Lecture2: Hybrid numerical-asymptotic methods in

high-frequency scattering

Ivan Graham (University of Bath, UK)

A survey of joint work with and work by:

V. Domínguez (Navarra) E.A. Spence, T.Kim (Bath), T. Betcke, V. Smyshlyaev (Univ. College London) S. Chandler-Wilde, S. Langdon, D. Hewitt (Reading)

CUHK, January 2016

High freq. problem for the Helmholtz equation

Given an object $\Omega \subset \mathbb{R}^d$, with boundary Γ and exterior Ω' , Incident plane wave: $u_I(x) = \exp(ik\mathbf{x} \cdot \hat{\mathbf{a}})$ wavelength $\lambda = 2\pi/k$

Total wave $u = u_I + u_S$, where Scattered wave u_S satisfies:

$$\Delta u_S + {m k}^2 u_S \; = \; 0 \quad \ \ {
m in} \; \Omega'$$

plus boundary condition (Here $u_I + u_S = 0$ on Γ) and radiation condition: $\frac{\partial u^S}{\partial r} - iku^S = o(r^{-(d-1)/2})$ as $r \to \infty$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Recap of Lecture 1

- Homogeneous scattering problem : k constant, infinite domain
- \bullet Boundary integral equation posed on scattering boundary Γ
- Solve using piecewise polynomial BEM
- Require at least $h \sim k^{-1}$ to resolve oscillations in solution

 \implies complexity $\mathcal{O}(k^{d-1})$

• Proof that $h \sim k^{-(d+1)/2}$ is sufficient

 \implies complexity $\mathcal{O}(k^{(d^2-1)/2})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Recap of Lecture 1

- Homogeneous scattering problem : k constant, infinite domain
- \bullet Boundary integral equation posed on scattering boundary Γ
- Solve using piecewise polynomial BEM
- Require at least $h \sim k^{-1}$ to resolve oscillations in solution

 \implies complexity $\mathcal{O}(k^{d-1})$

• Proof that $h \sim k^{-(d+1)/2}$ is sufficient

 \implies complexity $\mathcal{O}(k^{(d^2-1)/2})$

This lecture

- Different methods which have complexity (almost) bounded as $k \to \infty$

How is this possible?

A multiscale problem

Plane wave incident field $\exp(i\mathbf{k}\mathbf{x}.\hat{\mathbf{a}})$ scale $\mathcal{O}(\mathbf{k}^{-1})$.

May be other scales in the scattered field, $k^{-1/2}$, $k^{-1/3}$

・ロト ・日ト ・日ト ・日

Numerical Analysis

Conventional numerical methods (piecewise polynomial bases)

 \rightarrow at least $O(k^{d-1})$ DOF's

Conventional asymptotic methods work well as $k \to \infty$. [Fock, Ludwig, Buslaev, Babich]

Today's topic: "Hybrid numerical-asymptotic Methods" piecewise oscillatory bases work for all krequire $\sim O(1)$ DOF's as $k \to \infty$ Need asymptotic information, so geometry dependent

Related: Plane-wave bases for general geometries

Research Plan

I. Construct oscillatory basis (for Galerkin BEM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- **II. Prove error estimates**
- **III. Realise the estimates**

First formulate as BIE (last lecture)

$$\Delta u + k^2 u = 0$$

$$G_k(x,y) = \begin{cases} \frac{i}{4} H_0^{(1)}(k|x-y|) & \text{2D} \\ \\ \frac{\exp(ik|x-y|)}{4\pi|x-y|} & \text{3D} \end{cases}$$

single layer potential : $(S_k \phi)(x) = \int_{\Gamma} G_k(x, y) \phi(y) dS(y)$,

double layer: $(\mathcal{D}_k \phi)(x) = \int_{\Gamma} [\partial_{n(y)} G_k(x, y)] \phi(y) dS(y),$

adjoint double layer: \mathcal{D}'_k (switch roles of x and y).

