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GENERALIZED SAMPLED-DATA STABILIZATION OF
WELL-POSED LINEAR INFINITE-DIMENSIONAL SYSTEMS∗
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Abstract. We consider well-posed linear infinite-dimensional systems, the outputs of which are
sampled in a generalized sense using a suitable weighting function. Under certain natural assump-
tions on the system, the weighting function, and the sampling period, we show that there exists
a generalized hold function such that unity sampled-data feedback renders the closed-loop system
exponentially stable (in the state-space sense) as well as L2-stable (in the input-output sense). To
illustrate our main result, we describe an application to a structurally damped Euler–Bernoulli beam.
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1. Introduction. The design of sampled-data controllers is important both for
applications, because of digital implementation issues, and for theoretical develop-
ment. Sampled-data control for infinite-dimensional systems has been considered in
a number of papers; see [12, 13, 14, 15, 18, 19, 30]. In this paper we develop general-
ized sampled-data control for well-posed linear continuous-time infinite-dimensional
systems. Generalized sampled-data control has been frequently studied for finite-
dimensional systems (see, for instance, [2, 10]) and for infinite-dimensional systems in
Tarn et al. [28] and Tarn, Zavgren, and Zeng [29]. A well-posed system Σ has generat-
ing operators (A,B,C), where A is the generator of a strongly continuous semigroup
T = (Tt)t≥0 governing the state evolution of the uncontrolled system, B is the con-
trol operator, and C is the observation operator; see, for example, [5, 23, 25, 27, 31].
Denote by u and y the input and output of Σ. For a given sampling period τ > 0, a
generalized sampled-data feedback control will have the form

u(t) = v(t) −H(t− kτ)yk, t ∈ [kτ, (k + 1)τ), k = 0, 1, 2, . . . .(1.1)

In (1.1), H(·) represents a generalized hold element in the feedback, v(·) denotes an
external input to the closed-loop sampled-data feedback system, and yk is the kth
sample of the output y. In the most general setting, yk is obtained via generalized
sampling (i.e., weighted averaging):

yk :=

∫ τ−δ

0

w(s)y((k − 1)τ + δ + s) ds,
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where δ ∈ (0, τ) and w is a suitable scalar-valued weighting function defined on
[(k− 1)τ + δ, kτ ]. This kind of generalized sampling is natural for well-posed systems
where the output typically is in L2

loc but is not necessarily continuous. The feedback
element H(·) in (1.1) is also referred to as a periodic gain, as in [28, 29] and Chammas
and Leondes [2].

Control objective. Choose a generalized hold function H defined on [0, τ ], such
that the unity sampled-data feedback given by (1.1), when applied to the well-posed
system Σ, yields an exponentially stable closed-loop system.

Our main result is Theorem 4.4. Loosely speaking, Theorem 4.4, part (1), states
that for a given well-posed system Σ, we can choose H to meet the control objective
if

(i) the unstable portion of the spectrum of A consists of at most finitely many
eigenvalues with finite algebraic multiplicities,

(ii) the semigroup generated by the stable part of A is exponentially stable,
(iii) the unstable (finite-dimensional) part of the observed discrete-time system

(C,Tτ ) is observable,

(iv)
∫ τ−δ

0
w(s)eλsds �= 0 for all unstable eigenvalues λ of A,

(v) the unstable subspace of Σ is contained in the closure of its reachable sub-
space.

In Proposition 4.6 we show that conditions (i)–(iv) above are in fact necessary, and
in Remark 4.3 it is noted that condition (iv) is in fact satisfied “generically.” Further-
more, if the semigroup generated by A is analytic, then (v) is also necessary. In [19]
we showed, however, that in general (v) is not necessary for stabilization by ideal-
ized sampling and generalized hold sampled-data control. This necessity issue is also
discussed in [18, 19, 30].

In Theorem 4.4, part (2), we show that the resulting closed-loop system with
external input v is L2-stable in an input-output sense. In part (3) we show that if
the square-integrable input v is such that v̇ is also square-integrable, and if the initial
state satisfies a certain natural smoothness condition, then the output y(t) of the
sampled-data feedback system converges to 0 as t → ∞.

Our main result extends, generalizes, and improves the basic result in [29] in a
number of ways. First, the results in [29] are proved for systems with bounded oper-
ators B and C and then stated without proof for a class of systems with unbounded
B and C satisfying the conditions of the set-up developed in [4]. The unboundedness
in this class of systems is quite limited and allows only a few systems described by
partial differential equations with boundary control and observation. The results in
[29] were further developed in [28] to encompass a class of neutral systems. In our
paper, we work in the context of the theory of well-posed systems, the largest class of
infinite-dimensional systems for which there exists a well-developed state-space and
frequency-domain theory; see, for example, [5, 22, 23, 25, 26, 27, 31, 32]. Well-posed
systems allow for considerable unboundedness of the control and observation oper-
ators B and C, and they encompass many of the most commonly studied partial
differential equations with boundary control and observation and all functional differ-
ential equations of retarded and neutral type with delays in the inputs and outputs.
Second, in contrast to [28, 29], not only do we prove results on exponential stability
but we also obtain results on input-output stability.

The paper is organized as follows: In section 2 we describe in detail various results
relevant to the sampled-data control of well-posed systems. In section 3 we discuss
issues relating to sampled-data feedback stabilization. In section 4 we present our
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main result. In section 5 we illustrate our results by applying them to a structurally
damped Euler–Bernoulli beam.

Notation. N denotes the set of positive integers; N0 := N ∪ {0}; R+ := [0,∞);
for α ∈ R, set Cα := {s ∈ C | Re s > α}; for a real or complex Banach space Z, α ∈ R

and 0 < p ≤ ∞, we define the exponentially weighted spaces Lp
α(R+, Z) := {f ∈

Lp
loc(R+, Z) : f(·) exp(−α ·) ∈ Lp(R+, Z)} and W 1,p

α (R+, Z) := {f ∈ Lp
loc(R+, Z) :

f(·) exp(−α ·) ∈ W 1,p(R+, Z)}; we endow Lp
α(R+, Z) with the norm ‖f‖Lp

α
:=

‖e−α ·f(·)‖Lp ; W 1,p
c ([a, b], Z) denotes the subspace of all functions in W 1,p([a, b], Z)

with support contained in the open interval (a, b); B(Z1, Z2) denotes the space of
bounded linear operators from a Banach space Z1 to a Banach space Z2; we write
B(Z) for B(Z,Z); let A : dom(A) ⊂ Z → Z be a linear operator, where dom(A)
denotes the domain of A; the resolvent set of A and the spectrum of A are denoted by
�(A)and σ(A), respectively; if A ∈ B(Z), then r(A) denotes the spectral radius of A.

2. Preliminaries on well-posed systems. Before developing our main results
for generalized sampled-data control of well-posed linear systems we first need to cover
some basic background material on well-posed linear systems. We cover only those
basic properties we need and some specific results relevant in a context of sampled-
data control. There are a number of equivalent definitions of well-posed systems;
see [5, 22, 23, 25, 26, 27, 31, 32]. We will be brief in the following and refer the
reader to [22, 23] for the original definition of a well-posed system, to [31] for issues
related especially to admissibility, and to [25] for a more comprehensive treatment.
Throughout this section, we will consider a well-posed system Σ with state-space X,
input space R

m, and output space R
p, generating operators (A,B,C), input-output

operator G, and transfer function G. Here X is a real Hilbert space with norm denoted
by ‖ · ‖, A is the generator of a strongly continuous semigroup T = (Tt)t≥0 on X,
B ∈ B(Rm, X−1), and C ∈ B(X1,R

p), where X1 denotes the space dom(A) endowed
with the norm ‖z‖1 := ‖(s0I − A)z‖, while X−1 denotes the completion of X with
respect to the norm ‖z‖−1 = ‖(s0I −A)−1z‖, where s0 ∈ �(A) (different choices of s0

lead to equivalent norms). Clearly, the norm ‖ · ‖1 is equivalent to the graph norm of
A. Moreover, X1 ⊂ X ⊂ X−1 and the canonical injections are bounded and dense.
The semigroup T restricts to a strongly continuous semigroup on X1 and extends
to a strongly continuous semigroup on X−1 with the exponential growth constant
being the same on all three spaces; the generator of the restriction (extension) of
T is a restriction (extension) of A; we shall use the same symbol T (respectively,
A) for the original semigroup (respectively, generator) and the associated restrictions
and extensions: with this convention, we may write A ∈ B(X,X−1) (considered as
a generator on X−1, the domain of A is X). The spectra of A and its extension
coincide. For s0 ∈ �(A), s0I − A, considered as an operator in B(X,X−1), provides
an isometric isomorphism from X to X−1 (we refer the reader to [7] for more details
on the extrapolation space X−1). The operator B is an admissible control operator
for T; i.e., for each t ∈ R+ there exists βt ≥ 0 such that∥∥∥∥

∫ t

0

Tt−sBu(s) ds

∥∥∥∥ ≤ βt‖u‖L2([0,t],Rm) ∀u ∈ L2([0, t],Rm).

