Lecture2: Hybrid numerical-asymptotic methods in high-frequency scattering

Ivan Graham (University of Bath, UK)

A survey of joint work with and work by:

V. Domínguez (Navarra)
E.A. Spence, T.Kim (Bath),
T. Betcke, V. Smyshlyaev (Univ. College London)
S. Chandler-Wilde, S. Langdon, D. Hewitt (Reading)

CUHK, January 2016
[S.N. Chandler-Wilde, IGG, S.Langdon, E.A. Spence,
Acta Numerica 21 (2012), pp 89-305]

High freq. problem for the Helmholtz equation

Given an object $\Omega \subset \mathbb{R}^{d}$, with boundary Γ and exterior Ω^{\prime}, Incident plane wave: $u_{I}(x)=\exp (\mathrm{i} k \mathbf{x} \cdot \widehat{\mathbf{a}})$
wavelength $\lambda=2 \pi / k$

Total wave $u=u_{I}+u_{S}$, where Scattered wave u_{S} satisfies:

$$
\Delta u_{S}+k^{2} u_{S}=0 \quad \text { in } \Omega^{\prime}
$$

plus boundary condition (Here $u_{I}+u_{S}=0$ on Γ) and radiation condition: $\frac{\partial u^{S}}{\partial r}-i k u^{S}=o\left(r^{-(d-1) / 2}\right) \quad$ as $\quad r \rightarrow \infty$

- Homogeneous scattering problem : k constant, infinite domain
- Boundary integral equation posed on scattering boundary Γ
- Solve using piecewise polynomial BEM
- Require at least $h \sim k^{-1}$ to resolve oscillations in solution
\Longrightarrow complexity $\mathcal{O}\left(k^{d-1}\right)$
- Proof that $h \sim k^{-(d+1) / 2}$ is sufficient
\Longrightarrow complexity $\mathcal{O}\left(k^{\left(d^{2}-1\right) / 2}\right)$

Recap of Lecture 1

- Homogeneous scattering problem : k constant, infinite domain
- Boundary integral equation posed on scattering boundary Γ
- Solve using piecewise polynomial BEM
- Require at least $h \sim k^{-1}$ to resolve oscillations in solution
\Longrightarrow complexity $\mathcal{O}\left(k^{d-1}\right)$
- Proof that $h \sim k^{-(d+1) / 2}$ is sufficient \Longrightarrow complexity $\mathcal{O}\left(k^{\left(d^{2}-1\right) / 2}\right)$

This lecture

- Different methods which have complexity (almost) bounded as $k \rightarrow \infty$

How is this possible?

A multiscale problem

Plane wave incident field $\exp (i \boldsymbol{k} \mathbf{x}$. $\hat{\mathbf{a}}) \quad$ scale $\mathcal{O}\left(\boldsymbol{k}^{-1}\right)$. May be other scales in the scattered field, $\boldsymbol{k}^{-1 / 2}, \boldsymbol{k}^{-1 / 3}$

Numerical Analysis

Conventional numerical methods (piecewise polynomial bases)
\rightarrow at least $O\left(k^{d-1}\right)$ DOF's
Conventional asymptotic methods work well as $k \rightarrow \infty$. [Fock, Ludwig, Buslaev, Babich]
Today's topic: "Hybrid numerical-asymptotic Methods" piecewise oscillatory bases work for all k
require $\sim \mathcal{O}(1)$ DOF's as $k \rightarrow \infty$
Need asymptotic information, so geometry dependent
Related: Plane-wave bases for general geometries
Research Plan
I. Construct oscillatory basis (for Galerkin BEM)
II. Prove error estimates
III. Realise the estimates

First formulate as BIE (last lecture)

$$
\begin{gathered}
\Delta u+k^{2} u=0 \\
G_{k}(x, y)=\left\{\begin{array}{cc}
\frac{i}{4} H_{0}^{(1)}(k|x-y|) & 2 \mathrm{D} \\
\frac{\exp (i k|x-y|)}{4 \pi|x-y|} & 3 \mathrm{D}
\end{array}\right.
\end{gathered}
$$

single layer potential : $\left(\mathcal{S}_{k} \phi\right)(x)=\int_{\Gamma} G_{k}(x, y) \phi(y) d S(y)$,
double layer:

$$
\left(\mathcal{D}_{k} \phi\right)(x)=\int_{\Gamma}\left[\partial_{n(y)} G_{k}(x, y)\right] \phi(y) d S(y)
$$

adjoint double layer: $\mathcal{D}_{k}^{\prime} \quad$ (switch roles of x and y).
Oscillatory integrals with phase: $k|x-y| \quad$ blackboard 1