Oscillatory integrals with phase: k|x-y| blackboard 1

Combined potential boundary integral formulations

combined potential formulation

$$R_k v := \left(\frac{1}{2}I + \mathcal{D}'_k\right) v - \mathrm{i}k\mathcal{S}_k v = \partial_n u_I - \mathrm{i}ku_I := f_k ,$$

star - combined potential formulation: (requires an origin)

$$R_k v := (\mathbf{x}.\mathbf{n}) \left(\frac{1}{2}I + \mathcal{D}'_k\right) v + \mathbf{x}.(\nabla_{\Gamma} \mathcal{S}_k) v - \mathrm{i}\eta \mathcal{S}_k v = f_k ,$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 $(\mathbf{x}.\mathbf{n}) > 0$ star-shaped

Combined potential boundary integral formulations

combined potential formulation

$$R_k v := \left(\frac{1}{2}I + \mathcal{D}'_k\right) v - \mathrm{i}k\mathcal{S}_k v = \partial_n u_I - \mathrm{i}ku_I := f_k ,$$

star - combined potential formulation: (requires an origin)

$$R_k v := (\mathbf{x}.\mathbf{n}) \left(\frac{1}{2}I + \mathcal{D}'_k\right) v + \mathbf{x}.(\nabla_{\Gamma} \mathcal{S}_k) v - \mathrm{i}\eta \mathcal{S}_k v = f_k ,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

In general $R_k v = f_k$ No spurious frequencies.

Construct basis: 2D smooth convex case

"Physical optics" approx

 $v(\boldsymbol{\gamma}(s)) := k \exp(\mathrm{i}k\boldsymbol{\gamma}(s).\widehat{\mathbf{a}}) V(s)$.

 $\gamma(s)$ = arclength

blackboard 2

- V = "Slowly varying" factor in $v = \partial u / \partial n$.
- Λ_1, Λ_2 : Fock zones V oscillates on scale $k^{-1/3}$

+ other complications!

- Λ_3 : Illuminated V smooth, not oscillatory.
- Λ_4 : Deep Shadow $V \approx 0$ exponentially

Ex: 2D smooth convex case : prove error estimate

Solve combined potential formulation with basis:

$$v_h(s) := \begin{cases} k \exp(ik\gamma(s) \cdot \widehat{\mathbf{a}}) P_p(s) \\ k \exp(ik\gamma(s) \cdot \widehat{\mathbf{a}}) P_p(s) \\ 0 \end{cases}$$

Illuminated zone Fock zones $\mathcal{O}(k^{-1/3})$ Shadow

where P_p = polynomial of degree p

Theorem (Dominguez, IGG, Smyshlyaev, 07)

$$\frac{\|v - v_h\|_{L^2(\Gamma)}}{k} \le C_n k^{1/18} \left\{ \left(\frac{k^{1/9}}{p}\right)^n + \exp(-\beta k^{\epsilon}) \right\} ,$$

for all p and $n \approx p + 1$. C_n, β are constants independent of k and $\epsilon \approx 0$.

Corollary Choosing $p \sim k^{1/9+\delta}$ "is sufficient" as $k \to \infty$.

k- explicit regularity

G.O. $v(\mathbf{x}) := \partial u / \partial n = kV(\mathbf{x}, k) \exp(ik\mathbf{x} \cdot \hat{\mathbf{a}}), \quad x \in \Gamma,$ **Theorem** Dominguez, et. al, 2007

$$|D^{n}V(x,k)| \leq \begin{cases} C_{n}, & n = 0, 1, \\ C_{n} k^{-1} (k^{-1/3} + \operatorname{dist}(x, SB))^{-(n+2)} & n \ge 2, \end{cases}$$

where $SB = \{ \mathbf{x} \in \Gamma : \mathbf{n}(\mathbf{x}) . \hat{\mathbf{a}} = 0 \}$ shadow boundary.

