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PID control of second-order systems with hysteresis
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The efficacy of proportional, integral and derivative (PID) control for set point regulation and disturbance
rejection is investigated in a context of second-order systems with hysteretic components. Two basic structures
are studied: in the first, the hysteretic component resides (internally) in the restoring force action of the system
(‘hysteretic spring’ effects); in the second, the hysteretic component resides (externally) in the input channel (e.g.
piezo-electric actuators). In each case, robust conditions on the PID gains, explicitly formulated in terms of the
system data, are determined under which asymptotic tracking of constant reference signals and rejection of
constant disturbance signals is guaranteed.
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1. Introduction

With reference to Figures 1 and 2, we consider PID

control of single-input (mechanical) systems of the

following two forms:

m €xþ c _xþ�ðxÞ ¼ uþ d; ð1Þ
m €xþ c _xþ kx ¼ �ðuþ d2Þ þ d1, ð2Þ

with input t � u(t)2R and constant (but unknown)

disturbances d, d1, d22R. In a mechanical context, x(t)

represents displacement at time t2Rþ :¼ [0,1),m

and c are the mass and the damping constant, and,

in (2), k is a linear spring constant. In the case of (1),

the operator � models a restoring force which may

exhibit hysteresis phenomena, a particular example of

which is the ‘hysteric spring’ model discussed in, for

example, Symens et al. (2002), Al-Bender et al. (2004).

In the case of (2), the operator � models hysteretic

actuation. Such hysteretic effects arise in, for example,

micro-positioning control problems using piezo-elec-

tric actuators or smart actuators, as investigated in,

inter alia, Ge and Jouaneh (1996), Adriaens et al.

(1997), Gorbet et al. (2001), Gorbet and Morris (2003),

Iyer et al. (2005), Park et al. (2005), Song et al. (2005),

Tan et al. (2005) and Lin and Yang (2006).
Motivated by a recent study in Ikhouane and

Rodellar (2006), for each of the above system

structures we will investigate the efficacy of a PID

controller of the form

uðtÞ ¼ �kpðxðtÞ � rÞ � kd _xðtÞ � ki

Z t

0

xð�Þ � rð Þd� þ u0,

ð3Þ

where u0 is the initial condition on the integrator,
kp, ki, kd� 0 are the controller gains and r is a

constant reference signal to be tracked. The latter is

a distinguishing feature of the present paper vis à vis

Ikhouane and Rodellar (2006) (wherein constant

non-zero reference signals cannot be handled).

Moreover, the investigation in Ikhouane and

Rodellar (2006) is concerned with systems of form

(1) and is focussed on one particular hysteresis

component, namely the Bouc-Wen model (Wen 1976,

Ikhouane et al. 2007). By contrast, in this paper we

deal with a large class of rate-independent causal

hysteresis operators which includes the play operator,

stop operator, backlash operator and Preisach

operators. These operators are briefly discussed in

x 2; a more detailed discussion can be found in

Brokate and Sprekels (1996), Logemann and Mawby

(2001) and Mayergoyz (2003).
The rapidly expanding literature (of which the

references at the end of this article are but a

representative sample) on analysis and control of
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systems with hysteresis attests to the growing

importance of the field to both control theorists
and practitioners. The analytical framework of the

present paper is based on frequency-domain condi-

tions developed recently in Logemann and Ryan

(2003) and Logemann et al. (2007) which ensure

existence, regularity and certain asymptotic proper-
ties of solutions of a feedback interconnection of a

linear (possibly infinite dimensional) system and a

hysteresis operator �. Within this framework, the

main contribution of the paper is as follows. For
each of the two underlying system structures (1) and

(2), robust design criteria – formulated explicitly in

terms of bounds on the plant parameters m, c, k and

on a Lipschitz-type constant � associated with the
hysteresis operator � – are developed under which

disturbance rejection is assured and the tracking

error x(t)� r converges, as t!1, to zero at

exponential rate. We emphasise the robustness
aspect: the latter performance is achieved by PID

control for which computation of the associated PID

gains requires only the availability of bounds on the

parameters m, c, k and �; in particular (and in

contrast to Ikhouane and Rodellar (2006)), knowl-
edge of the hysteresis operator � is not required (see,

in particular, Remark 2 and Remark 3 below).

