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History of Quantifier Elimination

In 1930, Tarski discovered [Tar51] that the (semi-)algebraic
theory of Rn admitted quantifier elimination

∃xk+1∀xk+2 . . .Φ(x1, . . . , xn) ≡ Ψ(x1, . . . , xk)

“Semi” = “allowing >, ≤ and 6= as well as =”

Needed as ∃y : x = y2 ⇔ x ≥ 0

The complexity of this was indescribable

In the sense of not being any tower of exponentials!

In 1973, Collins [Col75] discovered a much better way:

Complexity (m polynomials, degree d , n variables, coefficient
length l)

(2d)2
2n+8

m2n+6

l3 (1)

Construct a cylindrical algebraic decomposition of Rn, sign
invariant for every polynomial

Then read off the answer
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What is a CAD?

A Cylindrical Algebraic Decomposition (CAD) is a mathematical
object. Defined by Collins who also gave the first algorithm to
compute one. A CAD is:

a decomposition meaning a partition of Rn into connected
subsets called cells;

(semi-)algebraic meaning that each cell can be defined by a
sequence of polynomial equations and inequations;

cylindrical meaning the cells are arranged in a useful manner
— their projections are either equal or disjoint.

In addition, there is (usually) a sample point in each cell, and an
index locating it in the decomposition
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“Read off the answer”

Each cell is sign invariant, so the the truth of a formula
throughout the cell is the truth at the sample point.

∀xF (x) ⇔ “F (x) is true at all sample points”

∃xF (x) ⇔ “F (x) is true at some sample point”

∀x∃yF (x , y) ⇔ “take a CAD of R2, cylindrical for y projected
onto x-space, then check

∀ sample x ∃ sample (x , y) : F (x , y) is true”: finite check

NB The order of the quantifiers defines the order of projection

So all we need is a CAD!

Davenport More than one equation constraint in CAD



The basic idea for CAD [Col75]
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So how do we project?
(Lifting has in fact been relatively straight-forward)

Given polynomials Pn = {pi} in x1, . . . , xn, what should Pn−1 be?

Näıve (Doesn’t work!) Every discxn(pi ), every resxn(pi , pj)

i.e. where the polynomials fold, or cross: misses lots of
“special” cases

[Col75] First enlarge Pn with all its reducta, then näıve plus
the coefficients of Pn (with respect to xn) the
principal subresultant coefficients from the discxn and
resxn calculations

[Hon90] a tidied version of [Col75].

[McC88] Let Bn be a squarefree basis for the primitive parts of
Pn. Then Pn−1 is the contents of Pn, the coefficients
of Bn and every discxn(bi ), resxn(bi , bj) from Bn

[Bro01] Näıve plus leading coefficients (not squarefree!)
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Are these projections correct?

[Col75] Yes, and it’s relatively straightforward to prove that,
over a cell in R

n−1 sign-invariant for Pn−1, the
polynomials of Pn do not cross, and define cells
sign-invariant for the polynomials of Pn

[McC88] 52 pages (based on [Zar75]) prove the equivalent
statement, but for order-invariance, not
sign-invariance, provided the polynomials are
well-oriented, a test that has to be applied during
lifting.

But if they’re not known to be well-oriented?

[McC88] suggests adding all partial derivatives

In practice hope for well-oriented, and if it fails use Hong’s
projection.

[Bro01] Needs well-orientedness and additional checks
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What about the complexity?

n variables, m polynomials, d degree (in each variable), coefficient
length l

If the McCallum projection is well-oriented, the complexity is

(2d)n2
n+7

︸ ︷︷ ︸

algebraic

× m2n+4

︸ ︷︷ ︸

combinatorial

× l3
︸︷︷︸

arithmetic

(2)

versus the original
(2d)2

2n+8

m2n+6

l3 (1)

and in practice the gains in running time can be factors of a
thousand, or, more often, the difference between feasibility and
infeasibility
“Randomly”, well-orientedness ought to occur with probability 1,
but we have a family of “real-world” examples where it often fails
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Massive Overkill?