Proof Development of Melrose and Taylor (1985) plus matched asymptotic expansions. Justifies HF Galerkin method above

Ex: 2D smooth convex case: realise the estimates

Scattering by circle

Galerkin (with quadrature - see later)

Degree of the polynomials $p_I = p_{F_1} = p_{F_2} = \mathbf{p}$

Relative error $||v - v_h||/k$ [All norms $||\cdot||_{L^2(\Gamma)}$]

	k = 250	k = 4,000	k = 64,000
$\mathbf{p} = 4$	5.57E - 03	1.57E - 03	4.69E - 04
$\mathbf{p}=8$	6.62E - 04	2.72E - 04	7.96E - 05
p = 12	4.43E - 04	4.55E - 05	1.50E - 05
p = 16	1.42E - 03	3.92E - 05	6.91E - 06
$\mathbf{p} = 20$	2.47E - 03	2.74E - 04	7.43E – 06

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Ex: 2D Smooth convex case: computation times

p = 20: 63 degrees of freedom

Times (sec) to achieve a relative error: $\leq 10^{-3}$:

<i>k</i> setting up quadrature rules	assembling matrix
--------------------------------------	-------------------

256	248 s	227 s
6400	227 s	230 s

Solution on circle k = 400

```
full wave solution (top) computed slowly oscillatory part (bottom):
```


▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

I. Construct oscillatory basis functions More later

II. Prove error estimates

III. Implement the methods (oscillatory integration)

1/3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

II. Error Estimates: Hybrid methods

Exotic (*k***-dependent) subspace**: $\mathcal{V}_{h,k} \subset L_2(\Gamma)$.

Galerkin method for $R_k v = f_k$: Seek $v_h \in \mathcal{V}_{h,k}$ such that

$$(R_k v_h, w_h) = (f_k, w_h)$$
 for all $w_h \in \mathcal{V}_{h,k}$

Céa's lemma Assume there exist $B_k > 0$, $\alpha_k > 0$ such that

Continuity: $||R_k|| \le B_k$, Coercivity[†]: $|(R_k v, v)| \ge \alpha_k ||v||^2$

Then we have (with no mesh restriction),

$$\|v - v_h\| \leq \left(\frac{B_k}{\alpha_k}\right) \inf_{w_h \in \mathcal{V}_{h,k}} \|v - w_h\|.$$

[†] Stronger than invertibility.

blackboard 3

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

II. Error Estimates: Hybrid methods

Exotic (*k***-dependent) subspace**: $\mathcal{V}_{h,k} \subset L_2(\Gamma)$.

Galerkin method for $R_k v = f_k$: Seek $v_h \in \mathcal{V}_{h,k}$ such that

$$(R_k v_h, w_h) = (f_k, w_h)$$
 for all $w_h \in \mathcal{V}_{h,k}$

Céa's lemma Assume there exist $B_k > 0$, $\alpha_k > 0$ such that

Then we have (with no mesh restriction),

$$\|v - v_h\| \leq \left(\frac{B_k}{\alpha_k}\right) \inf_{w_h \in \mathcal{V}_{h,k}} \|v - w_h\|.$$

[†] Stronger than invertibility.

blackboard 3

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

II. Some recent (positive) results - nontrapping

Combined potential formulation is **uniformly coercive** with $\alpha_k = 1/2 - \epsilon, \epsilon > 0$ for circle and sphere [DoGrSm] Fourier analysis symbol: $\frac{\pi k}{2} H^{(1)}_{|m|}(k) (J_{|m|}(k) + i J'_{|m|}(k)).$

▲ロト ▲母ト ▲目ト ▲目ト 目 のへで

II. Some recent (positive) results - nontrapping

Combined potential formulation is **uniformly coercive** with $\alpha_k = 1/2 - \epsilon$, $\epsilon > 0$ for circle and sphere [DoGrSm]:

Fourier analysis symbol: $\frac{\pi k}{2}H^{(1)}_{|m|}(k)(J_{|m|}(k)+iJ'_{|m|}(k)).$ blackboard 4

The star combined formulation is **uniformly coercive** $\alpha_k = \frac{1}{2} \text{ess inf}_{\mathbf{x} \in \Gamma}(\mathbf{x}.\mathbf{n}(\mathbf{x}))$ for star-shaped Lipschitz domains. [SpChGrSm]

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

II. Some recent (positive) results - nontrapping

Combined potential formulation is **uniformly coercive** with $\alpha_k = 1/2 - \epsilon$, $\epsilon > 0$ for circle and sphere [DoGrSm]: Fourier analysis, symbol: $\frac{\pi k}{2} H^{(1)}(k) (L_{-1}(k) + i I'_{-1}(k))$

Fourier analysis symbol: $\frac{\pi k}{2}H^{(1)}_{|m|}(k)(J_{|m|}(k)+iJ'_{|m|}(k))$ blackboard 4

