The solution of high dimensional elliptic PDEs with random data

Ivan Graham, University of Bath, UK.

Joint work with:

Frances Kuo, Ian Sloan (New South Wales) Dirk Nuyens (Leuven) Rob Scheichl (Bath)

CUHK April 2016

High dimensional Problems: PDE with random data

• Many problems involve PDEs with spatially varying data which is subject to uncertainty.

Example: groundwater flow in rock underground.

• Uncertainty enters the PDE through its coefficients. (random fields). The quantity of interest: is a random number or field derived from the PDE solution.

Examples: (i) pressure in medium, (ii) effective permeability, (iii) breakthrough time of a pollution plume .

• Typical Computational Goal: expected value of quantity of interest.

This is the Forward problem of uncertainty quantification

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Some ingredients

PDE Problem:

 $-\nabla .k\nabla p=f \quad \text{with} \quad k(\mathbf{x},\omega)=\exp(Z(\mathbf{x},\omega)), \quad \text{lognormal}$

Random field $Z(\mathbf{x}, \omega)$ Gaussian at each \mathbf{x} specified mean (= 0 here) and (rough) covariance.

no uniform ellipticity, Low regularity, high contrast, high stochastic dimension,

Computational goal: Functionals of p, e.g.

$$\mathbb{E}(p(\mathbf{x},\omega)) = \int_{\Omega} p(\mathbf{x},\omega) d\mathbb{P}(\omega)$$
 high dimensional

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Classical method: Monte-Carlo

- random sampling of Z (how to do it?)
- \bullet Finite element method for p
- convergence $O(1/\sqrt{N})$ (N = # samples) + FE Error.

Part I: Algorithm: circulant embedding with Quasi-Monte Carlo IGG, Kuo, Nuyens, Scheichl, Sloan JCP 2011

Part II: Rigorous error estimates

IGG, Kuo, Nicholls, Scheichl, Schwab, Sloan

Numer Math 2014

《曰》 《聞》 《臣》 《臣》 三臣 …

IGG, Scheichl, Ullmann Stochastic PDE: Analysis and Computation 2014

IGG, Kuo, Nuyens, Scheichl, Sloan in preparation 2016

Gaussian Random Fields (more generally)

PDE Problem:

 $-\nabla k \nabla p = f$ + Boundary conditions $k = \exp(Z)$

Covariance function: (centred) stationary field:

$$\mathbb{E}[Z(\boldsymbol{x},\cdot)Z(\boldsymbol{y},\cdot)] =
ho(\boldsymbol{x}-\boldsymbol{y}), \quad
ho \quad \text{positive definite}$$

Examples:

$$ho(\boldsymbol{x} - \boldsymbol{y}) = \sigma^2 \exp\left(-\|\boldsymbol{x} - \boldsymbol{y}\|/\lambda\right)$$
 "exponential".
 $ho(\boldsymbol{x} - \boldsymbol{y}) = \sigma^2 \exp\left(-\|\boldsymbol{x} - \boldsymbol{y}\|^2/\lambda\right)$ "Gaussian".

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 $\sigma^2 = \text{variance} , \quad \lambda = \text{lengthscale}$

The Matérn family: $\rho = \rho_{\beta}$, $\beta \in [1/2, \infty)$. Limiting cases: exponential ($\beta = 1/2$), Gaussian ($\beta = \infty$).

Gaussian Random Fields (more generally)

Loss of uniform ellipticity and boundedness: for all $\epsilon > 0$:

$$\min[\mathbb{P}(k(\boldsymbol{x},\cdot)<\epsilon),\ \mathbb{P}(k(\boldsymbol{x},\cdot))>\epsilon^{-1})]\ >\ 0$$

Mild smoothness condition on $\rho(\mathbf{0})$: Karhunen-Loeve (KL) Expansion: (a.s. convergence)

$$Z(\boldsymbol{x},\omega) = \sum_{j=1}^{\infty} \sqrt{\mu_j} \xi_j(\boldsymbol{x}) Y_j(\omega) \qquad Y_j \sim N(0,1)$$

 (ξ_j, μ_j) eigenpairs of covariance operator with kernel $\rho(x - y)$. Kolmogorov's theorem: With probability 1, $k(x, \omega) \in C^t(D)$, with $t \in [0, \beta)$

