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1. Introduction. In this paper, we link two well-established areas of nonlinear
control theory: input-to-state stability (ISS) and absolute stability. The concept of
ISS (for a general controlled nonlinear continuous-time system) appeared first in the
paper [29], published in 1989. The theory of ISS, which has been developed since 1989,
provides a natural stability framework for nonlinear systems with inputs, merging, in
a sense, Lyapunov and input-output approaches to stability (see [7, 31] for overviews).

Classical absolute stability theory (see, for example, [11, 12, 22, 24, 26, 33, 35]),
the origins of which go back to the late 1940s, is concerned with the analysis of
systems of Lur’e type, that is, feedback interconnections of the form shown in Figure 1,
consisting of a linear state-space system (A, B,C) in the forward path and a static
sector-bounded nonlinearity f in the feedback path. Absolute stability theory seeks
to conclude stability of the feedback system through the interplay or reciprocation of
inherent frequency-domain properties of the linear component (A, B,C) and sector
data for the nonlinearity f.

The present paper adopts a similar standpoint but differs from the classical abso-
lute stability framework in three fundamental aspects: (i) in contrast with the major-
ity of the relevant literature wherein the continuous-time case is treated, discrete-time
systems are studied here; (ii) rather than focussing on global asymptotic stability of
the unforced system (v = 0) or on input-output stability (in the [? or [*°-sense), we
address ISS issues here; (iii) our approach is inspired by the complexified Aizerman
conjecture, a certain version of which is known to hold true in the continuous-time
case (see [14, 15]).

In the continuous-time context, a number of results on ISS properties of Lur’e
systems can be found in the literature; see [2, 16, 17, 18]. While a considerable amount
of work on asymptotic stability properties of discrete-time Lur’e systems has been done
(see, e.g., [1, 5,9, 10, 11, 12, 23, 25] for stability results, [3, 13] for counterexamples to
the discrete-time Kalman conjecture, and [8, 27], where it is shown that the Aizerman
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Fi1G. 1. Lur’e system with linear component (A, B, C), nonlinearity f, input v, and output y.

conjecture holds for certain classes of nonnegative Lur’e systems), the theme of ISS
criteria for discrete-time Lur’e systems in the spirit of absolute stability theory (that
is, ISS criteria in terms of frequency-domain and sector conditions) remains largely
unexplored. One of the few exceptions is [23], where an “exponential” ISS property
is shown to hold in the context of observer synthesis for a class of discrete-time Lur’e
systems.

The main result of this paper, Theorem 13, is a version of the circle criterion
guaranteeing ISS. We consider the circle criterion from a perhaps unfamiliar but
nevertheless intriguing point of view, namely, by relating it to a complexified version
of the Aizerman conjecture. Balls of stabilizing gains (output feedback matrices)
play a pivotal role in the “Aizerman version” of the circle criterion presented in
Theorem 13, in contrast with classical versions of the circle criterion wherein positive-
real and sector conditions are ubiquitous. In many situations, it is more intuitive to
think in terms of balls of stabilizing gains. This point of view is partially inspired
by classical results from the stability theory of linear multistep methods in numerical
analysis: these results can be considered as Aizerman versions of the discrete-time
circle criterion; see [4] and the references therein. Furthermore, we show that a more
traditional version of the circle criterion, formulated in terms of positive-real and
sector conditions, can be derived from the Aizerman version; see Corollary 16. The
latter result shows that under conditions very similar to those of the classical circle
criterion, the Lur’e system is ISS.

Initially, preceding the development of the ISS theory of the circle criterion, we
prove an Aizerman version of the circle criterion for unforced Lur’e systems; see
Theorem 9. This result offers a new perspective on the classical criterion and refines
existing results. Furthermore, it allows us to demonstrate some of the finer points of
our main ISS result, Theorem 13.

The paper is organized as follows. In section 2, we present a number of preliminary
results which relate to the underlying linear system. Section 3 develops an Aizerman
version of the circle criterion for unforced Lur’e systems, while in section 4 we present
and prove versions of the circle criterion which apply to forced Lur’e systems and
guarantee ISS. In section 5, we consider two applications of the ISS theory developed
in section 4, namely, ISS with bias and environmental forcing in theoretical ecology.
Finally, the proof of a technical lemma is relegated to the appendix (section 6).

Notation. Set N := {1,2,3,...} and Ny := NU{0}. Let F=Ror F = C. As
usual, FP*™ is the vector space of all matrices of format m x p with entries in F. We
set FP := FPX! The field of rational functions with coefficients in F is denoted by
F(z). For a matrix M = (M;;) € F™*P  we define M* € FP*™ by (M*);; := My;. If
F = R, then M* is simply the transposition of M. For a square matrix M € F"*™
o(M) denotes the spectrum of M, that is, the set of eigenvalues of M. The spectral
radius of M is denoted by p(M). We say that M is a Schur matrix (or that M is
Schur) if p(M) < 1, or, equivalently, if M is asymptotically stable. If M € F™>*™ ig
Schur, Wy € F™*P and Wy € F7*™ then the structured complex stability radius of
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M with respect to the weights W1 and W5 is defined by

re(M; Wy, Wa) := inf{||P|| : P € CP*? and p(M + W1 PW,) > 1},
where the operator norm is induced by the 2-norms in CP and C?. If M € C™*™ is
a square matrix, then we define its real part by

1 *
ReM := 3 (M + M).

This is sometimes also known as the symmetric part of a matrix. For K € F™*P_ set
Be(K,r) i= {M € ™ : | K — M]| < r}.

For x € FP and Y C FP, we define the distance dist(z,Y) of x to ¥ by dist(z,Y) :=

inf{|lz — y|| : y € Y}. Furthermore, we define D := {z € C : |z|] < 1} and E :

{z € C: |z| > 1}. For m,p € N, the Hardy space H,3,, is the set of all holomorphic

functions H : E — CP*™ such that |H|| g~ := sup{||H(2)|| : z € E} < 0.
We will make use of the following classes of comparison functions:

K:={a e C([0,00)) : @(0) =0, « is strictly increasing} ,
Koo := {aEK:SIL%loa(s):w}.

Finally, we denote by KL the set of all functions /5 : [0,00) x Ny — [0, 00) with the
following properties: if 5 € KL, then, for each fixed ¢ € Ny, the function S(-,t) € K
and, for each fixed s > 0, the function (s, -) is nonincreasing and lim;_,~, 5(s,t) = 0.
We refer to [21] for more details on comparison functions.

2. The underlying linear system. Consider the following linear state-space
systems:

(2.1) x(t+1) = Ax(t) + Bu(t) + v(t), y(t) = Cx(t) Vit e Ny,

where A € F*»*" B € F"*™ and C' € FP*™. Here u and v are input signals with
values in ™ and F”, respectively. In sections 3 and 4, u will be generated by output
feedback of the form v = f(y), where f : FP — F™, resulting in the feedback system

(2.2) z(t+1) = Az(t) + Bf(Cx(t)) +v(t)
with input v. Obviously, the (perhaps more familiar) feedback system

z(t+1) = Az(t) + B(f(Cz(t)) + w(t))
with F™-valued input w is a special case of (2.2) wherein v(t) = Bw(t). It is convenient
to set

S(m,n,p;F) :=F"" x FPX™ x FPXT,
We say that (A, B,C) € (m,n,p;F) is canonical (semi-canonical) if (A, B) is con-
trollable (stabilizable) and (C, A) is observable (detectable). The transfer function G
of (A, B,C) € X(m,n,p;F) is defined by

G(z) =C(zI — A)~'B.

The behavior of (2.1), denoted by B(A, B, C), is defined as the set of all trajectories
(v,u, 2,y) € (FM)No x (F™)No x (F™)No x (FP)No satisfying (2.1). While this paper
is not a contribution to a behavioral theory of Lur’e systems, we find that the con-
cept of behaviors is convenient in the contexts of (i) formulating Lemmas 4 and 5
and Corollary 7, and (ii) relating trajectories of linear systems to those of associ-
ated linear and nonlinear feedback systems; see statements (1) and (2) of Lemmas 6
and 8.
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2.1. A consequence of the bounded real lemma. In the following, a rational
matrix function H € F(2)P*™ is said to be contractive if |H|| g~ < 1. In systems and
control theory, contractive rational functions are usually called bounded real. However,
since we do not assume that H is real rational, the latter terminology would be
potentially misleading in our context. In the square case (that is, p = m), contractive
functions are closely related to positive real functions. Recall that a rational function
H € F(2)™*™ is said to be positive real if Re H(z) is positive semi-definite for every
z € E which is not a pole of H. It is a standard result that if H is positive real, then
H is holomorphic in E U {cc}.

The following lemma is well-known.

LEMMA 1. Let M € C™>*™. Then Re M is positive semi-definite if, and only if,
~1¢ o(M) and ||[(I — M)(I + M)~ < 1. Furthermore, Re M is positive definite if,
and only if, —1 € o(M) and ||(I — M)(I + M)~ < 1.

The next result is an immediate consequence of Lemma 1.

COROLLARY 2. Let H € F(z)™*™. The following statements are equivalent:
(1) H is positive real.
(2) =1 ¢ o(H(2)) for all 2 € E and (I — H)(I + H)™! is contractive.

Next, we state a version of the “bounded real lemma,” which is convenient for
our purposes.

LEMMA 3. Let (A, B,C) € (m,n,p;F) with transfer function G. Assume that
G is contractive and that either (1) (A, B,C) is canonical or (ii) (A, B,C) is semi-
canonical and min|,|—; [|G(2)|| < 1. Then there exist matrices L and W with entries
in F and a positive semi-definite P = P* € F™"*" such that

(2.3) A*"PA-P+C*C=-L"L, A*PB=-L"W, and B*PB=1-W*W.

