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Outline of talk:

• Seismic inversion, HF Helmholtz equation

• FE discretization, preconditioned GMRES solvers

• sharp analysis of preconditioners based on absorption

• new theory for Domain Decomposition for Helmholtz

• almost optimal (scalable) solvers (2D implementation)

• some open theoretical questions



Motivation



Seismic inversion

Inverse problem: reconstruct material properties of subsurface
(characterised by wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation

−∆u+
1

c2

∂2u

∂t2
= f or its elastic variant

Frequency domain:

−∆u−
(
ωL

c

)2

u = f, ω = frequency

solve for u with approximate c.

Large domain of characteristic length L.

effectively high frequency
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(wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation
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u = f, ω = frequency

solve for u with approximate c.

Large domain of characteristic length L.

effectively high frequency - time domain vs freqency domain



Marmousi Model Problem

• Schlumberger 2007: Solver of choice based on principle of
limited absorption (Erlangga, Osterlee, Vuik, 2004)

• This work: Analysis of this approach and use it to build better
methods .....



Analysis for: interior impedance problem

−∆u− k2u = f in bounded domain Ω

∂u

∂n
− iku = g on Γ := ∂Ω

....Also truncated sound-soft scattering problems in Ω′

Γ

Ω
Ω′

BR



Linear algebra problem

• weak form with absorption k2 → k2 + iε, η = η(k, ε)

aε(u, v) :=

∫
Ω

(
∇u.∇v − (k2+k2)uv

)
− ik

∫
Γ
uv

=

∫
Ω
fv +

∫
Γ
gv “ShiftedLaplacian′′

• (Fixed order) finite element discretization

Aεu := (S− (k2+k2)MΩ − ikMΓ)u = f

Often: h ∼ k−1 but pollution effect:
for quasioptimality need h ∼ k−2 ?? , h ∼ k−3/2 ??

Melenk and Sauter 2011, Zhu and Wu 2013
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Preconditioning with A−1
ε and its approximations

A−1
ε Au = A−1

ε f .

“Elman theory” for GMRES requires:

‖A−1
ε A‖ . 1, and dist(0, fov(A−1

ε A)) & 1 any norm

Sufficient condition: ‖I−A−1
ε A‖2 . C < 1 . Blackboard

In practice use

B−1
ε Au = B−1

ε f , where B−1
ε ≈ A−1

ε .

Writing

I−B−1
ε A = I−B−1

ε Aε + B−1
ε Aε(I−A−1

ε A),

a sufficient condition is:

‖I−A−1
ε A‖2 and ‖I−B−1

ε Aε‖2 small ,

i.e. A−1
ε to be a good preconditioner for A

and B−1
ε to be a good preconditioner for Aε .
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A very short history

Bayliss et al 1983 , Laird & Giles 2002.....

Erlangga, Vuik & Oosterlee ’04 and subsequent papers:
Precondition A with MG approximation of A−1

ε ε ∼ k2

(simplified Fourier eigenvalue analysis)

Kimn & Sarkis ’13 used ε ∼ k2 to enhance domain
decomposition methods

Engquist and Ying, ’11 Used ε ∼ k to stabilise their sweeping
preconditioner

...others...



Part 1

Theorem 1 (with Martin Gander and Euan Spence)
For star-shaped domains
Smooth (or convex) domains, quasiuniform meshes:

‖I−A−1
ε A‖ .

ε

k
.

Corner singularities, locally refined meshes:

‖I−D1/2A−1
ε AD−1/2‖ .

ε

k
.

D = diag(MΩ).

So ε/k sufficiently small =⇒ k−independent GMRES
convergence.



Shifted Laplacian preconditioner ε = k

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 6
20 6
40 6
80 6



Shifted Laplacian preconditioner ε = k3/2

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 8
20 11
40 14
80 16



Shifted Laplacian preconditioner ε = k2

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 13
20 24
40 48
80 86



Proof of Theorem 1: via continuous problem

aε(u, v) =

∫
Ω
fv +

∫
Γ
gv , v ∈ H1(Ω) (∗)

Theorem (Stability) Assume Ω is Lipschitz and star-shaped.
Then, if ε/k sufficiently small,

‖∇u‖2L2(Ω) + k2‖u‖2L2(Ω)︸ ︷︷ ︸
=:‖u‖21,k

. ‖f‖2L2(Ω) + ‖g‖2L2(Γ) , k →∞

“.” indept of k and ε cf. Melenk 95, Cummings & Feng 06

More absorption: k . ε . k2 general Lipschitz domain OK.