In fact, for all $q \in (1, \infty)$,

- $\bullet \quad k\in L^q(\Omega,C^t(D)),$
- and $\|p\|_{L^q(\Omega, H^1_0(D))} \le \|a_{\min}^{-1}\|_{L^q(\Omega)} \|f\|_{H^{-1}}$ (Dirichlet problem).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Non-smooth fields : a typical realization (exponential)

 λ - "frequency": Finite element accuracy requires $h \approx \lambda/10$

 σ^2 - "amplitude":

$$\frac{\max_{x} k(\boldsymbol{x}, \omega)}{\min_{x} k(\boldsymbol{x}, \omega)} \sim \exp(\sigma) \qquad \text{high contrast}$$

Mixed formulation $(q, p) \in H(\operatorname{div}, D) \times L_2(D)$:

$$\begin{aligned} \int_D k^{-1} \mathbf{q}. \mathbf{v} &- \int_D p \nabla . \mathbf{v} &= - \quad \int_{\partial D_2} g \mathbf{v}. n , \\ - \int_D w \nabla . \mathbf{q} &= 0 \quad \text{for all} \quad (\mathbf{v}, w). \end{aligned}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Mixed formulation $(\mathbf{q}, p) \in H(\operatorname{div}, D) \times L_2(D)$:

$$\begin{aligned} m(\mathbf{q}, \mathbf{v}) &+ b(p, \mathbf{v}) &= G(\mathbf{v}) ,\\ b(w, \mathbf{q}) &= 0 & \text{ for all } (\mathbf{v}, w). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Mixed approximation $(\mathbf{q}_h, p_h) \in RT_0 \times PC$ on a mesh \mathcal{T}_h :

$$\begin{aligned} m(\mathbf{q}_h, \mathbf{v}_h) + b(p_h, \mathbf{v}_h) &= G(\mathbf{v}_h) ,\\ b(w_h, \mathbf{q}_h) &= 0 \quad \text{for all} \quad (\mathbf{v}_h, w_h) \end{aligned}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Mixed approximation $(\mathbf{q}_h, p_h) \in RT_0 \times PC$ on a mesh \mathcal{T}_h :

$$\begin{aligned} m(\mathbf{q}_h, \mathbf{v}_h) + b(p_h, \mathbf{v}_h) &= G(v_h) ,\\ b(w_h, \mathbf{q}_h) &= 0 \quad \text{for all} \quad (\mathbf{v}_h, w_h) \end{aligned}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

h = finite element grid size.

PC = Piecewise constants

Space RT_0 :

 $\mathbf{q}_h = a + b\mathbf{x}$ but divergence free $\implies b = 0$.

Mixed approximation $(\mathbf{q}_h, p_h) \in RT_0 \times PC$ on a mesh \mathcal{T}_h :

$$\begin{aligned} m(\mathbf{q}_h, \mathbf{v}_h) + b(p_h, \mathbf{v}_h) &= G(v_h) ,\\ b(w_h, \mathbf{q}_h) &= 0 \quad \text{for all} \quad (\mathbf{v}_h, w_h) \end{aligned}$$

- h = finite element grid size.
- PC = Piecewise constants

Space RT_0 : $\mathbf{q}_h = a + b\mathbf{x}$ but divergence free $\implies b = 0$.

Quadrature rule: sample $k(x, \omega)$ one point per element Enough for accuracy: IGG, Scheichl, Ullmann, 2014

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Quantities of Interest - computational cell $D = (0, 1)^2$

 $\vec{q}.\vec{n}=0$

- Pressure head $p(\boldsymbol{x},\omega)$, e.g. $\boldsymbol{x}=(1/2,1/2).$
- Effective permeability

$$k_{\text{eff}}(\omega) = \frac{\int_D q_1(\boldsymbol{x}, \omega) d\boldsymbol{x}}{-\int_D \partial p / \partial x_1(\boldsymbol{x}, \omega) d\boldsymbol{x}} = \int_{\Gamma_{\text{out}}} q_1(\boldsymbol{x}, \omega) d\boldsymbol{x}$$

