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High freq. problem for the Helmholtz equation

Given an object Ω ⊂ Rd, with boundary Γ and exterior Ω′,
Incident plane wave: uI(x) = exp(ikx · â)
wavelength λ = 2π/k

Γ

Ω

â

Ω′

Total wave u = uI + uS , where Scattered wave uS satisfies:

∆uS + k2uS = 0 in Ω′

plus boundary condition (Here uI + uS = 0 on Γ) and

radiation condition: ∂uS

∂r − ikuS = o(r−(d−1)/2) as r →∞



Recap of Lecture 1

• Homogeneous scattering problem : k constant, infinite
domain

• Boundary integral equation posed on scattering boundary Γ

• Solve using piecewise polynomial BEM

• Require at least h ∼ k−1 to resolve oscillations in solution

=⇒ complexity O(kd−1)

• Proof that h ∼ k−(d+1)/2 is sufficient

=⇒ complexity O(k(d2−1)/2)

This lecture

• Different methods which have complexity (almost) bounded
as k →∞
How is this possible?
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A multiscale problem

Plane wave incident field exp(ikx.â) scale O(k−1).

May be other scales in the scattered field, k−1/2, k−1/3



Numerical Analysis

Conventional numerical methods (piecewise polynomial
bases)
→ at least O(kd−1) DOF’s

Conventional asymptotic methods work well as k →∞.
[ Fock, Ludwig, Buslaev, Babich ....]

Today’s topic: “Hybrid numerical-asymptotic Methods”
piecewise oscillatory bases work for all k

require ∼ O(1) DOF’s as k →∞
Need asymptotic information, so geometry dependent

Related: Plane-wave bases for general geometries

Research Plan

I. Construct oscillatory basis (for Galerkin BEM)

II. Prove error estimates

III. Realise the estimates



First formulate as BIE (last lecture)

∆u+ k2u = 0

Gk(x, y) =


i
4H

(1)
0 (k|x− y|) 2D

exp(ik|x− y|)
4π|x− y| 3D

single layer potential : (Skφ)(x) =
∫

ΓGk(x, y)φ(y)dS(y),

double layer: (Dkφ)(x) =
∫

Γ[∂n(y)Gk(x, y)]φ(y)dS(y),

adjoint double layer: D′k (switch roles of x and y).

Oscillatory integrals with phase: k|x− y| blackboard 1



Combined potential boundary integral formulations

combined potential formulation

Rkv :=

(
1

2
I +D′k

)
v − ikSkv = ∂nuI − ikuI := fk ,

star - combined potential formulation: (requires an origin)

Rkv := (x.n)

(
1

2
I +D′k

)
v + x.(∇ΓSk)v − iηSkv = fk ,

(x.n) > 0 star-shaped
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combined potential formulation

Rkv :=

(
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)
v − ikSkv = ∂nuI − ikuI := fk ,

star - combined potential formulation: (requires an origin)

Rkv := (x.n)

(
1

2
I +D′k

)
v + x.(∇ΓSk)v − iηSkv = fk ,

In general Rkv = fk No spurious frequencies.



Construct basis: 2D smooth convex case
t1

t2
â

Λ1

Λ2Λ3

Λ4

“Physical optics” approx

v(γ(s)) := k exp(ikγ(s).â) V (s) .

γ(s) = arclength

blackboard 2

V = “Slowly varying” factor in v = ∂u/∂n.

• Λ1,Λ2: Fock zones V oscillates on scale k−1/3

+ other complications!
• Λ3: Illuminated V smooth, not oscillatory.
• Λ4: Deep Shadow V ≈ 0 exponentially



Ex: 2D smooth convex case : prove error estimate

Solve combined potential formulation with basis:

vh(s) :=


k exp(ikγ(s) · â)Pp(s) Illuminated zone
k exp(ikγ(s) · â)Pp(s) Fock zones O(k−1/3)
0 Shadow

where Pp = polynomial of degree p

Theorem (Dominguez, IGG, Smyshlyaev, 07)

‖v − vh‖L2(Γ)

k
≤ Cnk

1/18

{(
k1/9

p

)n
+ exp(−βkε)

}
,

for all p and n ≈ p+ 1. Cn, β are constants independent of k
and ε ≈ 0.
Corollary Choosing p ∼ k1/9+δ “is sufficient” as k →∞ .



k− explicit regularity

G.O. v(x) := ∂u/∂n = kV (x, k) exp(ikx · â) , x ∈ Γ,

Theorem Dominguez, et. al, 2007

|DnV (x, k)| ≤
{
Cn, n = 0, 1,

Cn k
−1 (k−1/3 + dist(x, SB))−(n+2) n ≥ 2,

where SB = {x ∈ Γ : n(x).â = 0} shadow boundary.