The operator C is an admissible observation operator for T; i.e., for each t ∈ R+ there
exists γt ≥ 0 such that

(∫ t

0

‖CTsz‖2ds

)1/2

≤ γt‖z‖ ∀ z ∈ X1.
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The control operator B is said to be bounded if it is so as a map from the input
space R

m to the state space X; otherwise it is said to be unbounded. The observation
operator C is said to be bounded if it can be extended continuously to X; otherwise
C is said to be unbounded.

The so-called Λ-extension CΛ of C is defined by

CΛz = lim
s→∞, s∈R

Cs(sI −A)−1z,

with dom(CΛ) consisting of all z ∈ X for which the above limit exists. For every
z ∈ X, Ttz ∈ dom(CΛ) for almost all (a.a.) t ∈ R+, and if α > ω(T), then CΛTz ∈
L2
α(R+,R

p), where

ω(T) := lim
t→∞

1

t
ln ‖Tt‖

denotes the exponential growth constant of T. The transfer function G satisfies

1

s− s0
(G(s) − G(s0)) = −C(sI −A)−1(s0I −A)−1B ∀ s, s0 ∈ Cω(T), s �= s0,(2.1)

and for every α > ω(T), G is analytic and bounded on Cα. Moreover, the input-
output operator G : L2

loc(R+,R
m) → L2

loc(R+,R
p) is continuous and right-shift in-

variant; for every α > ω(T), G ∈ B(L2
α(R+,R

m), L2
α(R+,R

p)) and

(L(Gu))(s) = G(s)(L(u))(s) ∀ s ∈ Cα, ∀u ∈ L2
α(R+,R

m),

where L denotes the Laplace transform. It follows from (2.1) that if two well-posed
systems have the same generating operators, then the difference of their transfer
functions is constant: roughly speaking, the generating operators determine the input-
output behavior of a well-posed system up to a constant.

In the following, let s0 ∈ Cω(T) be fixed but arbitrary. For x0 ∈ X and u ∈
L2

loc(R+,R
m), let x and y denote the state and output functions of Σ, respectively,

corresponding to the initial condition x(0) = x0 ∈ X and the input function u. Then

x(t) = Ttx
0 +

∫ t

0
Tt−sBu(s) ds for all t ∈ R+, and y(t) = CΛTtx

0 + (Gu)(t) for a.a.
t ∈ R. Moreover, x(t) − (s0I −A)−1Bu(t) ∈ dom(CΛ) for a.a. t ∈ R+ and

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, for a.a. t ∈ R+,(2.2a)

y(t) = CΛ

(
x(t) − (s0I −A)−1Bu(t)

)
+ G(s0)u(t) for a.a. t ≥ 0.(2.2b)

Of course, the differential equation (2.2a) has to be interpreted in X−1. In the follow-
ing, we identify Σ and (2.2) and refer to (2.2) as a well-posed system. We say that the
well-posed system (2.2) is exponentially stable if ω(T) < 0. If the well-posed system
(2.2) is regular, i.e., the limit

lim
s→∞, s∈R

G(s) = D

exists, then x(t) ∈ dom(CΛ) for a.a. t ∈ R+ and the output equation (2.2b) simplifies
to

y(t) = CΛx(t) + Du(t) for a.a. t ≥ 0.

Moreover, in the regular case, we have that (sI − A)−1BR
m ⊂ dom(CΛ) for all

s ∈ �(A) and

G(s) = CΛ(sI −A)−1B + D ∀ s ∈ Cω(T).
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The matrix D ∈ R
p×m is called the feedthrough matrix of (2.2). We mention that if

the control operator B or the observation operator C is bounded, then (2.2) is regular.
The following result relates to the asymptotic behavior of the output y of the well-

posed system (2.2) under the assumption that x0 and u satisfy certain “smoothness”
conditions.

Proposition 2.1. Let α > ω(T), x0 ∈ X, and u ∈ W 1,2
α (R+,R

m). If there
exists t0 ∈ R+ such that Tt0(Ax0 + Bu(0)) ∈ X, then the output y of the well-posed
system (2.2) is continuous on [t0,∞) 1 and satisfies

lim
t→∞

y(t)e−αt = 0.

Proof. Let x0 ∈ X, t0 ∈ R+, and u ∈ W 1,2
α (R+,R

m) be such that Tt0(Ax0 +
Bu(0)) ∈ X. The output y of the well-posed system (2.2) is given by

y(t) = CΛTtx
0 + (Gu)(t) for a.a. t ∈ R+.(2.3)

Let us first assume that α = 0. Then, by hypothesis, 0 = α > ω(T); that is, the
well-posed system (2.2) is exponentially stable. Define a right-shift-invariant operator
F : L2

loc(R+,R
m) → L2

loc(R+,R
p) by setting

(Ff)(t) :=

∫ t

0

((Gf)(ζ) − G(0)f(ζ)) dζ ∀ f ∈ L2
loc(R+,R

m), ∀ t ∈ R+.

The transfer function F of F is given by F(s) = (G(s)−G(0))/s. Clearly, F is analytic
and bounded on C0 and so, F ∈ B(L2(R+,R

m), L2(R+,R
p)). Using that G commutes

with the integration operator (by right-shift invariance), a routine calculation gives

Gu = Fu̇ + G(0)u + G(u(0)θ) − G(0)u(0),

where θ denotes the unit-step function. Setting

y1 := Fu̇ + G(0)u and y2 := CΛTx0 + G(u(0)θ) − G(0)u(0),

it follows from (2.3) that

y(t) = y1(t) + y2(t) for a.a. t ∈ R+.(2.4)

It is clear that y1 is continuous. Since u, u̇ ∈ L2(R+,R
m), we may conclude that

limt→∞ u(t) = 0. Using again that u̇ ∈ L2(R+,R
m), it follows from the boundedness

of F and G that Fu̇ and (d/dt)(Fu̇) are in L2(R+,R
p), showing that limt→∞(Fu̇)(t) =

0. Thus, limt→∞ y1(t) = 0. Taking the Laplace transform of y2 gives

(Ly2)(s) = C(sI −A)−1x0 +
1

s
(G(s) − G(0))u(0) ∀ s ∈ C0.

Invoking (2.1) we obtain that for all s ∈ C0,

(Ly2)(s) = C(sI−A)−1x0+C(sI−A)−1A−1Bu(0) = C(sI−A)−1A−1(Ax0+Bu(0)),

1The output y of the well-posed system (2.2) is an element in L2
loc(R+,Rm), and so, strictly

speaking, y is not a function but an equivalence class of functions coinciding almost everywhere in
R+. We say that y is continuous on [t0,∞) if there exists a representative in the equivalence class
which is continuous on [t0,∞).
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implying that y2(t) = CΛTtA
−1(Ax0+Bu(0)) for a.a. t ∈ R+. Hence, since Tt0(Ax0+

Bu(0)) ∈ X,

y2(t) = CTt−t0A
−1Tt0(Ax0 + Bu(0)) for a.a. t ∈ [t0,∞).(2.5)

Obviously, the right-hand side of (2.5) is continuous on [t0,∞) and converges to 0 as
t → ∞. The claim now follows from (2.4).

Let us now assume that α �= 0. Define the operator Gα : L2
loc(R+,R

m) →
L2

loc(R+,R
p) by setting Gα(u) := e−α ·G(eα ·u). It is trivial that there exists a well-

posed system Σα with generating operators (A−αI,B,C) and input-output operator
Gα (the exponentially weighted version of the well-posed system (2.2)). Since α >
ω(T), it is clear that Σα is exponentially stable. If y is the output of the well-posed
system (2.2), then

y(t)e−αt = CΛTte
−αtx0 + (Gα(e−α ·u))(t) for a.a. t ∈ R+.(2.6)

The right-hand side of (2.6) is the output of the exponentially stable well-posed
system Σα corresponding to the initial value x0 and the control function e−α ·u ∈
W 1,2(R+,R

m). Moreover, since Tt0(Ax0 + Bu(0)) ∈ X,

Tt0e
−αt0

(
(A− αI)x0 + B(e−α ·u)(0)

)
= e−αt0Tt0

(
Ax0 + Bu(0) − αx0

)
∈ X.

Thus, by what we have already proved, it follows that the right-hand side of (2.6),
and hence the function t �→ y(t)e−αt, is continuous on [t0,∞) and converges to 0 as
t → ∞.

We close this section with a simple sufficient condition for a triple of opera-
tors (A,B,C) to be the generating operators of a well-posed system. Here A :
dom(A) ⊂ X → X generates a strongly continuous semigroup T = (Tt)t≥0, and
B ∈ B(Rm, X−1) and C ∈ B(X1,R

p) are admissible control and observation opera-
tors for T, respectively. Assume that the semigroup T is analytic; let s0 ∈ �(A) and
let α ≥ 0. Then the fractional powers (s0I − A)−α and (s0I − A)α are well-defined
(where (s0I − A)0 := I), (s0I − A)α is closed, and (s0I − A)−α ∈ B(X). We endow
the domain of (s0I −A)α with the norm

‖z‖α := ‖(s0I −A)αz‖

and denote the resulting Hilbert space by Xα. Let X−α be the completion of X with
respect to the norm

‖z‖−α := ‖(s0I −A)−αz‖.