Quantities of Interest - computational cell $D = (0, 1)^2$

- Pressure head $p(\boldsymbol{x},\omega)$, e.g. $\boldsymbol{x}=(1/2,1/2).$
- Effective permeability

$$k_{\text{eff}}(\omega) = \frac{\int_D q_1(\boldsymbol{x}, \omega) d\boldsymbol{x}}{-\int_D \partial p / \partial x_1(\boldsymbol{x}, \omega) d\boldsymbol{x}} = \int_{\Gamma_{\text{out}}} q_1(\boldsymbol{x}, \omega) d\boldsymbol{x}$$

<ロ> (四)、(四)、(日)、(日)、

• Breakthrough time $T_{out}(\omega)$ from q. (Time to reach outflow boundary)

Quantities of Interest - computational cell $D = (0, 1)^2$

- Pressure head $p(\boldsymbol{x},\omega)$, e.g. $\boldsymbol{x}=(1/2,1/2).$
- Effective permeability

$$k_{\text{eff}}(\omega) = \frac{\int_D q_1(\boldsymbol{x}, \omega) d\boldsymbol{x}}{-\int_D \partial p / \partial x_1(\boldsymbol{x}, \omega) d\boldsymbol{x}} = \int_{\Gamma_{\text{out}}} q_1(\boldsymbol{x}, \omega) d\boldsymbol{x}$$

- Breakthrough time $T_{out}(\omega)$ from q. (Time to reach outflow boundary)
- General format: find $\mathbb{E}[\mathcal{G}(p, \mathbf{q})]$ some functional $\mathcal{G}(p, \mathbf{q})$.

Sampling by K-L truncation : the effect of lengthscale

$$Z({m x},\omega) \;=\; \sum_{j=1}^\infty \sqrt{\mu_j} \xi_j({m x}) Y_j(\omega)$$

exponential covariance in 1D

log log plot of μ_j for $1 \le j \le 500$:

Plateau before decay starts

$$egin{aligned} \lambda &= 1 \ \lambda &= 0.1 \ \lambda &= 0.02 \end{aligned}$$

An extreme eigenvalue solver challenge!

- 2

・ロト ・四ト ・ヨト ・ヨト

Avoiding KL truncation: discretize first in space

Approximation of $\mathbb{E}[\mathcal{G}(p)]$ by $\mathbb{E}[\mathcal{G}(p_h)]$ (focus on pressure)

FEM + quadrature requires random vector $Z := \{Z(x_i)\}$ at *M* quadrature points

Covariance Matrix: $R_{i,j} = \rho(\boldsymbol{x}_i - \boldsymbol{x}_j) \quad M \times M$

Seek matrix decomposition:

$$R = BB^{\top} \tag{(*)}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where B is $M \times s$, $s \ge M$.

Then (finite "discrete KL" expansion)

$$\mathbf{Z}(\omega) = BY(\omega), \text{ where } \mathbf{Y} \sim N(0,1)^s \text{ i.i.d.}$$

Because

$$\mathbb{E}[\mathbf{Z}\mathbf{Z}^{\top}] = \mathbb{E}[B\mathbf{Y}\mathbf{Y}^{\top}B^{\top}] = BB^{\top} = R$$

 $M \sim h^{-d}$ and so s very large so (*) expensive(?), but....

Sampling via Circulant Embedding

not restrictive

0.2

For uniform grids and stationary fields: R is block Toeplitz Embed R into C - block circulant $s \times s$ (Typically $s \sim (2^d)M$)

$$C = \begin{bmatrix} R & A \\ A^T & B \end{bmatrix}$$

(Cheap) Factorization: $C = F\Lambda F^H$ (by FFT) implies Real Factorization: $C = BB^T$ (provided diag $(\Lambda) \ge 0$)

$$\begin{split} \mathbb{E}[\mathcal{G}(p)] &\approx \int_{\mathbb{R}^s} F(\mathbf{y}) \prod_{j=1}^s \phi(y_j) \mathrm{d} \mathbf{y}, \qquad F(\mathbf{y}) = \mathcal{G}(p_h(\cdot, \mathbf{y})) \\ &= \int_{[0,1]^s} F(\Phi_s^{-1}(\mathbf{v})) \mathrm{d} \mathbf{v} \; =: \; I_s(F) \; . \end{split}$$

 $\phi(y) = \exp(-y^2/2)/\sqrt{2\pi}, \quad \Phi_s^{-1} = \text{inv. cum. normal}$ FEM (*h*) + high dimensional integration (?)