Proof Development of Melrose and Taylor (1985) plus matched
asymptotic expansions. Justifies HF Galerkin method above

ha

SB



Ex: 2D smooth convex case: realise the estimates

Scattering by circle

Galerkin (with quadrature - see later)

Degree of the polynomials pI = pF1 = pF2 = p

Relative error ‖v − vh‖/k [All norms ‖ · ‖L2(Γ)]

k = 250 k = 4, 000 k = 64, 000

p = 4 5.57E− 03 1.57E− 03 4.69E− 04

p = 8 6.62E− 04 2.72E− 04 7.96E− 05

p = 12 4.43E− 04 4.55E− 05 1.50E− 05

p = 16 1.42E− 03 3.92E− 05 6.91E− 06

p = 20 2.47E− 03 2.74E− 04 7.43E− 06



Ex: 2D Smooth convex case: computation times

p = 20 : 63 degrees of freedom

Times (sec) to achieve a relative error: ≤ 10−3:

k setting up quadrature rules assembling matrix
dependent on geometry only

256 248 s 227 s
6400 227 s 230 s



Solution on circle k = 400

full wave solution (top)
computed slowly oscillatory part (bottom):



I. Construct oscillatory basis functions More later

II. Prove error estimates

III. Implement the methods (oscillatory integration)

1/3



II. Error Estimates: Hybrid methods

Exotic (k-dependent) subspace: Vh,k ⊂ L2(Γ).

Galerkin method for Rkv = fk:
Seek vh ∈ Vh,k such that

(Rkvh , wh) = (fk , wh) for all wh ∈ Vh,k

Céa’s lemma Assume there exist Bk > 0, αk > 0 such that

Continuity: ‖Rk‖ ≤ Bk ,
Coercivity†: |(Rkv, v)| ≥ αk‖v‖2

Then we have (with no mesh restriction),

‖v − vh‖ ≤
(
Bk
αk

)
inf

wh∈Vh,k
‖v − wh‖ .

† Stronger than invertibility. blackboard 3
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II. Some recent (positive) results - nontrapping

Combined potential formulation is uniformly coercive with
αk = 1/2− ε, ε > 0 for circle and sphere
[DoGrSm]
Fourier analysis symbol: πk

2 H
(1)
|m|(k)(J|m|(k) + iJ ′|m|(k)).

blackboard 4

The star combined formulation is uniformly coercive
αk = 1

2ess infx∈Γ(x.n(x)) for star-shaped Lipschitz domains.
Spence, Chandler-Wilde, IGG, Smyshlyaev,
Comm. Pure Appl. Math. 2011

The combined potential formulation is uniformly coercive (for
k large enough) for strictly convex smooth domains.
Spence, Kamotski and Smyshlyaev, 2011
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More general geometries?



convex polygon

Theorem Chandler-Wilde and Langdon (2007)

γ

∂u

∂n
(s) = 2

∂uI

∂n
(s) + eiksv+(s) + e−iksv−(s)

where s is distance along γ, and

k−n|v(n)
+ (s)| ≤

{
Cn(ks)−1/2−n, ks ≥ 1,
Cn(ks)−α−n, 0 < ks ≤ 1,

where α < 1/2 depends on the corner angle.



convex polygon - error estimate

Mesh with O(N) points, graded towards corners

Piecewise polynomials of degree p.

Then (under some reasonable assumption)

‖v − vN‖
k1/2

. (log(k))1/2

(
log(k)

N

)p+1

hp−version: Hewett, Langdon, Melenk, 2012

‖v − vN‖
k1/2

. kε exp(−N1/2τ) , ε ∈ (0, 1/2), τ > 0.

where N is the dimension of the approximating space.



Convex Polygon
hp-scheme of Hewett, Langdon & Melenk with N = 192

k Relative L2 error in
∂u

∂n
Time (s)

10 1.46×10−2 461
40 1.50×10−2 615

160 1.55×10−2 615
640 1.58×10−2 732

2560 1.73×10−2 844
10240 1.74×10−2 940

Logarithmic in k



non-convex polygon

Chandler-Wilde, Hewett, Langdon, Twigger, 2011



non-convex polygon

Chandler-Wilde, Hewett, Langdon, Twigger, 2011:
HF Ansatz taking account of diffractions at corners and
reflections



hp-BEM: Non-convex polygon
Chandler-Wilde, Hewett, Langdon, Twigger, 2011

k dof dof per λ L2 error Relative L2 error
5 320 10.7 2.09e-2 1.51e-2

10 320 5.3 1.07e-2 1.11e-2
20 320 2.7 4.60e-3 6.91e-3
40 320 1.3 3.13e-3 6.83e-3



Recent work from the group at Reading (UK)

S. N. Chandler-Wilde, D. P. Hewett, S. Langdon, A. Twigger, A
high frequency boundary element method for scattering by a
class of nonconvex obstacles, Numer. Math., 129(4), 2015

S. P. Groth, D. P. Hewett, S. Langdon, Hybrid
numerical-asymptotic approximation for high frequency
scattering by penetrable convex polygons, IMA J. Appl. Math.,
80(2), 2015

D. P. Hewett, S. Langdon, S. N. Chandler-Wilde, A
frequency-independent boundary element method for
scattering by two-dimensional screens and apertures, IMA J.
Numer. Anal., 35(4), 2015