If (A, B,C) is canonical, then P is positive definite.

Proof. Assume that G is contractive. For a canonical triple (A, B, C) the result
is very well-known; see, for example, [10, Lemma 3.1], where it is proved for real
matrices. An inspection of the proof shows that the result extends to the complex
case.

If (A, B, C) is semi-canonical and min,|— ||G(z)|| < 1, then, by [34, Theorem 5.3],
there exists a positive semi-definite P = P* € F"*" such that I — B*PB is positive
definite and

A*PA— P+ A*PB(I — B*PB)"'B*PA + C*C = 0.

Setting W := (I — B*PB)Y/? > 0, it follows trivially that W = W* and B*PB =
I — W*W. Furthermore, setting L := —(W*)"1B*PA, we obtain the other two
equations. We remark that [34, Theorem 5.3] is formulated for complex matrices.
An inspection of the proof shows that the result remains valid over the field of real
numbers. d

The following example shows that if (A, B, C) is semi-canonical and |G (e®)|| = 1
for all w € [0,27), then the bounded-real equations (2.3) do not necessarily have a
solution (L, W, P) with P = P*.
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Example.t Consider (A, B,C) € (1,2, 1;F) given by

A:(g g) B:(é), C=(11),

where |A] < 1 and A # 0. The pair (4, B) is not controllable and so (A4, B, C) is not
canonical. However, since A is Schur, (4, B) is stabilizable and (C, A) is detectable,
and thus (A4, B, C) is semi-canonical. The transfer function of (4, B,C) is G(z) = 1/z
and consequently,

|G(e™)| = ||G|lg~ =1 Yw € [0,27).
A straightforward calculation shows that the bounded-real equations (2.3) do not have
a solution (L, W, P) with P = P*. 0
We will now use Lemma 3 to obtain a quadratic form that will be used later to

construct Lyapunov and ISS-Lyapunov functions for Lur’e systems.

LEMMA 4. Let (A, B,C) € X(m,n,p;F) with transfer function G € Hy5,, and
let r > 0 be such that r||G||g~ < 1. Assume that either (i) (A, B,C) is canonical
or (i) (A4, B,C) is semi-canonical and rmin,—; [|G(z)|| < 1. Then there exists a

constant k > 0 and positive semi-definite matric P = P* € F"*" such that the
function V : F™ — [0,00) defined by V (§) = (P&, &) satisfies

V((t+1) = V() < = [ly@)° + u(®)]?
(2.4) + Ello@N (@ + lu@®ll + @)
for all t € Ng and for all (v,u,z,y) € B(A, B,C).

Moreover there exists a projection 11 : F™ — F™ and ¢ > 0 such that ker I C ker C
and V(&) > c|[1I¢|)? for all € € F™.

Note that the condition r min|,|—; [|G(2)|| < 1 is trivially satisfied if r|| G|z < 1
and thus is only relevant in the case wherein r||G|/ g = 1.

Proof of Lemma 4. The rational matrix function rG is contractive and so, by
Lemma 3 (applied to the system (A,rB,C)), there exists a positive semi-definite
Q = Q" and matrices L and W such that
(2.5)

1 1
AQA=Q+C"C=—-L'L, A'QB=——L'W and B'QB=—(I-W'W).
Define U : F" — [0,00) by U(§) = (Q&, &) and T : F* x F™ x F" — F by

T(Cla CQ;&) = <Q<17 <1> + 2Re <B*Q<17<2> + 2Re <A*Q<17£>

Let (v,u,z,y) € B(A,B,C). Then, invoking the bounded-real equations (2.5), we
obtain

2

La(t) + S Wu(t)|| ~ IO + 5 (o)

+T(u(t), ut), z(t)) Vte N

U(@t+1)—U(z(t)) = — ‘

IThe authors would like to thank Chris Guiver (Exeter) and Mark Opmeer (Bath), who con-
structed this example.
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Hence, for all £ € Ny,

1 -
Ua(t+1)) = Uz(t) < = [y0)]* + = lu()1” + &llo@) (0@ + @] + Iz @)]),
where & := || Q|| max(1, 2| B||,2[|A||). Setting P :=r2Q, x := r’& and

V(&) := (P& =r°U(€) VEEF,

we see that (2.4) is satisfied.
To prove the existence of the projection II, let £ € V~1(0) and note that, by the
first equation in (2.5),

V(AE) + P ||Ce|® = =2 ||L¢),

implying that C¢ = 0, and consequently, V=1(0) C ker C. Let II be the orthogonal
projection onto (ker P)t along ker P = V~1(0). Then kerIl = V~1(0) C kerC.
Moreover, since P = PII and P = P*, it follows that V(§) = V(II¢) for all £ € F™.
Finally, since ker I = V~1(0), the seminorm £ ~ /V (£) on F™ becomes a norm when
restricted to (ker P)t = imII. Consequently, there exists a number ¢ > 0 such that
V(&) = VIE) > ¢ ||g|| for all € € F™, completing the proof. 0

2.2. Output injection and output feedback. The following lemma will turn
out to be useful for the construction of ISS-Lyapunov functions for Lur’e systems.

LEMMA 5. Let (A,B,C) € ¥(m,n,p;F) and assume that (C, A) is detectable.
Then there exists a positive definite P = P* € F™"*™ and § > 0 such that the function
V :F"™ — [0,00) defined by V(&) = (P&, &) satisfies

V(a(t+1)) = V(x(t) < =8 2Ol + ly@)II + [lu@)]* + o)

for allt € Ng and all (v,u,z,y) € B(A4, B,C).

Proof. By detectability, we can choose an “output injection” matrix H € F"*™
such that o(A 4+ HC) C D. Hence, by [15, Corollary 3.3.47], there exists a (unique)

positive definite matrix @ = Q* € F"*™ that solves the discrete-time Lyapunov
equation
(2.6) (A+ HOY*Q(A+ HC) —Q = —1.

Define U : F* — [0,00) by U(§) := (Q&,€). Noting that, for all (v,u,z,y) €
B(A, B,C),

x(t+1) = Ax(t) + Bu(t) + v(t) = (A+ HC)z(t) — Hy(t) + Bu(t) + v(t) Vt € No,
it follows from (2.6) that for all (v,u,z,y) € B(4, B,C)
(27)  Ula(t+1)) = Ula(t) = = lz@)I* + T(o(t), u®), 2(t), y(1) Yt € No.

Here T : F™ x F™ x F"* x FP — R is a map satisfying, for all ((1,(2,§,(3) € F™ x F™ x
F" x FP,

3 3
T(C1yC2,€,Ga) < NEND LG+ D Lkl Gl
J

Jik=1
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where the [; and [z, j,k = 1,...,3, are suitable positive constants. Since 2ab =
2(ca)(c7tb) < c?a? + b?/c? for all real a, b and all nonzero c, it is clear that there
exists [ > 0 such that

3
T(ClaC?agag?)) S 1||€||2 +lz HCJ||2 V(C17<27§’C3) € F™* x F™ x F" x FP.
J

Combining this with (2.7) yields that, for all (v,u,z,y) € B(A, B, C),
1
Ula(t+1)) = Ulz(t)) = —5 2@ + 1y ON + [u@)* + lo@)]*) V€ No.

Finally, setting P :=[71Q and V(&) := (P&, &) = 71U (€) shows that the claim holds
with § = 1/(21). O

Let (A,B,C) € X(m,n,p;F), K € C™*? and set Ax := A+ BKC. Then
(A, B,C) € X(m,n,p;F), and we denote the transfer function of (A, B,C) by
GX | that is,

GE(2) =0zl — Ag) 'B=G(2)(I - KG(2)) !,

where G is the transfer function of (4, B, ). Set
Se(G) :={K e C™*": G e H}} .},

the set of all (complex) output feedback matrices which stabilize (A4, B,C) in the
I2-input-output sense. If (A4, B, C) is semi-canonical, then

Sc(G) = {K e CmxP CT(AK) C D},

and so, Sc(G) coincides with the set of all (complex) output feedback matrices which
render the closed-loop system (Ag, B, C') asymptotically stable.

The following result collects simple properties of the feedback system (Ax, B, C)
and its transfer function G¥.

LEMMA 6. Let (A, B,C) € X(m,n,p;C) with transfer function G, and let K €

C™*P_ The following statements hold:

) (v,u,z,y) € B(A, B,C) if, and only if, (v,u — Ky, z,y) € B(Ak, B,C).
(2) (v,u,z,y) € B(Ak, B,C) if, and only if, (v,u + Ky, z,y) € B(A, B,C).
(3) Sc(GE)=Sc(G) - K :={L—-K:L¢€Sc(G)}.
(4) For every L € C™*r (GK)L = GE+L,
(5) Forr >0, Bc(K,r) C Sc(G) if, and only if, |GK||g-~ < 1/r.
(6) If K € Sc(G), then

1

(2.8) max{r > 0:Bc(K,r) CSc(Q)} = TGE ="

Proof. The proof of statements (1)—(4) is straightforward and is therefore left to
the reader. Note that statement (5) is a consequence of statement (6). It remains to
prove statement (6). To this end, note that, by statement (3), the identity (2.8) is
equivalent to

(2.9) max{r > 0: Bc(0,7) C Sc(G¥)} = m
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We show that (2.9) holds. A trivial small-gain argument shows that if r < 1/||GX|| geo,
then B (0,7) C Sc(GX), implying that

1

max{r > 0:Bc(0,7) C S¢(G*)} > ———.
1G] e

To show that equality holds, we note that there exists zo in the closure of E (that

is, |20] > 1) such that |G ()| = [|GX||g~. Moreover, it is well-known that there
exists a matrix L € C™*P (of rank one) such that
1 1
IL] =

IGK(z0)l  1GF|[m=
and I — LG (zj) is singular. Consequently, L ¢ Sc(G*), and hence,

1
IGH |’

completing the proof of statement (6). d

max{r > 0:Bc(0,7) C Sc(G¥)} <

Statement (6) of Lemma 6 is closely related to the complex stability radius of
Ax = A+ BKC with respect to the perturbation structure given by B and C:
it (4, B,C) is semi-canonical and K € Sc(G), then Ax is asymptotically stable,
and it follows from a basic result on stability radii (see [15]) that rc(Ak; B,C) =
VIG" | .

