On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

Ivan Graham and Euan Spence (Bath, UK)

Collaborations with:
Paul Childs (Emerson Roxar, Oxford),
Martin Gander (Geneva)
Douglas Shanks (Bath)
Eero Vainikko (Tartu, Estonia)

CUHK Lecture 3, January 2016

Outline of talk：

－Seismic inversion，HF Helmholtz equation
－FE discretization，preconditioned GMRES solvers
－sharp analysis of preconditioners based on absorption
－new theory for Domain Decomposition for Helmholtz
－almost optimal（scalable）solvers（2D implementation）
－some open theoretical questions

Motivation

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (characterised by wave speed $c(x)$) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$
-\Delta u+\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=f \quad \text { or its elastic variant }
$$

Frequency domain:

$$
-\Delta u-\left(\frac{\omega}{c}\right)^{2} u=f, \quad \omega=\quad \text { frequency }
$$

solve for u with approximate c.

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (wave speed $c(x)$) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$
-\Delta u+\frac{\partial^{2} u}{\partial t^{2}}=f \quad \text { or its elastic variant }
$$

Frequency domain:

$$
-\Delta u-\left(\frac{\omega L}{c}\right)^{2} u=f, \quad \omega=\quad \text { frequency }
$$

solve for u with approximate c.
Large domain of characteristic length L.
effectively high frequency - time domain vs freqency domain

Marmousi Model Problem

Numerical solution

- Schlumberger 2007: Solver of choice based on principle of limited absorption (Erlangga, Osterlee, Vuik, 2004)
- This work: Analysis of this approach and use it to build better methods

Analysis for: interior impedance problem

$$
\begin{aligned}
-\Delta u-k^{2} u & =f \quad \text { in } \quad \text { bounded domain } \quad \Omega \\
\frac{\partial u}{\partial n}-i k u & =g \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

....Also truncated sound-soft scattering problems in Ω^{\prime}

Linear algebra problem

－weak form

$$
\begin{aligned}
a(u, v) & :=\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-\quad k^{2} u \bar{v}\right)-\mathrm{i} k \int_{\Gamma} u \bar{v} \\
& =\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v}
\end{aligned}
$$

－（Fixed order）finite element discretization

$$
\mathbf{A} \mathbf{u}:=\left(\mathbf{S}-\quad k^{2} \mathbf{M}^{\Omega}-\mathrm{i} k \mathbf{M}^{\Gamma}\right) \mathbf{u}=\mathbf{f}
$$

Often：$\quad h \sim k^{-1} \quad$ but pollution effect： for quasioptimality need $\quad h \sim k^{-2}$ ？？，$\quad h \sim k^{-3 / 2} \quad$ ？？

Melenk and Sauter 2011，Zhu and Wu 2013

Linear algebra problem

- weak form with absorption $k^{2} \rightarrow k^{2}+\mathrm{i} \varepsilon$,

$$
\begin{aligned}
a_{\varepsilon}(u, v) & :=\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-\left(k^{2}+i \varepsilon\right) u \bar{v}\right)-\mathrm{i} k \int_{\Gamma} u \bar{v} \\
& =\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v} \quad \text { "Shifted Laplacian" }
\end{aligned}
$$

- Finite element discretization

$$
\mathbf{A}_{\varepsilon} \mathbf{u}:=\left(\mathbf{S}-\left(k^{2}+i \varepsilon\right) \mathbf{M}^{\Omega}-\mathrm{i} k \mathbf{M}^{\Gamma}\right) \mathbf{u}=\mathbf{f}
$$

Blackboard

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$
\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{f} .
$$

"Elman theory" for GMRES requires:

$$
\left\|\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\| \lesssim 1, \quad \text { and } \quad \operatorname{dist}\left(0, \operatorname{fov}\left(\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)\right) \gtrsim 1
$$

Sufficient condition: $\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \lesssim C<1$.
Blackboard
In practice use

$$
\mathbf{B}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{B}_{\varepsilon}^{-1} \mathbf{f}, \quad \text { where } \quad \mathbf{B}_{\varepsilon}^{-1} \approx \mathbf{A}_{\varepsilon}^{-1} .
$$

Writing

$$
\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}=\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}+\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\left(\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right),
$$

a sufficient condition is:

$$
\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \text { and }\left\|\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{2} \quad \text { small },
$$

i.e. $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A} and $\mathbf{B}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}_{ε}.