Combined potential boundary integral formulations

combined potential formulation

$$
R_{k} v:=\left(\frac{1}{2} I+\mathcal{D}_{k}^{\prime}\right) v-\mathrm{i} k \mathcal{S}_{k} v=\partial_{n} u_{I}-\mathrm{i} k u_{I}:=f_{k},
$$

star－combined potential formulation：（requires an origin）

$$
\begin{aligned}
& R_{k} v:=(\mathbf{x . n})\left(\frac{1}{2} I+\mathcal{D}_{k}^{\prime}\right) v+\mathbf{x} .\left(\nabla_{\Gamma} \mathcal{S}_{k}\right) v-\mathrm{i} \eta \mathcal{S}_{k} v=f_{k}, \\
& (\mathbf{x . n})>0 \quad \text { star-shaped }
\end{aligned}
$$

Combined potential boundary integral formulations

combined potential formulation

$$
R_{k} v:=\left(\frac{1}{2} I+\mathcal{D}_{k}^{\prime}\right) v-\mathrm{i} k \mathcal{S}_{k} v=\partial_{n} u_{I}-\mathrm{i} k u_{I}:=f_{k},
$$

star - combined potential formulation: (requires an origin)

$$
R_{k} v:=(\mathbf{x . n})\left(\frac{1}{2} I+\mathcal{D}_{k}^{\prime}\right) v+\mathbf{x} .\left(\nabla_{\Gamma} \mathcal{S}_{k}\right) v-\mathrm{i} \eta \mathcal{S}_{k} v=f_{k},
$$

In general $\quad R_{k} v=f_{k} \quad$ No spurious frequencies.

Construct basis: 2D smooth convex case

> "Physical optics" approx $v(\gamma(s)):=k \exp (\mathrm{i} k \gamma(s) \cdot \widehat{\mathbf{a}}) V(s)$.
> $\gamma(s)=$ arclength
> blackboard 2
$V=$ "Slowly varying" factor in $v=\partial u / \partial n$.

- Λ_{1}, Λ_{2} : Fock zones V oscillates on scale $k^{-1 / 3}$
+ other complications!
- Λ_{3} : Illuminated V smooth, not oscillatory.
- Λ_{4} : Deep Shadow $V \approx 0$ exponentially

Ex: 2D smooth convex case : prove error estimate

Solve combined potential formulation with basis:

$$
v_{h}(s):= \begin{cases}k \exp (\mathrm{i} k \gamma(s) \cdot \widehat{\mathbf{a}}) P_{p}(s) & \text { Illuminated zone } \\ k \exp (\mathrm{i} k \gamma(s) \cdot \widehat{\mathbf{a}}) P_{p}(s) & \text { Fock zones } \mathcal{O}\left(k^{-1 / 3}\right) \\ 0 & \text { Shadow }\end{cases}
$$

where $P_{p}=$ polynomial of degree p
Theorem (Dominguez, IGG, Smyshlyaev, 07)

$$
\frac{\left\|v-v_{h}\right\|_{L^{2}(\Gamma)}}{k} \leq C_{n} k^{1 / 18}\left\{\left(\frac{k^{1 / 9}}{p}\right)^{n}+\exp \left(-\beta k^{\epsilon}\right)\right\}
$$

for all p and $n \approx p+1 . \quad C_{n}, \beta$ are constants independent of k and $\epsilon \approx 0$.
Corollary Choosing $p \sim k^{1 / 9+\delta}$ "is sufficient" as $k \rightarrow \infty$.

k - explicit regularity

G.O. $v(\mathbf{x}):=\partial u / \partial n=k V(\mathbf{x}, k) \exp (i k \mathbf{x} \cdot \hat{\mathbf{a}}), \quad x \in \Gamma$,