For (A, B,C) € X(m,n,p;F) with transfer function G, K € S¢(G) and r» > 0
satisfying B¢ (K, r) C Sc(G), we introduce the following assumption:

(A)

Note that, since Be(K,r) C Sc(G), statement (5) of Lemma 6 guarantees that
r||G®||g~ < 1. We conclude that the condition rminj,—; [|G*(2)|| < 1 is vio-
lated if, and only if, |GE (e™)|| = |GE|| g~ = 1/r for all w € [0,27). Consequently,
if m = p (“square” case) and det G(z) # 0, then rmin|,—; |[G*(2)|| < 1 if, and only
if, o(G71(e™) — K) # r, where ¢ denotes the smallest singular value. If m = p = 1
(single-input single-output case), the latter condition means that the inverse Nyquist
plot {1/G(e™) :w € [0,2m)} is not equal to the circle of radius r centered at K.

COROLLARY 7. Let (A, B,C) € X(m,n,p; F) with transfer function G, K € Fm*P
and r > 0. Assume that Be(K,r) C Sc(G) and (A) holds. Then there exists a
constant k > 0 a positive semi-definite matric P = P* € F"*™ such that the function
V :F" = [0,00) defined by V(§) = (P&, &) satisfies

V(a(t+1)) = V() < = ly@)” + Ju(t) - Ky(®)|®
+alo@l (o] + [ut) — Ky@) + [l=(@)]])

for all't € Ng and for all trajectories (v, u,z,y) € B(A, B,C).
Moreover there exists a projection II : F™ — F™ and ¢ > 0 such that ker IT C ker C
and V(&) > ¢ ||TIE||* for all £ € F™

Proof. Note first that if (A, B, C) is canonical (semi-canonical), then (Ak, B, C)
is canonical (semi-canonical). Let (v,u,z,y) € B(A,B,C). By statement (1) of
Lemma 6, (v,u — Ky, z,y) € B(Ak, B,C). Invoking statement (5) of Lemma 6, we
have that r||G¥ ||z~ < 1, and an application of Lemma 4 to the system (Ag, B, C)
yields the claim. d

Either (i) (A, B, C) is canonical or (ii) (4, B, C) is semi-canonical and }
rming, 1 |GF(2)] < 1.
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3. Lur’e systems and the Aizerman version of the circle criterion. Ap-
plying feedback of the form u = f(y) = f(Cx) to the system (2.1), where f : FP — F™
is a nonlinearity, leads to the forced Lur’e system

(3.1) z(t +1) = Az(t) + Bf(Cx(t)) + v(t).
It is convenient to refer to (3.1) as the system (A, B,C, f). The behavior of (3.1),
denoted by B(A, B, C, f), is defined as the set of all (v, z) € (F™)No x (F*)No satisfying

(3.1). Initially, we will be interested in the stability properties of the unforced Lur’e
system (3.1) (that is, system (3.1) with v = 0), and we define

Bo(A,B,C, f) = {z € (F")" : (0,z) € B(A, B, C, f)}.

An immediate consequence of these definitions of behaviors is the following lemma.

LEMMA 8. Let (A, B,C) € X(m,n,p;F) and let f : FP — F™ be a nonlinearity.
The following statements hold:

(1) (v,z) € B(A,B,C, f) if, and only if, (v, f(Cx),z,Cx) € B(A, B,C).

(2) x € Bo(A, B,C, f) if, and only if, (0, f(Cz),z,Cz) € B(A, B,C).

We now define three basic stability concepts for the unforced Lur’e system (3.1).

DEFINITION. We say that the Lur’e system (A, B, C, f) is globally stable if there
exists ¢ > 0 such that

z(@)] < cllz(0)] Vi€ No, Va € Bo(A,B,C, f);
globally asymptotically stable if it is globally stable and if
tli)m z(t)=0 VazeBy(A, B,C,f);and

globally exponentially stable if there exists ¢ > 0 and a € (0,1) such that
lz@®)]| < ca [l2(0)]| V¥t € No, Va € By(A, B,C, f).

We are now in the position to state and prove a version of the circle criterion,
subequently referred to as the Aizerman version. This result shows in particular that,
over the complex field, the following generalization of the Aizerman conjecture holds:
if, for a linear system (A, B,C), there exists a matrix K and r > 0 such that, for
all complex matrices F with |F — K|| < r, the linear Lur’e system (A4, B,C,F) is
asymptotically stable (or, equivalently, A + BFC is Schur), then the Lur’e system
(A, B, C, f) is globally asymptotically stable for every continuous nonlinearity f sat-
isfying ||£(€) — K|l < rll¢]| for all € 0.

THEOREM 9 (circle criterion—Aizerman version). Let (A, B,C) € X(m,n,p;F)
with transfer function G, K € F™*P r > 0, and let f : FP — F™ be a nonlinearity.
Assume that Be(K,r) C Sc(G) and condition (A) is satisfied. Then the following
statements hold:

(1) If
(3.2) 1F(&) = K&l < rliEll V& eF?,

then (A, B,C, f) is globally stable.
(2) If f is continuous and

(33) I£(§) — K&l <rligll V¢ € F\{o},
then (A, B, C, f) is globally asymptotically stable.
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(3) If there exists § € (0,7) such that

(3-4) [£(&) = K&l < (r=a) [lE]l V¢ € FP,

then (A, B, C, f) is globally exponentially stable.

In view of the “gap” between conditions (3.3) and (3.4), it seems natural to
consider an “intermediate” condition, namely, the existence of a function a € K
such that

(3.5) 1£(&) = K&l < rllgl — eliéll) V€ € FP.

One of the outcomes of the next section (section 4) is that if (3.5) holds with a €
Koo, then the Lur’e system (3.1) is ISS (provided that the linear system (A, B, C)
satisfies the conditions of Theorem 9), but the unforced system may not be globally
exponentially stable. Furthermore, an example in section 4 shows that condition (3.5)
with o € K is too “weak” to guarantee ISS.

We remark that Theorem 9 can be “rephrased” in terms of positive-real and sector
conditions; see Corollary 11. Furthermore, we note that statement (2) of Theorem 9 is
reminiscent of a continuous-time stability radius result (complex Aizerman conjecture)
by Hinrichsen and Pritchard; see [14, 15]. The proof below makes use of ideas from
14, 15].

Proof of Theorem 9. By Corollary 7, there exists a positive semi-definite matrix
P = P* € F™*™ guch that the function V : F* — [0,00) given by V(§) = (P¢,€)
satisfies

V(a(t +1)) = V(a(t) < = ly(0)* + lu(t) - Ky()||*

for all t € Ny and all (0,u,x,y) € B(A, B,C). Invoking Lemma 8, we conclude that

s VEEFD V@) < = ICeOI + [/ (Cx) - KCxo)]? }

Vte Ny, Voe B()(A,B,C, f)

Moreover, another application of Corollary 7 allows us to conclude that there exists
a projection IT : F* — F™ such that ker IT C ker C' and

a2 < V() <ea|l€)? VEETF™,

where ¢; and ¢y are suitable positive constants.
To prove statement (1), we note that, by (3.2) and (3.6), the function ¢ — V(z(t))
is nonincreasing. Consequently, for every z € By(A, B, C, f), we have that
e [T ()] < V(@(t) < V(@(0) < e [2(0)]* V¢ € No.

As kerII C ker C, it follows that CII = C' and so, for every z € By(A, B, C, f),
c
[Cz(t)|| = |ICTLz(8) || < ||C|| [Tz () ]| < [|C| f |z(0)]] vt € No.

Combining this with (3.2), we obtain that, for every z € By(A, B, C, f),

[f(Cx(t)) — KCx(t)|| < plz(0)| Vi€ No,
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where p := 7 ||C|| /c2/c1. By hypothesis, G¥ € H25,, and it follows from assump-
tion (A) that Agx is Schur. Furthermore, note that, by Lemma 8 and statement
(1) of Lemma 6, for every x € By(A4, B,C, f), we have (0, f(Cz) — KCz,z,Cx) €

B(Ak,B,C). It follows that, for every = € By(A, B, C, f),

lzOI < eslle(O)ll + ca max [|f(Ca(s)) — KCx(s)| Vi € No,

where c3 and ¢4 are suitable positive constants. Consequently, setting ¢ = c3 + pcy,
we have ||z(t)]] < ¢||z(0)| for all t € Ny and all z € By(A, B,C, f), completing the
proof of statement (1).

We proceed to prove statement (2). Global stability follows of course from state-
ment (1). We need to show global attractivity of 0. To this end, let 2 € By(A, B, C, f).
It is sufficient to show that
(3.7) tliglo Cz(t) =0.