Notation We conclude this introduction with some

remarks on terminology and notation. As usual, we

denote the space of continuous functions I!R, I�R

an interval, by C(I). A function f2C(Rþ ) is said to be
piecewise monotone if, for some strictly increasing

unbounded sequence ðtiÞ
1
i¼0 in Rþ with t0¼ 0, f is

monotone on [ti�1, ti] for all i2N: the space of all such

piecewise monotone functions is denoted by Cpm(Rþ).
The (Banach) space of measurable functions f :Rþ!R

such that k f kLp :¼
R1
0 j f ðtÞj

pdt <1, 1� p51 , is

denoted by Lp(Rþ). For f2Lp(Rþ) and T4 0, fT
denotes the concatenation of the functions f |[0,T] and 0,

given by

fTðtÞ :¼
f ðtÞ, t 2 ½0,T�

0, t 2 ðT,1Þ:

�

The space L
p
locðRþÞ consists of all measurable functions

f :Rþ!R such that fT2L
p(Rþ) for all T4 0. By

W 1, 1
loc ðRþÞ we denote the space of locally absolutely

continuous real-valued functions defined on Rþ, that
is, f 2W 1, 1

loc ðRþÞ if and only if there exists g 2 L1
locðRþÞ

such that f ðtÞ ¼ f ð0Þ þ
R t
0 gðsÞds for all t2Rþ.

Let �2R. The �-exponentially weighted Lp-space

of functions Rþ!R is defined as

Lp
�ðRþÞ :¼

�
f : f ð�Þ expð�� �Þ 2 LpðRþÞ

�
which, endowed with the norm

kfkLp
�ðRþÞ
¼ k fð�Þexpð�� �ÞkLpðRþÞ

¼

Z 1
0

je��tf ðtÞjpdt

� �1=p

,

is a Banach space.
A function u2C(Rþ) is ultimately non-decreasing

(non-increasing) if there exists � 2Rþ such that u is

non-decreasing (non-increasing) on [�,1); u is said to

be approximately ultimately non-decreasing (non-
increasing), if for all "4 0, there exists an ultimately

non-decreasing (non-increasing) function v2C(Rþ)

such that

juðtÞ � vðtÞj � " , 8t 2 Rþ:

The unit step function is denoted by � and ? denotes
convolution. Finally, we set R

?:¼R \{0}.

2. Hysteresis operators

An operator �:C(Rþ)!C(Rþ) is said to be causal if,

for all �� 0 and all v1, v22C(Rþ), v1¼ v2 on [0, �]
implies that �(v1)¼�(v2) on [0,�]. The following

remark shows that causal operators can be extended
to ‘localised’ versions of the domain space.

Remark 1: Let I¼ [0,T], where 05T51, or
I¼ [0,T), where 05T�1. For � 2 I, define Q�:

C(I )!C(Rþ)

ðQ�uÞðtÞ ¼
uðtÞ , 0 � t � �,
uð�Þ , t4 �:

�
ð4Þ

If �:C(Rþ)! C(Rþ) is causal, then � extends in a

natural way to an operator C(I)!C(I ): for v2C(I)

simply set

ð�ðvÞÞðtÞ :¼ ð�ðQ�vÞÞðtÞ, 0 � t � �; � 2 I

Figure 1. System of form (1). Figure 2. System of form (2).

1332 B. Jayawardhana et al.
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Causality of � guarantees that this definition does not

depend on the choice of � and so �(v) is a well-defined

function in C(I) for any v2C(I).