Theorem Dominguez, et. al, 2007
$\left|D^{n} V(x, k)\right| \leq \begin{cases}C_{n}, & n=0,1, \\ C_{n} k^{-1}\left(k^{-1 / 3}+\operatorname{dist}(x, S B)\right)^{-(n+2)} & n \geq 2,\end{cases}$
where $S B=\{\mathbf{x} \in \Gamma: \mathbf{n}(\mathbf{x}) \cdot \hat{\mathbf{a}}=0\}$ shadow boundary.
Proof Development of Melrose and Taylor (1985) plus matched asymptotic expansions. Justifies HF Galerkin method above

Ex: 2D smooth convex case: realise the estimates

Scattering by circle
Galerkin (with quadrature - see later)
Degree of the polynomials $p_{I}=p_{F_{1}}=p_{F_{2}}=\mathbf{p}$
Relative error $\left\|v-v_{h}\right\| / k \quad\left[\right.$ All norms $\left.\|\cdot\|_{L^{2}(\Gamma)}\right]$

	$k=250$	$k=4,000$	$k=64,000$
$\mathbf{p}=4$	$5.57 \mathrm{E}-03$	$1.57 \mathrm{E}-03$	$4.69 \mathrm{E}-04$
$\mathbf{p}=8$	$6.62 \mathrm{E}-04$	$2.72 \mathrm{E}-04$	$7.96 \mathrm{E}-05$
$\mathbf{p}=12$	$4.43 \mathrm{E}-04$	$4.55 \mathrm{E}-05$	$1.50 \mathrm{E}-05$
$\mathbf{p}=16$	$1.42 \mathrm{E}-03$	$3.92 \mathrm{E}-05$	$6.91 \mathrm{E}-06$
$\mathbf{p}=20$	$2.47 \mathrm{E}-03$	$2.74 \mathrm{E}-04$	$7.43 \mathrm{E}-06$

Ex: 2D Smooth convex case: computation times

$p=20: \quad 63$ degrees of freedom

Times (sec) to achieve a relative error: $\leq 10^{-3}$:
$k \quad$ setting up quadrature rules assembling matrix
$\begin{array}{lll}256 & 248 \mathrm{~s} & 227 \mathrm{~s} \\ 6400 & 227 \mathrm{~s} & 230 \mathrm{~s}\end{array}$

Solution on circle $k=400$

full wave solution (top)
computed slowly oscillatory part (bottom):

I．Construct oscillatory basis functions More later

II．Prove error estimates

III．Implement the methods（oscillatory integration）

II．Error Estimates：Hybrid methods

Exotic（k－dependent）subspace： $\mathcal{V}_{h, k} \subset L_{2}(\Gamma)$ ．
Galerkin method for $R_{k} v=f_{k}$ ：
Seek $v_{h} \in \mathcal{V}_{h, k}$ such that

$$
\left(R_{k} v_{h}, w_{h}\right)=\left(f_{k}, w_{h}\right) \quad \text { for all } \quad w_{h} \in \mathcal{V}_{h, k}
$$

Céa＇s lemma Assume there exist $B_{k}>0, \alpha_{k}>0$ such that
Continuity：

$$
\left\|R_{k}\right\| \leq B_{k}
$$

Coercivity ${ }^{\dagger}: \quad\left|\left(R_{k} v, v\right)\right| \geq \alpha_{k}\|v\|^{2}$
Then we have（with no mesh restriction），

$$
\left\|v-v_{h}\right\| \leq\left(\frac{B_{k}}{\alpha_{k}}\right) \inf _{w_{h} \in \mathcal{V}_{h, k}}\left\|v-w_{h}\right\|
$$

\dagger Stronger than invertibility．

II．Error Estimates：Hybrid methods

Exotic（k－dependent）subspace： $\mathcal{V}_{h, k} \subset L_{2}(\Gamma)$ ．
Galerkin method for $R_{k} v=f_{k}$ ：
Seek $v_{h} \in \mathcal{V}_{h, k}$ such that

$$
\left(R_{k} v_{h}, w_{h}\right)=\left(f_{k}, w_{h}\right) \quad \text { for all } \quad w_{h} \in \mathcal{V}_{h, k}
$$