Indeed, if (3.7) holds, then f(Cx(t)) — KCx(t) — 0 as t — oo, which combined
with the asymptotic stability of Ax and the fact that (0, f(Cz) — KCx,x,Cx) €
B(Ag, B,C) implies z(t) — 0 as t — oo.

To establish (3.7), write y = Cz and note that, by global stability, y is bounded.
Consequently, the omega limit set 2 of y is nonempty and dist(y(t), ) — 0 as t — co.
It remains to show that = {0}. To this end let £ € 2. Then there exists a sequence
(tx) in Ng such that ¢ — oo and y(tx) — £ as k — oo. Since t — V(z(t)) is a
nonnegative nonincreasing function, the limit lim;_, o, V(2(t)) exists. In particular
(V(z(ty +1)) = V(x(tk))) — 0 as k — oo. Invoking (3.6) for t = ¢y, letting k — oo,
and using the continuity of f yields the inequality

0<£(&) - K&* = |l

Together with (3.3) this implies £ = 0, completing the proof of statement (2).
To prove statement (3), note that, by (3.4) and (3.6), we have, for every x €
BO(A’ B7 O? f)’

Vit +1)) — V(z(t) < (62 = 20r) [|Cz(t)||> < =62 |Cx(t)]|® VYt e N,.

Since, by assumption (A), (4, B, C) is detectable, Lemma 5 guarantees the existence
of a positive-definite matrix @ € F"*™ and a constant € > 0 such that the function
U :F" — [0,00) satisfies

U(t+1)) = Ux(t) < —¢ |z + ly@)]* + llut)]®
for all t € Ny and for all (0,u,z,y) € B(A, B,C). Therefore, by Lemma 8,
Ux(t+1)) = Ux(t) < — la@)|* + [Cx®)|* + || £(Cx(t))]®
< —e[la@®)]® + (1 +2(r — 6)* + 2||K|*) ||C(1) ]

for all t € No and for all z € By(A, B, C, f). Setting pu := (1+2(r—48)2+2 | K|*)/6% >
0, the function W : F™ — [0, 00) defined by W (&) := U(&) + pV (€) = {(Q + pnP)E, &)
satisfies, for all x € By(A4, B, C, f),

2

W(x(t +1)) — W(a(t) < —¢llz(t)|> Ve No.
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Obviously, @ + P is positive definite and so, /W () defines a norm on F". Conse-

quently, there exist positive constants ¢; and ¢, such that ¢1 [|€]|> < W(€) < ¢ ||€]
for all £ € F™. Hence, for every x € By(A, B, C, f),

W(z(t+1)) < (1 - é) W(z(t)) Vte N.

Setting ¢ := \/ca/c1 and a := /1 — £/ca, we obtain that, for every x € By(4, B, C, f),
Ja(t)]] < ca®[|lz(0)]] Ve N,

completing the proof of statement (3). d

It is well-known that if the linear system (A, B, C) is asymptotically stable (that
is, A is a Schur matrix), then there exists a “destabilizing” output feedback matrix
F € C™*? of minimal norm, that is, A + BFC is not Schur (or equivalently, not
asymptotically stable) and ||F'|| = r¢(A; B, C). Note that, in general, F' will be com-
plex, even if (A4, B, C) is real. The following result, which, somewhat surprisingly, does
not seem to be available in the literature, shows that the application of a destabiliz-
ing output feedback matrix of minimal norm results in a marginally stable closed-loop
system.

COROLLARY 10. Let (A, B,C) € X(m,n,p; C) with A a Schur matriz and assume
that rc(A; B,C) < oo. Let F € C™*P be such that A + BFC is not Schur and
|1F) = rc(A; B,C). Then p(A+BFC) =1 and all X € 0(A+ BFC) with |\| =1 are
semistmple.

Proof. We proceed in two steps. We first prove the result under the assumption
that (A4, B, () is canonical and then remove this assumption in the second step

Step 1. Assume that (A4, B, C) is canonical. Thus, condition (A) is satisfied. Since
A+ BFC is not Schur, it is clear that p(A + BFC) > 1. With r := rc(4; B, C),
we have that B(0,r) C Sc(G), where G denotes the transfer function of (A4, B, C).
Defining f : C?» — C™ by f(&) := F¢ for all £ € CP, an application of statement (1)
of Theorem 9 (with F = C) shows that p(A 4+ BFC) < 1 and all A € ¢(A + BFC)
with |[A| = 1 are semisimple.

Step 2. If (A, B,C) is not canonical, then there exists an invertible matrix T €
C™*"™ such that

A Az O By
T'AT = 0 Ay 0|, T7'B=| 0], OT=(C1,C,0)),
Asz1 Aszp Ass B3

where the triple (411, B11,C11) is canonical (see, for example, [30, Lemma 6.5.1]).
Since A is Schur, the matrices Ay1, Aso and Aszs are Schur and, furthermore,

(38) G(Z) = O(ZI — A)_lB = 011(25] — All)_lBll.
Now

A +BuFCn 0

(3.9) T Y (A+ BFC)T = 0 Ay 0 |,
* * A33

and so,

(310) O’(A + BFO) = O'(A11 + BHFCM) U U(AQQ) U O’(Agg).
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Hence, A11+ B11 FCh1 is not Schur and, by (3.8), ||F|| = rc(A11; B11,C11). Therefore,
by what has already been proved in Step 1, p(A11 + B11FC11) = 1 and all eigenvalues
X € 0(A11 + B11 FCqp) with |A] = 1 are semisimple. Since Ay and Ass are Schur, it
now follows from (3.9) and (3.10) that p(A+ BFC) =1 and all A € (A + BF') with
|A| =1 are semisimple. 0

We now use Theorem 9 to derive a version of the circle criterion which is formu-
lated in terms of positive real and sector conditions.

COROLLARY 11. Let (A, B,C) € X(m,n, p;F) with transfer function G, K1, Ky €
F™*P and let f : FP — F™ be a nonlinearity. Assume that H := (I — KoG)(I —
K1G)™! is positive real and that either (i) (A, B,C) is canonical or (ii) (A, B,C) is
semi-canonical and there exists 0 € [0,27) such that ReH(e?) is positive definite.
Then the following statements hold:

(1) If ker(K; — K3) = {0} and

(3.11) Re (f(§) — K1&, f(§) — K2§) <0 VEE€F?,
then (A, B,C, f) is globally stable.

(2) If f is continuous and

(3.12) Re (£(€) — Ku&, £(€) — Ka) <0 V€ € FP\{0},
then (A, B, C, f) is globally asymptotically stable.

(3) If there exists § > 0 such that

(3.13) Re (f(€) — Ki&, f(€) — K2€) < —~0[|¢]|* V¢ € FP,
then (A, B, C, f) is globally exponentially stable.

Statement (2) of Corollary 11 is reminiscent of classical absolute stability results
as presented, for example, in [10, 11], where it is assumed that (A, B, C) is canonical.
Note that, in [10, 11], global asymptotic stability is shown under the assumptions of
strict positive realness? of H = (I — K2G)(I — K1G)~! and sector-boundedness of f
in the sense of (3.11).

Proof of Corollary 11. Setting
1 1
(314) L:= §(K1 - Kg), M = §(K1 + Kg)
it follows that

(3.15) Re (f(€) — Ki&, f(€) — Ka€) = || f(€) — M¢|* — | LE|® V€ e FP.

Thus, if (3.12) or (3.13) holds, then ker L = {0}, so in all statements (1)—(3) we have
ker L = {0}. Hence, L*L is invertible, and L := (L*L)~'L* € FP*™ is a left-inverse
of L. A routine calculation shows that

H= (I - K;G)(I - K1G)™' =T +2LG** =T+ 2F, where F := LG,

By hypothesis, I+ 2F is positive real and therefore, invoking Corollary 2, we conclude
that F(I + F)~! = (I — H)(I + H)! is contractive. The identity

FOU) — F(I 4+ LI'F) " = F(I + LGK) "L = F(I + F) !

2 The transfer function H is said to be strictly positive real if all poles of H are in D and Re H(ew)
is positive definite for all 8 € [0, 2m).
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shows that F(—LL is also contractive. Consequently, by statement (5) of Lemma 6,
(3.16) Be(—LL*, 1) C Sc(F).

It is clear that F is the transfer function of (Ak,, B, LC), where Ag, :== A+ BK,C.
Note that if (A4, B, () is canonical (semi-canonical), then (Ag,, B, LC) is canonical
(semi-canonical). Furthermore, if there exists 6 € [0,2) such that Re H(e%) is posi-
tive definite, then, invoking Lemma 1, it follows that

[FCEED ()] = |[F(e) (1 +F ()~ | = |[(I = H(e)) (I + H(e) '] < 1,
whence
min IFCEED ()| < 1.

We now conclude that that assumption (A) holds in the context given by the linear
system (Ax,, B, LC), the feedback gain K = —LL¥, and the radius r = 1. Further-
more, defining g : F™* — F™ by

(3.17) 9(&) = f(LF¢) — K1L¥¢ VEET,
it follows that
(3.18) |lg(&) + LL¥¢|| = ||f(L*¢) — (K1 — L)LF¢|| = || f(LF¢) — ML¥¢| V¢ eF™
Hence, by (3.15),
lg(€) + LLA|1* = Re (f(LF€) — K1 L*¢, f(L*€) — Ko L*¢) + ||LLE¢|> V& e F™.

