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Satisfiability Checking — SAT

Given a formula P in propositional logic, normally in Conjunctive
Normal Form (CNF)

(/171\//172\/'--)/\(/271\//2’2\/-“)/\--'

where the /; j are either py or —py for a set of propositional
variables {px}, either find a satisfying assignment of true/false to
the py, or state (correctly!) that no such exists.
Theory 3-SAT is NP-complete
Practice “real-world” examples with millions of clauses are
solved in competitions, and it's hard to produce hard
examples [Spel5]
Eclipse uses a SAT solver to resolve package dependencies
BMW etc. use SAT solvers to configure cars for customers
[KS00]: >2M (unknowing) SAT users/year

Many tricks especially lemma generation
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Satisfiability Modulo Theories — SMT

Instead of the {px} being free Booleans, they are elements of some
underlying theory (for us, polynomials over R with =, > etc.) with
underlying variables x;, and it is the x; whose values we seek.

So p1 A po is solvable for free Boolean py, but not when
pr=x<0and pp =x> 1.

When p; = x > 0 and p» = x < 1 it is solvable with, say, x = 1/2.
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Showing satisfiability of P is answering (positively)

Ix1, ..., xpP(x1,...,%n), and unsatisfiability is answering it
negatively, or answering Vxi, ..., xp,=P(x1,...,X,) positively.

In many verification applications, P is “a dangerous state”, and we
want to answer Vxi, ..., x,7P(x1,...,x,) positively, i.e. “the
system cannot enter a dangerous state” preferably with a proof
One technique [JdM12] essentially drives the CAD algorithm
backwards: looking for a counter-example
Ixy...Vy1...P(x1,...,y1,...) is considered in

[CART15, RDK™15], but seems to require more technology

This is “there exists a solution such that the system cannot enter a
dangerous state” — “we haven't painted ourselves into a corner”
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Why do modern SAT-solvers do so well?

A lot of attention to constant(ish) factors.
Even more attention to O(n) factors (watched literals)

A great deal of accumulated heuristics

Keep reformulating the problem (re-ordering the p;) [HH10],
e.g. every 100, 100,200,100,100,200,400,. . . [LSZ93]
deductions we restart

But keeping track of “useful” (i.e. short) lemmas learned

(which potentially invalidates the argument for [LSZ93])
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In principle, there's much more scope for lemma-learning in
(polynomial) SMT than straight SAT: for example
x?>4+y?<1= (x> —1)A(x <1), but the only use currently
made of this sort of reasoning in mainstream CAD is
(f =0A g =0)=res,,(f,g) =0 (extensions in [DE16])

Q what is a “useful” lemma in this context?

Q s there an equivalent of “short”?

Q Research shows utility (75+% of the time) of
(f=0Ag>0)= (g > 0) where g is the Grobner
reduction of g by f
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CAD is very dependent on the order of the xx, with significant
research, and effort at runtime, going into choosing the “best”
order [DSS04, HEW*14]

On the other hard, SAT solvers frequently [HH10] reorder the p;,
received wisdom being that there is no a priori best order

Q What is the relationship between the order of the p;
and the x,7?
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