We will not distinguish notationally between the

original causal operator and its localisation.
A function f :Rþ!Rþ is a time transformation

if f is continuous and non-decreasing with f(0)¼ 0 and

lim t!1 f(t)¼1. An operator � :C(Rþ)!C(Rþ) is

rate independent if, for every time transformation f,

ð�ðu � f ÞÞðtÞ ¼ ð�ðuÞÞð f ðtÞÞ, 8 u 2 CðRþÞ, 8 t 2 Rþ:

The operator � :C(Rþ)!C(Rþ) is said to be a

hysteresis operator if � is causal and rate independent.
The numerical value set, NVS �, of a hysteresis

operator � is defined by

NVS� :¼
�
ð�ðuÞÞðtÞ : u 2 CðRþÞ; t 2 Rþ

�
:

For w2C([0, �]) (with �� 0) and �, �4 0, we define

Cðw; �, �Þ : ¼
n
v 2 Cð½0, �þ ��Þ :

vj½0,�� ¼ w, max
t2½�, �þ��

jvðtÞ � wð�Þj � �
o
:

We will have occasion to impose some or all of the

following conditions on the hysteresis operator �:

C(Rþ)!C(Rþ):
(N1) If u 2W1;1

locðRþÞ, then �ðuÞ 2W1;1
locðRþÞ;

(N2) The operator � is monotone in the sense that,

if u 2W1;1
locðRþÞ, then

ð�ðuÞÞ0ðtÞu0ðtÞ � 0, a:e: t 2 Rþ;

(N3) There exists �4 0 such that for all �� 0 and

w2C([0,�]), there exist constants �, �4 0

such that

max
�2½�;�þ��

jð�ðuÞÞð�Þ � ð�ðvÞÞð�Þj �

� max
�2½�;�þ��

juð�Þ � vð�Þj, 8 u; v 2 Cðw; �; �Þ;

(N4) For all �2 Rþ and all u2C([0, �)), there exist
c4 0 such that

max
�2½0;t�
jð�ðuÞÞð�Þj � cð1þ max

�2½0;t�
juð�ÞjÞ,

8 t 2 ½0; �Þ;

(N5) If u2 C(Rþ) is approximately ultimately non-

decreasing and limt!1 u(t)¼1, then

(�(u))(t) and (�(�u))(t) converge, as t!1,

to sup NVS � and inf NVS �, respectively;
(N6) If, for u2 C(Rþ), limt!1 (�(u))(t)2 int NVS

�, then u is bounded.

These technical assumptions are invoked in Theorem 1
and 2 below (which underpin the results of the paper):
moreover, they are natural in the sense that they hold
for the most commonly encountered hysteresis opera-
tors: relay, elastic-plastic, backlash, Prandtl, Preisach.

We mention that, if a hysteresis operator � satisfies
(N5), then NVS � is an interval. Furthermore, we
remark that many hysteresis operators (see, for
example, Brokate and Sprekels (1996) and Logemann
and Mawby (2001)) are Lipschitz continuous in the
sense that

sup
�2Rþ

jð�ðuÞÞð�Þ � ð�ðvÞÞð�Þj � � sup
�2Rþ

juð�Þ � vð�Þj,

8 u; v 2 CðRþÞ, ð5Þ

for some �4 0, in which case (N3) and (N4) are
(trivially) satisfied and, furthermore, (N1) holds
(see Logemann and Mawby (2001)).

In the following, we briefly describe the backlash,
elastic-plastic and Preisach operators which are widely
adopted as hysteresis models in engineering
applications.

Backlash operator. The backlash (or play) operator,
widely used in mechanical models (of, for example,
gear trains or of hydraulic servovalves), has been
discussed rigorously in many references, see for
example Brokate and Sprekels (1996), Logemann and
Mawby (2001) and Mayergoyz (2003). With a view to
giving a precise definition of backlash, we first define,
for each h2 Rþ, the function bh: R

2
!R by

bhðv,wÞ :¼ maxfv� h, minfvþ h,wgg:

For all h2Rþ and all �2R, we introduce an operator
Bh, � defined on the space Cpm(Rþ) of piecewise
monotone functions, by defining, for every u2 Cpm