Now LLF € F™*™ is the orthogonal projection onto im L along (im L)* and therefore
|LL#|| = 1. Consequently,

(3.19) [lg(€) + LLE|® < 1€ + Re (F(LFE) — KA L, f(LFE) — KoLPE) V& € F™,
We also note that
(320) BO(A73707 f) :BO(AKUBaLCag)'

The key step is now to apply Theorem 9 to the unforced Lur’e system (Ak,, B, LC, g).
To prove statement (1), note that, by (3.11) and (3.19), ||g(&) + LL#¢|| < ||€|| for
all £ € FP. Since (3.16) holds, we may apply statement (1) of Theorem 9 to conclude
global stability of (Ag,, B, LC, g). Global stability of (A, B, C, f) follows from (3.20).
A similar argument will show that statement (2) holds, provided we can prove
that

(3.21) lg(€) + LLE| < llg]l V€& € F™\{0}.

For ¢ ¢ ker L¥, the above strict inequality follows from (3.12) and (3.19). Moreover,
for ¢ € ker LF\{0}, the strict inequality also holds because for such ¢ the left-hand
side is equal to 0. Thus, (3.21) is satisfied.

We proceed to prove statement (3). Invoking (3.13) and (3.19), we see that

lg(€) + LLF¢|1? < [|€]|* - olIL*¢|® Ve e F™.
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Obviously, there exists A > 0 such that
(3.22) IZ% ] = Allg]l V& € (ker LA)*,
and consequently,
lg(€) + LLe|* < (1 = 6A)[lg]* V& € (ker LF)

For arbitrary ¢ € F™, we have that £ = & + &, where & € ker Lf and & € (ker L)+
and so,

19(€) + LL*|| = [lg(&) + LL* || < V1 — 6X2||&l| < V1 —6A2€].

Invoking an argument similar to that used in the proof of statement (1) yields the
claim. d

Since Theorem 9 plays a key role in the proof of Corollary 11 and since Theo-
rem 9 was derived using Lyapunov theory, Corollary 11 ultimately rests on Lyapunov
arguments. It is interesting to note that there is an alternative proof of statement
(3) of Theorem 9, and hence of statement (3) of Corollary 11, based on small-gain
and exponential weighting ideas [28]. (In a continuous-time setting, these ideas have
been used in the proof of [17, Theorem 3.4].) This proof is more elementary and
conceptually simpler than the proof based on Lyapunov arguments and, furthermore,
generalizes to infinite-dimensional contexts. (See [16] for the continuous-time case.)
However, we emphasize that the above comment is restricted to the proof of state-
ments (3) of Theorem 9 and Corollary 11; it seems that for the proofs of the first two
statements, Lyapunov theory is indispensable.

4. The circle criterion and ISS. We say that the Lur’e system (3.1), deter-
mined by (A, B, C, f), is ISS if there exist § € KL and v € K such that

(4.1) =@l < B0, )+~ (maxt Iv(8)|> V(v,z) € B(A,B,C, f), Vt € No.

0<s<
The following corollary, an immediate consequence of [20, Lemma 3.5], shows that
the existence of a so-called ISS-Lyapunov function implies ISS of (A, B, C, f).

COROLLARY 12. Let (A, B,C) € X(m,n,p;F) and let f : F? — F™ be a non-
linearity. If there exist a continuous function V. : F" — [0,00) and o; € Koo,
1 =1,2,3,4, such that

V(z(t+1)) = V(z(t) < —ar(lz@®)]]) + e2(lo@)]]) V(v,2) € B(A,B,C, f), Vi € No,

and az(||€]]) < V(E) < aq(||€]]) for all & € F™, then the Lur’e system (A, B,C, f) is
ISS. Furthermore, the functions 8 and ~ in (4.1) depend only on the functions «,
i=1,2,3,4.

A function V' with the above properties is said to be an ISS-Lyapunov function
for the Lur’e system (A, B, C, f). In [20], the underlying system is assumed to be real.
Extensions to complex systems are, however, straightforward.

We now state the main result of this paper: an Aizerman version of the circle
criterion guaranteeing ISS.
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THEOREM 13. Let (A, B,C) € X(m,n,p;F) with transfer function G, K € F"*P,
r >0, and a € K. Assume that Be(K,r) C S¢(G) and condition (A) holds. Then
there exist § € KL and vy € KC such that, for every nonlinearity f : FP — F™ satisfying

(4.2) 1£(§) = K&l < rliEll — a(ligl) V& e FP,

estimate (4.1) holds. In particular, the Lur’e system (A, B,C, f) is ISS.

In the special case a(s) = ds (for some positive §), (4.2) is the same as (3.4).
Therefore, under the conditions of statement (3) of Theorem 9, we not only have
global exponential stability but also ISS. The example below shows that there exist
(A,B,C, f), K, and r such that B¢ (K, r) C Sc(G) and (4.2) holds for some nonlinear
a € Ko, implying ISS by Theorem 13, but (A, B, C, f) is not globally exponentially
stable, and so, in particular, by statement (3) of Theorem 9, (4.2) fails to hold for
any linear «(s) = ds with § > 0.

Ezample. Consider the one-dimensional system (0, 1,1) which has transfer func-
tion G(z) = 1/z. Trivially, (0,1,1) is canonical, and so, condition (A) holds. Let
f: R — R be given by f(¢) = sign(£)log(1 + [£]) for £ € R. Choosing K = 0 and
r = 1, it is obvious that Be(K,r) = Be(0,1) € Sc(G). Additionally, (4.2) holds
with a € Ko given by a(s) = s — log(l + s) for s > 0, and thus, by Theorem 13,
the feedback system (0,1, 1, f) is ISS. Furthermore, since f/(0) = 1, it is clear that
(4.2) is not satisfied for any o € Koo of the form a(s) = ds with 6 > 0. It is not
difficult to show that the unforced feedback system x(¢t + 1) = f(z(t)) is not globally
exponentially stable. d

The following example shows that, in Theorem 13, the assumption that o € K
cannot be replaced by the weaker assumption « € K.

Ezample. Consider again the one-dimensional system (0,1,1). Choose K = 0
and r = 1. Then G(z) = 1/z and Be(K,r) = Be(0,1) C S¢(G). Let f: R — R be
the deadzone nonlinearity given by

E+1 ifE< -1,
f(€):=40 if —1<[¢l<1,
£—1 ifg>1.

Obviously, for every o € K such that a(s) < min{s, 1} for all s > 0,

(4.3) FEOI <] —a(lE]) VEER

Note that there does not exist & € Ko such that (4.3) holds. Trivially, condition
(A) is satisfied, and so, by statement (2) of Theorem 9, the Lur’e system (0, 1,1, f) is
globally asymptotically stable. But (0,1, 1, f) is not ISS, because there exist bounded
input signals v which lead to unbounded state signals z. For example, taking v(t) = 2
for all ¢ € Ny and z(0) > 1, we have z(t + 1) = z(¢t) + 1 for all ¢ € Ny, and thus
x(t) = x(0) + t for all t € N. O

We proceed to state a lemma on Ko functions which will facilitate the proof of
Theorem 13.

LEMMA 14. Let a € K. The following statements hold:
(1) There exists v € Koo such that

s182 < s1a(s1) +y(s2) Vs1,82 > 0.
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(2) For every e > 0,
a(sy +s2) <a((l+¢e)sy) +al(l+esy) Vsy,s0 > 0.

(3) Define & € Koo by a(s) := v/sa(y/s). For every € > 0, there exists ) € Koo
such that
a(s1 —s2) <a((l+¢e)s1) —n(s2) Vs1>s2>0

and 1n(s)/+/s — 00 as s — 0.

We relegate the proof of Lemma 14 to the appendix and proceed to prove Theorem
13.

Proof of Theorem 13. By Corollary 12, it suffices to construct an ISS-Lyapunov
function for the Lur’e system (A, B, C, f). We do this by constructing two functions
U and V and then showing that U + V is an ISS-Lyapunov function.

By Lemma 5, there exists a positive definite matrix Q = Q* € F™*™ and § > 0
such that the function V; : F* — [0, 00) given by V1 (§) = (Q€, &) satisfies

Vi(a(t + 1)) = Vi(z(t) < =6 [lz@)1° + ly®) 1 + lu@)l|* + [lo(t)]*
for all t € Ny and all (v,u,z,y) € B(A, B,C). Set
cr =1+ (r+|K|)?

and define V2 : F* — [0,00) by V2(&) = Vi(§)/c1. Since, by Corollary 8, (v,z) €
B(A, B,C, f) if, and only if, (v, f(Cx),z,Cz) € B(A, B,C), we can use (4.3) to esti-
mate

(4.4)

Va(a(t + 1)) = Va(z(t) < =61 [lz(@)|* + [[C2(®)[|* + [lv(t)])?
Vte Ny, V(v,2) e BA,B,C, f)|’

where 6, := 6/c1. Let co > 0; be such that Va(€) < c3|€]|? for all £ € F* and choose

b > 1 such that 5
=b(1-— 1) <1.
“ ( 202)

Note that a > b/2 > 0. Define a; € Koo by

r

(4.5) ai(s) = 5\/§a(\/§) Vs> 0.

Statement (2) of Lemma 14 guarantees the existence of a number & > 1 such that
(4.6) aq(asi +s2) < ai(s1) + ai(kse) Vsi,s2>0.

Furthermore, by statement (3) of Lemma 14, there exists 7 € Ko such that

(4.7) a1(s1 — s2) < ag(bsy) —n(s2) Vs1 > s2>0

and

(4.8) L\/Sg)—)oo as s — oo.

