On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

Ivan Graham and Euan Spence (Bath, UK)

Collaborations with:

Paul Childs (Emerson Roxar, Oxford), Martin Gander (Geneva) Douglas Shanks (Bath) Eero Vainikko (Tartu, Estonia)

CUHK Lecture 3, January 2016

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _ .

Outline of talk:

- Seismic inversion, HF Helmholtz equation
- FE discretization, preconditioned GMRES solvers
- sharp analysis of preconditioners based on absorption
- new theory for Domain Decomposition for Helmholtz
- almost optimal (scalable) solvers (2D implementation)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

some open theoretical questions

Motivation

2 PC 3/20/07

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (characterised by wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$-\Delta u + \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = f$$
 or its elastic variant

Frequency domain:

$$-\Delta u - \left(\frac{\omega}{c}\right)^2 u = f, \qquad \omega =$$
 frequency

《曰》 《聞》 《臣》 《臣》 三臣 …

solve for u with approximate c.

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$-\Delta u + rac{\partial^2 u}{\partial t^2} = f$$
 or its elastic variant

Frequency domain:

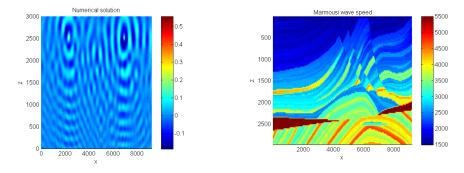
$$-\Delta u - \left(\frac{\omega L}{c}\right)^2 u = f, \qquad \omega =$$
 frequency

solve for u with approximate c.

Large domain of characteristic length *L*. effectively high frequency - time domain vs freqency domain

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Marmousi Model Problem



• Schlumberger 2007: Solver of choice based on principle of limited absorption (Erlangga, Osterlee, Vuik, 2004)

• This work: Analysis of this approach and use it to build better methods

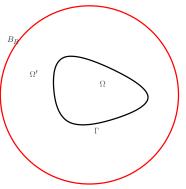
イロト イヨト イヨト イヨト

크

Analysis for: interior impedance problem

$$\begin{array}{rcl} -\Delta u - k^2 u &= f \quad \mbox{in bounded domain } \Omega \\ \frac{\partial u}{\partial n} - iku &= g \quad \mbox{on } \Gamma := \partial \Omega \end{array}$$

....Also truncated sound-soft scattering problems in Ω'



<ロト <回ト < 国ト < 国ト < 国ト 三 国

Linear algebra problem

• weak form

$$a (u, v) := \int_{\Omega} \left(\nabla u \cdot \nabla \overline{v} - \mathbf{k}^2 u \overline{v} \right) - \mathbf{i} \mathbf{k} \int_{\Gamma} u \overline{v}$$
$$= \int_{\Omega} f \overline{v} + \int_{\Gamma} g \overline{v}$$

,

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• (Fixed order) finite element discretization

$$\mathbf{A} \mathbf{u} := (\mathbf{S} - \mathbf{k}^2 \mathbf{M}^{\Omega} - \mathbf{i}\mathbf{k}\mathbf{M}^{\Gamma})\mathbf{u} = \mathbf{f}$$

Often: $h \sim k^{-1}$ but pollution effect: for quasioptimality need $h \sim k^{-2}$??, $h \sim k^{-3/2}$?? Melenk and Sauter 2011, Zhu and Wu 2013

Linear algebra problem

• weak form with absorption $k^2 \rightarrow k^2 + i\varepsilon$,

$$\begin{aligned} a_{\varepsilon}(u,v) &:= \int_{\Omega} \left(\nabla u . \nabla \overline{v} - (k^2 + i\varepsilon) u \overline{v} \right) - \mathrm{i}k \int_{\Gamma} u \overline{v} \\ &= \int_{\Omega} f \overline{v} + \int_{\Gamma} g \overline{v} \quad \text{"Shifted Laplacian"} \end{aligned}$$

• Finite element discretization

$$\mathbf{A}_{\varepsilon}\mathbf{u} := (\mathbf{S} - (k^2 + i\varepsilon)\mathbf{M}^{\Omega} - \mathbf{i}k\mathbf{M}^{\Gamma})\mathbf{u} = \mathbf{f}$$

Blackboard

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

"Elman theory" for GMRES requires:

 $\|\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\| \lesssim 1, \quad \text{ and } \quad \operatorname{dist}(0, \mathbf{fov}(\mathbf{A}_{\varepsilon}^{-1}\mathbf{A})) \gtrsim 1$