D. P. Hewett, Shadow boundary effects in hybrid
numerical-asymptotic methods for high frequency scattering,
Euro. J. Appl. Math., 26(5), 2015



I. Construct oscillatory basis functions

II. Prove error estimates

III. Implement the methods (oscillatory integration)



III Implementing the methods: oscillatory integration

Galerkin matrix involves oscillatory integrals, e.g. (in 2D):∫
exp(−ik â.x)P`(x)

∫
H

(1)
0 (k|x− y|) exp(ik â.y)P`′(y)dydx

=

∫ ∫
exp(ik{|x− y|+ â.(y − x)})Mk(x,y) dy dx

Mk not oscillatory. Arc-length: x = γ(s), y = γ(t)∫ ∫
exp(ikΨ(s, t))Mk(s, t)dtds ,

Phase: blackboard 5
Ψ(s, t) = |γ(s)− γ(t)|+ â.(γ(t)− γ(s)) =: ψ[s](t) = ψ[t](s) .

Strategy: change of variable t→ τ , with τ = ψ[s](t) for each s.

Stationary points? - Ignore for the moment



Change of variable - example

I :=

∫ c

b

∫ c

s
exp(ikΨ(s, t))Mk(s, t) dt ds

=

∫ c

b

[ ∫ ψ[s](c)

0
exp(ikτ)Mk(s, ψ

−1
[s] (τ)) |J(s, τ)|dτ

]
ds,

Switching order of integration:

=

∫ τmax

0

[ ∫ r2(τ)

r1(τ)
Mk(s, ψ

−1
[s] (τ)) |J(s, τ)|ds

]
︸ ︷︷ ︸

f(τ)

exp(ikτ)dτ

Original Domain of Integration

s

t

b dc

c

d

b

a

a

C

ED

F G

A

Λ1

Λ1

Λ2

Λ3

Λ3Λ2

B

Transformed Domain of Integration

a c d

s

τ

bΛ1 Λ2 Λ3

G′F ′

D′

B′

E′ C′



Filon-Censhaw-Curtis rules

∫ 1

−1
f(τ) exp(ikτ)dτ ≈

∫ 1

−1
(QNf)(τ) exp(ikτ)dτ

Polynomial interpolant (QNf)(cos(jπ/N)) = f(cos(jπ/N))
Nested, Implementation via FFT in O(N logN) operations.
Stable implementation: [DoGrSm].

Theorem For r ∈ [0, 1], and all m ≥ 1,∣∣∣∣∫ 1

−1
(f −QNf)(τ) exp(ikτ)dτ

∣∣∣∣ .

(
1

k

)r ( 1

N

)m−r∫ 1

−1

|f (m)(x)|2√
1− x2

M− point composite version for singularities(
1

k

)r ( 1

M

)N+1−r
‖f‖N+1,singular

Allowing stationary points in f [DoGrKi]



Stationary points of ψ[s] (T. Kim, PhD)

s
t1 t2

a

t1

t2

a

b

b

c d

d

c

t

2π

Λ3

Λ2

0

Λ2

2π

Λ3Λ1

Λ1

a

a′

b

a′a b

(t1, t1)

A1Λ1

Λ1

A

P Q

In A1 |Dp
(s,t) exp(ikΨ(s, t))| . k|p|/3 Use conventional rules



Ellipse with a = 3, b = 1. Relative errors at the point where the
incident wave is orthogonal to Γ. (T. Kim)

p k = 1000 k = 4000 k = 8000 k = 16000 relative time
6 3.70(−3) 2.43(−2) 4.31(−2) 8.32(−2) 1

8 3.24(−3) 8.62(−3) 1.74(−2) 2.56(−2) 1.5

10 2.69(−3) 3.35(−3) 7.23(−3) 9.79(−3) 2.3

12 2.47(−3) 1.97(−3) 3.07(−3) 2.90(−3) 3.1

14 3.15(−3) 1.27(−3) 1.39(−3) 1.49(−4) 4.1

16 4.06(−3) 9.28(−4) 6.15(−4) 8.12(−5) 5.3

18 2.84(−3) 1.43(−3) 5.46(−4) 2.81(−5) 6.8

O(exp(−0.4p)) ≈ O(p2)

Table: |2i− Ṽd(π, k)|, a = 3,b = 1.
In this variant computational times are fixed w.r.t. k.
For fixed very small p, errors grow slightly with k. For larger
p, errors decrease as k →∞.
For fixed k the rate of convergence appears exponential in
p and computational time is about O(p2).



Summary

• Highly oscillatory scattering problem solved in time which is
empirically close to O(1) as k →∞.

• The method and analysis are geometry dependent
So are ray tracing algorithms

• Galerkin approach and knowledge of asymptotics allow
rigorous error estimates

• New results: asymptotics of solutions, estimates for oscillatory
integral operators and quadrature for oscillatory integrals

• 3D presents significant challenges:
3D screen problems: [Chandler-Wilde, Langdon, Hewett, 2012,
2015]