Céa＇s Iemma Assume there exist $B_{k}>0, \alpha_{k}>0$ such that
Continuity：$\quad\left\|R_{k}\right\| \leq B_{k} \quad \sim k^{(d-1) / 2}$ Lecture 1， Coercivity ${ }^{\dagger}: \quad\left|\left(R_{k} v, v\right)\right| \geq \alpha_{k}\|v\|^{2} \quad$ ？？？

Then we have（with no mesh restriction），

$$
\left\|v-v_{h}\right\| \leq\left(\frac{B_{k}}{\alpha_{k}}\right) \inf _{w_{h} \in \mathcal{V}_{h, k}}\left\|v-w_{h}\right\|
$$

\dagger Stronger than invertibility．

II．Some recent（positive）results－nontrapping

Combined potential formulation is uniformly coercive with
$\alpha_{k}=1 / 2-\epsilon, \epsilon>0$ for circle and sphere
［DoGrSm］
Fourier analysis symbol：$\quad \frac{\pi k}{2} H_{|m|}^{(1)}(k)\left(J_{|m|}(k)+i J_{|m|}^{\prime}(k)\right)$ ．
blackboard 4

II. Some recent (positive) results - nontrapping

Combined potential formulation is uniformly coercive with
$\alpha_{k}=1 / 2-\epsilon, \epsilon>0$ for circle and sphere
[DoGrSm]:
Fourier analysis symbol: $\quad \frac{\pi k}{2} H_{|m|}^{(1)}(k)\left(J_{|m|}(k)+i J_{|m|}^{\prime}(k)\right)$.
blackboard 4

The star combined formulation is uniformly coercive $\alpha_{k}=\frac{1}{2} \operatorname{ess} \inf _{\mathbf{x} \in \Gamma}(\mathbf{x} . \mathbf{n}(\mathbf{x}))$ for star-shaped Lipschitz domains. [SpChGrSm]

II. Some recent (positive) results - nontrapping

Combined potential formulation is uniformly coercive with
$\alpha_{k}=1 / 2-\epsilon, \epsilon>0$ for circle and sphere
[DoGrSm]:
Fourier analysis symbol: $\quad \frac{\pi k}{2} H_{|m|}^{(1)}(k)\left(J_{|m|}(k)+i J_{|m|}^{\prime}(k)\right)$
blackboard 4

The star combined formulation is uniformly coercive $\alpha_{k}=\frac{1}{2} \operatorname{ess} \inf _{\mathbf{x} \in \Gamma}(\mathbf{x} . \mathbf{n}(\mathbf{x}))$ for star-shaped Lipschitz domains. [SpChGrSm]

The combined potential formulation is uniformly coercive (for k large enough) for strictly convex smooth domains.
Spence, Kamotski and Smyshlyaev, 2014

More general geometries?

convex polygon

Theorem Chandler-Wilde and Langdon (2007)

$$
\frac{\partial u}{\partial n}(s)=2 \frac{\partial u^{I}}{\partial n}(s)+\mathrm{e}^{\mathrm{i} k s} v_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} v_{-}(s)
$$

where s is distance along γ, and

$$
k^{-n}\left|v_{+}^{(n)}(s)\right| \leq \begin{cases}C_{n}(k s)^{-1 / 2-n}, & k s \geq 1 \\ C_{n}(k s)^{-\alpha-n}, & 0<k s \leq 1\end{cases}
$$

where $\alpha<1 / 2$ depends on the corner angle.

convex polygon - error estimate

Mesh with $\mathcal{O}(N)$ points, graded towards corners
Piecewise polynomials of degree p.
Then (under some reasonable assumption)

$$
\frac{\left\|v-v_{N}\right\|}{k^{1 / 2}} \lesssim(\log (k))^{1 / 2}\left(\frac{\log (k)}{N}\right)^{p+1}
$$

$h p-$ version: Hewett, Langdon, Melenk, 2012

$$
\frac{\left\|v-v_{N}\right\|}{k^{1 / 2}} \lesssim k^{\epsilon} \exp \left(-N^{1 / 2} \tau\right), \quad \epsilon \in(0,1 / 2), \quad \tau>0
$$

where N is the dimension of the approximating space.