Sufficient condition: $\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2 \lesssim C < 1$. Blackboard In practice use

$$\mathbf{B}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{B}_{\varepsilon}^{-1}\mathbf{f}, \quad \text{where} \quad \mathbf{B}_{\varepsilon}^{-1} \ \approx \ \mathbf{A}_{\varepsilon}^{-1}.$$

Writing

$$\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A} = \mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} + \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} (\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1} \mathbf{A}),$$

a sufficient condition is:

$$\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2$$
 and $\|\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}\|_2$ small,

i.e. A_{ε}^{-1} to be a good preconditioner for A_{ε} . and B_{ε}^{-1} to be a good preconditioner for A_{ε} .

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u}=\mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

"Elman theory" for GMRES requires:

 $\|\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\| \lesssim 1$, and $\operatorname{dist}(0, \mathbf{fov}(\mathbf{A}_{\varepsilon}^{-1}\mathbf{A})) \gtrsim 1$ Sufficient condition: $\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2 \lesssim C < 1$.

In practice use

$$\mathbf{B}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u}=\mathbf{B}_{\varepsilon}^{-1}\mathbf{f},$$

 $\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$. Writing

$$\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A} = \mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} + \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} (\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1} \mathbf{A}),$$

so we require

$$\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_{2}$$
 and $\|\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}\|_{2}$ small,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

i.e. $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A} and $\mathbf{B}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}_{ε} . Part 1

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u}=\mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

"Elman theory" for GMRES requires:

 $\|\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\| \lesssim 1$, and $\operatorname{dist}(0, \mathbf{fov}(\mathbf{A}_{\varepsilon}^{-1}\mathbf{A})) \gtrsim 1$ Sufficient condition: $\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2 \lesssim C < 1$.

In practice use

$$\mathbf{B}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u}=\mathbf{B}_{\varepsilon}^{-1}\mathbf{f},$$

 $\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$. Writing

$$\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A} = \mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} + \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} (\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1} \mathbf{A}),$$

so we require

$$\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_{2}$$
 and $\|\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}\|_{2}$ small,

i.e. A_{ϵ}^{-1} to be a good preconditioner for A and B_{ϵ}^{-1} to be a good preconditioner for A_{ϵ} . Part 2

Bayliss et al 1983, Laird & Giles 2002.....

Erlangga, Vuik & Oosterlee '04 and subsequent papers: Precondition A with MG approximation of A_{ϵ}^{-1} $\epsilon \sim k^2$ (simplified Fourier eigenvalue analysis)

Kimn & Sarkis '13 used $\varepsilon \sim k^2$ to enhance domain decomposition methods

Engquist and Ying, '11 Used $\varepsilon \sim k$ to stabilise their sweeping preconditioner

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

...others...

Part 1

Theorem 1 (with Martin Gander and Euan Spence) For star-shaped domains Smooth (or convex) domains, quasiuniform meshes:

$$\|\mathbf{I} - \mathbf{A}_{\epsilon}^{-1}\mathbf{A}\| \lesssim rac{\epsilon}{k}$$

Corner singularities, locally refined meshes:

$$\|\mathbf{I} - \mathbf{D}^{1/2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1/2}\| \lesssim rac{\epsilon}{k}.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 $\mathbf{D} = \operatorname{diag}(\mathbf{M}^{\Omega}).$

So ϵ/k sufficiently small $\implies k$ -independent GMRES convergence.

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	6
$h \sim k^{-3/2}$	20	6
	40	6
	80	6

Shifted Laplacian preconditioner $arepsilon = k^{3/2}$

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	8
$h \sim k^{-3/2}$	20	11
	40	14
	80	16

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	13
$h \sim k^{-3/2}$	20	24
	40	48
	80	86

Proof of Theorem 1: via continuous problem

$$a_{\epsilon}(u,v) = \int_{\Omega} f\overline{v} + \int_{\Gamma} g\overline{v} , \quad v \in H^{1}(\Omega)$$
 (*)

Theorem (Stability) Assume Ω is Lipschitz and star-shaped. Then, if ϵ/k sufficiently small,

$$\underbrace{\|\nabla u\|_{L^{2}(\Omega)}^{2} + k^{2} \|u\|_{L^{2}(\Omega)}^{2}}_{=:\|u\|_{1,k}^{2}} \lesssim \|f\|_{L^{2}(\Omega)}^{2} + \|g\|_{L^{2}(\Gamma)}^{2} , \quad k \to \infty$$