Integration over $[0,1]^s$ (very large s): QMC methods

$$\int_{[0,1]^s} f(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} \; \approx \; \frac{1}{N} \sum_{k=1}^N f(\boldsymbol{z}^{(k)})$$

Monte Carlo method $\boldsymbol{z}^{(k)}$ random uniform $\mathcal{O}(N^{-1/2})$ convergence order of variables irrelevant

Quasi-Monte Carlo method $z^{(k)}$ deterministic

close to $\mathcal{O}(N^{-1})$ convergence order of variables very important

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへで

Numerical Results

Covariance

$$r(\boldsymbol{x}, \boldsymbol{y}) = \sigma^2 \exp\left(-\|\boldsymbol{x}-\boldsymbol{y}\|_1/\lambda
ight).$$

($\|\cdot\|_2$ similar).

Case 1	Case 2	Case 3	Case 4	Case 5
$\sigma^2 = 1$ $\lambda = 1$	$\sigma^2 = 1$ $\lambda = 0.3$	$\sigma^2 = 1$ $\lambda = 0.1$	$\sigma^2 = 3$ $\lambda = 1$	$\sigma^2 = 3$ $\lambda = 0.1$

FEM: Uniform grid h = 1/m on $(0,1)^2$, $M \sim m^2$. Sampling: circulant embedding via FFT (dimension $s \ge 4M$) High dimensional integration: QMC with *N* Sobol' points Time (sec) for N = 1000, CASE 1:

percentages in red, orders in blue

m	8	Setup	InvN	FFT	AMG	TOT
33	4.1 (+3)	0.00	1.0 17	0.22 4	4.5 <mark>76</mark>	5.9
65	1.7 (+4)	0.01	3.9 <mark>17</mark>	1.2 <mark>5</mark>	16.5 <mark>75</mark>	22
129	6.6 (+4)	0.06	15 <mark>16</mark>	5.1 <mark>6</mark>	67 <mark>73</mark>	92
257	2.6 (+5)	0.15	62 <mark>16</mark>	31 <mark>8</mark>	290 <mark>73</mark>	400
513	1.0 (+6)	0.6	258 <mark>15</mark>	145 <mark>8</mark>	1280 <mark>73</mark>	1750
	m^2	m^2	m^2	$m^2 \log m$	$\sim m^2$	$\sim m^2$

InvN = Inversion of cumulative normal

AMG = Algebraic Multigrid = Fast system solver

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Time (sec) for N = 1000, CASE 1:

percentages in red, orders in blue

m	s	Setup	InvN	FFT	AMG	TOT
33	4.1 (+3)	0.00	1.0 17	0.22 4	4.5 <mark>76</mark>	5.9
65	1.7 (+4)	0.01	3.9 <mark>17</mark>	1.2 <mark>5</mark>	16.5 <mark>75</mark>	22
129	6.6 (+4)	0.06	15 <mark>16</mark>	5.1 <mark>6</mark>	67 <mark>73</mark>	92
257	2.6 (+5)	0.15	62 <mark>16</mark>	31 <mark>8</mark>	290 <mark>73</mark>	400
513	1.0 (+6)	0.6	258 <mark>15</mark>	145 <mark>8</mark>	1280 <mark>73</mark>	1750
	m^2	m^2	m^2	$m^2 \log m$	$\sim m^2$	$\sim m^2$

InvN = Inversion of cumulative normal

AMG = Algebraic Multigrid = Fast system solver

One MFE solve with $513^2 = 2.6(+5)$ DOF takes ≈ 1.3 sec

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Standard deviation of mean pressure

10³

104

16 random shifts used to estimate standard deviation. **Theorem:** $\mathbb{E}[p_h(1/2, 1/2)] = \mathbb{E}[p(1/2, 1/2)]$ for all *h*. No discretization error : good test for QMC MC in green

10

10³

10

10

QMC in blue, Cases 1,3,4,5.

