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High freq. problem for the Helmholtz equation

Given an object Q ¢ R?, with boundary I" and exterior ',
Incident plane wave, e.g. : u;(z) = exp(ikx - Q)

(94

Total wave u = uy + ug, where Scattered wave ug satisfies:
Aug + k:zuS =0 in¢

plus boundary condition (Mostly u; +ug =00onT) and

radiation condition: 22 — ikuS = o(r~(="1/2) as r oo



Blackboard

e Oscillatory solutions
e Complexity: O(k%) FEM, O(k¢!) BEM
e “Pollution effect”?

e BEM suitable for homogeneous problems, i.e. (piecewise)
constant wavenumbers

e Lecture 1: wavenumber dependent NA for BEM
[56, ChGrLaSp] [GrLoMeSp]



Numerical-asymptotic methods

::7:::
i
Mm
e
1l mumnm i

[

\!N““‘“‘\u\\'

"')’!-’M'qu lmlm
m _","’ .l‘..o’- 0N

Lecture 2: By building in asymptotic information about solution
we can reduce (or remove) the wavenumber dependence.

Interesting mathematics [ChLa], [DoGrSm], [ChGrLaSp]
BUT

Methods are strongly geometry dependent



Truncated problems

Aug+kug = 0 inQNBg
ug = —uy on T
% —tkug = 0 on Bp
for large R

Model “cavity” problem: ug — u

Au+k*v = f in boundeddomain Q
— —tku = g on I':=90



Heterogeneity

Seismic inversion problem:

wL \?
—Au — () u=f, w = frequency
c(x)

solve for v with approximate c.

Numerical solution Marmousi wave speed
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Third talk: Conventional discretisation and fast solvers



First problem

When (i.e. for what values of h) is the error in the h— version
boundary element method (BEM) bounded independently of k£?

First: Short description of BEM. [ChGrLaSp]



Fundamental solution for the Helmholtz equation

Blackboard
—(Au+k*u) =0

i (klz —y|) 2D

Grly) = explikle —y|)

D
Arlz — y| °

Phase: klr—y| =  Oscillatory integral
single layer potential : (Sy¢)(z) = [p Gi(z,y)o(y)dS(y),

double layer: (Dro)(x) = [p0n@y)Gr(z,y)]o(y)dS(y),

adjoint double layer: D) (switch roles of = and y).



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:
Green’s identity for ug in Q':

Sk(anus >_ Dk(us ) = (_US ) in ¢ (1)



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:
Green’s identity for uy in Q:
Sk(3n7L5 + Onul) — Dk(uS + ul) = (*U/S + 0) in @ (1)



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:

Green’s identity for uy in Q:

Sk(anu,g + Onul) — Dk(us + UI) = (—uS + 0) in @ (1)
N N—— N——

Onu =0 uy



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:

Green’s identity for uy in Q:

Sk(anu,g + Onul) — Dk(us + uI) = (—uS + 0) in (1)
T’_/ T N —
nU = ur

Limit to boundary I': Equation for unknown v := 0,,u
but with spurious frequencies.



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:
Green’s identity for uy in Q:
Sk(anu,g + Onul) — Dk(us + UI) = (—uS + 0) in (1)
T T N——
nU = ur
Limit to boundary I': Equation for unknown v := 0,,u
but with spurious frequencies.
Take normal derivative in (1) and combine with —ikx (1):
“direct” combined potential formulation Blackboard

1
WU = <2I+D;€>v—ik8kv = Opur —ikuy, Ork—mn



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:

Green’s identity for uy in Q:

Sk(anu,g + Onul) — Dk(us + UI) = (—uS + 0) in @ (1)
N N—— N——

Onu =0 uy

Limit to boundary I': Equation for unknown v := 0,,u
but with spurious frequencies.

Take normal derivative in (1) and combine with —ikx (1):
“direct” combined potential formulation

1
LU= <2I +D§€> v —1kSpv = duy — ikuy ,

Alternative “indirect” method:

1
Ry = (2I+Dk> ¢ —ikSpp = —uy,



BEM analysis - Classical setting

“Fredholm integral equations of the Second kind”
W=+ L)v = fi
Rrkp =M +Lp)o =g  (A=1/2)

Galerkin method in approximating space Vy (or V).
e.g. piecewise polynomials of fixed degree p.  Blackboard

Solution vy or ¢y, €.9.

(M + PnLi)vn = Pn fu



BEM analysis - Classical setting

“Fredholm integral equations of the second kind”

W =M +L)v = fi
Rep =M +Lr)p =g (A=1/2)

Galerkin method in approximating space Vy (or V).
e.g. piecewise polynomials of fixed degree p.  Blackboard

Solution vy or ¢y, €.g.

(M +PnLy)on = Pn f

v—vy =AM —PyLY) ! (v —Pyv)

stability best approx




Question 1 (best approximation error)

When are )
infyyevy [0 = wnll 2

loll L2 (r)

and )
infyyevy ¢ — wNHLZ(F)

el L2(r
bounded independently of £?



Question 2 (quasioptimality)

When are
[v =Nz

inwaEVN HU - wN”LQ(F)

and
16 — onll 2

infyevy ¢ — wNHLQ(F)

bounded independently of £7?

“Pollution effect”?



If both hold...(bound on relative errors)

v — UN||L2(F)
HUHL?(F)

and

16— onll 2
161l £2(r)
bounded indpendently of k.



Answers: Question 1 (“direct” version v = 9,,u)

When is )
infuyevy 10— wnll 2

”UHL?(F)

bounded independently of £?
Theorem If 2 is C*° and convex then for h—BEM,
A e P (O P

so hk < 1 is sufficient for Question 1.



