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Theoretical versus Practical Complexity

Notation n variables, m polynomials of degree d (in each
variable separately; d total degree: d ≤ d ≤ nd),
coefficients length l

Theoretical doubly exponential, whether via Gröbner bases
[MM82, Yap91, lower], [Dub90, upper] or Cylindrical
Algebraic Decomposition [DH88, BD07]

But this is doubly exponential in n, polynomial in
everything else.

In practice we see very bad dependence on m, d , l , and n is often
fixed

Anyway The Bézout bound says there are dn solutions to such
polynomials: singly exponential
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Gröbner bases: [MR13] versus [MM82]

Let r be the dimension of the variety of solutions. Focus on the
degrees of the polynomials (more intrinsic than actual times)

[MR13] modified both lower and upper bounds to show dn
Θ(1)2Θ(r)

lower Essentially, use the r -variable [Yap91] ideal

which encodes an EXPSPACE-complete rewriting problem
into a system of binomials

note that these ideals are definitely not radical
(square-free)

upper A very significant improvement to [Dub90]
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What we would like to do

Show radical ideal problems are only singly-exponential in n

This ought to follow from [Kol88]

Show non-radical ideals are rare (non-square-free
polynomials occur with density 0)

However there seems to be no theory of distribution of ideals

Deduce weak worst-case complexity (i.e. apart from an
exponentially-rare subset: [AL15]) of Gröbner bases
is singly exponential
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A technical complication, and solution

Making sets of polynomials square-free, or even irreducible,

is computationally nearly always advantageous

is sometimes required by the theory

but might leave the degree alone, or might replace one polynomial
by O(

√
d) polynomials

hard to control from the point of view of complexity theory.

Solution [McC84] Say that a set of polynomials has the
(M,D) property if it can be partitioned into M sets,
each with combined degree at most D (in each
variable)

This is preserved by taking square-free decompositions etc.
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Cylindrical Algebraic Decomposition for polynomials

Assume All CADs we encounter are well-oriented [McC84], i.e.
no relevant polynomial vanishes identically on a cell

However there is no theory of distribution of CADs

And Bath has a family of examples which aren’t
well-oriented

And rescuing from failure is doable, but not well-studied

Then if An is the polynomials in n variables, with primitive
irreducible basis Bn, the projection is

An−1 := cont(An) ∪ [P(Bn) := coeff(Bn) ∪ disc(Bn) ∪ res(Bn)]

If An has (M,D) then An−1 has
(
(M + 1)2/2, 2D2

)
Hence doubly-exponential growth in n
The induction (on n) hypothesis is order-invariant decompositions
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Cylindrical Algebraic Decomposition for propositions (1)

Suppose we are tryimg to understand (e.g. quantifier elimination)
a proposition Φ (or set of propositions), and f (x) = 0 is a
consequence of Φ (either explicit or implicit), an equational
constraint, and f involves xn and is primitive
Then [Col98] we are only interested in Rn|f (x) = 0, not Rn

So [McC99] let F be an irreducible basis for f , and use
PF (B) := P(F ) ∪ {res(f , b)|f ∈ F , b ∈ B \ F}
This has (2M, 2D2) rather than (O(M2), 2D2), but only produces
a sign-invariant decomposition
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Cylindrical Algebraic Decomposition for propositions (2)

Generalised to P∗
F (B) := PF (B) ∪ disc(B \ F ) [McC01], which

produces an order-invariant decomposition, and has (3M, 2D2)
If f (x) = 0 and g(x) = 0 are both equational constraints, then
resxn(f , g) is also an equational constraint

Suppose we have s equational constraints

And (after resultants) we have a constraint in each of the
last s variables

And these constraints are all primitive

Then [EBD15] we get O
(

ms2n−s
d2n
)

behaviour
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Recent Developments

CASC 2016 Under the same assumptions, O
(

ms2n−s
d s2n−s

)
behaviour

using Gröbner bases rather than resultants for the
elimination, but multivariate resultants [BM09] for
the bounds

ICMS 2016 The primitivity restriction is inherent: we can write
[DH88] in this format, with n − 1 non-primitive
equational constraints

[DH88, BD07] Are really about the combinatorial complexity of

Let Sk(xk , yk) be the statement xk = f (yk) and then define
recursively Sk−1(xk−1, yk−1) := xk−1 = f (f (yk−1)) :=

∃zk∀xk∀yk︸ ︷︷ ︸
Qk

((yk−1 = yk ∧ xk = zk) ∨ (yk = zk ∧ xk−1 = xk))︸ ︷︷ ︸
Lk

⇒ Sk(xk , yk).
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Questions?
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