(Rþ),

ðBh;�ðuÞÞðtÞ

¼
bhðuð0Þ;�Þ for t¼ 0

bhðuðtÞ;ðBh;�ðuÞÞðtiÞÞ for ti�15t� ti; i2N

�
ð6Þ

where 0¼ t05 t15 t25� � � is a partition of Rþ, such
that u is monotone on each of the intervals [ti�1,ti],
i2N. Here � plays the role of an ‘initial state’. It is well
known, see, for example, Brokate and Sprekels (1996,
page 42), that the operator Bh,� :Cpm(Rþ)!C(Rþ)
can be extended uniquely to a hysteresis operator
Bh,� :C(Rþ)!C(Rþ); moreover, the extended opera-
tor is Lipschitz continuous (in the sense of (5)) with
Lipschitz constant �¼ 1 and satisfies (N1)–(N6) (see,
for example, Logemann and Mawby (2001,
Proposition 5.4). It is clear that NVS Bh,�¼R. The
action of the backlash operator is illustrated in
Figure 3.

International Journal of Control 1333
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Elastic-plastic operator. The elastic-plastic operator
(also called the stop operator) describes the stress-
strain relation in a one-dimensional elastic-plastic
element. When the modulus of the stress is smaller
than the yield stress, the strain is related to the stress
through Hooke’s law (linear). Once the stress exceeds
the yield value, it remains constant under further
increasing of the strain; however, the elastic
behaviour is recovered when the strain is again
decreased.

For each h2Rþ, define the function eh :R!R by

ehðuÞ ¼ minfh, maxf�h, ugg:

For all h2Rþ and all �2R, we introduce an
operator Eh,� on Cpm(Rþ) by defining, for every
u2Cpm(Rþ),

ðEh, �ðuÞÞðtÞ

¼
ehðuð0Þ � �Þ for t¼ 0

ehðuðtÞ � uðtiÞþ ðEh;�ðuÞÞðtiÞÞ for ti�15 t� ti; i 2N,

�
ð7Þ

where 0¼ t05 t15 t25� � � is a partition of Rþ such
that u is monotone on each of the intervals [ti, tiþ1],
i2N. Again, � plays the role of an ‘initial state’. It is
well known (see, for example, Brokate and Sprekels
(1996, page 44)), that the operator
Eh, �:Cpm(Rþ)!C(Rþ) can be extended uniquely to a
hysteresis operator Eh, �:C(Rþ)!C(Rþ); moreover,
the extended operator satisfies (N1)–(N6) with � ¼ 2;
see, for example, Logemann and Mawby (2001,
Proposition 5.7). It is clear that NVS Eh,�¼ [�h, h].
The action of the elastic-plastic operator is illustrated
in Figure 4. Finally, we mention that
Eh,�(u)þBh,�(u)¼ u for all u2C(Rþ).

Prandtl and Preisach operators.The Preisach operator, a
version of which is described below, encompasses both
backlash, elastic-plastic and, more generally, Prandtl
operators. It represents a far more general type of
hysteresis which, for certain input functions, exhibits
nested loops in the corresponding input-output
characteristics. Let � :Rþ!R be a compactly
supported and globally Lipschitz function with

Lipschitz constant 1. Furthermore, let 	 be a signed

Borel measure on Rþ such that j	j (K)51 for all

compact sets K�Rþ, where j	j denotes the total

variation of 	. Denoting the Lebesgue measure on R

by 	L, let w :R�Rþ!R be a locally (	L		)-
integrable function and let w02R. The operator

P� :C(Rþ)! C(Rþ) defined by

ðP�ðuÞÞðtÞ ¼

Z 1
0

Z ðB r, �ðrÞðuÞÞðtÞ

0

wðs, hÞ	LðdsÞ	ðdhÞ þ w0,

8 u 2 CðRþÞ, 8 t 2 Rþ, ð8Þ

is called a Preisach operator, cf. Brokate and Sprekels

(1996, p. 55). It is clear that P� is a hysteresis operator.