Proof uses... Melrose and Taylor formula (1985)

v(x) := Ju/On(x) = kV(x,k)exp(ikx-a), x€T,
Theorem Dominguez, IGG, Smyshlyaev, 2007

Ch, n=0,1,

D"V (z, k)| <
| (73 )| = { c, k(n—l)/S (1 + k1/3dist(x7SB))—(n+2)

where SB = {x € I" : n(x).a = 0} shadow boundary.

Proves, e.g. |[v[| g1 (r) < Fllvllzzr)



Answers: Question 1 (“direct” version v = 9,,u)

When is '
infyyevy (v — wNHLQ(F)

Tl

bounded independently of k£?

Theorem If Q is a convex polygon then there is a mesh with
O(N) points so that ,

) k
wzllrgih lv — 'thHLQ(F) S NHUHI}(F)

so k/N < 1 is sufficient for Question 1.

(Requires supycq [u(x)].)



Proof uses:

Theorem Chandler-Wilde and Langdon (2007)

-

U u! " "
v(s) = gn(s) = 28871(8) + elksv+(s) + e_lksv_(s)

where s is distance along ~, and
np )y < [ Culks)™/277 ks > 1,
By (s)] < { Cp(ks)™@ ™ 0<ks<1,

where a < 1/2 depends on the corner angle.



Answers: Question 1: Indirect method

Ap = Ly¢ = ikSkp + Do

To estimate the derivatives of ¢:

ISellper, S E@=D/2 (T Lipschitz)
1Dillrr, < K9D/2 (T smooth enough)

These imply ||l g1y <

~

E@TD2)| 6| L2y

Andso  hk(@D/2 < 1 s sufficient for Question 1.



Answers: Question 2 (classical approach)

wi=  (M+L)v = f compactperturbation
(M + PpLy)vn, = Prfr Galerkin method

Lemma [Atkinson, Anselone, 1960’s ....]
It (= Pu)LLlIA + L)~ << 1,

then [lv —wnll < (AL +Lp) [[v = w||

Y| inf
wpEV

Application:
(7 = Pu)Lill S AICE] L2 S REETD

and in addition:
|(AT + £§€)‘1|| <1 [Chandler-Wilde & Monk, 2008]

Lipschitz star-shaped
Theorem Hence quasioptimality if hk(*+1/2 < ¢



Tools

We used in this talk

e k— explicit bounds on norms of £, £},
(where R}, = 11 + £}), etc.
needed smooth enough domains

e k— explicit bounds on inverses (Ry) ™!, (R},)~*
needed Lipschitz star-shaped



The Subtlety of Behaviour of ||, || and [|R, |

Equivalently 12}/l and [[(R})~"]]
Hﬁk ”’ HR];:l H Circle Ellipse
~ K3 1 Q >
Square
~ k?l/Q, ~1
Rectangular cavity Elliptic Cavity

Proofs are in [ChGrLali], [BeChGrLalLi]



Numerical Experiments: domain [0, 0.5] x [0, 5]

[v—=onllg2m

10"

T
+ AT
- 'O(k"z)

4

¥ .

1492 ~ -
P fuyeny 0= ol |
degree p=10,1
N k| o M
22 2 | 0.368234 | 0.136623
66 6 | 0.334368 | 0.121106
198 18 | 0.337487 | 0.120028
594 | 54 | 0.335113 | 0.120023
1782 | 162 | 0.333687 | 0.12
5346 | 486 | 0.333559 | 0.119998

hk ~ 1



Numerical Experiments:

trapping domain

C-shaped domain

“H-IIAl
AT
o2

A A
=
r
m k N | 7 2!
3 56.5 | 120 | 0.480033 | 0.174585
6 | 1131 240 | 0.487655 | 0.174454
12 | 226.2 | 480 | 0.51861 0.174301
24 | 452.4 | 960 | 0.527743 | 0.174264
48 | 904.8 | 1920 | 0.549879 | 0.174278

Open question: Prove ik < 1 sufficient for quasioptimality



“Trapping domains”

Can things get bad in the non-star-shaped case?

Theorem

If the exterior domain €’ contains a square Q of side length a
and the boundary I" coincides with two parallel sides of @, then
if 2ak = mz for any positive integer m,

IR Z (ak)?10.

o4

Q




Non-star shaped case - “Quasimodes”

(family of) sources f and solutions v of
Av+kv=f in @ with v=0 on T
+ Sommerfeld radiation condition, where
lollz2y = Millfllz2ry, with My “large”
. This would contradict the stability bound

[y + 100} S 1l
which holds in star-shaped case (see Lectures 3 and 4).
Application to BIE case: Blackboard
RS (8,0) = (O™ — iko™)
where v is the Newtonian potential generated by f
implies growth of ||(R},) ™|

More generally ...



I(RL)~HI 2 k™2 My — O(R=D72)

With elliptic cavity M}, can increase exponentially.
[BeChGrLalLi]

K, 0=9-9771201566136298 K, ,=28.807002784875433
k —60 218097688523919 —91 632551202864647



Final remarks...

¢ BEM widely used in homogeneous wave scattering
applications (e.g. inverse obstacle problem) in the medium
frequency range

e |t is widely believed that there is no pollution in the boundary
integral method but the proof is an open question

e This topic requires delicate analysis of oscillatory integrals
(Lecture 2)

e If you want to treat non-smooth (Lipschitz) domains you need
to use harmonic analysis techniques!