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$
\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{f}
$$

"Elman theory" for GMRES requires:

$$
\left\|\mathbf{A}_{\varepsilon}^{-1} \mathbf{\Delta}\right\| \lesssim 1, \quad \text { and } \quad \operatorname{dist}\left(0, \text { fov }\left(\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)\right) \gtrsim 1
$$

Sufficient condition: $\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \lesssim C<1$.
In practice use

$$
\mathbf{B}_{\varepsilon}^{-1} \mathbf{A u}=\mathbf{B}_{\varepsilon}^{-1} \mathbf{f}
$$

$\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$. Writing

$$
\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}=\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}+\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\left(\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)
$$

so we require

$$
\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \text { and }\left\|\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{2} \quad \text { small },
$$

i.e. $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}
and $\mathrm{B}_{\varepsilon}^{-1}$ to be a good preconditioner for A_{ε}. Part 1

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$
\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{f}
$$

＂Elman theory＂for GMRES requires：

$$
\left\|\mathbf{A}_{\varepsilon}^{-1} \mathbf{\Delta}\right\| \lesssim 1, \quad \text { and } \quad \operatorname{dist}\left(0, \text { fov }\left(\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)\right) \gtrsim 1
$$

Sufficient condition：$\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \lesssim C<1$ ．
In practice use

$$
\mathbf{B}_{\varepsilon}^{-1} \mathbf{A u}=\mathbf{B}_{\varepsilon}^{-1} \mathbf{f}
$$

$\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$ ．Writing

$$
\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}=\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}+\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\left(\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right),
$$

so we require

$$
\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \text { and }\left\|\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{2} \quad \text { small },
$$

i．e． $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}
and $\mathbf{B}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}_{ε} ．Part 2

A very short history

Bayliss et al 1983 , Laird \& Giles 2002.....

Erlangga, Vuik \& Oosterlee '04 and subsequent papers: Precondition A with MG approximation of $\mathbf{A}_{\epsilon}^{-1} \quad \epsilon \sim k^{2}$ (simplified Fourier eigenvalue analysis)

Kimn \& Sarkis ' 13 used $\varepsilon \sim k^{2}$ to enhance domain decomposition methods

Engquist and Ying, '11 Used $\varepsilon \sim k$ to stabilise their sweeping preconditioner
...others...

Theorem 1 (with Martin Gander and Euan Spence)

For star-shaped domains
Smooth (or convex) domains, quasiuniform meshes:

$$
\left\|\mathbf{I}-\mathbf{A}_{\epsilon}^{-1} \mathbf{A}\right\| \lesssim \frac{\epsilon}{k}
$$

Corner singularities, locally refined meshes:

$$
\left\|\mathbf{I}-\mathbf{D}^{1 / 2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1 / 2}\right\| \lesssim \frac{\epsilon}{k}
$$

$\mathbf{D}=\operatorname{diag}\left(\mathbf{M}^{\Omega}\right)$.

So ϵ / k sufficiently small $\Longrightarrow k$-independent GMRES convergence.

Shifted Laplacian preconditioner $\varepsilon=\boldsymbol{k}$

Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square

	k	$\#$ GMRES
10	$\mathbf{6}$	
$h \sim k^{-3 / 2}$	20	6
40	6	
80	6	

Shifted Laplacian preconditioner $\varepsilon=\boldsymbol{k}^{\mathbf{3 / 2}}$

Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square

	k	$\#$ GMRES
	10	$\mathbf{8}$
$h \sim k^{-3 / 2}$	20	11
	40	14
	80	16

Shifted Laplacian preconditioner $\varepsilon=\boldsymbol{k}^{2}$

Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square

	k	$\#$ GMRES
	10	13
$h \sim k^{-3 / 2}$	20	24
	40	48
	80	86

Proof of Theorem 1: via continuous problem

$$
\begin{equation*}
a_{\epsilon}(u, v)=\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v}, \quad v \in H^{1}(\Omega) \tag{*}
\end{equation*}
$$

Theorem (Stability) Assume Ω is Lipschitz and star-shaped. Then, if ϵ / k sufficiently small,

$$
\underbrace{\|\nabla u\|_{L^{2}(\Omega)}^{2}+k^{2}\|u\|_{L^{2}(\Omega)}^{2}}_{=:\|u\|_{1, k}^{2}} \lesssim\|f\|_{L^{2}(\Omega)}^{2}+\|g\|_{L^{2}(\Gamma)}^{2}, \quad k \rightarrow \infty
$$

" $\lesssim "$ indept of k and ϵ cf. Melenk 95, Cummings \& Feng 06 More absorption: $k \lesssim \epsilon \lesssim k^{2}$ general Lipschitz domain OK.

