
3 Choose a sample point (s1, . . . , s

(1)
n ).

4 If this satisfies Φi return SAT (and witness)

5 Otherwise ∃j : pi ,j(s1, . . . , s
(1)
n ) ̸σi ,j0. Remember j with

(s1, . . . , s
(1)
n ).

6 Compute largest interval In,1 = (l , u) such that
∀xn ∈ (l , u)pi ,j(s1, . . . , xn) ̸σi ,j0.

7 If In,1 ̸= R choose s
(2)
n /∈ In,1. If (s1, . . . , s

(2)
n ) satisfies Φi

return SAT (and witness).
8 Repeat steps 5–7 until (s1, . . . , sn−1,R) is covered.
9 Some intervals might be redundant, so prune
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Cylindrical Algebraic Coverings II [ADEK21]

10 Each of In,i defines an oval in (s1, . . . , sn−2, x , y) space which
cover (s1, . . . , sn−1,R).

11 Compute largest interval In−1,1 = (l , u) such that
∀xn−1 ∈ (l , u) the In,i cover (s1, . . . , sn−2, xn−1,R).

12 If In−1,1 ̸= R choose a different value of sn−1, /∈ In−1,1 and
repeat steps 5–9 for this value of sn−1.

13 Repeat steps 4–12 until (s1, . . . , sn−2,R) is covered.

14 Repeat, decreasing the dimension, until we’re covered the
whole of the x1-axis (or we get SAT).

Termination isn’t entirely obvious, but each cell we compute
contains at least one cell (the cell its sample point is in) from a
CAD for the same polynomials, and the CAD itself is finite.
But the intervals Ik,i have endpoints which are roots of iterated
resultants, so degree dependence is still doubly exponential.
Open: can we improve with multi-resultant theory?
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A note on division [Kov23]

Obvious answer to division: If A contains a denominator D, replace
by D ̸= 0 ∧ A′, where A′ is denominator-cleared version of A.
Let F := ∀x(0 ≤ 1/x2).
This converts to F1 := ∀x(x2 ̸= 0 ∧ 0 ≤ 1), which is false.
But ¬F = ∃x(0 > 1/x2)
This converts to ∃x(x2 ̸= 0 ∧ 0 > 1), which is also false.
In JHD’s view, we cannot simply “guard away” the problem that
1/x2 is genuinely undefined at x = 0, and the guarding process is
inserting x2 ̸= 0 ∧ · · · in both F and ¬F .
In this case we should probably have

F := ∀x
(
0 ≤

{
1/x2 x ̸= 0
∞ x = 0

)
An alternative is to say that we didn’t mean to consider the
exceptional case at all, hence replacing A by D = 0 ∨ A′ under ∀.
This “solution” doesn’t scale well to mixed quantifiers, though.
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Conclusions

1 The true complexity of quantifier elimination largely comes
from the logical structure, especially alternation of quantifiers.

2 Imprimitive polynomials implicitly encode an ∨, hence logical
structure.

3 The definition of cylindricity means that the results must be
applicable to all quantifier structures (with the variables in the
same order).

4 However, while the worst case is very bad, there is a lot that
can be done.

5 Standard “Satisfiability Modulo Theories” will always produce
conjunctions of elementary formulae, so this special case is
worth optimising. Should be particularly suited to QE by CGS
[Wei98] or CAC [ADEK21].
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E. Ábrahám, J.H. Davenport, M. England, and G. Kremer.
Deciding the Consistency of Non-Linear Real Arithmetic
Constraints with a Conflict Driven Search Using Cylindrical
Algebraic Coverings.
Journal of Logical and Algebraic Methods in Programming,
119, 2021.
doi:10.1016/j.jlamp.2020.100633.

D. Amelunxen and M. Lotz.
Average-case complexity without the black swans.
J. Complexity, 41:82–101, 2017.

S. Basu.
New results on quantifier elimination over real closed fields
and applications to constraint databases.
J. ACM, 46:537–555, 1999.

James Davenport masjhd@bath.ac.uk

SMT and Quantifier Elimination: the Nonlinear Real Arithmetic case
19 / 30

https://doi.org/10.1016/j.jlamp.2020.100633


Bibliography II

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.
doi:10.1145/1277548.1277557.

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Truth table invariant cylindrical algebraic decomposition.
J. Symbolic Comp., 76:1–35, 2016.
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