It is trivial that X0 = X and (s0I − A)−α ∈ B(X,Xα). If α ∈ (0, 1), then Xα and
X−α can be interpreted as interpolation spaces: between X and X1 in the case of the
former and between X and X−1 in the case of the latter. The operator (s0I − A)α

extends to an operator in B(X,X−α) and similarly, (s0I−A)−α extends to an operator
in B(X−α, X); we shall use the same symbol (s0I − A)α (respectively, (s0I − A)−α)
to denote the extensions.

Proposition 2.2. Assume that the semigroup T generated by A is analytic and
that B ∈ B(Rm, X−1) and C ∈ B(X1,R

p) are admissible control and observation
operators for T, respectively. If there exist α, β ∈ [0, 1] with α + β ≤ 1 and such that
B ∈ B(Rm, X−α) and C ∈ B(Xβ ,R

p), then there exists a regular well-posed system
with generating operators (A,B,C).
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Proof. Fix λ ∈ �(A). It follows from the hypothesis that B̃ := (λI − A)−αB ∈
B(Rm, X) and C̃ = C(λI − A)−β ∈ B(X,Rp). Since α + β ≤ 1, the operator (λI −
A)α+β(sI − A)−1 is in B(X) for all s ∈ �(A). Consequently, the function G defined
by

G(s) := C̃(λI −A)α+β(sI −A)−1B̃

is analytic on �(A). Moreover,

(λI −A)α+β(sI −A)−1 = (λI −A)α+β−1(λI −A)(sI −A)−1

= (λI −A)α+β−1[(λ + s)(sI −A)−1 + I] ∀ s ∈ �(A).(2.7)

Fix γ > ω(T). The fact that A generates an analytic semigroup guarantees the
existence of a constant M > 0 such that ‖(sI − A)−1‖ ≤ M/|s − γ| for all s ∈ Cγ .
Therefore we obtain from (2.7) that the B(X)-valued function s �→ (λI −A)α+β(sI −
A)−1 is bounded on Cγ . Consequently, G is bounded on Cγ . Moreover, since

(sI −A)−1(λI −A)αz = (λI −A)α(sI −A)−1z ∈ X ∀ z ∈ X, ∀ s ∈ �(A)

and

(λI −A)α(λI −A)βz = (λI −A)α+βz ∈ X ∀ z ∈ X1,

an application of the resolvent identity yields for all s, s0 ∈ �(A) with s �= s0

1

s0 − s
(G(s) − G(s0)) = C̃(λI −A)α+β(sI −A)−1(s0I −A)−1B̃

= C(sI −A)−1(s0I −A)−1B.

Invoking a result in [5], we may now conclude that there exists a well-posed system
with generating operators (A,B,C). To show that this system is regular, it suffices
to prove that (s0I − A)−1BR

m ⊂ domCΛ for s0 ∈ �(A); see [31]. But this follows
trivially from the identity

C(sI −A)−1(s0I −A)−1B = C̃(λI −A)α+β(s0I −A)−1(sI −A)−1B̃

and the facts that C̃ ∈ B(X,Rp), (λI − A)α+β(s0I − A)−1 ∈ B(X), and B̃ ∈
B(Rm, X).

3. The sampled-data system. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), w ∈
L2([0, τ−δ],R), and v ∈ L2

loc(R+,R
m). We apply the following sampled-data feedback

control law to the well-posed system (2.2):

u(t) =

{
v(t) −H(t− kτ)yk, t ∈ [kτ, kτ + δ)

v(t), t ∈ [kτ + δ, (k + 1)τ)
∀ k ∈ N0, where(3.1a)

y0 := 0 and yk :=

∫ τ−δ

0

w(s)y((k − 1)τ + δ + s) ds ∀ k ∈ N.(3.1b)

The function v represents the input signal of the sampled-data feedback system and
emphasises our input-output as well as state-space point of view.

Remark 3.1. Defining Hτ ∈ L2([0, τ ],Rm×p) by

Hτ (t) :=

{
H(t), t ∈ [0, δ],

0, t ∈ (δ, τ ],
(3.2)
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�–

��v

+
�u

(2.2) � �y

�S�
(yk)

H

Fig. 1. Feedback system with generalized sampling S and generalized hold H.

and setting (
H((yk))

)
(t) := Hτ (t− kτ)yk ∀ t ∈ [kτ, (k + 1)τ), ∀ k ∈ N0,

(3.1a) can be written in the form u = v − H((yk)). The operator H represents a
generalized hold operation with hold function Hτ (see, for example, [1]). Similarly,
(3.1b) describes a generalized sampling operation (see [1]). The function w is called
the weighting function of the sampler (3.1b). Note that instantaneous sampling of the
form yk = y(kτ) is in general not possible since typically the output y of a well-posed
system (2.2) need not be continuous. Indeed, the state-space formula (2.2b) for the
output does not hold for all t ∈ R+, but only for a.a. t ∈ R: in particular, it might
not hold at t = kτ for some k ∈ N0.

The sampled-data feedback system obtained by applying the control law (3.1) to
the well-posed system (2.2) is illustrated in Figure 1, where S denotes the generalized
sampling operation given by (3.1b).

It is clear that for given initial state x0 ∈ X and given input function v ∈
L2

loc(R+,R
m), the (unique) state trajectory x(·;x0, v) of the sampled-data feedback

system given by (2.2) and (3.1) can be obtained recursively from (2.2b), (3.1b), and

x(0;x0, v) = x0,(3.3a)

x(kτ + t;x0, v) = Ttx(kτ ;x0, v) +

∫ t

0

Tt−sB(v(kτ + s) −Hτ (s)yk) ds

∀ t ∈ (0, τ ], ∀ k ∈ N0.(3.3b)

Note that x(·;x0, v) is a continuous X-valued function defined on R+. For simplicity,
in the following we shall occasionally use the abbreviation x := x(·;x0, v). We define

xk := x(kτ), xk,δ := x(kτ + δ) ∀ k ∈ N0.

For σ, τ > 0, we define the left-shift/truncation operator Lτ
σ : L2

loc(R+,R
m) →

L2(R+,R
m) by setting

(Lτ
σf)(t) :=

{
f(t + σ), t ∈ [0, τ ],

0, t ∈ (τ,∞).

In the following lemma we establish the basic discrete-time equations (involving xk,
xk,δ, yk, and Lτ

kτ+δv) associated with the sampled-data feedback system given by
(2.2) and (3.1).
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Lemma 3.2. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ − δ],R). We
assume that ∫ τ−δ

0

w(s)Tsz ds ∈ X1 ∀ z ∈ X.(3.4)

Then the following statements hold.
(1) The operator

Lw : X → X1, z �→
∫ τ−δ

0

w(s)Tsz ds(3.5)

is in B(X,X1).
(2) The sequences (xk), (xk,δ), and (yk) satisfy, for all k ∈ N0,

xk+1 = Tτ−δxk,δ +

∫ τ−δ

0

Tτ−δ−sBv(kτ + δ + s) ds,(3.6)

yk+1 = CLwxk,δ + MwLτ
kτ+δv,(3.7)

xk+1,δ = (Tτ + KHCLw)xk,δ + MH,wLτ
kτ+δv,(3.8)

where KH ∈ B(Rp, X), Mw ∈ B(L2(R+,R
m),Rp), and MH,w ∈ B(L2(R+,R

m), X)
are defined by

KHz = −
∫ δ

0

Tδ−sBH(s)z ds ∀ z ∈ R
p,(3.9)

Mwf =

∫ τ−δ

0

w(s)(Gf)(s) ds ∀ f ∈ L2(R+,R
m),(3.10)

MH,wf = KHMwf +

∫ τ

0

Tτ−sBf(s) ds ∀ f ∈ L2(R+,R
m),(3.11)

respectively.
Remark 3.3. It is easy to show, using integration by parts, that (3.4) holds for

any w ∈ L2([0, τ−δ],R) for which there exist a partition 0 = t0 < t1 < · · · < tn = τ−δ
and functions wj ∈ W 1,1([tj−1, tj ],R) such that w(t) = wj(t) for all t ∈ (tj−1, tj) and
all j = 1, 2, . . . , n.