Key technique in proof: Rellich/Morawetz Identities

More detail of proof: Lecture 4



Proof continued

Exact solution estimate :

‖u‖L2(Ω) . k−1‖f‖L2(Ω) (*)

Finite element solution: Aεu = f

Estimate:
‖u‖2 . k−1h−d‖f‖2 (**)

proof of (**) uses (*) and FE quasioptimality
(h small enough) Lecture 4

Hence ‖I−A−1
ε A‖ ≤ ‖A−1

ε ‖‖Aε −A‖
≤ k−1h−d ‖iεMΩ‖ .

ε

k
.

Locally refined meshes:

‖I−D1/2A−1
ε AD−1/2‖ .

ε

k
.



Exterior scattering problem with refinement

h ∼ k−1,

Solving A−1
ε Ax = A−1

ε 1 on unit square

# GMRES

with diagonal scaling
k ε = k ε = k3/2

20 5 8
40 5 11
80 5 13
160 5 16
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A trapping domain

k ε = k ε = k3/2

10π/8 18 29
20π/8 19 41
40π/8 21 60
80π/8 22 89

Stability result fails ... “quasimodes” Lecture 4

Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010



Part 2: How to approximate A−1
ε ?

Erlangga, Osterlee, Vuik (2004):
Geometric multigrid: problem “elliptic”

Engquist & Ying (2012):
“Since the shifted Laplacian operator is elliptic, standard
algorithms such as multigrid can be used for its inversion”

Domain Decomposition (DD):

Many non-overlapping methods (ε = 0)

Benamou & Després 1997.....Gander, Magoules, Nataf,
Halpern, Dolean........

General issue: coarse grids, scalability?

Conjecture If ε large enough, classical overlapping DD
methods with coarse grids will work (giving scalable solvers).

However Classical analysis for ε = 0 (Cai & Widlund, 1992)
leads to coarse grid size H ∼ k−2



Classical additive Schwarz

To solve a problem on a fine grid FE space Sh
• Coarse space SH (here linear FE) on a coarse grid

• Subdomain spaces Si on subdomains Ωi, overlap δ

Hsub ∼ H in this case



Classical additive Schwarz p/c for matrix C

Approximation of C−1:∑
i

RT
i C
−1
i Ri + RT

HC
−1
H RH

Ri = restriction to Si, RH = restriction to SH
Ci = RiCRT

i CH = RHCRT
H

Dirichlet BCs

Apply to Aε to get B−1
ε



Non-standard DD theory - applied to Aε

Coercivity Lemma There exisits |Θ| = 1, with

Im [Θaε(v, v)] &
ε

k2
‖v‖21,k. (?)

Lecture 4

Projections onto subpaces:

aε(Qivh, wi) = aε(vh, wi), vh ∈ Sh, wi ∈ Si .

Guaranteed well-defined by (?).

Analysis of B−1
ε Aε equivalent to analysing

Q :=
∑
i

Qi + QH operator in FE space Sh .
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Convergence results

Assume overlap δ ∼ H and ε ∼ k2

Theorem (with Euan Spence and Eero Vainikko)

(i) For all coarse grid sizes H,

‖B−1
ε Aε‖Dk . 1 .

(ii) Provided Hk . 1 (no pollution!).

dist(0, fov(B−1
ε Aε)Dk) & 1,

Note: Dk = stiffness matrix for Helmholtz energy:

(u, v)H1 + k2(u, v)L2

Hence k−independent (weighted) GMRES convergence when

ε ∼ k2 and Hk . 1



Convergence results - general ε

Assume overlap δ ∼ H

Theorem (with Euan Spence and Eero Vainikko)

(i) For all coarse grid sizes H,

‖B−1
ε Aε‖Dk . k2/ε .

