
Future integration of Symbolic Computation and
Satisfiability Checking

James Davenport1

University of Bath
J.H.Davenport@bath.ac.uk

3 June 2016

1Thanks to Matthew England (Coventry) and many others, EPSRC
EP/J003247/1, EU SC2 project 712689

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Satisfiability Checking — SAT

Given a formula P in propositional logic, normally in Conjunctive
Normal Form (CNF)

(l1,1 ∨ l1,2 ∨ · · · ) ∧ (l2,1 ∨ l2,2 ∨ · · · ) ∧ · · ·

where the li ,j are either pk or ¬pk for a set of propositional
variables {pk}, either find a satisfying assignment of true/false to
the pk , or state (correctly!) that no such exists.

Theory 3-SAT is NP-complete

Practice “real-world” examples with millions of clauses are
solved in competitions, and it’s hard to produce hard
examples [Spe15]

Eclipse uses a SAT solver to resolve package dependencies

BMW etc. use SAT solvers to configure cars for customers
[KS00]: >2M (unknowing) SAT users/year

Many tricks especially lemma generation

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Satisfiability Modulo Theories — SMT

Instead of the {pk} being free Booleans, they are elements of some
underlying theory (for us, polynomials over R with =, > etc.) with
underlying variables xi , and it is the xi whose values we seek.
So p1 ∧ p2 is solvable for free Boolean pk , but not when
p1 ≡ x < 0 and p2 ≡ x > 1.
When p1 ≡ x > 0 and p2 ≡ x < 1 it is solvable with, say, x = 1/2.

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Quantifiers?

Showing satisfiability of P is answering (positively)
∃x1, . . . , xnP(x1, . . . , xn), and unsatisfiability is answering it
negatively, or answering ∀x1, . . . , xn¬P(x1, . . . , xn) positively.
In many verification applications, P is “a dangerous state”, and we
want to answer ∀x1, . . . , xn¬P(x1, . . . , xn) positively, i.e. “the
system cannot enter a dangerous state” preferably with a proof
One technique [JdM12] essentially drives the CAD algorithm
backwards: looking for a counter-example
∃x1 . . . ∀y1 . . .P(x1, . . . , y1, . . .) is considered in
[CAR+15, RDK+15], but seems to require more technology
This is “there exists a solution such that the system cannot enter a
dangerous state” — “we haven’t painted ourselves into a corner”

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Why do modern SAT-solvers do so well?

A lot of attention to constant(ish) factors.

Even more attention to O(n) factors (watched literals)

A great deal of accumulated heuristics

Keep reformulating the problem (re-ordering the pi ) [HH10],
e.g. every 100, 100,200,100,100,200,400,. . . [LSZ93]
deductions we restart

But keeping track of “useful” (i.e. short) lemmas learned

(which potentially invalidates the argument for [LSZ93])

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Lemmas?

In principle, there’s much more scope for lemma-learning in
(polynomial) SMT than straight SAT: for example
x2 + y2 ≤ 1⇒ (x ≥ −1) ∧ (x ≤ 1), but the only use currently
made of this sort of reasoning in mainstream CAD is
(f = 0 ∧ g = 0)⇒ resxn(f , g) = 0 (extensions in [DE16])

Q what is a “useful” lemma in this context?

Q Is there an equivalent of “short”?

Q Research shows utility (75+% of the time) of
(f = 0 ∧ g > 0)⇒ (ĝ > 0) where ĝ is the Gröbner
reduction of g by f

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Orderings

CAD is very dependent on the order of the xk , with significant
research, and effort at runtime, going into choosing the “best”
order [DSS04, HEW+14]
On the other hard, SAT solvers frequently [HH10] reorder the pi ,
received wisdom being that there is no a priori best order

Q What is the relationship between the order of the pi
and the xk?

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Questions?

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Bibliography
I

C.-H. Cheng, L. Astefanoaei, H. Ruess, S. Ben Rayana, and
S. Bensalem.
Timed Orchestration for Component-based Systems.
https://arxiv.org/abs/1504.05513, 2015.

J.H. Davenport and M. England.
Need Polynomial Systems be Doubly-exponential?
https://arxiv.org/abs/1605.02912, 2016.

A. Dolzmann, A. Seidl, and Th. Sturm.
Efficient Projection Orders for CAD.
In J. Gutierrez, editor, Proceedings ISSAC 2004, pages
111–118, 2004.

Davenport Future integration of Symbolic Computation and Satisfiability Checking

https://arxiv.org/abs/1504.05513
https://arxiv.org/abs/1605.02912


Bibliography
II

Z. Huang, M. England, D. Wilson, J.H. Davenport, L.C.
Paulson, and J. Bridge.
Applying machine learning to the problem of choosing a
heuristic to select the variable ordering for cylindrical algebraic
decomposition.
In S.M.Watt et al., editor, Proceedings CICM 2014, pages
92–107, 2014.

S. Haim and M. Heule.
Towards Ultra Rapid Restarts.
Technical Report Universities of New South Wales and Deflt,
2010.

D. Jovanović and L. de Moura.
Solving Non-Linear Arithmetic.
In Proceedings IJCAR 2012, pages 339–354, 2012.

Davenport Future integration of Symbolic Computation and Satisfiability Checking



Bibliography
III

W. Küchlin and C. Sinz.
Proving Consistency Assertions for Automotive Product Data
Management.
J. Automated Reasoning, 24:145–163, 2000.

M. Luby, A. Sinclair, and D. Zuckerman.
Optimal Speedup of Las Vegas algorithms.
Inf. Proc. Letters, 47:173–180, 1993.

A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. Barrett.
On Counterexample Guided Quantifier Instantiation for
Synthesis in CVC4.
http://arxiv.org/pdf/1502.04464v3.pdf, 2015.

Davenport Future integration of Symbolic Computation and Satisfiability Checking

http://arxiv.org/pdf/1502.04464v3.pdf


Bibliography
IV

I. Spence.
Weakening Cardinality Constraints Creates Harder Satisfiability
Benchmarks.
J. Exp. Algorithmics Article 1.4, 20, 2015.

Davenport Future integration of Symbolic Computation and Satisfiability Checking


