

Overview

Regular chains and triangular decompositions are fundamental tools for describing the complex solutions of polynomial systems. We introduce adaptations of these tools to the real analogue: semialgebraic systems. We show that any such system decomposes into finitely many *regular semi-algebraic systems*. We propose two specifications of such a decomposition, with corresponding algorithms. Under some assumptions, one algorithm runs in *singly* exponential time w.r.t. the number of variables. Our MAPLE implementation illustrates the effectiveness of our approach.

Basic Concepts

Let T be a regular chain of $\mathbb{Q}[x_1 < \cdots < x_n]$ with free variables $\mathbf{u} = u_1, \cdots, u_d$. Let $P \subseteq \mathbb{Q}[x_1 < \ldots < x_n]$ s.t. [T, P]forms a regular system. Let Q be a quantifier-free formula of $\mathbb{Q}[\mathbf{u}]$. Let R be the *triple* $[\mathcal{Q}, T, P]$. Denote by $Z_{\mathbb{R}}(R)$ the set $\{(u, y) \mid Q(u), t(u, y) = 0, p(u, y) > 0, \forall (t, p) \in T \times P\}.$

Definition. R is a regular semi-algebraic system if (i) \mathcal{Q} defines a non-empty open semi-algebraic set S in \mathbb{R}^d , (ii) [T, P] specializes well at each point u of S, (iii) the system $[T(u), P(u)_{>}]$ has real zeros, for all $u \in S$.

Theorem. Let F, N_{\geq} , $P_{>}$, and H_{\neq} be respectively a set of polynomial equations, non-negtive inequalities, positive inequalities and inequations. Every semi-algebraic system $\mathfrak{S} =$ $[F, N_{\geq}, P_{>}, H_{\neq}]$ of $\mathbb{Q}[\mathbf{x}]$ can be decomposed as a finite union of regular semi-algebraic systems \mathcal{R} s.t. the union of their zero sets is that of \mathfrak{S} . We call \mathcal{R} a (full) triangular decomposition of the semi-algebraic system \mathfrak{S} .

Let d be the dimension of the constructible set $\{x \in \mathbb{C}^n \mid f(x) = d\}$ $0, g(x) \neq 0$, for all $f \in F, g \in P \cup H$.

Definition. A finite set of regular semi-algebraic systems R_i is called a lazy triangular decomposition of \mathfrak{S} if

- for each i, $Z_{\mathbb{R}}(R_i) \subseteq Z_{\mathbb{R}}(\mathfrak{S})$ holds, and
- there exists $G \subset \mathbb{Q}[\mathbf{x}]$ s. t. $Z_{\mathbb{R}}(\mathfrak{S}) \setminus (\bigcup_{i=1}^{t} Z_{\mathbb{R}}(R_i)) \subseteq Z_{\mathbb{R}}(G)$, where the complex zero set V(G) has dimension less than d.

We denote respectively by LazyRealTriangularize and RealTriangularize an algorithm to compute a lazy and full triangular decomposition of a semi-algebraic system.

TRIANGULAR DECOMPOSITION OF SEMI-ALGEBRAIC SYSTEMS

Changbo Chen[†], James H. Davenport[◊], John P. May[♯], Marc Moreno Maza[†], Bican Xia[♯], Rong Xiao[†] [†]University of Western Ontario, [◊]University of Bath, [‡] Maplesoft, [‡]Peking University

Examples

Example 1. Solve the following Quantifier Elimination prob*lem:*

 $(\exists x \in \mathbb{R}) (\exists y \in \mathbb{R}) [f = g = 0 \land y \neq 0 \land xy - 1 < 0],$ where $f = x^3 - 3xy^2 + ax + b$, $g = 3x^2 - y^2 + a$

The related semi-algebraic system:

f = 0,g=0, $\mathfrak{S} := \cdot$ $y \neq 0,$ xy - 1 < 0

The triangular decomposition of \mathfrak{S} can be computed as in the following MAPLE session:

> with F := R := st := rtd : time	$(RegularChains):$ $= [x^3-3*x*y^2 + a*x + b, 3*x^2-y^2 + a]$ $= PolynomialRing([y, x, b, a]):$ $= time():$ $= RealTriangularize(F, N, P, H, R, output = reconsections)$: H := [y] rd);
<i>rtd</i> := -	$\begin{cases} y^2 - 3x^2 - a = 0\\ 0 < 1 - xy\\ 8x^3 + 2ax - b = 0\\ 0 < 4a^3 + 27b^2\\ 27b^4 + 4a^3b^2 - 16a^4 - 512a^2 - 4096 \neq 0 \end{cases}$, { (2 a 27 b
	0.	186

One can read the QE results directly from the decomposition as: $(0 < 4a^3 + 27b^2 \land 27b^4 + 4a^3b^2 - 16a^4 - 512a^2 - 4096 \neq 0) \lor 27b^4 + 4a^3b^2 - 16a^4 - 512a^2 - 4096 = 0,$ which can be further reduced to $0 < 4a^3 + 27b^2$.