We define a function U : F" — [0,00) by U(§) := a1(cVa(€)) for all £ € F", where
1
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Now we use (4.4) and (4.7) to estimate
Ut +1)) < ax (be(Va(a(t) = o1 2 @) /2 + | Cx@)[|* + o))
—n(edy |=(®)]” /2) ¥t €N, V(v,2) € B(A,B,C, f).
Invoking (4.8), we may conclude that there exists u € Ko, such that
n(cdrs®/2) > su(s) Vs> 0.

Moreover, since Va(€) < ¢ ||€]|* for all £ € F*, we have

o
b <V2(£) ) |£||2> <aVa(§) VEETF

Therefore,
(4.10)

Ua(t +1)) < an(acVa(@(t) + be||Ca(t)|* + belo)]* ) — el u(l=®)])
Vte Ny, V(v,2) € BA,B,C,f) |’

Using (4.6), (4.9), and the trivial inequality
a1(s1 4 s2) < a1(2s1) + 2s2) V1,82 >0,
we obtain that, for all t € Ny and all (v,z) € B(4, B, C, f),
an (acVa(x(t)) + be | Car(t) | + be (1))
< i (eVa(a(1))) + a1 (bek [ Ca(®)]* + bek [[v(t)]*)
< U(a(t) + ar(|C2()*) + ar (lo()]I*)
for all t € Ny and for all (v,z) € B(A4, B,C, f). Combined with (4.10) this yields

@iy VEE+D)=UEO) <ar(ICOI) +ar(J®l*) - Ix(t)llu(llw(t)ll)} |

Vte Ny, V(v,z) € B(A,B,C, f)

We shall now construct a quadratic form V with the property that U + V is an ISS-
Lyapunov function. By hypothesis, Be(K, ) C S¢(G). Invoking Corollary 7, there
exists a positive semi-definite matrix P = P* € F"*™ and a constant x > 0 such that
the function V' : F* — R4 given by V(&) = (P&, §) satisfies
V(@(t+1)) = V(x(t) < [lu(t) = Ky@®)|* = ly(t)]”
+wllu(®)[| (lut) = Kyl + =@l + o)1)
for all t € Ny and for all (v,u,z,y) € B(A4, B,C). By Lemma 8, (v, f(Cx),z,Cz) €
B(A, B,C) if, and only if, (v,z) € B(A, B,C, f). Hence, we have
V(z(t+1)) = V(z(t) < ||f(Cx(t) — KCx(t)||* = r* | Ca(t)|®
+allo@N([1f(Ca(t)) = KCzx @)l + lz(®)] + [[o(t)]])
for all t € Ny and all (v,z) € B(A, B,C, f). Using (4.2), we estimate, for all £ € FP,

I1£(&) — K€l =2 [l€l* < —2a (€l €]l + al])?
< —2a([lél)r l1€] + a(llEl)r lle]
—rllEll allel)

A
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and conclude that, for all ¢t € Ny and all (v, x) € B(A, B, C, f),
V(z(t+1)=V(z(t) < —r[[Cxt)] a(|Ca@)])) +Kllo@)| (FlCx )|+ [lz(@)]|+ [v®)]])-

Statement (1) of Lemma 14 now guarantees the existence of a function v; € K such
that

1
k8182 < 58104(51) +71(s2) Vsi,82 >0.

Thus, for all t € Ny and for all (v, x) € B(A, B, C, f),

Viz(t+1)) = V(z(t)) < —g [Cz(@®)] allCz®)]]) +ry (@)
+alo@l (lz@l + llv@®)]).
We obtain that, for all ¢t € Ny and for all (v,z) € B(A, B, C, f),
V(a(t+1)) = V(z() < —ar(|Cx®)|*) + sllz@v@)]| +r2(lo@)]),

where a; is given by (4.5) and 72 € Ko is defined by v2(s) = rvy1(s) + ks?. Yet
another application of statement (1) of Lemma 14 shows that there exists v3 € Koo
such that

1
KkS159 < §slu(81) +v3(s2) Vs1,82 >0,

and so,

(4.12)
Vte Ng, V(v,z) € B(A,B,C, f)

V(w(t+1)) = V(z(t)) < —ar(|Cx(0)]*) + la@)lln(le@)]])/2 + 74(|U(t||)}
where v4 1= v2 + 3.

Hence, setting W := U + V, it follows from (4.11) and (4.12) that, for all ¢ € Ny
and all (v,z) € B(4,B,C, f),

Wzt +1)) = W(z(t)) < —aa(l|lz(t)]]) + as(v(®)]),

where as(s) := su(s)/2 and as(s) := a1(s?) + y4(s) for all s > 0. Obviously, as and
ag are in K. Finally, let c3 > 0 and ¢4 > 0 be such that

V(e) <esllél® and eaflg]® <Va(E)  VEEF™.
Defining Ko, functions ay and a5 by
a4(s) = ai(caes®) and  as(s) := ay(cocs?) + c3s? Vs >0,

it follows that a4 (||€]]) < W(§) < as(]|€]]) for all & € F*. We conclude that W is an
ISS-Lyapunov function for the Lur’e system (A4, B, C, f), and the proof is complete.d

The construction of the ISS-Lyapunov function W = U + V in the above proof is
inspired by a similar technique employed in [2] for a certain class of continuous-time
Lur’e systems; however, the technical details and context in the current paper are very
different to those in [2]. Novelties in our development include (i) control functions v
the values of which are not required to be in the image of B and (ii) a number of results
on Ko functions (in particular, statement (3) of Lemma 14 and Proposition 19) which
are pivotal in showing that W = U + V is indeed an ISS-Lyapunov function.

In the corollary below, Theorem 13 is expressed in the form of a “nonlinear small-
gain” result.
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COROLLARY 15. Let (A, B,C) € X(m,n,p;F) with transfer function G, let K €
Sc(G), and let f : RP — R™ be a nonlinearity. Assume that either (1) (A, B,C) is
canonical or (i) (A, B,C) is semi-canonical and minj, = |G (2)| < |G| gee. If
there exists o € Koo such that

1) - K¢ a(ll€])

IG™ | = < 1=

1S [ €]l

then the Lur’e system (A, B,C, ) is input-to-state stable.

Proof. Setting r := 1/||G¥ ||, it follows from statement (5) of Lemma 6 that
Be(K,r) C Sc(G). Obviously, condition (A) is satisfied and an application of Theo-
rem 13 yields the claim. ad

VEERP, £#0,

We emphasize that Corollary 15 is not a special case of the general nonlinear
small-gain theorems derived in [19, 20, 32].
We now reformulate Theorem 13 in terms of positive real and sector conditions.

COROLLARY 16. Let (A, B,C) € X(m,n, p;F) with transfer function G, let Kq,
Ko e F™*P and let f : TP — F™ be a nonlinearity. Assume that H := (I — KoG)(I —
K1G)™! is positive real and that either (i) (A, B,C) is canonical or (ii) (A, B,C) is
semi-canonical and there exists 0 € [0,2n) such that ReH(e™) is positive definite. If
there exists o € Koo such that

(4.13) Re(f(§) — Ki&, f(§) — K26) < —a(lEIIE] V¢ € FP,

then the Lur’e system (A, B, C, f) is input-to-state stable.

In the special case that a(s) = ds (for some positive §), (4.13) is the same as
(3.13). Therefore, under the conditions of statement (3) of Theorem 11, we not only
have global exponential stability but also ISS.

Corollary 16 is a clear-cut ISS version of the circle criterion for a general class
of multivariable discrete-time Lur’e systems: it shows that conditions very similar to
those of the circle criterion guarantee ISS. While it is difficult to compare Corollary 16
with the ISS results for continuous-time Lur’e systems in [17] (where p = m and v(t)
is in the image of B for t € Ny), it is clear that [17, Theorems 3.4 and 3.5] do not
provide clear-cut ISS versions of the continuous-time multivariable circle criterion: in
particular, (4.13) is considerably less restrictive than the corresponding condition in
[17]. Moreover, it is even more difficult to compare Corollary 16 with the continuous-
time result [2, Theorem 1], because there, an infinite sector condition is considered
and the assumption on the underlying linear system is essentially equivalent to the
positive realness of its transfer function, a scenario which is of no interest in our
discrete-time setting, since the only strictly proper rational function which has the
discrete-time positive real property is the zero function. Finally, we note that, in
contrast to [2, 17], it is not assumed in Corollary 16 that the number of inputs is
equal to the number of outputs.

Proof of Corollary 16. Define matrices L and M in F™*? by (3.14). Then (3.15)
holds and thus, by (4.13),

(4.14) 1£(€) — Me||* < || LE* — allEDEl V€ € FP.

In particular, ker L = {0}. Hence, L*L is invertible, and L := (L*L)~'L* € FP*™ is
a left-inverse of L. Setting Ax, := A+ BK;C, then, as in the proof of Corollary 11,
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F := LGX1 is the transfer function of (Ag,, B,LC), Be(—LL*, 1) C Sc(F), and
assumption (A) holds in the context given by the linear system (Ag,, B, LC), the
feedback gain K = —LLF, and the radius r = 1. Defining g : F™ — F™ as in (3.17),
we conclude

(4.15) B(A,B,C, f) =B(Ak,,B,LC,g).
It is sufficient to show that there exists v € Ko such that

(4.16) lg(€) + LLFe|| < i€l —~(llell) Ve € F™

Indeed, if (4.16) holds, then an application of Theorem 13 to (Ak,, B, LC,g) yields
that this Lur’e system is ISS, and consequently, by (4.15), the Lur’e system (4, B, C, f)
is also ISS.

