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Satisfiability Checking — SAT

Given a formula P in propositional logic, normally in Conjunctive
Normal Form (CNF)

(l1,1 ∨ l1,2 ∨ · · · ) ∧ (l2,1 ∨ l2,2 ∨ · · · ) ∧ · · ·

where the li ,j are either pk or ¬pk for a set of propositional
variables {pk}, either find a satisfying assignment of true/false to
the pk , or state (correctly!) that no such exists.

Theory 3-SAT is NP-complete

Practice “real-world” examples with millions of clauses are
solved in competitions, and it’s hard to produce hard
examples [Spe15]

Eclipse uses a SAT solver to resolve package dependencies

BMW etc. use SAT solvers to configure cars for customers
[KS00]: >2M (unknowing) SAT users/year

Many tricks especially lemma generation
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Satisfiability Modulo Theories — SMT

Instead of the {pk} being free Booleans, they are elements of some
underlying theory (for us, polynomials over R with =, > etc.) with
underlying variables xi , and it is the xi whose values we seek.
So p1 ∧ p2 is solvable for free Boolean pk , but not when
p1 ≡ x < 0 and p2 ≡ x > 1.
When p1 ≡ x > 0 and p2 ≡ x < 1 it is solvable with, say, x = 1/2.
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Quantifiers?

Showing satisfiability of P is answering (positively)
∃x1, . . . , xnP(x1, . . . , xn), and unsatisfiability is answering it
negatively, or answering ∀x1, . . . , xn¬P(x1, . . . , xn) positively.
In many verification applications, P is “a dangerous state”, and we
want to answer ∀x1, . . . , xn¬P(x1, . . . , xn) positively, i.e. “the
system cannot enter a dangerous state” preferably with a proof
One technique [JdM12] essentially drives the CAD algorithm
backwards: looking for a counter-example
∃x1 . . . ∀y1 . . .P(x1, . . . , y1, . . .) is considered in
[CAR+15, RDK+15], but seems to require more technology
This is “there exists a solution such that the system cannot enter a
dangerous state” — “we haven’t painted ourselves into a corner”
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Why do modern SAT-solvers do so well?

A lot of attention to constant(ish) factors.

Even more attention to O(n) factors (watched literals)

A great deal of accumulated heuristics

Keep reformulating the problem (re-ordering the pi ) [HH10],
e.g. every 100, 100,200,100,100,200,400,. . . [LSZ93]
deductions we restart

But keeping track of “useful” (i.e. short) lemmas learned

(which potentially invalidates the argument for [LSZ93])
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Lemmas?

In principle, there’s much more scope for lemma-learning in
(polynomial) SMT than straight SAT: for example
x2 + y2 ≤ 1⇒ (x ≥ −1) ∧ (x ≤ 1), but the only use currently
made of this sort of reasoning in mainstream CAD is
(f = 0 ∧ g = 0)⇒ resxn(f , g) = 0 (extensions in [DE16])

Q what is a “useful” lemma in this context?

Q Is there an equivalent of “short”?

Q Research shows utility (75+% of the time) of
(f = 0 ∧ g > 0)⇒ (ĝ > 0) where ĝ is the Gröbner
reduction of g by f
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Orderings

CAD is very dependent on the order of the xk , with significant
research, and effort at runtime, going into choosing the “best”
order [DSS04, HEW+14]
On the other hard, SAT solvers frequently [HH10] reorder the pi ,
received wisdom being that there is no a priori best order

Q What is the relationship between the order of the pi
and the xk?
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Questions?
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