Example 2. Triangular decomposition of the intersection of two surfaces: Sof $a = x^2 + y^3 + z^5 - 1$ and $Cyl = x^4 + z^2 - 1$.

```
Sofa := x^2 + y^3 + z^5:
 Cyl := x^4 + z^2 - 1:
 R := PolynomialRing([z, y, x]):
 st := time():
 RealTriangularize([Sofa, Cyl], [], [], [], R, output = record);
  time() - st;
           (1-2x^4+x^8)z+y^3+x^2=0
y^{6} + 2x^{2}y^{3} + 10x^{12} - 10x^{8} + x^{20} - 5x^{16} + 6x^{4} - 1 = 0
                        x < 1
                      0 < x + 1
              x^{12} - 4x^8 + 5x^4 - 1 \neq 0
  \left[ (1-2x^4+x^8)z+x^2=0 \qquad \left[ (1-2x^4+x^8)z-x^2=0 \right] \right]
                     y^3 + 2x^2 = 0
    x^{12} - 4x^8 + 5x^4 - 1 = 0 x^{12} - 4x^8 + 5x^4 - 1 = 0
                                                 0.115
```

```
|: P := [1 - x * y] : N := []:
```

xy + 1 = 00 < 1 - xy $a^{3} + 32 a + 18 b^{2} x + b (-48 - a^{2}) = 0$ $b^4 + 4 a^3 b^2 - 16 a^4 - 512 a^2 - 4096 = 0$

(1)


```
(3)
```

Complexity Estimates

Assumptions:

- V(F) is equi-dimensional of dimension d,

Let δ , \hbar be respectively the maximum total degree and height of polynomials in F.

Proposition. Within $m^{O(1)}(\delta^{O(n^2)})^{d+1} + \delta^{O(m^4)O(n)}$ operations in \mathbb{Q} , one can compute a Kalkbrener triangular decomposition E_1, \ldots, E_e of V(F), where each polynomial of each E_i • has total degree upper bounded by $O(\delta^{2m})$, • has height upper bounded by $O(\delta^{2m}(m\hbar + dm\log(\delta) + n\log(n)))$. From E_1, \ldots, E_e , a lazy triangular decomposition of F can be computed in $\left(\delta^{n^2}n4^n\right)^{O(n^2)}\hbar^{O(1)}$ bit operations.

Experimental Results

Table 1 Timings					
system					
Hairer-2-BO					
Collins-jsc	(
Leykin-1	_				
8-3-config-	-				
Lichtblau					
Cinquin-3	-				
Cinquin-3	-				
DonatiTravers					
Cheaters-home)				
hereman-8	>				
L					
dgp6					
dgp29					
Table 2 Timings for					
system					
BM05-1					
BM05-2					
Solotareff-4b					

Solotareff-4a putnam MPV89 IBVP Lafferriere37 Xia SEIT p3p-isosceles p3p Ellipse

Notations: #v, #e, d - the number of variables, equations and the dimension, Q - QEPCAD B G - Groebner:-Basis with plex order, T - Triangularize, LR - LazyRealTriangularize, R - RealTriangularize

• x_1, \ldots, x_d are algebraically independent modulo each associated prime ideal of the ideal generated by F in $\mathbb{Q}[\mathbf{x}]$,

• F consists of m := n - d polynomials, f_1, \ldots, f_m .

 $|\#v/\#e/d| \quad G \quad T \quad LR$ 13/11/4 25 1.924 2.396 5/4/3 876 0.296 0.820 8/6/4 103 3.684 3.924 12/7/2 | 109 | 5.440 | 6.360 3/2/11 126 1.548 11 4/3/4 | 64 | 0.744 | 2.016 4/3/5 > 1h 10 224/3/8 | 154 | 7.100 | 7.548 7/3/7 | 3527 | 174 | >1h8/6/6 > 1h 33 62 12/4/3 > 1h 0.468 0.67617/19/2 27 60 63 5/4/15 84 0.008 0.016

for algebraic varieties

or semi-algebraic systems

#v/#e/d	Т	LR	R	Q
4/2/3	0.008	0.208	0.568	86
4/2/4	0.040	2.284	> 1h	FAIL
5/4/3	0.640	2.248	924	> 1h
5/4/3	0.424	1.228	8.216	FAIL
6/4/2	0.044	0.108	0.948	> 1h
6/3/4	0.016	0.496	2.544	> 1h
8/5/2	0.272	0.560	12	> 1h
3/3/4	0.056	0.184	0.180	10
6/3/4	0.164	191	739	> 1h
11/4/3	0.400	> 1h	> 1h	> 1h
7/3/3	1.348	> 1h	> 1h	> 1h
8/3/3	210	>1h	> 1h	FAIL
6/1/3	0.012	>1h	> 1h	> 1h