We proceed to establish the existence of a Ko function ~ such that (4.16) holds.
Appealing to (3.18) and (4.14), we obtain

lg(€) + LL¥E|* = || f(LF) — ML¥¢|* < | LL*E|? — a(ILF¥E)| LF| V& € F.
Let ¢ € F™ and decompose £ = &1 + &2, where
& €imL = (ker L*)* = (ker L)Y and & € (im L)' = ker L* = ker L*.

Then ||LL*¢|| = ||LLFE || = ||&1]]- Letting A > 0 be such that (3.22) holds, it follows
that

lg(€) + LL*¢|1> < [|&1)1* = N la(M|& )
(4.17) = €12 = (Al feA&a]) + |&)7) Ve e F™

Defining v € K, by

~(s) := imin{)\a(x\sﬂ), s/2} Vs>0,
we have that
(4.18) 457(2s) = min{ s a(\s), s*} Vs> 0.

Now

\/8% + 83y (\/5% + s%) < (51 + 82)7(s1 + 82) < 2817(281) + 2527(282) V81,80 >0,

and thus, by (4.18),

2\/5% + 53y (\/s% + s%) < Aspa(As)) + 52 Vsi,s0 > 0.
This, in combination with (4.17), yields

lg(€) + LLE[I* < lgl| - 2liglv(ligl) < (1€l = 7(lell)® Ve e ™,

showing that (4.16) holds and completing the proof. O

5. Applications. We describe two applications of the ISS results developed in
section 4: (i) ISS with bias and (ii) “environmental” forcing in theoretical ecology.
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5.1. ISS with bias. The following result shows that if, in Theorem 13, the
nonlinearity f satisfies the condition (4.2) only in the complement of a compact set,
then the Lur’e system still satisfies an estimate which is reminiscent of ISS.

COROLLARY 17. Let (A, B,C) € X(m,n,p;F) with transfer function G. Assume
that K € Sc(G), and condition (A) holds. Set r := 1/||G¥||ge~ and let a € K.
Then there exist € KL and v € K such that, for every nonlinearity f : FP — F™
which is bounded on bounded sets and satisfies

(5.1) 1 £(§) — K&l < rlléll — allléll)  for all sufficiently large ]|,
we have
(5.2)

ol < A1), 6)+ 5 (6 + guax Io(e)] ) () € BB C.) e €

where 05 := supgcpy dist(f(£), Be (K€, r[|€]] — a([|€]]))-

The number 6 provides a natural measure of the extent of the violation of con-
dition (4.2). Note that that 6 is finite as follows from (5.1) in conjunction with
the assumption that f is bounded on bounded sets. If (5.2) holds, then we say that
the Lur’e system is ISS with bias and the number (8y) is sometimes called the bias.
Note that, under the conditions of Corollary 17, the origin may or may not be an
equilibrium of the unforced Lur’e system, and, if it is, then it may be unstable.

Proof of Corollary 17. Without loss of generality we may assume that a(s) < rs
for all s > 0. Set p(s) :=rs — a(s) for all s > 0. Then p is continuous, p(0) = 0, and
p(s) > 0 for all s > 0. Define f : FP — F™ by

f(§) — K¢ if |[£(§) — K&l < p(l€]D),

1) = %p(ngn) if 1£(6) — K€l > p(li]).

Define f : F? — F™ by f(&) = f(€) + K¢&. Note that f(€) = f(€) for all £ € F? such
that || f(£) — K¢ < p(l|€]]) and

(5.3) I1£(&) — K& = £l < p(lléll) VE e FP.

Furthermore,

1£(&) = FON = 1£(€) — K& = fE)Il = dist(£(€) — K& Be(0, p(E]))  VE € FP,

and so
1£(6) = FOIl = dist(f(£), Be(KE, p([€]1)) V& € FP,

showing that ~

sup || f(§) = f(&)Il = 05 < oo.

¢eFr
Let (v,z) € B(A, B,C, f), set w(t) = B(f(Cxz(t)) — f(Cxz(t))) for all t € Ny, and note
that

z(t +1) = Az(t) + Bf (Cz(t)) + w(t) + v(t) Vte No.

Hence, (v + w,z) € B(A, B,C, f) Now, invoking statement (5) of Lemma 6, we
see that Be(K,r) C Sc(G), and so, by (5.3), Theorem 13 applies to the Lur’e sys-
tem (A, B,C, f). Consequently, there exist § € KL and v € K (depending only on
(A, B,C), K, and «) such that (5.2) holds. O
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5.2. Environmental forcing in theoretical ecology. By way of motivation,
consider the Beverton—Holt equation

py(t) 0

(549 v+ 1) = e YO =120
which, in theoretical ecology, is used to model the evolution of a single population v,
where y(t) is the size of the population at time ¢. The positive parameters p and k
are the inherent growth rate and the carrying capacity, respectively. The former is a
characteristic of the population, determined by life cycle and demographic properties
such as, for example, birth rates and survival rates, while the latter is a characteristic
of the habitat or environment (e.g., resource availability, temperature, or humidity);
see, for example, [6] and the references therein. If p < 1, the solution of the initial-
value problem (5.4) converges to the equilibrium 0. If p > 1, then the positive
equilibrium & is globally asymptotically stable in the sense that it is stable and attracts
every solution with positive initial value 3°.

In the following, in order to take into account fluctuations in the environment,
we replace the constant k by k(1 + k(t)), where k : Ny — R satisfies

(5.5) —1 < inf k(t) < sup k(t) < oco.
t€No teNg

This leads to the environmentally forced Beverton—Holt equation

p(t) 0

(5.6) z(t+1) = T (o= Dat) /(T k@)’ z(0) =2" >0,

where the parameter k has been removed by the rescaling z(¢) := y(¢)/x. Note that,
if k(t) =0 and if p > 1, then z, = 1 is a globally asymptotically stable equilibrium in
the sense that it is stable and attracts every solution x with z(0) = 2% > 0. We will
use the ISS theory developed in section 4 to analyze the robustness properties of the
equilibrium z, = 1 with respect to the disturbance induced by k. This will be done
in the context of a more general equation which contains the forced Beverton—Holt
equation (5.6) as a special case. To this end, consider the equation

(5.7) z(t+1)=g(z@t)/(1+k(t))z(t), z(0)=2">0,

where k satisfies (5.5) and ¢ : (0,00) — (0, 00) is continuous and such that

(E1) g is strictly decreasing and limsup g(z) < 1
Tr—r00

and

(E2) ilg%)g(x)x =0, ilir%)g(x) =:g(0+) € (1,00].

It follows from (E1) and (E2) that there exists a unique x, > 0 such that g(z.) = 1.
If k(t) =0, then . is an equilibrium of (5.7).

Setting f(z) := g(z)x for all z > 0, then f(xe) = z., and we assume that the
following sector condition holds:

fx) = flze)

T — Te

f(x) — xc

T — Te

(E3)

<1 Vz>0, z# ..

See Figure 2 for an illustration of the condition (E3).
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F1a. 2. The graph of f is “sandwiched” between the lines l1(z) = z and la2(z) = 2ze — .

We note that if (E1) and (E2) are satisfied, g is continuously differentiable, and
f'(x) > 0 for all z > 0, then (E3) also holds. For the (rescaled) Beverton—Holt
example,

p px
g(x) = 5 (=D’ f(z) =g(z)x = T (=1

it is obvious that if p > 1, then (E1) and (E2) hold, z. = 1, and (E3) follows via the
above observation. A similar comment applies to the example

o) = 7= @) = gla)r = VE

For the so-called Ricker nonlinearity,

g(x) = pe™ ",  f(z) = g(x)x = pre ",  where p and ¢ are positive parameters,

it is again obvious that, for all p > 1 and ¢ > 0, (E1) and (E2) hold. However, f
is not monotone and (E3) does not follow from the argument used in the Beverton-
Holt example. It can be shown (a calculus exercise) that (E3) holds if, and only if,
p € (1,¢e?].

Let =1 < k= < 0 < kT < oo and let I C (0,00) be a compact interval. For
k:No — [k, k] define

(5.8) 0k, I):= sup{| [9(z/(1+ k(1)) — g(x)]x‘ cx el teNg}t.

Obviously, by continuity of g, 8(k, I) < oo and 0(k,I) — 0 as (supey, |k(t)]) — 0.

COROLLARY 18. Assume that conditions (E1)—(E3) hold, let k= € (—1,0), kt €
(0,00), and let J C (0,00) be a compact interval. Then there exist a compact interval
I C (0,00), B € KL, and v € K such that, for every 2° € J and every k : Ng —
[k~ , k™), the solution x of (5.7) satisfies x(t) € I for all t € Ny and

(5.9) |2(t) — me| < B(|2° — x|, t) +v(0(k, I)) Vt € No.
Proof. By (E1) and (E2), there exist positive 2~ and 21 such that 2= < 2™,

ga™ /(A + k7)) = glat/A+ET)) =1,
(5.10) g(z/(1+k) <1 Vre(zh,00), VEe [k, kT
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and
(5.11) glx/(1+k)>1 VYae(0,27), Yke [k, k]
Setting

pti=sup{zg(z/(1+k)):z € [0,27], k € [k, kT]}
and writing J = [22,29], where 0 < 2% < 29, we claim that
(5.12) z(t) < max(pt,2)) =1 vt VteN,.

Note that 4™ > 27 (since g(z*/(1+ k7)) = 1) and so v+ > 2. Since 2(0) = 2° € J,
(5.12) holds for t = 0. Assume that the inequality (5.12) is valid for some t = 7 € Np.
Then, by (5.10),

pt o ifz(r) < at,

() if z(r) > at,

z(r+1) =2(r)g(z(r)(1 + k(1)) < {

and so,

27 +1) < max (u*, (7)) < max(ut,al) = v,

showing that (5.12) is true.
Next, we claim that

(5.13) z(t) > min(p~,2%) =v~ >0 VYt N,
where
p~=inf{zg(z/(1+k)):x €z, v, ke [k ,kT]} > 0.