Proof of Lemma 3.2. Statement (1) follows from a routine application of the
closed-graph theorem. To prove statement (2), note first that (3.6) follows immedi-
ately from the variation-of-parameters formula combined with the fact that the control
u given by (3.1a) satisfies

u(t) = v(t) ∀ t ∈ [kτ + δ, (k + 1)τ).(3.12)

To derive (3.7), we use (2.2b) and (3.12) to obtain

y(kτ + δ + s) = CΛ

(
x(kτ + δ + s) − (s0I −A)−1Bv(kτ + δ + s)

)
+ G(s0)v(kτ + δ + s) for a.a. s ∈ [0, τ − δ].(3.13)

It follows from the variation-of-parameters formula that the function x̃ : s �→ x(kτ +
δ + s) is the state trajectory of (2.2) corresponding to the initial condition x̃(0) =
x(kτ + δ) = xk,δ and the control function s �→ v(kτ + δ + s). By (3.13), the function
s �→ y(kτ + δ + s) is the corresponding output, and thus

y(kτ + δ + s) = CΛTsxk,δ + (GLτ
kτ+δv)(s) for a.a. s ∈ [0, τ − δ].
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Combining this with (3.1b) gives

yk+1 =

∫ τ−δ

0

w(s)
(
CΛTsxk,δ + (GLτ

kτ+δv)(s)
)
ds.

A standard argument involving the approximation of xk,δ by elements in X1, the
admissibility of C and the boundedness of the operator Lw (see statement (1)) shows
that ∫ τ−δ

0

w(s)CΛTsxk,δ ds = CLwxk,δ.

Hence, with Mw given by (3.10),

yk+1 = CLwxk,δ + MwLτ
kτ+δv,

which is (3.7). To prove (3.8), note that kτ + δ + s ∈ [(k + 1)τ, (k + 1)τ + δ] for all
s ∈ [τ − δ, τ ] and so, by (3.1a),

u(kτ + δ + s) = v(kτ + δ + s) −H(s + δ − τ)yk+1 ∀ s ∈ [τ − δ, τ ], ∀ k ∈ N0.

Combining this with (3.12), we may conclude that

xk+1,δ = Tτxk,δ +

∫ τ

0

Tτ−sBv(kτ + δ + s) ds−
∫ τ

τ−δ

Tτ−sBH(s + δ − τ)yk+1 ds.

Changing the integration variable s in the second integral to ζ = s + δ − τ gives

xk+1,δ = Tτxk,δ +

∫ τ

0

Tτ−sBv(kτ + δ + s) ds−
∫ δ

0

Tδ−ζBH(ζ)yk+1 dζ

= Tτxk,δ + KHyk+1 +

∫ τ

0

Tτ−sBv(kτ + δ + s) ds ∀ k ∈ N0,

where KH is given by (3.9). Together with (3.7) and (3.11) this yields (3.8).
The sampled-data feedback system given by (2.2) and (3.1) is called exponentially

bounded if there exist constants N ≥ 1 and ν ∈ R such that

‖x(t;x0, 0)‖ ≤ Neνt‖x0‖ ∀ t ∈ R+, ∀x0 ∈ X,(3.14)

where x(t;x0, 0) is given by (3.3) (with v = 0). The number ν is called an exponential
bound of the sampled-data feedback system. Obviously any bounded operator Δ ∈
B(X) satisfies ‖Δk‖ ≤ ‖Δ‖k; i.e., Δ is power bounded. If q > 0 is such that there
exists M ≥ 1 so that

‖Δk‖ ≤ Mqk ∀ k ∈ N0,(3.15)

then q is a power bound for Δ.
Lemma 3.4. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ − δ],R).

Let Lw ∈ B(X,X1) and KH ∈ B(Rp, X) be given by (3.5) and (3.9), respectively, and
assume that (3.4) holds. Furthermore, let ν ∈ R. Then the following statements hold.

(1) If eντ is a power bound for the operator Tτ + KHCLw, then ν ∈ R is an
exponential bound for the sampled-data feedback system given by (2.2) and (3.1).
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(2) Under the additional assumption that T is a group, the converse of statement
(1) holds; that is, if ν ∈ R is an exponential bound for the sampled-data feedback
system given by (2.2) and (3.1), then eντ is a power bound for Tτ + KHCLw.

The lemma shows in particular that the sampled-data feedback system is expo-
nentially bounded. We define the exponential growth ωsd of the sampled-data feedback
system to be the infimum of all ν ∈ R for which there exists N ≥ 1 such that (3.14)
holds. Note that −∞ ≤ ωsd < ∞. If ωsd < 0, then we say that the sampled-data
feedback system is exponentially stable. Similarly, the infimum of all q > 0 for which
there exists M ≥ 1 such that (3.15) holds is called the power growth of Δ. If the power
growth is smaller than 1, we say that Δ is power stable. It follows from Gelfand’s
spectral radius formula

r(Δ) = lim
k→∞

‖Δk‖1/k

that the power growth of Δ coincides with r(Δ). As a consequence, Lemma 3.4 has
the following corollary.

Corollary 3.5. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ − δ],R).
Let Lw ∈ B(X,X1) and KH ∈ B(Rp, X) be given by (3.5) and (3.9), respectively, and
assume that (3.4) holds. Then r(Tτ +KHCLw) ≥ eωsdτ ; under the additional assump-
tion that T is a group, we have r(Tτ + KHCLw) = eωsdτ (we adopt the convention
e−∞τ := 0).

Proof of Lemma 3.4. We define Δ ∈ B(X) by setting

Δ := Tτ + KHCLw.

To prove statement (1), let ν ∈ R and assume that eντ is a power bound for Δ. By
the variation-of-parameter formula we obtain for the state trajectory x(·;x0, 0) of the
sampled-data feedback system

x(kτ + t;x0, 0) = Ttxk −
∫ t

0

Tt−sBHτ (s)yk ds ∀ t ∈ [0, τ), ∀ k ∈ N0,

where Hτ is given by (3.2). Using (3.6) and (3.7), we obtain

x(kτ+t;x0, 0) = Tt+τ−δxk−1,δ−
∫ t

0

Tt−sBHτ (s)CLwxk−1,δ ds ∀ t ∈ [0, τ), ∀ k ∈ N.

Invoking the admissibility of B, (3.8), and the hypothesis, we may conclude that there
exist N1, N2 ≥ 0 such that

‖x(kτ + t;x0, 0)‖ ≤ N1‖xk−1,δ‖ ≤ N2(e
ντ )k−1‖x0,δ‖ ∀ t ∈ [0, τ), ∀ k ∈ N.

Noting that x(t;x0, 0) = Ttx
0 for all t ∈ [0, τ ] and setting

N :=

(
max{ sup

0≤s≤τ
‖Ts‖, N2‖Tδ‖e−ντ}

)
sup

0≤s≤τ
e−νs,

it follows that

‖x(kτ + t;x0, 0)‖ ≤ Neν(kτ+t)‖x0‖ ∀ t ∈ [0, τ), ∀ k ∈ N0.

This holds for all x0 ∈ X, showing that ν is an exponential bound for the sampled-data
feedback system.
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To prove statement (2), assume that T is a group and let ν ∈ R be an exponential
bound for the sampled-data feedback system. Then there exists N ≥ 1 such that
(3.14) holds and therefore

‖xk,δ‖ ≤ Neν(kτ+δ)‖x0‖ = Neνδ(eντ )k‖x0‖ ∀ k ∈ N0.

Since x0,δ = Tδx
0, it follows from (3.8) that xk,δ = ΔkTδx

0. Hence, using the group
property of T, we obtain

‖ΔkTδx
0‖ ≤ N‖T−δ‖eνδ(eντ )k‖Tδx

0‖ ∀ k ∈ N0.

Since this holds for all x0 ∈ X, it follows that eντ is a power bound for Δ.

4. Main result. We first state and prove a technical lemma.
Lemma 4.1. Let S ∈ R

n×n, a > 0, and f ∈ L1([0, a],R). The matrix
∫ a

0
f(t)eSt dt

is invertible if and only if
∫ a

0
f(t)eλt dt �= 0 for all λ ∈ σ(S).

Proof. Using the Jordan form of S, it is easy to show that a complex number μ
is an eigenvalue of the matrix

∫ a

0
f(t)eStdt if and only if μ =

∫ a

0
f(t)eλt dt for some

λ ∈ σ(S).
In the following we shall impose a number of assumptions on the well-posed system

(2.2), the weighting function w, and the sampling constants τ > δ > 0.
A1. There exists β < 0 such that σ(A) ∩ Cβ consists of finitely many isolated

eigenvalues of A with finite algebraic multiplicities.
If A1 holds, then there exists a simple closed curve Γ in the complex plane not
intersecting σ(A), enclosing σ(A) ∩ Cβ in its interior and having σ(A) ∩ (C \ Cβ) in
its exterior. The operator

Π :=
1

2πi

∫
Γ

(sI −A)−1 ds(4.1)

is a projection operator, and we have

X = X+ ⊕X−, where X+ := ΠX, X− := (I − Π)X.(4.2)

It follows from a standard result (see, for example, Lemma 2.5.7 in [6]) that dim X+ <
∞, X+ ⊂ X1, X

+ and X− are Tt-invariant for all t ≥ 0, and

σ(A|X+) = σ(A) ∩ Cβ , σ(A|X−) = σ(A) ∩ (C \ Cβ).