From this CAD, you can “read off” the truth of every

Qk+1xk+1 . . .QnxnΦ(x1, . . . , xn)

for any k , any Qi ∈ {∃,∀} and any Boolean Φ.
[Col98] observed that we can do better if we restrict Φ to be
f (x1, . . . , xn) = 0∧Φ′, because we don’t care about Φ′ when f 6= 0
Such a single “equational constraint” was implemented by [McC99]

[McC88] Let Bn be a squarefree basis for the primitive parts of
Pn. Then Pn−1 is the contents of Pn, the coefficients
of Bn and every discxn(bi ), resxn(bi , bj) from Bn

[McC99] Suppose F ⊂ Bn. Then PF
n−1 is the contents of Pn,

Pn(F), and every resxn(fi , bj ) from F × (Bn \ F)

Then let F be the square-free basis of f , use PF
n and then Pi for

i < n, to get an order-invariant CAD of Rn−1 and then a
sign-invariant CAD of Rn: needs new theorem!
Essentially reduces n by 1 in combinatorial complexity
But order/sign means this doesn’t compose!
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Multiple Equational Constraints [McC01, EBD15]

[McC01] Let Bn be a squarefree basis for the primitive parts of
Pn, and F ⊂ Bn. Then PF

∗

n−1 is the contents of Pn,
PF
n (B), and every disc xn(bi ) from Bn \ F

Then [McC01] use of PF∗

i (B) lifts a well-oriented order-invariant
CAD to an order-invariant CAD, so does compose
f = 0 ∧ g = 0 ∧Φ′ is equivalent to f = 0 ∧ resxn(f , g) = 0 ∧ Φ′

Hence use PF
n for the first equational constraint, PF∗

n for
subsequent equational constraints, or their resultants, until we run
out, then use Pi , always assuming well-orientedness
A snag is that, while PF

n is much smaller than Pn, P
F

∗

n is not (at
the level of O(. . .) — it is still usefully smaller)
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More ideas 1: originally [BDE+13]

The key principles of Projection/Lifting CAD

1 That the projection polynomials are a fixed set

2 That the invariance structure of the final CAD can be
expressed in terms of sign-invariance of polynomials

Let’s abandon these: more precisely

for xi where there is a primitive equational constraint
f (xi , . . .) = 0, lift only with respect to this polynomial

But doesn’t this lose information about the signs of the other
polynomials etc.? Yes, but not when f = 0
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More ideas 2: [EBD15]

If we had a primitive equational constraint g = 0 at the
previous level, then only the sections (even index at that level)
have g = 0, while the sectors between them have g 6= 0.
Hence the sectors Si can be lifted trivially to Si × R.

But doesn’t this lose information about the signs of the other
polynomials etc.?
Yes, but in terms of the validity of g = 0 ∧ . . . we don’t care
The combined effect of these is that the n in the double exponent
of the combinatorial complexity is effectively reduced by the
number of equational constraints
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Example (z > y > x > u > v)

x − y + z2 = 0 ∧ z2 − u2 + v2 − 1 = 0 ∧ x + y + z2 = 0∧
z2 + u2 − v2 − 1 = 0 ∧ x2 − 1 ≥ 0 ∧ z ≥ 0

60 different choices of equational constraints, but in fact only 3
different answers, with 93, 103 or 113 cells. This compares with

[McC99]+1 3023, 10935 or 48299 × 2 cells

[McC99] 11961, 30233, 158475 or 158451 cells

QEPCAD all ECs (i.e. no improvements to lifting) 21097 cells

* We can make QEPCAD do 5633 cells

sign-invariant 1118205 cells
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But we said primitive

Currently this is a genuine restriction. f = 0 ⇔ (fp = 0) ∨ (fc = 0)
so lifting only fp = 0 would ignore the case fc = 0, fp 6= 0 and vice

versa

At AG’13 Matthew England presented our theory of Truth-Table
Invariant CADs [BDE+13, BDE+14], which deals with

(f1 = 0 ∧ Φ1) ∨ (f2 = 0 ∧ Φ2) ∨ · · · ,

but this doesn’t deal with multiple equations.
Future work: unify the two developments
Also, idea 2 would need rethinking, as the sectors of the primitive
part living over sections of the content need to be lifted properly
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