The star combined formulation is **uniformly coercive** $\alpha_k = \frac{1}{2} \text{ess inf}_{\mathbf{x} \in \Gamma}(\mathbf{x}.\mathbf{n}(\mathbf{x}))$ for star-shaped Lipschitz domains. [SpChGrSm]

The combined potential formulation is **uniformly coercive** (for k large enough) for strictly convex smooth domains. Spence, Kamotski and Smyshlyaev, 2014

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

More general geometries?

convex polygon

$$\frac{\partial u}{\partial n}(s) = 2\frac{\partial u^{I}}{\partial n}(s) + e^{iks}v_{+}(s) + e^{-iks}v_{-}(s)$$

where s is distance along $\gamma,$ and

$$\frac{k^{-n}|v_{+}^{(n)}(s)|}{C_{n}(ks)^{-\alpha-n}}, \quad \frac{ks \ge 1}{0.5}, \\ C_{n}(ks)^{-\alpha-n}, \quad 0 < ks \le 1,$$

where $\alpha < 1/2$ depends on the corner angle.

Mesh with $\mathcal{O}(N)$ points, graded towards corners Piecewise polynomials of degree p.

Then (under some reasonable assumption)

$$\frac{\|v - v_N\|}{k^{1/2}} \lesssim (\log(k))^{1/2} \left(\frac{\log(k)}{N}\right)^{p+1}$$

hp-version: Hewett, Langdon, Melenk, 2012

$$\frac{\|v - v_N\|}{k^{1/2}} \lesssim k^{\epsilon} \exp(-N^{1/2}\tau) , \quad \epsilon \in (0, 1/2), \ \tau > 0.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

where N is the dimension of the approximating space.

Convex Polygon

$hp\mbox{-scheme}$ of Hewett, Langdon & Melenk with N=192

k	Relative L^2 error in $\frac{\partial u}{\partial n}$	Time (s)
10	1.46 ×10 ⁻²	461
40	1.50 ×10 ⁻²	615
160	1.55×10^{-2}	615
640	1.58×10^{-2}	732
2560	1.73 ×10 ⁻²	844
10240	1.74×10^{-2}	940

Logarithmic in k

non-convex polygon

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタの

non-convex polygon

Chandler-Wilde, Hewett, Langdon, Twigger, 2011: HF Ansatz taking account of diffractions at corners and reflections

hp-BEM: Non-convex polygon Chandler-Wilde, Hewett, Langdon, Twigger, 2011

k	dof	dof per λ	L^2 error	Relative L^2 error
5	320	10.7	2.09e-2	1.51e-2
10	320	5.3	1.07e-2	1.11e-2
20	320	2.7	4.60e-3	6.91e-3
40	320	1.3	3.13e-3	6.83e-3

Recent work from the group at Reading (UK)

S. N. Chandler-Wilde, D. P. Hewett, S. Langdon, A. Twigger, A high frequency boundary element method for scattering by a class of nonconvex obstacles, Numer. Math., 129(4), 2015

S. P. Groth, D. P. Hewett, S. Langdon, Hybrid numerical-asymptotic approximation for high frequency scattering by penetrable convex polygons, IMA J. Appl. Math., 80(2), 2015

D. P. Hewett, S. Langdon, S. N. Chandler-Wilde, A frequency-independent boundary element method for scattering by two-dimensional screens and apertures, IMA J. Numer. Anal., 35(4), 2015

D. P. Hewett, Shadow boundary effects in hybrid numerical-asymptotic methods for high frequency scattering, Euro. J. Appl. Math., 26(5), 2015

I. Construct oscillatory basis functions

II. Prove error estimates

III. Implement the methods (oscillatory integration)

III Implementing the methods: oscillatory integration

Galerkin matrix involves oscillatory integrals, e.g. (in 2D):

$$\int \exp(-ik\,\widehat{\mathbf{a}}.\mathbf{x})P_{\ell}(\mathbf{x}) \int H_0^{(1)}(k|\mathbf{x}-\mathbf{y}|) \exp(ik\,\widehat{\mathbf{a}}.\mathbf{y})P_{\ell'}(\mathbf{y})dydx$$
$$= \int \int \exp(ik\{|\mathbf{x}-\mathbf{y}|+\widehat{\mathbf{a}}.(\mathbf{y}-\mathbf{x})\})M_k(\mathbf{x},\mathbf{y})\,dy\,dx$$