It is useful to introduce the notation

A+ := A|X+ , A− := A|X1∩X− , T+
t := Tt|X+ , T−

t := Tt|X− .(4.3)

Clearly, T+
t is a semigroup on the finite-dimensional space X+ with generator A+,

i.e., T+
t = eA

+t, and T−
t is a strongly continuous semigroup on X− with generator

A−. Since the spectrum of A considered as an operator on X coincides with the
spectrum of A considered as an operator on X−1, the projection operator Π on X
defined in (4.1) extends to a projection on X−1. We will use the same symbol Π
for the original projection and its associated extension. Obviously, the operator A−

extends to an operator in B(X−, (X−1)
−), and the same symbol A− will be used to

denote this extension. The decomposition (4.2) induces decompositions of the control
operator B ∈ B(Rm, X−1) and the observation operator C ∈ B(X1,R

p):

B+ := ΠB, B− := (I − Π)B, C+ := C|X+ , C− := C|X1∩X− .(4.4)
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The following simple lemma will be useful in the proof of Theorem 4.4.
Lemma 4.2. Assume that A1 holds. There exists a well-posed system Σ− with

generating operators (A−, B−, C−) 2 and input-output operator G− := G−G+, where
G+ denotes the input-output operator of the (finite-dimensional) system (A+, B+, C+),

that is, (G+u)(t) =
∫ t

0
C+eA

+(t−s)B+u(s) ds for all t ∈ R+ and all u ∈ L2
loc(R+,R

m).

Moreover, for any x0 ∈ X and u ∈ L2
loc(R+,R

m), the output y of the well-posed
system (2.2) can be written in the form

y(t) = (C−)ΛT−
t (I − Π)x0 + (G−u)(t) + C+Πx(t) for a.a. t ∈ R+,(4.5)

where x(t) = Ttx
0 +

∫ t

0
Tt−sBu(s) ds for all t ∈ R+. The Λ-extension of C− satisfies

(C−)Λz = CΛz ∀ z ∈ dom((C−)Λ) = dom(CΛ) ∩X−.(4.6)

Proof. It is trivial that the Λ-extension of C− satisfies (4.6). The admissibility of
B and C immediately implies that B− and C− are admissible control and observation
operators for T−, respectively. Defining G+(s) := C+(sI−A+)−1B+, it follows from
(2.1) that

1

s− s0
(G(s) − G(s0)) −

1

s− s0
(G+(s) − G+(s0)) =

− C−(sI −A−)−1(s0I −A−)−1B− ∀ s, s0 ∈ Cω(T), s �= s0.

Choosing α > ω(T) and setting G−(s) := G(s) − G+(s) for all s ∈ Cα, it is clear
that G− is analytic and bounded on Cα and G− satisfies

1

s− s0

(
G−(s) − G−(s0)

)
= −C−(sI −A−)−1(s0I −A−)−1B− ∀ s, s0 ∈ Cα, s �= s0.

Invoking a result in [5], we may now conclude that there exists a well-posed system Σ−

with generating operators (A−, B−, C−) and input-output operator G− (or, equiva-
lently, transfer function G−).3 To prove (4.5), let x0 ∈ X and u ∈ L2

loc(R+,R
m) and

note that

ΠTtx
0 ∈ X+ ⊂ X1 ⊂ dom(CΛ) ∀ t ∈ R+

and

(I − Π)Ttx
0 = T−

t (I − Π)x0 ∈ dom(CΛ) ∩X− = dom((C−)Λ) for a.a. t ∈ R+.

Thus, by (4.6), we may write the output y = CΛTx0 + Gu in the form

y = (C−)ΛT−(I − Π)x0 + G−u + C+T+Πx0 + G+u.(4.7)

2For (A−, B−, C−) to be the generating operators of a well-posed system it is of course necessary
that B− maps into (X−)−1 = ((I − Π)X)−1, the extrapolation space associated with A−. Since,
by definition, B− maps into (I − Π)X−1 =: (X−1)−, there seems to be a difficulty. However, it
is clear that the spaces (X−)−1 and (X−1)− are both completions of X− endowed with the norm
‖ · ‖−1. Hence there exists an isometric isomorphism (X−)−1 → (X−1)− whose restriction to X− is
the identity, and so we can safely identify (X−)−1 and (X−1)−.

3Alternatively, the claim that there exists a well-posed system Σ− with generating operators
(A−, B−, C−) and input-output operator G− can be proved by direct verification of the defining
properties of a well-posed system as given in, for example, [25, 27, 31].
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With x given by x(t) = Ttx
0 +

∫ t

0
Tt−sBu(s) ds, it is clear that Πx is the state

trajectory of the finite-dimensional system given by (A+, B+, C+) corresponding to
the initial state Πx0 and the input function u. Therefore, C+T+Πx0 +G+u = C+Πx,
and (4.5) follows from (4.7).

We recall that the linear bounded map

Rt0 : L2([0, t0],R
m) → X, f �→

∫ t0

0

Tt0−sBf(s) ds(4.8)

is called the reachability operator of the well-posed system (2.2) at time t0.
We assume, in addition to A1, that the following conditions are satisfied. Let

t0 > 0 be fixed and assume that τ > δ ≥ t0.
A2. The semigroup T− is exponentially stable; that is, ω(T−) < 0.
A3. The pair (C+,T+

τ ) is observable.
A4. The constants τ and δ and the function w ∈ L2([0, τ − δ],R) are such that

(3.4) holds and

∫ τ−δ

0

w(s)eλs ds �= 0 ∀λ ∈ σ(A+).(4.9)

A5. imRt0 ⊃ X+.
Remark 4.3. Of course, A2 holds if the generator A− satisfies the spectrum-

determined-growth assumption. Trivially, for A5 to hold, it is sufficient that the
well-posed system (2.2) is approximately controllable in time t0. If the function w is
a nonzero constant, then it is clear that (4.9) holds if and only if

(τ − δ)λ �= 2πik ∀λ ∈ σ(A+), ∀ k ∈ Z \ {0}.

The observability condition A3 is implied by observability of the pair (C+, A+) and
the nonpathological sampling assumption

τ(λ− μ) �= 2πik ∀λ, μ ∈ σ(A+), ∀ k ∈ Z \ {0}.(4.10)

We do not want to focus here on the issue of pathological sampling and instead refer
the reader to Proposition 6.2.11 in [24] for more on this. We note that conditions
(4.10) and (4.9) are “generically” satisfied in the following sense: the set of all τ > t0
for which (4.10) holds is open and dense in (t0,∞), and, for given τ > δ ≥ t0, the set
of all w ∈ L2([0, τ − δ],R) for which (4.9) holds is open and dense in L2([0, τ − δ],R).

The control function u generated by the sampled-data control law (3.1) depends
on the initial value x0 ∈ X and the input function v ∈ L2

loc(R+,R
m). We express this

dependence by writing u = u(·;x0, v). It is natural to define the output y(·;x0, v) of
the sampled-data feedback system given by (2.2) and (3.1) to be the output of (2.2)
corresponding to the initial condition x0 and the control u(·;x0, v). We are now in
the position to formulate the main result of this paper.

Theorem 4.4. Assume that A1–A5 are satisfied. For every ε ∈ (0,−ω(T−))
there exists H ∈ L2([0, δ],Rm×p) such that the following statements hold.

(1) The sampled-data feedback system given by (2.2) and (3.1) is exponentially
stable with exponential growth ωsd < ω(T−) + ε < 0.

(2) For every α ∈ [ω(T−) + ε, 0] there exists N ≥ 1 such that

‖y(·;x0, v)‖L2
α
≤ N(‖x0‖ + ‖v‖L2

α
) ∀x0 ∈ X, ∀ v ∈ L2

α(R+,R
m).
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(3) If α ∈ [ω(T−)+ε, 0], x0 ∈ X, and v ∈ W 1,2
α (R+,R

m) and there exists t1 ∈ R+

such that Tt1(Ax0 + Bv(0)) ∈ X, then y(·;x0, v) is continuous on [t1,∞) and

lim
t→∞

y(t;x0, v)e−αt = 0.

Statement (2) shows in particular that there exists H ∈ L2([0, δ],Rm×p) such that
the sampled-data feedback system given by (2.2) and (3.1) is L2

α-input-output stable.

Proof of Theorem 4.4. We define ΔH ∈ B(X) by setting

ΔH := Tτ + KHCLw,(4.11)

where the operators Lw ∈ B(X,X1) and KH ∈ B(Rp, X) are given by (3.5) and (3.9),
respectively. It is convenient to set ω− := ω(T−). Let ε ∈ (0,−ω−).