Dimension independence of QMC (and MC)

Standard deviation of mean pressure, Case 4: as m(=1/h) (and hence *s*) increases MC in green QMC in blue

500

Effective permeability $k_{\rm eff}$

discretization error is present. We estimated (by linear regression): h needed to obtain a discretization error $< 10^{-3}$ ($< 2 \times 10^{3}$)

N needed to obtain (Q)MC error $< 0.5 \times 10^{-3}$ (10^{-3})

(95% confidence)

σ^2	λ	1/h	N (QMC)	<i>N</i> (MC)	CPU (QMC)	CPU (MC)
1	1	17	1.2(+5)	1.9(+7)	3 min	8 h
1	0.3	129	3.3(+4)	3.9(+6)	55 min	110 h
1	0.1	513	1.2(+4)	5.9(+5)	6.5 h	330 h
3	1	33	4.3(+6)	3.6(+8) *	9 h	750 h *
3	0.1	513	3.0(+4)	5.8(+5)	20 h	390 h

Smaller λ (lengthscale) needs smaller h but also smaller N. Bigger σ^2 (variance) doesn't affect h but needs larger N

* extrapolated projections.

Strong superiority of QMC in all cases.

Here discretization error is more significant.

For **Cases 2 and 4** for discr. error $< 5 * (10^{-3})$ need h = 1/65

For statistical error $< 2.5 * 10^{-3}$ (95% confidence) need:

Case 2 $\sigma^2 = 1$, $\lambda = 0.3$ $N_{MC} = 5.2(+5)$ $N_{QMC} = 1.2(+5)$ speedup \approx 4

Case 4 $\sigma^2 = 3$, $\lambda = 1$ $N_{MC} = 6.5(+7)$ $N_{QMC} = 4.3(+6)$ speedup ≈ 15

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Breakthrough time, Cases 1-4

Sac

Recent progress on theory (brief)

Primal form (Dirichlet problem)

 $-\nabla.k(\pmb{x},\omega)\nabla p=f\quad\text{on}\quad D,\qquad p=0\quad\text{on}\quad\partial D\;.$

• lognormal case:
$$k(\boldsymbol{x}, \omega) = \exp(Z(\boldsymbol{x}, \omega))$$

- piecewise linear FEM with quadrature:
- Linear functional $\mathcal{G}(p)$ $\mathcal{G}(p_h)$

where

 $I_{s}(F)$ $F(\mathbf{y}) = \mathcal{G}(p_{h}(\cdot, \mathbf{y}))$ $Q_{s,N}(\boldsymbol{\Delta}, F)$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 p_h

• Randomly shifted lattice rules (with *N* points, defined next slide)

RMS Error $e_{h,N}^2 := \mathbb{E}^{\Delta} \left[|I_s(F) - Q_{s,N}(\Delta, F)|^2 \right]$

Some QMC Theory (Lattice rules)

$$\begin{split} I_{s}(F) &:= \int_{\mathbb{R}^{s}} F(\boldsymbol{y}) \prod \phi(y_{j}) \mathrm{d}\boldsymbol{y} = \int_{[0,1]^{s}} F(\Phi_{s}^{-1}(\boldsymbol{z})) \mathrm{d}\boldsymbol{z} \\ Q_{s,N}(\boldsymbol{\Delta};F) &:= \frac{1}{N} \sum_{i=1}^{N} F\left(\Phi_{s}^{-1}\left(\operatorname{frac}\left(\frac{i\,\boldsymbol{z}}{N} + \boldsymbol{\Delta}\right)\right)\right) \\ \text{generating vector:} \quad \boldsymbol{z} \in \mathbb{N}^{s}, \quad 1 \leq z_{j} \leq N-1 \\ \text{random shift} \quad \boldsymbol{\Delta} \in [0,1]^{s} \quad \text{uniformly distributed.} \\ \text{Weighted Sobolev norm:} \quad \|F\|_{s,\gamma}^{2} := \sum_{\boldsymbol{u} \subseteq \{1:s\}} \frac{1}{\gamma_{\boldsymbol{u}}} J_{\boldsymbol{u}}(F)^{2} \\ \text{where} \quad J_{\boldsymbol{u}}(F)^{2} = \\ \int_{\mathbb{R}^{|\boldsymbol{u}|}} \left(\int_{\mathbb{R}^{s-|\boldsymbol{u}|}} \frac{\partial^{|\boldsymbol{u}|}F}{\partial \boldsymbol{y}_{\boldsymbol{u}}}(\boldsymbol{y}_{\boldsymbol{u}}; \boldsymbol{y}_{\{1:s\}\setminus\boldsymbol{u}}) \prod_{j\in\{1:s\}\setminus\boldsymbol{u}} \phi(y_{j}) \, \mathrm{d}\boldsymbol{y}_{\{1:s\}\setminus\boldsymbol{u}}\right)^{2} \prod_{j\in\boldsymbol{u}} \psi_{j}^{2}(y_{j}) \, \mathrm{d}\boldsymbol{y}_{\boldsymbol{u}} \end{split}$$