Key technique in proof: Rellich/Morawetz Identities
More detail of proof: Lecture 4

Exact solution estimate :

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \lesssim k^{-1}\|f\|_{L^{2}(\Omega)} \tag{*}
\end{equation*}
$$

Finite element solution: $\quad \mathbf{A}_{\varepsilon} \mathbf{u}=\mathbf{f}$
Estimate:

$$
\begin{equation*}
\|\mathbf{u}\|_{2} \lesssim k^{-1} h^{-d}\|\mathbf{f}\|_{2} \tag{**}
\end{equation*}
$$

proof of (**) uses (*) and FE quasioptimality (h small enough)

$$
\text { Hence } \quad \begin{aligned}
\left\|\mathbf{I}-\mathbf{A}_{\epsilon}^{-1} \mathbf{A}\right\| & \leq\left\|\mathbf{A}_{\varepsilon}^{-1}\right\|\left\|\mathbf{A}_{\varepsilon}-\mathbf{A}\right\| \\
& \leq k^{-1} h^{-d}\left\|i \epsilon \mathbf{M}^{\Omega}\right\| \lesssim \frac{\epsilon}{k} .
\end{aligned}
$$

Locally refined meshes:

$$
\left\|\mathbf{I}-\mathbf{D}^{1 / 2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1 / 2}\right\| \lesssim \frac{\epsilon}{k}
$$

Exterior scattering problem with refinement

$h \sim k^{-1}$,
Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square \# GMRES

with diagonal scaling			
k	$\varepsilon=k$	$\varepsilon=k^{3 / 2}$	
20	5	8	
40	5	11	
80	5	13	
160	5	16	

A trapping domain

74624 Nodes, $k=7.854, f(x, y)=0$, plane vave scattering total

$k \quad \varepsilon=k \quad \varepsilon=k^{3 / 2}$

$10 \pi / 8$	$\mathbf{1 8}$	$\mathbf{2 9}$
$20 \pi / 8$	$\mathbf{1 9}$	$\mathbf{4 1}$
$40 \pi / 8$	$\mathbf{2 1}$	$\mathbf{6 0}$
$80 \pi / 8$	$\mathbf{2 2}$	$\mathbf{8 9}$

Stability result fails ... "quasimodes"
Lecture 4
Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010

Part 2: How to approximate $\mathbf{A}_{\varepsilon}^{-1}$?

Erlangga, Osterlee, Vuik (2004):
Geometric multigrid: problem "elliptic"
Engquist \& Ying (2012):
"Since the shifted Laplacian operator is elliptic, standard algorithms such as multigrid can be used for its inversion"

Domain Decomposition (DD):
Many non-overlapping methods $(\varepsilon=0)$
Benamou \& Després 1997.....Gander, Magoules, Nataf, Halpern, Dolean........

General issue: coarse grids, scalability?
Conjecture If ε large enough, classical overlapping DD methods with coarse grids will work (giving scalable solvers).

However Classical analysis for $\varepsilon=0$ (Cai \& Widlund, 1992) leads to coarse grid size $H \sim k^{-2}$

Classical additive Schwarz

To solve a problem on a fine grid FE space \mathcal{S}_{h}

- Coarse space \mathcal{S}_{H} (here linear FE) on a coarse grid
- Subdomain spaces \mathcal{S}_{i} on subdomains Ω_{i}, overlap δ $H_{\text {sub }} \sim H$ in this case

Classical additive Schwarz p/c for matrix C

Approximation of C^{-1} :

$$
\sum_{i} \mathbf{R}_{i}^{T} \mathbf{C}_{i}^{-1} \mathbf{R}_{i}+\mathbf{R}_{H}^{T} \mathbf{C}_{H}^{-1} \mathbf{R}_{H}
$$

$\mathbf{R}_{i}=$ restriction to \mathcal{S}_{i},
$\mathbf{C}_{i}=\mathbf{R}_{i} \mathbf{C R} \mathbf{R}_{i}^{T}$
Dirichlet BCs

Apply to \mathbf{A}_{ε} to get $\mathbf{B}_{\varepsilon}^{-1}$

Non-standard DD theory - applied to \mathbf{A}_{ε}

Coercivity Lemma There exisits $|\Theta|=1$, with

$$
\operatorname{Im}\left[\Theta a_{\varepsilon}(v, v)\right] \gtrsim \frac{\varepsilon}{k^{2}}\|v\|_{1, k}^{2} .
$$