(ii) Provided Hk . (ε/k2)3

dist(0, fov(B−1
ε Aε)Dk) & (ε/k2)2,

Same results for right preconditioning (duality)

Extension to general overlap, and one-level Schwarz

Hence k−independent GMRES convergence when

ε ∼ k2 and Hk . 1

Lecture 4



Some steps in proof ε ∼ k2

(vh, Qvh)1,k =
∑
j

(vh, Qjvh)1,k + (vh, QHvh)1,k

(vh, QHvh)1,k = ‖QHvh‖21,k + ((I −QH)vh, QHvh)1,k

Second term is “small” (condition on kH)

[“Galerkin Orthogonality”, duality, regularity]

|(vh, Qvh)1,k| &
∑
j

‖Qjvh‖21,k + ‖QHvh‖21,k

&
( ε
k2

)
‖vh‖21,k
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Useful Variants

HRAS:

• Multiplicative between coarse and local solves
• only add up once on regions of overlap

ImpHRAS

• impedance boundary conditions on local solves

All experiments:

unit square, h ∼ k−3/2, n ∼ k3, δ ∼ H.

Standard GMRES - minimise residual in Euclidean norm
(Theory has weights)



B−1
ε as preconditioner for Aε

ε = k2

# GMRES iterates with HRAS:

k H ∼ k−1 H ∼ k−0.9 H ∼ k−0.8

10 8 8 8
20 8 9 9
40 9 10 10
60 9 10 11
80 9 10 11

Scope for increasing H when ε = k2

Is there scope for reducing ε ?



B−1
ε as preconditioner for Aε

ε = k

# GMRES iterates with HRAS:

k H ∼ k−1 H ∼ k−0.9 H ∼ k−0.8

10 10 10 12
20 11 14 18
40 16 24 122
60 22 40 *
80 30 61 *

Method still “works” when ε = k provided Hk ∼ 1



The real problem: B−1
ε as preconditioner for A

H ∼ k−1

# GMRES iterates with HRAS:

k ε = k ε = k2 cf. Shifted Laplace
10 11 19
20 12 37
40 18 63
60 25 86
80 33 110

100 43 136

Local problems of size k × k
Coarse grid problem of k2 × k2 (dominates) Hierarchical
approximation (FGMRES)



The coarse grid problem: inner iteration

problem of size k2 × k2 , with ε ∼ k
(Hierarchical) subdomains of size k × k
no inner coarse grid

# GMRES iterates with ImpHRAS

k Hinner ∼ k−1

10 9
20 14
40 21
60 30
80 35

100 39
120 42
140 46

∼ k0.3



The real problem: Inner outer FGMRES

ε = k

# FGMRES iterates with HRAS (Inner iterations ImpHRAS)

k time (s)
10 18 (1) 0.66
20 19 (2) 3.68
40 22 (3) 54.7
60 28 (5) 370
80 36 (5) 1316

100 45 (7) 3417
∼ k4 ∼ n4/3

O(k2) independent solves of size k



A more challenging application

3D SEG Salt model Childs, IGG, Shanks, 2016

Hybrid Sweeping preconditioner with one level RAS inner solve

Boundary condition chosen as “optimised Robin condition”



ω = 3π ω = 6π ω = 9π
Nsub Iterations Solve time (s) Iterations Solve time (s) Iterations Solve time (s)

2x2x1 26 2.704e+01 29 2.995e+01 43 9.98e+01
4x4x1 26 2.470e+01 29 2.691e+01 43 9.97e+01
8x8x1 26 9.440e+00 29 1.011e+01 43 9.99e+01

PPW 24 12 8

Shifted problem (ω/c(x))2 → ((ω − 1 + 0.5i)/c(x))2

cf. ε ∼ k



Summary

• k and ε explicit analysis allows rigorous explanation of some
empirical observations and formulation of new methods.

•When ε ∼ k, A−1
ε is optimal preconditioner for A

•When ε ∼ k2, B−1
ε is optimal preconditioner for Aε

•When preconditioning A with B−1
ε , empirical best choice is

ε ∼ k

• New framework for DD analysis - Helmholtz energy and
sesquilinear form.

• Open questions in analysis when ε
k2 � 1