" \lesssim " indept of k and ϵ cf. Melenk 95, Cummings & Feng 06 More absorption: $k \lesssim \epsilon \lesssim k^2$ general Lipschitz domain OK. Key technique in proof: Rellich/Morawetz Identities More detail of proof: Lecture 4

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Proof continued

Exact solution estimate :

$$||u||_{L^2(\Omega)} \lesssim k^{-1} ||f||_{L^2(\Omega)}$$
 (*)

Finite element solution: $A_{\varepsilon}u = f$

Estimate:

$$\|\mathbf{u}\|_2 \lesssim k^{-1}h^{-d}\|\mathbf{f}\|_2$$
 (**)

proof of (**) uses (*) and FE quasioptimality(h small enough)Lecture 4

Locally refined meshes:

$$\|\mathbf{I} - \mathbf{D}^{1/2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1/2}\| \quad \lesssim rac{\epsilon}{k} \, .$$

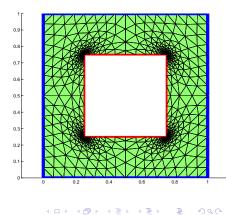
Exterior scattering problem with refinement

$$h \sim k^{-1}$$
,
Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

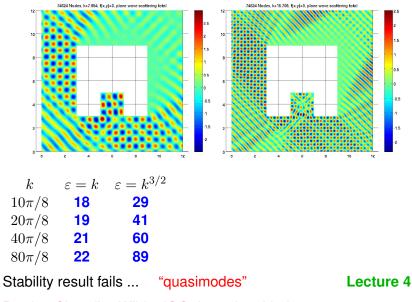
GMRES

with diagonal scaling

k	$\varepsilon = k$	$\varepsilon = k^{3/2}$
20	5	8
40	5	11
80	5	13
160	5	16



A trapping domain



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

크

Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010

Part 2: How to approximate A_{ε}^{-1} ?

Erlangga, Osterlee, Vuik (2004): Geometric multigrid: problem "elliptic"

Engquist & Ying (2012):

"Since the shifted Laplacian operator is elliptic, standard algorithms such as multigrid can be used for its inversion"

Domain Decomposition (DD):

Many non-overlapping methods ($\varepsilon = 0$)

Benamou & Després 1997.....Gander, Magoules, Nataf, Halpern, Dolean......

General issue: coarse grids, scalability?

Conjecture If ε large enough, classical overlapping DD methods with coarse grids will work (giving scalable solvers).

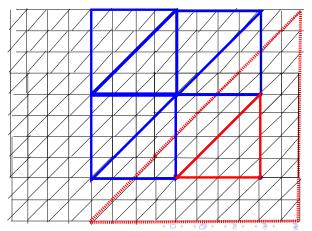
However Classical analysis for $\varepsilon=0$ (Cai & Widlund, 1992) leads to coarse grid size $H\sim k^{-2}$

Classical additive Schwarz

To solve a problem on a fine grid FE space \mathcal{S}_h

- Coarse space S_H (here linear FE) on a coarse grid
- Subdomain spaces S_i on subdomains Ω_i , overlap δ

 $H_{sub} \sim H$ in this case



590

Classical additive Schwarz p/c for matrix C

Approximation of C^{-1} :

$$\sum_i \mathbf{R}_i^T \mathbf{C}_i^{-1} \mathbf{R}_i + \mathbf{R}_H^T \mathbf{C}_H^{-1} \mathbf{R}_H$$

 $\begin{aligned} \mathbf{R}_i &= \text{restriction to } \mathcal{S}_i, & \mathbf{R}_H &= \text{restriction to } \mathcal{S}_H \\ \mathbf{C}_i &= \mathbf{R}_i \mathbf{C} \mathbf{R}_i^T & \mathbf{C}_H &= \mathbf{R}_H \mathbf{C} \mathbf{R}_H^T \\ \text{Dirichlet BCs} & \end{aligned}$