Projections onto subpaces:

$$
a_{\varepsilon}\left(Q_{i} v_{h}, w_{i}\right)=a_{\varepsilon}\left(v_{h}, w_{i}\right), \quad v_{h} \in \mathcal{S}_{h}, \quad w_{i} \in \mathcal{S}_{i}
$$

Non－standard DD theory－applied to \mathbf{A}_{ε}

Coercivity Lemma There exisits $|\Theta|=1$ ，with

$$
\operatorname{Im}\left[\Theta a_{\varepsilon}(v, v)\right] \gtrsim \frac{\varepsilon}{k^{2}} \underbrace{\|v\|_{1, k}^{2}}_{\|\nabla u\|_{\Omega}^{2}+k^{2}\|u\|_{\Omega}^{2}}
$$

Lecture 4
Projections onto subpaces：

$$
a_{\varepsilon}\left(Q_{H} v_{h}, w_{H}\right)=a_{\varepsilon}\left(v_{h}, w_{H}\right), \quad v_{h} \in \mathcal{S}_{h}, \quad w_{H} \in \mathcal{S}_{H}
$$

Guaranteed well－defined by (\star) ．
Analysis of $\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}$ equivalent to analysing

$$
Q:=\sum_{i} Q_{i}+Q_{H} \quad \text { operator in FE space } \quad \mathcal{S}_{h}
$$

Convergence results

Assume overlap $\delta \sim H$ and $\varepsilon \sim k^{2}$

Theorem (with Euan Spence and Eero Vainikko)
(i) For all coarse grid sizes H,

$$
\left\|B_{\varepsilon}^{-1} A_{\varepsilon}\right\|_{D_{k}} \lesssim 1
$$

(ii) Provided $H k \lesssim 1$ (no pollution!).

$$
\operatorname{dist}\left(0, \mathbf{f o v}\left(B_{\varepsilon}^{-1} A_{\varepsilon}\right)_{D_{k}}\right) \gtrsim 1
$$

Note: $D_{k}=$ stiffness matrix for Helmholtz energy:

$$
(u, v)_{H^{1}}+k^{2}(u, v)_{L^{2}}
$$

Hence k-independent (weighted) GMRES convergence when

$$
\varepsilon \sim k^{2} \quad \text { and } \quad H k \lesssim 1
$$

Convergence results - general ε

Assume overlap $\delta \sim H$

Theorem (with Euan Spence and Eero Vainikko)
(i) For all coarse grid sizes H,

$$
\left\|B_{\varepsilon}^{-1} A_{\varepsilon}\right\|_{D_{k}} \lesssim k^{2} / \varepsilon
$$

(ii) Provided $H k \lesssim\left(\varepsilon / k^{2}\right)^{3}$

$$
\operatorname{dist}\left(0, \mathbf{f o v}\left(B_{\varepsilon}^{-1} A_{\varepsilon}\right)_{D_{k}}\right) \gtrsim\left(\varepsilon / k^{2}\right)^{2},
$$

Same results for right preconditioning (duality)

Extension to general overlap, and one-level Schwarz

Some steps in proof $\varepsilon \sim k^{2}$

$$
\begin{aligned}
\left(v_{h}, Q v_{h}\right)_{1, k} & =\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(v_{h}, Q_{H} v_{h}\right)_{1, k} & =\left\|Q_{H} v_{h}\right\|_{1, k}^{2}+\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k}
\end{aligned}
$$

Second term is "small" (condition on $k H$)
["Galerkin Orthogonality", duality, regularity]

$$
\begin{aligned}
\left|\left(v_{h}, Q v_{h}\right)_{1, k}\right| & \gtrsim \sum_{j}\left\|Q_{j} v_{h}\right\|_{1, k}^{2}+\left\|Q_{H} v_{h}\right\|_{1, k}^{2} \\
& \gtrsim\left\|v_{h}\right\|_{1, k}^{2}
\end{aligned}
$$

Some steps in proof

$$
\begin{aligned}
\left(v_{h}, Q v_{h}\right)_{1, k} & =\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(v_{h}, Q_{H} v_{h}\right)_{1, k} & =\left\|Q_{H} v_{h}\right\|_{1, k}^{2}+\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k}
\end{aligned}
$$

Second term is small (condition on $k H$)
["Galerkin Orthogonality", duality, regularity]

$$
\begin{aligned}
\left|\left(v_{h}, Q v_{h}\right)_{1, k}\right| & \gtrsim \sum_{j}\left\|Q_{j} v_{h}\right\|_{1, k}^{2}+\left\|Q_{H} v_{h}\right\|_{1, k}^{2} \\
& \gtrsim\left(\frac{\varepsilon}{k^{2}}\right)^{2}\left\|v_{h}\right\|_{1, k}^{2}
\end{aligned}
$$