 $\gamma_{\mathfrak{u}}$ - controls relative importance of the derivatives $\psi_j(y_j) = \exp(-\alpha_j |y_j|)$ - controls behaviour as $|\mathbf{y}| \to \infty$

QMC Theory...

Theorem (Kuo and Nuyens FoCM 2015) Suppose $||F||_{s,\gamma} < \infty$. Then a generating vector $z \in \mathbb{N}^s$ can be constructed (efficiently) so that

$$\sqrt{\mathbb{E}^{\mathbf{\Delta}}\left[|I_s(F) - Q_{s,N}(\mathbf{\Delta},F)|^2\right]} \leq 2\left(\frac{1}{N}\right)^{1/2\lambda} C_s(\boldsymbol{\gamma},\boldsymbol{\alpha},\lambda) \|F\|_{s,\boldsymbol{\gamma}} \quad (*)$$

for all $\lambda \in (1/2, 1]$. So the next steps are ...

- Estimate the derivatives $\partial^{|\mathfrak{u}|} p_h / \partial \mathbf{y}_{\mathfrak{u}}$, then derivatives of F.....
- Then the norm $||F||_{s,\gamma}$.
- Choose $\gamma_{\mathfrak{u}}$ and α_j to minimise the RHS of (*).
- RHS becomes $C(\lambda) \left(\frac{1}{N}\right)^{1/(2\lambda)}$, $C(\lambda)$ independent of s

provided.... eigenvalues of the circulant satisfy:

$$\sum_{j=1}^{s} \left(\frac{\lambda_j}{s}\right)^{\lambda/(1+\lambda)} \leq C \quad \text{for all} \quad s \in \mathbb{C}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Based on a heuristic for the Matérn family

Rates for the Matérn class

- Dimension independent rate $\mathcal{O}\left(\frac{1}{N^{-(1-\delta)}}\right)\delta$ arbitrarily small, if $\nu > 2$.
- Dimension independent rate at least $\mathcal{O}\left(\frac{1}{N}\right)^{1/2}$ if $\nu > 1$

Heuristic assumes eigenvalues of the circulant approach eigenvalues of the corresponding periodic covariance integral operator.

Conclusion:

For Matérn parameter ν large enough, combined FE and QMC error:

$$\sqrt{\mathbb{E}^{\mathbf{\Delta}}\left[|\mathbb{E}[\mathcal{G}(p)] - Q_{s,N}(\mathbf{\Delta}, \mathcal{G}(p_h))|^2\right]} \leq C[h^2 + N^{-(1-\delta)}].$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

with δ arbitrarily close to 0 independent of dimension s.

Summary

- QMC improved on MC in all cases tested
- Speed up factors between 4 and 200.
- Can solve relatively hard problems of some interest in applications. Readily extends to 3D
- Rigorous analysis shows convergence up to $\mathcal{O}(h^2) + \mathcal{O}(1/N)$ independent of dimension.
- Theory contains some assumptions which have to be verified empirically.
- Constructing Sobol' sequences and lattice rules: http://web.maths.unsw.edu.au/~fkuo
- Lots of recent work: Multilevel and higher order methods (Giles, Scheichl, Kuo, Schwab, Sloan, Dick,many others...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The exponential covariance leaves open questions!

Dimension independence of QMC (and MC)

Standard deviation of mean pressure, Case 4: as m(=1/h) (and hence *s*) increases MC in green QMC in blue

500