(1) To prove that for a suitable hold function H, ωsd < ω− + ε, we note that, by
Corollary 3.5, it is sufficient to show the existence of a function H ∈ L2([0, δ],Rm×p)

such that r(ΔH) < e(ω−+ε)τ . Defining the operators

K+
H := ΠKH , K−

H := (I − Π)KH , L±
w := Lw|X± =

∫ τ−δ

0

w(s)T±
s ds,(4.12)

we have K±
H ∈ B(Rp, X±), L+

w ∈ B(X+), and L−
w ∈ B(X−, X1 ∩X−), where X1 ∩X−

is endowed with the norm ‖ · ‖1. The operator ΔH can then be written in the form

ΔH =

(
T+

τ + K+
HC+L+

w K+
HC−L−

w

K−
HC+L+

w T−
τ + K−

HC−L−
w

)
.(4.13)

By A4,
∫ τ−δ

0
w(s)eλs ds �= 0 for all λ ∈ σ(A+) and hence an application of Lemma 4.1

shows that the matrix L+
w =

∫ τ−δ

0
w(s)eA

+s ds is invertible. Since L+
w and T+

τ = eA
+τ

commute, we have that

(C+L+
w , (L

+
w)−1T+

τ L
+
w) = (C+L+

w ,T
+
τ ).(4.14)

Using A3, i.e., observability of the pair (C+,T+
τ ), it follows that the pair (C+L+

w ,T
+
τ )

is observable. Hence, by the pole-placement theorem for finite-dimensional systems,
there exists Q ∈ B(Rp, X+) such that

σ(T+
τ + QC+L+

w) = {0}.(4.15)

Denoting the canonical basis of R
p by (e1, e2, . . . , ep), it follows from the fact that

δ ≥ t0 (see A4) combined with assumption A5 that for every η > 0, there exist
h1, h2, . . . , hp ∈ L2([0, δ],Rm) such that

p∑
j=1

‖Rδhj −Qej‖2 ≤ η2.(4.16)

Setting H := −(h1, h2, . . . , hp) ∈ L2([0, δ],Rm×p), it follows that

Rδhj = KHej ∀ j ∈ {1, 2, . . . , p}.
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Therefore, invoking (4.16), we obtain that for all z = (z1, z2, . . . , zp)
T ∈ R

p,

‖KHz −Qz‖ =

∥∥∥∥∥∥
p∑

j=1

zj(KHej −Qej)

∥∥∥∥∥∥ ≤
p∑

j=1

‖KHej −Qej‖ |zj |

≤

⎛
⎝ p∑

j=1

‖KHej −Qej‖2

⎞
⎠

1/2

‖z‖ ≤ η‖z‖.

Thus, ‖KH −Q‖ ≤ η, and so, since Q maps into X+,

‖K+
H −Q‖ = ‖Π(KH −Q)‖ ≤ ‖Π‖η,(4.17a)

‖K−
H‖ = ‖(I − Π)(KH −Q)‖ ≤ ‖I − Π‖η.(4.17b)

Using (4.13), we may write

ΔH =

(
T+

τ + QC+L+
w QC−L−

w

0 T−
τ

)
+

(
(K+

H −Q)C+L+
w (K+

H −Q)C−L−
w

K−
HC+L+

w K−
HC−L−

w

)
.

(4.18)

We denote the first operator on the right-hand side of (4.18) by Δ and the second

by PH . Obviously, by (4.15), r(Δ) = eω
−τ . By upper semicontinuity of the spectrum

(see [11], pp. 208), there exists γ > 0 such that

r(ΔH) = r(Δ + PH) < e(ω−+ε)τ ,(4.19)

provided that ‖PH‖ ≤ γ. It follows from (4.17) that the latter can be accomplished
by choosing η > 0 sufficiently small.

(2) To prove statement (2) of the theorem, choose H ∈ L2([0, δ],Rm×p) such that
(4.19) holds. Choose ν ∈ (ω−, ω− + ε) such that eντ is a power bound for ΔH . Let
x0 ∈ X, α ∈ (ν, 0], and v ∈ L2

α(R+,R
m). Recall that the feedback control produced

by the sampled-data control law (3.1) is denoted by u(·;x0, v). With Hτ defined by
(3.2) we have

u(t;x0, v)e−αt = e−αtv(t)−e−α(t−kτ)Hτ (t−kτ)yke
−αkτ ∀ t ∈ [kτ, (k+1)τ), ∀ k ∈ N0.

In the following, the numbers Ni > 0 are suitable constants, depending only on α but
not on x0 and v. It follows from the above identity that

∫ (k+1)τ

kτ

‖u(t;x0, v)e−αt‖2dt ≤ N1

(
‖yke−αkτ‖2 +

∫ (k+1)τ

kτ

‖v(t)e−αt‖2dt

)
∀ k ∈ N0.

(4.20)

Using that eντ is a power bound for ΔH and that 0 ≥ α > ν, we may conclude from
(3.7), (3.8), and (4.11) that

∞∑
k=0

‖xk,δe
−αkτ‖2 ≤ N2

(
‖x0,δ‖2 +

∫ ∞

0

‖v(t)e−αt‖2dt

)
(4.21)
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and

∞∑
k=0

‖yke−αkτ‖2 ≤ N3

(
‖x0,δ‖2 +

∫ ∞

0

‖v(t)e−αt‖2dt

)
.(4.22)

Now y0 = 0, and so u(t) = v(t) for all t ∈ [0, τ). Hence,

x(t;x0, v) = Ttx
0 +

∫ t

0

Tt−sBv(s) ds ∀ t ∈ [0, τ),(4.23)

showing that

‖x0,δ‖ = ‖x(δ;x0, v)‖ ≤ N4(‖x0‖ + ‖v‖L2) ≤ N4(‖x0‖ + ‖v‖L2
α
).(4.24)

Inserting this into (4.21) and (4.22) yields

∞∑
k=0

‖xk,δe
−αkτ‖2 ≤ N5(‖x0‖2 + ‖v‖2

L2
α
)(4.25)

and

∞∑
k=0

‖yke−αkτ‖2 ≤ N6(‖x0‖2 + ‖v‖2
L2

α
).(4.26)

It follows from (4.20) and (4.26) that

‖u(·;x0, v)‖L2
α
≤ N7(‖x0‖ + ‖v‖L2

α
).(4.27)

To derive a similar estimate for x(·;x0, v), we note that by the variations-of-parameter
formula we have, for k ∈ N and t ∈ [0, τ),

x(kτ + t;x0, v) = Tt+τ−δxk−1,δ −
∫ kτ+t

kτ

Tkτ+t−sBHτ (s− kτ)yk ds

+

∫ kτ+t

(k−1)τ+δ

Tkτ+t−sBv(s) ds,

where Hτ is defined in (3.2). A change of variables leads to

x(kτ + t;x0, v) = Tt+τ−δxk−1,δ −
∫ t

0

Tt−sBHτ (s)yk ds +

∫ t

δ−τ

Tt−sBv(kτ + s) ds.

Hence,

(4.28) ‖x(kτ + t;x0, v)e−α(kτ+t)‖2 ≤ N8

(
‖xk−1,δe

−α(k−1)τ‖2 + ‖yke−αkτ‖2

+

∫ (k+1)τ

(k−1)τ

‖v(s)e−αs‖2ds

)
∀ k ∈ N, ∀ t ∈ [0, τ),
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and so,

(4.29)

∫ (k+1)τ

kτ

‖x(t;x0, v)e−αt‖2dt ≤ N9

(
‖xk−1,δe

−α(k−1)τ‖2 + ‖yke−αkτ‖2

+

∫ (k+1)τ

(k−1)τ

‖v(s)e−αs‖2ds

)
∀ k ∈ N.

Combining this with (4.23), (4.25), and (4.26) shows that

‖x(·;x0, v)‖L2
α
≤ N10(‖x0‖ + ‖v‖L2

α
).(4.30)

Using that α > ν > ω−, we have that the weighted semigroup t �→ T−
t e

−αt is
exponentially stable and G− ∈ B(L2

α(R+,R
m), L2

α(R+,R
p)). Combining this with

(4.27) and (4.30), an application of (4.5) (with u = u(·;x0, v), x = x(·;x0, v), and
y = y(·;x0, v)) yields the claim.

(3) Since the space of all W 1,2
c ([0, δ],Rm×p) is dense in L2([0, δ],Rm×p), an inspec-

tion of the proof of statement (1) shows that there exists H ∈ W 1,2
c ([0, δ],Rm×p) such

that (4.19) holds. Choose ν ∈ (ω−, ω− + ε) such that eντ is a power bound for ΔH .
Fix α ∈ (ν, 0]. Let x0 ∈ X and v ∈ W 1,2

α (R+,R
m) be such that Ax0 + Bv(0) ∈ X. It

follows from (3.1a) and (4.22) that u(·;x0, v) ∈ W 1,2
α (R+,R

m). Denoting the output
of the well-posed system Σ− corresponding to the initial value (I − Π)x0 and the
control u(·;x0, v) by y−, we have that

y− = (C−)ΛT−(I − Π)x0 + G−u(·;x0, v).(4.31)

Since u(0;x0, v) = v(0), we may conclude that

T−
t1

(
A−(I − Π)x0 + B−u(0;x0, v)

)
= (I − Π)Tt1

(
Ax0 + Bv(0)

)
∈ (I − Π)X = X−.

