Future integration of Symbolic Computation and

Satisfiability Checking

James Davenport!
University of Bath
J.H.Davenport@bath.ac.uk

3 June 2016

!Thanks to Matthew England (Coventry) and many others, EPSRC
EP/J003247/1, EU SCQ[Ntht712689

Davenport Future integration of Symbolic Computation and Satisfiability C

Satisfiability Checking — SAT

Given a formula P in propositional logic, normally in Conjunctive
Normal Form (CNF)

(/171\//172\/'--)/\(/271\//2’2\/-“)/\--'

where the /; j are either py or —py for a set of propositional
variables {px}, either find a satisfying assignment of true/false to
the py, or state (correctly!) that no such exists.
Theory 3-SAT is NP-complete
Practice “real-world” examples with millions of clauses are
solved in competitions, and it's hard to produce hard
examples [Spel5]
Eclipse uses a SAT solver to resolve package dependencies
BMW etc. use SAT solvers to configure cars for customers
[KS00]: >2M (unknowing) SAT users/year

Many tricks especially lemma generation

Davenport Future integration of Symbolic Computation and Satisfiability C|

Satisfiability Modulo Theories — SMT

Instead of the {px} being free Booleans, they are elements of some
underlying theory (for us, polynomials over R with =, > etc.) with
underlying variables x;, and it is the x; whose values we seek.

So p1 A po is solvable for free Boolean py, but not when
pr=x<0and pp =x> 1.

When p; = x > 0 and p» = x < 1 it is solvable with, say, x = 1/2.

Davenport Future integration of Symbolic Computation and Satisfiability C|

Showing satisfiability of P is answering (positively)

Ix1, ..., xpP(x1,...,%n), and unsatisfiability is answering it
negatively, or answering Vxi, ..., xp,=P(x1,...,X,) positively.

In many verification applications, P is “a dangerous state”, and we
want to answer Vxi, ..., x,7P(x1,...,x,) positively, i.e. “the
system cannot enter a dangerous state” preferably with a proof
One technique [JdM12] essentially drives the CAD algorithm
backwards: looking for a counter-example
Ixy...Vy1...P(x1,...,y1,...) is considered in

[CART15, RDK™15], but seems to require more technology

This is “there exists a solution such that the system cannot enter a
dangerous state” — “we haven't painted ourselves into a corner”

Davenport Future integration of Symbolic Computation and Satisfiability C|

Why do modern SAT-solvers do so well?

A lot of attention to constant(ish) factors.
Even more attention to O(n) factors (watched literals)

A great deal of accumulated heuristics

Keep reformulating the problem (re-ordering the p;) [HH10],
e.g. every 100, 100,200,100,100,200,400,. . . [LSZ93]
deductions we restart

But keeping track of “useful” (i.e. short) lemmas learned

(which potentially invalidates the argument for [LSZ93])

Davenport Future integration of Symbolic Computation and Satisfiability C|

In principle, there's much more scope for lemma-learning in
(polynomial) SMT than straight SAT: for example
x?>4+y?<1= (x> —1)A(x <1), but the only use currently
made of this sort of reasoning in mainstream CAD is
(f =0A g =0)=res,,(f,g) =0 (extensions in [DE16])

Q what is a “useful” lemma in this context?

Q s there an equivalent of “short”?

Q Research shows utility (75+% of the time) of
(f=0Ag>0)= (g > 0) where g is the Grobner
reduction of g by f

Davenport Future integration of Symbolic Computation and Satisfiability C|

CAD is very dependent on the order of the xx, with significant
research, and effort at runtime, going into choosing the “best”
order [DSS04, HEW*14]

On the other hard, SAT solvers frequently [HH10] reorder the p;,
received wisdom being that there is no a priori best order

Q What is the relationship between the order of the p;
and the x,7?

Davenport Future integration of Symbolic Computation and Satisfiability C|

Davenport Future integration of Symbolic Computation and Satisfiability C|

Bibliography

[§ C.-H. Cheng, L. Astefanoaei, H. Ruess, S. Ben Rayana, and
S. Bensalem.
Timed Orchestration for Component-based Systems.
https://arxiv.org/abs/1504.05513, 2015.

[§ J.H. Davenport and M. England.
Need Polynomial Systems be Doubly-exponential?
https://arxiv.org/abs/1605.02912, 2016.

[A. Dolzmann, A. Seidl, and Th. Sturm.
Efficient Projection Orders for CAD.
In J. Gutierrez, editor, Proceedings ISSAC 2004, pages
111-118, 2004.

Davenport Future integration of Symbolic Computation and Satisfiability C|

https://arxiv.org/abs/1504.05513
https://arxiv.org/abs/1605.02912

Bibliography

H Z Huang, M. England, D. Wilson, J.H. Davenport, L.C.
Paulson, and J. Bridge.
Applying machine learning to the problem of choosing a
heuristic to select the variable ordering for cylindrical algebraic
decomposition.
In S.M.Watt et al., editor, Proceedings CICM 2014, pages
92-107, 2014.

3 S. Haim and M. Heule.
Towards Ultra Rapid Restarts.
Technical Report Universities of New South Wales and Deflt,
2010.

[D. Jovanovi¢ and L. de Moura.
Solving Non-Linear Arithmetic.
In Proceedings IJCAR 2012, pages 339-354, 2012.

Davenport Future integration of Symbolic Computation and Satisfiability C|

Bibliography

[{ W. Kiichlin and C. Sinz.
Proving Consistency Assertions for Automotive Product Data

Management.
J. Automated Reasoning, 24:145-163, 2000.

& M. Luby, A. Sinclair, and D. Zuckerman.
Optimal Speedup of Las Vegas algorithms.
Inf. Proc. Letters, 47:173—-180, 1993.

@ A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. Barrett.
On Counterexample Guided Quantifier Instantiation for
Synthesis in CVC4.
http://arxiv.org/pdf/1502.04464v3.pdf, 2015,

Davenport Future integration of Symbolic Computation and Satisfiability C|

http://arxiv.org/pdf/1502.04464v3.pdf

Bibliography

[@ 1. Spence.
Weakening Cardinality Constraints Creates Harder Satisfiability

Benchmarks.
J. Exp. Algorithmics Article 1.4, 20, 2015.

Davenport Future integration of Symbolic Computation and Satisfiability C|