Convex Polygon $h p$-scheme of Hewett, Langdon \& Melenk with $N=192$

k	Relative L^{2} error in $\frac{\partial u}{\partial n}$	Time (s)
10	1.46×10^{-2}	461
40	1.50×10^{-2}	615
160	1.55×10^{-2}	615
640	1.58×10^{-2}	732
2560	1.73×10^{-2}	844
10240	1.74×10^{-2}	940

Logarithmic in k

non-convex polygon

non-convex polygon

Chandler-Wilde, Hewett, Langdon, Twigger, 2011: HF Ansatz taking account of diffractions at corners and reflections

$h p$-BEM: Non-convex polygon
 Chandler-Wilde, Hewett, Langdon, Twigger, 2011

k	dof	dof per λ	L^{2} error	Relative L^{2} error
5	320	10.7	$2.09 \mathrm{e}-2$	$1.51 \mathrm{e}-2$
10	320	5.3	$1.07 \mathrm{e}-2$	$1.11 \mathrm{e}-2$
20	320	2.7	$4.60 \mathrm{e}-3$	$6.91 \mathrm{e}-3$
40	320	1.3	$3.13 \mathrm{e}-3$	$6.83 \mathrm{e}-3$

Recent work from the group at Reading (UK)

S. N. Chandler-Wilde, D. P. Hewett, S. Langdon, A. Twigger, A high frequency boundary element method for scattering by a class of nonconvex obstacles, Numer. Math., 129(4), 2015
S. P. Groth, D. P. Hewett, S. Langdon, Hybrid numerical-asymptotic approximation for high frequency scattering by penetrable convex polygons, IMA J. Appl. Math., 80(2), 2015
D. P. Hewett, S. Langdon, S. N. Chandler-Wilde, A frequency-independent boundary element method for scattering by two-dimensional screens and apertures, IMA J. Numer. Anal., 35(4), 2015
D. P. Hewett, Shadow boundary effects in hybrid numerical-asymptotic methods for high frequency scattering,
Euro. J. Appl. Math., 26(5), 2015
I. Construct oscillatory basis functions
II. Prove error estimates
III. Implement the methods (oscillatory integration)

III Implementing the methods: oscillatory integration

Galerkin matrix involves oscillatory integrals, e.g. (in 2D):

$$
\begin{aligned}
& \int \exp (-i k \widehat{\mathbf{a}} \cdot \mathbf{x}) P_{\ell}(\mathbf{x}) \int H_{0}^{(1)}(k|\mathbf{x}-\mathbf{y}|) \exp (i k \widehat{\mathbf{a}} \cdot \mathbf{y}) P_{\ell^{\prime}}(\mathbf{y}) d y d x \\
& =\iint \exp (i k\{|\mathbf{x}-\mathbf{y}|+\widehat{\mathbf{a}} \cdot(\mathbf{y}-\mathbf{x})\}) M_{k}(\mathbf{x}, \mathbf{y}) d y d x
\end{aligned}
$$

M_{k} not oscillatory. Arc-length: $\mathbf{x}=\gamma(s), \mathbf{y}=\gamma(t)$

$$
\iint \exp (i k \Psi(s, t)) M_{k}(s, t) d t d s
$$

Phase:
blackboard 5
$\Psi(s, t)=|\gamma(s)-\gamma(t)|+\widehat{\mathbf{a}} \cdot(\gamma(t)-\gamma(s))=: \psi_{[s]}(t)$
Strategy: change of variable $t \rightarrow \tau$, with $\tau=\psi_{[s]}(t)$ for each s.
Stationary points? - Ignore for the moment

Change of variable - example

$$
\begin{aligned}
I & :=\int_{b}^{c} \int_{s}^{c} \exp (i k \Psi(s, t)) M_{k}(s, t) \mathrm{d} t \mathrm{~d} s \\
& =\int_{b}^{c}\left[\int_{0}^{\psi_{[s]}(c)} \exp (i k \tau) M_{k}\left(s, \psi_{[s]}^{-1}(\tau)\right)|J(s, \tau)| \mathrm{d} \tau\right] \mathrm{d} s,
\end{aligned}
$$