An application of Proposition 2.1 to Σ− now yields that y− is continuous on [t1,∞)
and

lim
t→∞

‖y−(t)e−αt‖ = 0.(4.32)

Since v ∈ L2
α(R+,R

m), it is clear that
∫ (k+1)τ

(k−1)τ
‖v(s)e−αs‖2ds converges to 0 as k → ∞.

Furthermore, it follows from (4.25) and (4.26) that xk,δe
−αkτ and yke

−αkτ converge
to 0 as k → ∞. Consequently, the right-hand side of (4.28) converges to 0 as k → ∞
and therefore,

lim
t→∞

‖x(t)e−αt‖ = 0.(4.33)

Finally, by (4.31) and Lemma 4.2 (applied to the well-posed system (2.2) with control
u = u(·;x0, v)),

y(·;x0, v) = y−(t) + C+Πx(·;x0, v).

Therefore, y(·;x0, v) is continuous on [t1,∞), and, furthermore, we may conclude from
(4.32) and (4.33) that limt→∞ y(t;x0, v)e−αt = 0.

Remark 4.5. (1) If in Theorem 4.4 assumption A5 is replaced by the stronger
assumption that imRt0 ⊃ X+ (that is, every state in X+ is reachable from 0 in time
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t0), then an inspection of the above proof shows that there exists H ∈ L2([0, δ],Rm×p)
such that (i) ωsd ≤ ω(T−) and (ii) the conclusions of statements (2) and (3) of
Theorem 4.4 remain true for every α ∈ (ω(T−), 0].

(2) From a practical point of view, it is important that the “structure” of the
stabilizing hold function H (the existence of which is guaranteed by Theorem 4.4)
is as simple as possible. In this context, we define S([0, δ],Rm×p) to be the space of
R

m×p-valued step functions on [0, δ] and CPLc([0, δ],R
m×p) to be the space of R

m×p-
valued continuous piecewise affine-linear functions with support contained in the open
interval (0, δ). We recall that S([0, δ],Rm×p) and CPLc([0, δ],R

m×p) are dense in
L2([0, δ],Rm×p). Moreover, it is clear that CPLc([0, δ],R

m×p) ⊂ W 1,2
c ([0, δ],Rm×p).

Therefore an inspection of the proof of Theorem 4.4 shows that, for every ε ∈
(0,−ω(T−), there exist

(i) H ∈ S([0, δ],Rm×p) such that statements (1) and (2) of Theorem 4.4 hold;
(ii) H ∈ CPLc([0, δ],R

m×p) such that statements (1)–(3) of Theorem 4.4 hold.
It follows from [18, 30] that assumptions A1 and A2 are necessary conditions for

the stabilization of (2.2) by any of the commonly used sampled-data feedback designs
including the control law (3.1) (see [18, 30]). In this context the following proposition
is of interest.

Proposition 4.6. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ−δ],R).
Assume that (3.4) holds. If the sampled-data feedback system given by (2.2) and (3.1)
is exponentially stable, then conditions A1–A4 hold, and if the semigroup T is analytic,
then A5 holds also.

Proof. Assume that the sampled-data feedback system given by (2.2) and (3.1)
is exponentially stable. It follows from [30] that A1 and A2 hold. We claim that the
pair (C+L+

w ,T
+
τ ) is observable. Suppose not; then we can find z ∈ X+, z �= 0, and

ζ ∈ C with |ζ| ≥ 1 so that

T+
τ z = ζz and C+L+

wz = 0.

Now choose z0 ∈ X+ such that z = T+
δ z

0. We consider the state trajectory x(·;x0, 0)
of the sampled-data feedback system corresponding to the initial state

x0 :=

(
z0

0

)

and the external input function v = 0. Then, using (4.13),

x(kτ + δ;x0, 0) = xk,δ = Δk
Hx0,δ = Δk

HTδx
0 = Δk

H

(
T+

δ z
0

0

)
= Δk

H

(
z
0

)
= ζk

(
z
0

)
.

Since z �= 0, we may conclude that x(kτ + δ;x0, 0) does not converge to 0 as k → ∞,
yielding a contradiction to the exponential stability of the sampled-data feedback
system. Hence the pair (C+L+

w ,T
+
τ ) is observable. To show that A3 and A4 hold,

let OL and O be the observability matrices for the pairs (C+L+
w ,T

+
τ ) and (C+,T+

τ ),

respectively. Since L+
w and T+

τ = eA
+τ commute, it follows that

OL = OL+
w .

If (4.9) fails to hold, then, by Lemma 4.1, L+
w is singular, implying that OL loses rank.

If A3 fails to hold, then (C+,T+
τ ) is not observable and again OL will lose rank. In

both cases (C+L+
w ,T

+
τ ) will not be observable, which is impossible. Therefore both

A3 and A4 must hold.
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To complete the proof we just need to show that A5 also holds if T is analytic.
Define the operator B+

τ : R
p → X+ by

B+
τ z =

∫ τ

0

T+
τ−sB

+Hτ (s)z ds ∀ z ∈ R
p,

where Hτ is defined in (3.2). It follows from [30] that the pair (T+
τ , B

+
τ ) is controllable.

A routine argument based on the Hautus criterion for controllability then shows that
the pair (A+, B+) is also controllable. Finally, an application of Proposition 1.2 in
[19] yields that condition A5 is satisfied.

5. Example. We will illustrate Theorem 4.4 with a standard model for an Euler–
Bernoulli beam with structural damping (see Chen and Russell [3]). Let z(ξ, t) be the
lateral deflection of a beam, where ξ ∈ [0, 1] and t > 0 denote space and time, respec-
tively. We assume that the flexural rigidity EI and the mass density per unit length
m are both constant. We normalize so that EI/m = 1. The Euler–Bernoulli beam
with structural damping is described by the following fourth-order partial differential
equation

ztt(ξ, t) − 2γztξξ(ξ, t) + zξξξξ(ξ, t) = 0,(5.1)

where γ ∈ (0, 1) denotes the damping constant. We assume that the beam is hinged
at ξ = 0 and has a freely sliding clamped end at ξ = 1, with shear (also known as
lateral) force u(t) at ξ = 1:

z(0, t) = 0, zξξ(0, t) = 0,(5.2a)

zξ(1, t) = 0,− zξξξ(1, t) = u(t).(5.2b)

For this system we consider a standard observation, the velocity at ξ = 1:

y(t) = zt(1, t).(5.3)

The applicability of our considerations below to other boundary conditions is briefly
discussed in Remark 5.1 at the end of this section.

Our first aim is to represent the controlled and observed partial differential equa-
tion given by (5.1)–(5.3) as an abstract well-posed system of the form (2.2). We write
L2(0, 1) and W q,2(0, 1), respectively, in place of the more cumbersome L2([0, 1],R)
and W q,2([0, 1],R). Let A0 : dom(A0) ⊂ L2(0, 1) → L2(0, 1) be given by

A0f = d4f/dξ4,

dom(A0) = {f ∈ W 4,2(0, 1) : f(0) = 0, f ′′(0) = 0, f ′(1) = 0, f ′′′(1) = 0}.

The operator A0 is closed, bijective, self-adjoint, and coercive and has compact re-
solvent. The numbers (−π/2 + πk)4, where k ∈ N, are the eigenvalues of A0 with
associated eigenvectors ek given by

ek(ξ) =
√

2 sin((−π/2 + πk)ξ), k ∈ N.

The family (ek)k∈N forms an orthonormal basis of L2(0, 1). Moreover,

A
1/2
0 f = −f ′′, dom(A

1/2
0 ) = {f ∈ W 2,2(0, 1) : f(0) = 0, f ′(1) = 0}.
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Let X := dom(A
1/2
0 ) × L2(0, 1). Endowed with the inner product

〈(x1, x2)
T , (y1, y2)

T 〉 := 〈A1/2
0 x1, A

1/2
0 y1〉L2 + 〈x2, y2〉L2 ,

X becomes a Hilbert space. Defining the operator

A =

(
0 I

−A0 −2γA
1/2
0

)
, dom(A) = dom(A0) × dom(A

1/2
0 ),(5.4)

(5.1) and (5.2) (with u = 0) can be written in the form ẋ = Ax, where x(t) =
(z(·, t), zt(·, t))T . The eigenvalues of A are given by

λ±k = (−γ ± i
√

1 − γ2)(−π/2 + πk)2, k ∈ N,(5.5)

with associated eigenvectors

f±k =

√
2

1 − e∓2iϕ

(
ek/λ±k

ek

)
, k ∈ N,

where ϕ := arccos(−γ), so that eiϕ = −γ+ i
√

1 − γ2. It is a routine exercise to check
that (f±k)k∈N is a Riesz basis for X. For k ∈ N, the unit vectors

g±k =
1√
2

(
−ek/λ∓k

ek

)
∈ dom(A∗)

are eigenvectors of A∗ with associated eigenvalues λ̄±k = λ∓k. Furthermore, intro-
ducing the set Z

∗ := Z \ {0}, we have that

〈fj , gl〉 =

{
0, j �= l,
1, j = l,

i.e., (fj)j∈Z∗ and (gj)j∈Z∗ are biorthogonal. Consequently, A is a Riesz spectral op-
erator (as defined in [6]) and thus can be represented in the form

Ax =
∑
j∈Z∗

λj〈x, gj〉fj ∀x ∈ dom(A) =

⎧⎨
⎩x ∈ X :

∑
j∈Z∗

|λj |2|〈x, gj〉|2 < ∞

⎫⎬
⎭ ;

moreover, σ(A) = {λj : j ∈ Z
∗} and A generates a strongly continuous semigroup T

given by

Ttx =
∑
j∈Z∗

eλjt〈x, gj〉fj ∀x ∈ X;

see, e.g., Theorem 2.3.5 in [6]. It follows from the location of σ(A) combined with a
standard result in semigroup theory (see, e.g., Theorem 5.2 in [16, p. 61]) that the
semigroup T is analytic.