Under the assumption that the measure 	 is finite and

w is essentially bounded, the operator P� is Lipschitz

continuous with Lipschitz constant j	j (Rþ) kwk 1, see
Logemann and Mawby (2001). Furthermore, if we

additionally assume that 	 and w are non-negative

valued, then, as shown in Logemann and Mawby

(2001), (N1)–(N6) hold (with �¼	(Rþ) kwk1 in (N3))

and

supNVSP�¼

Z 1
0

Z 1
0

wðs,hÞ	LðdsÞ	ðdhÞþw0 2 ½w0,1�,

ð9Þ

infNVSP� ¼ �

Z 1
0

Z 0

�1

wðs, hÞ	LðdsÞ	ðdhÞ

þ w0 2 ½�1,w0�: ð10Þ

The special case, wherein w
 1 and w0¼ 0 in (8), yields

the Prandtl operator

ðP�ðuÞÞðtÞ ¼

Z 1
0

ðBh, �ðhÞðuÞÞðtÞ	ðdhÞ,

8 u 2 CðRþÞ, 8 t 2 Rþ: ð11Þ

It follows from (9) and (10) that the numerical value set

of the Prandtl operator defined in (11) is equal to R

(provided that 	 6¼ 0).
To provide a concrete example of a Preisach

operator, we adopt a product of continuous

Gaussian distributions as the weighting function w

(similar weighting function has been used by Mitchler

Figure 3. Backlash operator Bh,�, with h¼ 2 and �¼ 1.

1334 B. Jayawardhana et al.
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et al. 1997 in a Preisach model of magnetic remanence

in materials), that is,

w : ðs, hÞ 7!
1

2

expð�ðs2 þ h2Þ=2Þ:

Then Z 1
0

Z ðBh, �ðhÞðuÞÞðtÞ
0

expð�ðs2 þ h2Þ=2Þds dh

¼

Z 1
0

Z ðBh, �ðhÞðuÞÞðtÞ
0

expð�s2=2Þ�ðhÞ ds dh

¼

Z 1
0

Z ðBh, �ðhÞðuÞÞðtÞ
0

expð�s2=2Þ	LðdsÞ	ðdhÞ;

where � : Rþ!Rþ is given by �(h)¼ exp(�h2/2) and

the measure 	 is given by 	(dh)¼ �(h)dh. In

particular, 	ðRþÞ ¼
ffiffiffiffiffiffiffiffi

=2
p

and the Preisach operator

given by

ðP�ðuÞÞðtÞ

¼
1

2


Z 1
0

Z ðBh, �ðhÞðuÞÞðtÞ
0

expð�ðs2 þ h2Þ=2Þds dhþ w0

ð12Þ

is such that (N1)–(N6) hold, with

� ¼
1

2

	ðRþÞ sup

�2Rþ

expð��Þ ¼
1

2

	ðRþÞ ¼

1

2
ffiffiffiffiffiffi
2

p

in (N3). In the case �¼ 0 and w0¼ 0, this operator is

illustrated in Figure 5.

3. Asymptotic behaviour of feedback systems with

hysteresis

In order to provide an appropriate analytical frame-

work for the main investigation in x 4, here we

assemble some results from Logemann and Ryan

(2003) and Logemann et al. (2007). The first result

pertains to a feedback interconnection of a convolu-

tion operator G (with kernel g) and a hysteretic

non-linearity �, as shown in Figure 6 below, and is

contained in Logemann and Ryan (2003)

Theorem 4.1.

Theorem 1: Let g 2 L2
�ðRþÞ, for some �5 0, be a

function of locally bounded variation. Let

r1; r2 2W1;1
locðRþÞ with r01; r

0
2 2 L2

�ðRþÞ. Let

� :C (Rþ)!C(Rþ) be a hysteresis operator satisfying

(N1), (N2) and (N3) with associated constant �4 0.

Assume that

inf
!2R

ReGði!Þ4 �
1

�
; ð13Þ

where G denotes the Laplace transform of g.
Then the feedback system

y ¼ g ? r1 þ r2 � g ?�ðyÞ, ð14Þ

has a unique solution y 2W1, 1
loc ðRþÞ and there exist

constants �2 (�, 0) and �4 0 (depending only on g

and �) such that

kykL1ðRþÞ þ k�ðyÞkL1ðRþÞ þ ky
0kL2

�
ðRþÞ

þ kð�ðyÞÞ0kL2
�
ðRþÞ
� � kr01kL2

�
ðRþÞ
þ kr02kL2

�
ðRþÞ

h
þ jr1ð0Þj þ jr2ð0Þj þ jð�ðr2ÞÞð0Þj

i
ð15Þ

and y(t) and (�(y))(t) converge to finite limits as t!1,

the convergence being exponential with rate �.