Obviously, (5.13) is satisfied for ¢ = 0. Assume that (5.13) holds for some t = 7 € Np.
Then, by (5.11),

- if z(1 T,
o(r +1) = 2()g(a(r) (1 1 k(7)) > {“ ()2

z(r) fz(r) <z,
and so,
(7 + 1) > min (;f,x(T)) > min(p~,2%) = v,

establishing (5.13).

Setting I := [v~,v "] C (0, 00), we have that, for every 2" € J and every k : Ny —
R satisfying k= < k(t) < kT, x(t) € I for all t € Ng. It remains to show that there
exist 8 € KL and v € K such that (5.9) holds. To this end, define

f(f"’xo)_mc iffz—ﬂfc—FU_,

f:R—R
foR= ,fH{f(V)—xe it < —me+v7.

It follows from (E3) that I£(€)] < |¢| for all € € R, € # 0. Moreover, trivially,
€] — |f(&)] = oo as & = —o0, and, by (E1), we also have that |¢] — |f(£)] — oo as
& — +o00. Consequently, there exists a € K, such that

(5.14) IFOI <€ —a(lg]) VEER.

Consider the one-dimensional linear system (A, B, C) = (0, 1, 1), the transfer function
of which is G(z) = 1/z. Now |G|z~ = 1 and thus, combining statement (5) of
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Lemma 6, (5.14), and Theorem 13, we conclude that the Lur’e system (0,1, 1, f) is
ISS. Hence there exist 8 € KL and v € K such that

(5.15) Ii‘(t)lSﬁ(li‘(O)I,tHv(Orgggtlv(S)O V(@) € BO, 1,1, ), ¥t € No.

Finally, let 2° € J and k : Ny — R be such that k= < k(t) < k™. Then the solution
x of (5.7) satisfies z(t) € I = [v~,v*] for t € Ny. Defining v : Ny — R by

o(t) == [g((@(t)/ (1 + k(©))) — gla(t)](t) V¢ e No,
it follows that
(5.16) lu(t)| < 0(k,I) VteNg
with 0(k, I) given by (5.8). Obviously,
z(t+1)=g(z@)/(1+k@))z(t) = f(z(t) + v(t) Ve Ny,
and so, ~
(t+1) —xe = f(x(t) —ze) +v(t) ViEe N
This shows that (z — ze,v) € B(0,1,1, f), which, in view of (5.15) and (5.16), com-
pletes the proof. a

6. Appendix: Proof of Lemma 14. To facilitate the proof of statement (3)
of Lemma 14, we state the following result.

PROPOSITION 19. Let a € Ko and € > 0, assume that
(6.1) Jim (a((1+¢e)s) — a(s)) = oo,
and define n: Ry — Ry by

(6.2) n(s) == Gei[gjfoo) [a((1+e)(s+0)) —afo)] Vs=>0.

Then n € Ky and
(6.3) afs1 —s2) < a(14¢e)s1) —n(s2) Vs > sz > 0.

It is not difficult to prove a partial converse of Proposition 19, namely, if, for
given £ > 0 and a € K, there exists n € Ko such that (6.3) holds, then, for every
6 >e,

lim (a((1+8)s) — a(s)) = oo.

S§—00
This partial converse of Proposition 19 is not needed in the present paper, and there-
fore the proof is left to the interested reader.
We relegate the proof of Proposition 19 to the end of the appendix and proceed
to prove Lemma 14.

Proof of Lemma 14. To prove statement (1), note that if so < «(s1), then s152 <
sja(sy), and if so > a(s1), then s182 < saa™(sg). Defining v € Ko by v(s) =
sa~Y(s) for all s > 0, it follows that

s182 < s1a(s1) +y(s2) Vsi1,82 > 0.
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As for statement (2), note that, for all s1,s9 > 0,
(514 82) + (51 +82) = (L +¢€)s1 +e(1 4+ )so.
Hence, for all 51,52 >0,
s1+82<(146)s1 or s1 453 < (146 )so.
Consequently,
a(s1 + s2) < a((l + 5)81) + a((l + 5_1)52) V1,82 > 0.

Finally, to prove statement (3), let a € Ko and € > 0. It is clear that & € K given
by @(s) := /s a(y/s) for all s > 0 satisfies

(6.4) lim (a((1+2)s) — a(s)) = oo.

Now define n : R, — R4 by

n(s) := aei[gfoo) [@((L+e)(s+0) —alo)] Vs>0,

which is (6.2) with « replaced by &. It follows from Proposition 19 that n € K and
a(s1—s2) < a((1+¢)s1) —n(s2) Vs1 > s >0.

It remains to show that 7(s)//s = 0o as s — co. To this end, let (s) be a sequence
in Ry such that sy — co. Invoking (6.4), we see that, for every s > 0,

[a((1+e)(s+0)) —a(o)] o0 aso — oco.
Consequently, by continuity, for each k € N, there exists o3 > 0 such that

n(sk) = a(1+¢)(sk +ox)) — a(ow),

and so,
”\(/Zik):\/(l“):’“”k)a( (T+2)n +00) = |/ 2= (/).

Setting 0y, := oy /sk, we obtain

n(sk) _ VA +e) A+ 0) V(1 + ) (s +or)) — Vo al\/or)
> (VI + )+ — Vo) a(v/(L+ ) (s + o0).

In the last estimate, the first factor on the right-hand side is bounded away from 0,
while the second factor goes to co as k — oco. Consequently, 1(sk)/\/sg — 00 as
k — oo, completing the proof of statement (3). d

It remains to prove Proposition 19.
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Proof of Proposition 19. Assume that (6.1) holds. Define A := {(s1,s2) € RxR:
s1 > s2 > 0} and consider the continuous function g : A — R, given by

g(81,82) := a((l + 8)81) —afsy —s2) V(s1,82) € A.
The function n : Ry — Ry given by (6.2) can be expressed as

n(s) = inf g(s+o,s).
o€[0,00)

It is obvious that, for s; > s9 > 0,
n(s2) < a((l +e)(s2+ (51— 52))) — sy — s2) = a((l + 6)81) — a(s1 — s2),

and so (6.3) holds. We will now show that 7 € K. To this end note that, by (6.1),
we have, for each fixed s > 0,

lim g(o,s) = occ.
T—r00

Therefore, by continuity of g, for each s > 0, the set
G(s) =={oc € Ry : g(s+0,s) =n(s)}

is nonempty and compact. For each s > 0, set [(s) := min G(s). In particular, we
have that

(6.5) n(s) =g(s +1(s),s) Vs>0.

Since g has nonnegative values and g(0,0) = 0, we have that 7(0) = 0. To show that
7 is strictly increasing, fix s > 0, 6 > 0 and set a := I(s + J). Then

(6.6) n(s+0)= Uren[érjl] g(s+d+o0,5+0) = Uren[g)r)la] [a((L+e)(s+d+0)) —a(0)].

Now, for every o > 0,
a((l+e)(s+d6+0)) —ald+0)=g(s+d+0,s) >n(s),
and hence,
a((L+e)(s+6+0)) —alo) >n(s) +a(d +0) —a(o).
Consequently, by (6.6),

(s +6) > n(s) + Jnin [a(6 + o) — alo)] > n(s),

where the second, strict, inequality follows because « is continuous and strictly in-
creasing. Since s > 0 and § > 0 were arbitrary, we have now shown that 7 is strictly
increasing.
We proceed to prove that 7(s) — oo as s — oo. Noting that
Slggo n(s) = lim inf [a((14¢e)(s+0)) —a(o)]

5—00 g€[0,00)

> lim Uei{g)f@) [a((L+e)(s+0)) —als+0)]

=liminf [a((1+€)o) - a(0)],

it follows from (6.1) that lim,_,o 1(s) = oo.
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It remains to prove that 7 is continuous. To this end, let s > 0 and let (s;) be a
sequence in Ry such that s; — s as ¢ — oco. It is sufficient to show that

(6.7) limsupn(s;) < n(s) < liminf 5(s;).
12— 00

1—00
Setting o; := s; +1(s) > s;, continuity of g and (6.5) guarantee that

lim g(oi,s:) = g(s +U(s), s) = n(s).

i—»00
Now n(s;) < g(oy, s;) for all i € N, and thus

(6.8) limsupn(s;) < limsup g(o;, s;) = lim g(oy, s;) = n(s).

i—00 i—»00 —00

For j € N, set n; := inf;>; n(s;). Obviously, for every j € N, there exists an integer
i; > j such that n(s;;) —n; < 1/j. Setting z; := s;,, we have that

(6.9) lim z; =s and lim 5(z;) = lim n; = liminf n(s;).
j—o0 j—o0 j—o0 i—00

Invoking (6.5), it follows that, for all j € N,

(zj) = 9(U(z) + 25, 25) = a((L+)(Uz) + 7)) — ell(z)) + 7).

Boundedness of (1(z;)) together with (6.1) implies that (I(z;)) is bounded. Conse-
quently, there exists a convergent subsequence (I(z;,)) with limit A > 0. Appealing
to (6.9), we have that

klingo zj, =s and klingo n(z,) = ligglfn(si),

and thus, by (6.5) and the continuity of g,

liminf n(s;) = klin;o 9(z, +Uzj), 25,) = 9(s + A, s) = n(s).

1—00
Together with (6.8) this shows that (6.7) holds, completing the proof. O
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