To write the controlled partial differential equation given by (5.1) and (5.2) in
the abstract form (2.2a), we need to determine the input operator B. Moreover, in
order to prove admissibility of B, we need to expand B in terms of the functions
fj . To this end it is useful to recall that the inner product on X has a continuous
extension to X−1 × dom(A∗), where dom(A∗) is endowed with the graph norm of
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A∗. More precisely, there exists a bounded nondegenerate sesquilinear form [ ·, · ] on
X−1×dom(A∗) such that [x1, x2] = 〈x1, x2〉 for all (x1, x2) ∈ X×dom(A∗). The space
X−1 may be identified with the dual of dom(A∗). Following the procedure outlined
in [8], we obtain that

B = (0, δ1)
T ,(5.6)

where δ1 denotes the Dirac distribution (or unit mass) with support at ξ = 1.4 Con-
sequently, the controlled partial differential equation given by (5.1) and (5.2) can be
written in the form (2.2a) with x(t) = (z(·, t), zt(·, t))T and the operators A and B
given by (5.4) and (5.6), respectively.

In order to verify that B is admissible, we first note that (fj)j∈Z∗ is a Schauder
basis of X−1. Indeed, for arbitrary x ∈ X−1, we have that

x = AA−1x = A
∑
j∈Z∗

〈A−1x, gj〉fj =
∑
j∈Z∗

〈A−1x, gj〉λjfj ,

and it is clear that the coefficients 〈A−1x, gj〉λj in the expansion on the right-hand
side are unique. It is easy to see that 〈A−1x, gj〉 = [x, gj ]/λj for x ∈ X−1 and j ∈ Z

∗.
Thus, for arbitrary x ∈ X−1,

x =
∑
j∈Z∗

[x, gj ]fj .

Since [B, gj ] = sin(−π/2 + π|j|) = (−1)|j|+1, we obtain the following expansion for B
in X−1:

B =
∑
j∈Z∗

(−1)|j|+1fj .(5.7)

A standard application of the Carleson measure criterion (see [8, 33]) yields that B is
an admissible control operator for the semigroup T. Since the observation (5.3) is de-
scribed by the operator C := B∗, we conclude that C is an admissible observation op-
erator. From (5.5) and (5.7), it is easy to see that for any ε > 0, B ∈ B(R, X−(1/4+ε))
and C ∈ B(X1/4+ε,R). Hence we can apply Proposition 2.2 to conclude that (A,B,C)
are the generating operators of a regular well-posed system.

The semigroup generated by A has exponential growth constant −γπ2/4, the
real part of the rightmost eigenvalue of A. Our aim is to construct a hold function
H such that the sampled-data feedback control law (3.1) with weighting w(s) ≡
1 achieves closed-loop exponential growth ωsd ≤ −9γπ2/4. To this end, fix β ∈
(−9γπ2/4,−γπ2/4). Then assumption A1 holds, the subspace X+ of X is spanned by
{f−1, f1}, and σ(A+) = σ(A)∩Cβ = {λ1, λ1}. It is clear that ω(T−) = −9γπ2/4 < 0,
showing that A2 holds. It is straightforward to show that (fj)j∈Z∗ is a Schauder basis
of X1, so that (fj)j∈Z∗ is a Schauder basis of each of the three spaces X1, X, and
X−1. With respect to this basis we have that

A = diagj∈Z∗(λj), Tt = diagj∈Z∗(eλjt), B = (((−1)|j|+1)j∈Z∗)T , C = (cj)j∈Z∗ ,

where

ck = 2(−1)k+1/(1 − e−2iϕ), c−k = ck ∀ k ∈ N.

4Strictly speaking, B is the operator in B(R, X−1) given by Bv = v(0, δ1)T , but it is convenient
to identify B and B1 = (0, δ1)T .
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Furthermore,

A+ = diag(. . . , 0, 0, λ1, λ1, 0, 0, . . . ), T+
t = diag(. . . , 0, 0, eλ1t, eλ1t, 0, 0, . . . ),

B+ = (. . . , 0, 0, 1, 1, 0, 0, . . . )T , C+ = (. . . , 0, 0, c1, c1, 0, 0, . . . ).

It follows in particular that assumption A3 is satisfied. Furthermore, since

∑
j∈Z∗

1

|Reλj |
= 2

∞∑
j=1

1

γ(−π/2 + πj)2
< ∞,

Theorem 4.1 in [20] implies that, for any t > 0, there exists a unique sequence (pj)j∈Z∗

in L2([0, t],C) such that ∫ t

0

eλjs pl(s) ds =

{
0, j �= l,
1, j = l;

(5.8)

that is, (eλj ·)j∈Z∗ and (pj)j∈Z∗ are biorthogonal (note that pj = p−j for all j ∈ Z
∗).

Consequently,

imRt0 ⊃ X+ ∀ t0 ∈ (0,∞),(5.9)

where Rt0 is the reachability operator given by (4.8). The inclusion (5.9) shows in
particular that A5 holds for every t0 > 0. Since σ(A+) = {λ1, λ1}, condition (4.10)
is satisfied, provided that

τ �= 4k

π
√

1 − γ2
∀ k ∈ N.(5.10)

Furthermore, since w(s) ≡ 1 and Reλ1 �= 0, (4.9) holds for all τ > δ > 0, and
therefore, we may conclude that assumption A4 is satisfied.

Choose τ > 0 such that (5.10) holds and fix δ ∈ (0, τ). It follows from Theorem
4.4 (combined with Remark 4.5 and (5.9)) that there exists H ∈ L2([0, δ],R) such
that the sampled-data feedback control law (3.1) with weighting w(s) ≡ 1 achieves
closed-loop exponential growth ωsd ≤ −9γπ2/4. We now use the construction in the
proof of Theorem 4.4 to compute such a hold function H. To this end, note that the
operator L+

w defined in (4.12) can be represented as

L+
w = diag(. . . , 0, 0, λ, λ, 0, 0, . . . ), where λ := (eλ1(τ−δ) − 1)/λ1.

We first find Q ∈ B(C, X+) such that (4.15) holds. Since Q is of the form

Q = (. . . , 0, 0, q−1, q1, 0, 0, . . . )
T ,

we do this by computing q−1, q1 ∈ C with the property that the two eigenvalues of
the matrix(

eλ1τ 0
0 eλ1τ

)
+

(
q−1

q1

)
(c1, c1)

(
λ 0
0 λ

)
=

(
eλ1τ + q−1c1λ q−1c1λ

q1c1λ eλ1τ + q1c1λ

)

are both equal to 0. A routine calculation leads to

q1 =
−e2λ1τ

(eλ1τ − eλ1τ )c1λ
=

e2λ1τλ1

c1(eλ1τ − eλ1τ )(1 − eλ1(τ−δ))
, q−1 = q1.(5.11)
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We now compute h ∈ L2([0, δ],R) such that Rδh = Q, in which case (4.16) holds for
every η > 0. Using (5.8) to solve Rδh = Q for h, we find that

h(t) = q1p1(δ − t) + q1p1(δ − t) ∀ t ∈ [0, δ].

The control law (3.1) with H = −h (and with w(s) ≡ 1) achieves closed-loop expo-
nential growth ωsd ≤ −9γπ2/4. It is shown in [21, section 4] how to construct the
functions pj .

Remark 5.1. If we kept the same form for the boundary control in (5.2) but
modified the remaining boundary conditions to other “natural” boundary conditions,
identified in [9, 21], we could go through the same process to find a “stabilizing”
generalized hold function H. The only difference being that the eigenvalues and
eigenvectors would be given by asymptotic formulas—see, e.g., [17] for the formulas
for such a beam with one end clamped and the other end free. On the other hand,
if the control appears as a bending moment force (e.g., zξξ(1, t) = u(t)), then the
resulting system will not be well-posed, and our theory does not apply.
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