Switching order of integration:

$$
=\int_{0}^{\tau_{\max }} \underbrace{\left[\int_{r_{1}(\tau)}^{r_{2}(\tau)} M_{k}\left(s, \psi_{[s]}^{-1}(\tau)\right)|J(s, \tau)| \mathrm{d} s\right]}_{\substack{\max }} \exp (i k \tau) \mathrm{d} \tau
$$

Filon-Censhaw-Curtis rules

$$
\int_{-1}^{1} f(\tau) \exp (i k \tau) d \tau \approx \int_{-1}^{1}\left(Q_{N} f\right)(\tau) \exp (i k \tau) d \tau
$$

Polynomial interpolant $\quad\left(Q_{N} f\right)(\cos (j \pi / N))=f(\cos (j \pi / N))$ Nested, Implementation via FFT in $\mathcal{O}(N \log N)$ operations. Stable implementation: [DoGrSm].

Theorem For $r \in[0,1]$, and all $m \geq 1$,
$\left|\int_{-1}^{1}\left(f-Q_{N} f\right)(\tau) \exp (i k \tau) d \tau\right| \lesssim\left(\frac{1}{k}\right)^{r}\left(\frac{1}{N}\right)^{m-r} \int_{-1}^{1} \frac{\left|f^{(m)}(x)\right|^{2}}{\sqrt{1-x^{2}}}$
M - point composite version for singularities

$$
\left(\frac{1}{k}\right)^{r}\left(\frac{1}{M}\right)^{N+1-r}\|f\|_{N+1, \text { singular }}
$$

Allowing stationary points in f [DoGrKi]

Stationary points of $\psi_{[s]} \quad$ (T. Kim, PhD)

In $A_{1} \quad\left|D_{(s, t)}^{\mathbf{p}} \exp (i k \Psi(s, t))\right| \lesssim k^{|\mathbf{p}| / 3}$ Use conventional rules

Ellipse with $a=3, b=1$. Relative errors at the point where the incident wave is orthogonal to Γ. (T. Kim)

p	$k=1000$	$k=4000$	$k=8000$	$k=16000$	relative time
6	$3.70(-3)$	$2.43(-2)$	$4.31(-2)$	$8.32(-2)$	1
8	$3.24(-3)$	$8.62(-3)$	$1.74(-2)$	$2.56(-2)$	1.5
10	$2.69(-3)$	$3.35(-3)$	$7.23(-3)$	$9.79(-3)$	2.3
12	$2.47(-3)$	$1.97(-3)$	$3.07(-3)$	$2.90(-3)$	3.1
14	$3.15(-3)$	$1.27(-3)$	$1.39(-3)$	$1.49(-4)$	4.1
16	$4.06(-3)$	$9.28(-4)$	$6.15(-4)$	$8.12(-5)$	5.3
18	$2.84(-3)$	$1.43(-3)$	$5.46(-4)$	$2.81(-5)$	6.8
			$\mathcal{O}(\exp (-0.4 \mathrm{p}))$		$\approx \mathcal{O}\left(\mathrm{p}^{2}\right)$

Table: $\left|2 i-\tilde{V}_{d}(\pi, k)\right|, a=3, b=1$.

- In this variant computational times are fixed w.r.t. k.
- For fixed very small p, errors grow slightly with k. For larger p, errors decrease as $k \rightarrow \infty$.
- For fixed k the rate of convergence appears exponential in p and computational time is about $\mathcal{O}\left(p^{2}\right)$.

Summary

- Highly oscillatory scattering problem solved in time which is empirically close to $\mathcal{O}(1)$ as $k \rightarrow \infty$.
- The method and analysis are geometry dependent So are ray tracing algorithms
- Galerkin approach and knowledge of asymptotics allow rigorous error estimates
- New results: asymptotics of solutions, estimates for oscillatory integral operators and quadrature for oscillatory integrals
- 3D presents significant challenges: 3D screen problems: [Chandler-Wilde, Langdon, Hewett, 2012, 2015]