 M_k not oscillatory. Arc-length: $\mathbf{x} = \boldsymbol{\gamma}(s), \ \mathbf{y} = \boldsymbol{\gamma}(t)$

$$\int\int\exp(ik\Psi(s,t))M_k(s,t)dtds\;,$$

Phase: blackboard 5 $\Psi(s,t) = |\gamma(s) - \gamma(t)| + \widehat{\mathbf{a}}.(\gamma(t) - \gamma(s)) =: \psi_{[s]}(t)$. Strategy: change of variable $t \to \tau$, with $\tau = \psi_{[s]}(t)$ for each s.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Stationary points? - Ignore for the moment

Change of variable - example

Filon-Censhaw-Curtis rules

$$\int_{-1}^{1} f(\tau) \exp(ik\tau) d\tau \approx \int_{-1}^{1} (Q_N f)(\tau) \exp(ik\tau) d\tau$$

Polynomial interpolant $(Q_N f)(\cos(j\pi/N)) = f(\cos(j\pi/N))$ Nested, Implementation via FFT in $\mathcal{O}(N \log N)$ operations. Stable implementation: [DoGrSm].

Theorem For $r \in [0, 1]$, and all $m \ge 1$,

$$\left| \int_{-1}^{1} (f - Q_N f)(\tau) \exp(ik\tau) d\tau \right| \lesssim \left(\frac{1}{k} \right)^r \left(\frac{1}{N} \right)^{m-r} \int_{-1}^{1} \frac{|f^{(m)}(x)|^2}{\sqrt{1 - x^2}}$$

M- point composite version for singularities

$$\left(\frac{1}{k}\right)^r \left(\frac{1}{M}\right)^{N+1-r} \|f\|_{N+1,\text{singular}}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Allowing stationary points in *f* [DoGrKi]

Stationary points of $\psi_{[s]}$ (T. Kim, PhD)

 $\ln A_1 \quad |D^{\mathbf{p}}_{(s,t)} \exp(ik\Psi(s,t))| \ \lesssim \ k^{|\mathbf{p}|/3}$ Use conventional rules

Ellipse with a = 3, b = 1. Relative errors at the point where the incident wave is orthogonal to Γ . (T. Kim)

p	k = 1000	k = 4000	k = 8000	k = 16000	relative time
6	3.70(-3)	2.43(-2)	4.31(-2)	8.32(-2)	1
8	3.24(-3)	8.62(-3)	1.74(-2)	2.56(-2)	1.5
10	2.69(-3)	3.35(-3)	7.23(-3)	9.79(-3)	2.3
12	2.47(-3)	1.97(-3)	3.07(-3)	2.90(-3)	3.1
14	3.15(-3)	1.27(-3)	1.39(-3)	1.49(-4)	4.1
16	4.06(-3)	9.28(-4)	6.15(-4)	8.12(-5)	5.3
18	2.84(-3)	1.43(-3)	5.46(-4)	2.81(-5)	6.8
			$\mathcal{O}(\exp(-0.4\mathbf{p}))$		$\approx \mathcal{O}(\mathbf{p^2})$

Table:
$$|2i - \tilde{V}_d(\pi, k)|$$
, $a = 3, b = 1$.

- In this variant computational times are fixed w.r.t. k.
- For fixed very small p, errors grow slightly with k. For larger p, errors decrease as $k \to \infty$.
- For fixed k the rate of convergence appears exponential in p and computational time is about $\mathcal{O}(p^2)$.

Summary

• Highly oscillatory scattering problem solved in time which is empirically close to $\mathcal{O}(1)$ as $k \to \infty$.

• The method and analysis are geometry dependent So are ray tracing algorithms

• Galerkin approach and knowledge of asymptotics allow rigorous error estimates

• New results: asymptotics of solutions, estimates for oscillatory integral operators and quadrature for oscillatory integrals

3D presents significant challenges:
3D screen problems: [Chandler-Wilde, Langdon, Hewett, 2012, 2015]

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