Lecture 4

Useful Variants

HRAS：

－Multiplicative between coarse and local solves
－only add up once on regions of overlap

ImpHRAS

－impedance boundary conditions on local solves

All experiments：
unit square，$h \sim k^{-3 / 2}, n \sim k^{3}, \delta \sim H$ ．

Standard GMRES－minimise residual in Euclidean norm （Theory has weights）

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε}

$\varepsilon=k^{2}$
\# GMRES iterates with HRAS:

k	$H \sim k^{-1}$	$H \sim k^{-0.9}$	$H \sim k^{-0.8}$
10	8	8	8
20	8	9	9
40	9	10	10
60	9	10	11
80	9	10	11

Scope for increasing H when $\varepsilon=k^{2}$
Is there scope for reducing ε ?

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε}

$\varepsilon=k$
\# GMRES iterates with HRAS:

k	$H \sim k^{-1}$	$H \sim k^{-0.9}$	$H \sim k^{-0.8}$
10	10	10	12
20	11	14	18
40	16	24	122
60	22	40	$*$
80	30	61	$*$

Method still "works" when $\varepsilon=k$ provided $H k \sim 1$
$H \sim k^{-1}$
\# GMRES iterates with HRAS:

k	$\varepsilon=k$	$\varepsilon=k^{2}$ cf. Shifted Laplace
10	11	19
20	12	37
40	18	63
60	25	86
80	33	110
100	43	136

Local problems of size $k \times k$
Coarse grid problem of $k^{2} \times k^{2}$ (dominates)
problem of size $k^{2} \times k^{2}$, with $\varepsilon \sim k$
(Hierarchical) subdomains of size $k \times k$ no inner coarse grid

\# GMRES iterates with ImpHRAS

k	$H_{\text {inner }} \sim k^{-1}$
10	9
20	14
40	21
60	30
80	35
100	39
120	42
140	46

$$
\sim k^{0.3}
$$

$\varepsilon=k$
\# FGMRES iterates with HRAS (Inner iterations ImpHRAS)

k		time (\mathbf{s})
10	$\mathbf{1 8}(1)$	0.66
20	$\mathbf{1 9}(2)$	3.68
40	$\mathbf{2 2}(3)$	54.7
60	$\mathbf{2 8}(5)$	370
80	$\mathbf{3 6}(5)$	1316
100	$\mathbf{4 5}(7)$	3417
		$\sim k^{4} \sim n^{4 / 3}$

$\mathcal{O}\left(k^{2}\right)$ independent solves of size k

A more challenging application

3D SEG Salt model

Childs, IGG, Shanks, 2016

Hybrid Sweeping preconditioner with one level RAS inner solve

Boundary condition chosen as "optimised Robin condition"

	$\omega=3 \pi$		$\omega=6 \pi$		$\omega=9 \pi$	
Nsub	Iterations	Solve time (s)	Iterations	Solve time (s)	Iterations	Solve time (s)
$2 \times 2 \times 1$	26	$2.704 \mathrm{e}+01$	29	$2.995 \mathrm{e}+01$	43	$9.98 \mathrm{e}+01$
$4 \times 4 \times 1$	26	$2.470 \mathrm{e}+01$	29	$2.691 \mathrm{e}+01$	43	$9.97 \mathrm{e}+01$
$8 \times 8 \times 1$	26	$9.440 \mathrm{e}+00$	29	$1.011 \mathrm{e}+01$	43	$9.99 \mathrm{e}+01$

PPW

24
12
8
Shifted problem $(\omega / c(\mathbf{x}))^{2} \rightarrow((\omega-1+0.5 \mathrm{i}) / c(\mathbf{x}))^{2}$
cf. $\varepsilon \sim k$

Summary

- k and ϵ explicit analysis allows rigorous explanation of some empirical observations and formulation of new methods.
- When $\epsilon \sim k, \quad \mathbf{A}_{\epsilon}^{-1}$ is optimal preconditioner for \mathbf{A}
- When $\epsilon \sim k^{2}, \quad \mathbf{B}_{\varepsilon}^{-1}$ is optimal preconditioner for \mathbf{A}_{ε}
- When preconditioning \mathbf{A} with $\mathbf{B}_{\varepsilon}^{-1}$, empirical best choice is
$\varepsilon \sim k$
- New framework for DD analysis - Helmholtz energy and sesquilinear form.
- Open questions in analysis when $\frac{\varepsilon}{k^{2}} \ll 1$