Apply to \mathbf{A}_{ε} to get $\mathbf{B}_{\varepsilon}^{-1}$

Non-standard DD theory - applied to A_{ε}

Coercivity Lemma There exisits $|\Theta| = 1$, with

$$\operatorname{Im}\left[\Theta a_{\varepsilon}(v,v)\right] \gtrsim \frac{\varepsilon}{k^2} \|v\|_{1,k}^2. \tag{(\star)}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Projections onto subpaces:

$$a_{\varepsilon}(Q_i v_h, w_i) = a_{\varepsilon}(v_h, w_i), \quad v_h \in \mathcal{S}_h, \quad w_i \in \mathcal{S}_i.$$

Non-standard DD theory - applied to A_{ε}

Coercivity Lemma There exisits $|\Theta| = 1$, with

$$\operatorname{Im}\left[\Theta a_{\varepsilon}(v,v)\right] \gtrsim \frac{\varepsilon}{k^{2}} \underbrace{\|v\|_{1,k}^{2}}_{\|\nabla u\|_{\Omega}^{2}+k^{2}\|u\|_{\Omega}^{2}}. \tag{(\star)}$$

Lecture 4

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Projections onto subpaces:

$$a_{\varepsilon}(Q_H v_h, w_H) = a_{\varepsilon}(v_h, w_H), \quad v_h \in \mathcal{S}_h, \quad w_H \in \mathcal{S}_H.$$

Guaranteed well-defined by (*).

Analysis of $\mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}$ equivalent to analysing

$$Q \ := \ \sum_i Q_i \ + \ Q_H$$
 operator in FE space \mathcal{S}_h .

Convergence results

Assume overlap $\delta \sim H$ and $\varepsilon \sim k^2$

Theorem (with Euan Spence and Eero Vainikko)

(i) For all coarse grid sizes H,

 $||B_{\varepsilon}^{-1}A_{\varepsilon}||_{D_k} \lesssim 1.$

(ii) Provided $Hk \lesssim 1$ (no pollution!).

$$\operatorname{dist}(0, \operatorname{fov}(B_{\varepsilon}^{-1}A_{\varepsilon})_{D_k}) \gtrsim 1,$$

Note: $D_k = \text{stiffness matrix for Helmholtz energy:}$ $(u, v)_{H^1} + k^2 (u, v)_{L^2}$

Hence $k-{\rm independent}$ (weighted) GMRES convergence when $\varepsilon\sim k^2 \quad {\rm and} \quad Hk\lesssim 1$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Convergence results - general ε

Assume overlap $\delta \sim H$

Theorem (with Euan Spence and Eero Vainikko)

(i) For all coarse grid sizes H,

 $\|B_{\varepsilon}^{-1}A_{\varepsilon}\|_{D_k} \lesssim k^2/\varepsilon$.

(ii) Provided $Hk \lesssim (\varepsilon/k^2)^3$

$$\operatorname{dist}(0, \operatorname{fov}(B_{\varepsilon}^{-1}A_{\varepsilon})_{D_k}) \gtrsim (\varepsilon/k^2)^2,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Same results for right preconditioning (duality)

Extension to general overlap, and one-level Schwarz

Some steps in proof $\varepsilon \sim k^2$

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$
$$(v_h, Q_H v_h)_{1,k} = \|Q_H v_h\|_{1,k}^2 + ((I - Q_H)v_h, Q_H v_h)_{1,k}$$

Second term is "small" (condition on kH) ["Galerkin Orthogonality", duality, regularity]

$$|(v_h, Qv_h)_{1,k}| \gtrsim \sum_{j} ||Q_j v_h||_{1,k}^2 + ||Q_H v_h||_{1,k}^2$$

$$\gtrsim ||v_h||_{1,k}^2$$

Some steps in proof $\varepsilon \ll$

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$
$$(v_h, Q_H v_h)_{1,k} = \|Q_H v_h\|_{1,k}^2 + ((I - Q_H) v_h, Q_H v_h)_{1,k}$$

Second term is small (condition on kH)

["Galerkin Orthogonality", duality, regularity]

$$\begin{aligned} |(v_h, Qv_h)_{1,k}| &\gtrsim \sum_{j} \|Q_j v_h\|_{1,k}^2 + \|Q_H v_h\|_{1,k}^2 \\ &\gtrsim \left(\frac{\varepsilon}{k^2}\right)^2 \|v_h\|_{1,k}^2 \end{aligned}$$

Lecture 4

(日) (문) (문) (문) (문)

Useful Variants

HRAS:

- Multiplicative between coarse and local solves
- only add up once on regions of overlap

ImpHRAS

• impedance boundary conditions on local solves

All experiments:

unit square, $h \sim k^{-3/2}$, $n \sim k^3$, $\delta \sim H$.

Standard GMRES - minimise residual in Euclidean norm (Theory has weights)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

$\mathbf{B}_{arepsilon}^{-1}$ as preconditioner for $\mathbf{A}_{arepsilon}$

 $\varepsilon = k^2$

GMRES iterates with HRAS:

k	$H \sim k^{-1}$	$H \sim k^{-0.9}$	$H \sim k^{-0.8}$
10	8	8	8
20	8	9	9
40	9	10	10
10 20 40 60 80	9	10	11
80	9	10	11

Scope for increasing *H* when $\varepsilon = k^2$

◆□▶ ◆御▶ ◆理≯ ◆理≯ ─ 注

Is there scope for reducing ε ?

$\mathbf{B}_{arepsilon}^{-1}$ as preconditioner for $\mathbf{A}_{arepsilon}$

 $\varepsilon = k$

GMRES iterates with HRAS:

k	$H \sim k^{-1}$	$H \sim k^{-0.9}$	$H \sim k^{-0.8}$
10	10	10	12
20	10 11	14	18
40	16	24	122
60	16 22 30	40	*
80	30	61	*

Method still "works" when $\varepsilon = k$ provided $Hk \sim 1$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

The real problem: $\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for A

 $H \sim k^{-1}$

GMRES iterates with HRAS:

k	$\varepsilon = k$	$\varepsilon = k^2$ cf. Shifted Laplace
10	11	19
20	12	37
40	18	63
60	25	86
80	33	110
100	43	136

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Local problems of size $k \times k$ Coarse grid problem of $k^2 \times k^2$ (dominates)

The coarse grid problem: inner iteration

problem of size $k^2\times k^2$, with $\varepsilon\sim k$ (Hierarchical) subdomains of size $k\times k$ no inner coarse grid

GMRES iterates with ImpHRAS

k	$ H_{inner} \sim k^{-1}$
10	9
20	14
40	21
60	30
80	35
100	39
120	42
140	46
	-

 $\sim k^{0.3}$

The real problem: Inner outer FGMRES

 $\varepsilon = k$

FGMRES iterates with HRAS (Inner iterations ImpHRAS)

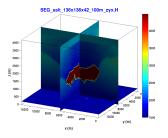
▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

k		time (s)
10	18 (1)	0.66
20	19 (2)	3.68
40	22 (3)	54.7
60	28 (5)	370
80	36 (5)	1316
100	45 (7)	3417
		$\sim k^4 \sim n^{4/3}$

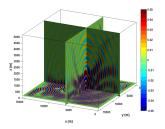
 $\mathcal{O}(k^2)$ independent solves of size k

A more challenging application

3D SEG Salt model



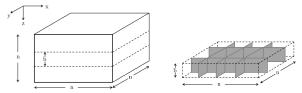
Childs, IGG, Shanks, 2016



イロト イヨト イヨト イヨト

크

Hybrid Sweeping preconditioner with one level RAS inner solve



Boundary condition chosen as "optimised Robin condition"

	ω	$= 3\pi$	ω	$= 6\pi$	ω	$= 9\pi$
Nsub	Iterations	Solve time (s)	Iterations	Solve time (s)	Iterations	Solve time (s)
2x2x1	26	2.704e+01	29	2.995e+01	43	9.98e+01
4x4x1	26	2.470e+01	29	2.691e+01	43	9.97e+01
8x8x1	26	9.440e+00	29	1.011e+01	43	9.99e+01

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

PPW 24 12 8

Shifted problem $(\omega/c(\mathbf{x}))^2 \rightarrow ((\omega - 1 + 0.5i)/c(\mathbf{x}))^2$

cf. $\varepsilon \sim k$

Summary

• k and ϵ explicit analysis allows rigorous explanation of some empirical observations and formulation of new methods.

- When $\epsilon \sim k$, $\mathbf{A}_{\epsilon}^{-1}$ is optimal preconditioner for \mathbf{A}
- When $\epsilon \sim k^2$, $\mathbf{B}_{\varepsilon}^{-1}$ is optimal preconditioner for \mathbf{A}_{ε}
- When preconditioning A with ${\bf B}_{\varepsilon}^{-1},$ empirical best choice is $\varepsilon \sim k$
- New framework for DD analysis Helmholtz energy and sesquilinear form.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

• Open questions in analysis when $\frac{\varepsilon}{k^2} \ll 1$