In Theorem 1, it is assumed that the linear

component of the system is described by a convolution

operator with kernel (impulse response) g in L2
�ðRþÞ

for some �5 0. This implies that the linear subsystem

is input–output stable and, in particular, does not

contain any integrators.
The next result, Theorem 2, applies to a class of

linear systems – containing an integrator with asso-

ciated gain parameter 
4 0 – of the form shown in

Figure 7, where again G is a convolution operator

(with kernel g), �:C(Rþ)!C(Rþ) is a hysteresis

operator, r1,r22R and q2L2(Rþ).

Figure 4. Elastic-plastic operator Eh,�, with h¼ 2 and �¼ 1.

International Journal of Control 1335
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Theorem 2: Let g 2 L1
�ðRþÞ þ R�0 for some �5 0,

where �0 is unit point mass at t¼ 0 (the Dirac

distribution with support at t¼ 0). Let r1,r22R, 
4 0

and q 2 L2ðRþÞ with limt!1 q(t)¼ 0. Let

� :C(Rþ)!C(Rþ) be a hysteresis operator satisfying

(N1)–(N6) with associated �4 0. Let G denote the

Laplace transform of g and assume that G(0)4 0,

r1 þ r2=Gð0Þ 2 NVS� and

05
5
1=ð�jfðGÞjÞ; fðGÞ 6¼ 0

1; fðGÞ ¼ 0;

�

where fðGÞ :¼ inf
!2R�

Re
Gði!Þ

i!

� �
: ð16Þ

Then, for each y02R, the initial-value problem

(describing the feedback system shown in Figure 7)

_y ¼ 

�
r1g ? � þ qþ r2� � g ?�ðyÞ

�
; yð0Þ ¼ y0 2 R,

ð17Þ

has a unique solution y 2W1;1
locðRþÞ and y has the

following properties: limt!1 _y(t)¼ 0, limt!1

(�(y))(t)¼ r1þ r2/G(0) and (�(y))0 2L2(Rþ).

Furthermore, if r1þ r2/G(0) is an interior point of

NVS �, then y is bounded.

Proof: Since g 2 L1
�ðRþÞ þ R�0, with �5 0, it fol-

lows that

lim sup
s!0; Res4 0

GðsÞ �Gð0Þ

s

				
				 ¼ jG0ð0Þj51:

Hence, G satisfies the condition (L) in (Logemann

et al., 2007, Theorem 4.1). Note that

g ? ��G(0)� 2L2(Rþ) and (g ? �)(t)�G(0)! 0 as

t!1. Furthermore, observe that system (17) has the

same form as the system in Logemann et al. (2007,

Equation (4.1)), with h¼ 0, #¼ 0 and  ¼ id in the

latter and with the roles of � and g in the latter being

played, respectively, by G(0)r1þ r2 and

r1(G(0)� g ? �)� q2L2(Rþ) in the present context.

Therefore, Theorem 4.1 in Logemann et al. (2007)

may be applied to establish that (17) has a unique

solution y 2W1;1
locðRþÞ, and limt!1 _y(t)¼ 0,

(�(y))0 2L2(Rþ) and limt!1(�(y))(t)¼ :�1 exists.

Moreover, Theorem 4.1 in Logemann et al. (2007)

also shows that y is bounded, provided that r1þ r2/

G(0) is an interior point of NVS�. It remains to show

that �1¼ r1þ r2/G(0). This follows easily from (17)

and the facts that _y(t)! 0, (g?�)(t)!G(0) and

(g ?�(y))(t)!G(0)�1 as t!1. œ

4. PID control of systems with hysteresis

We now focus attention on the application of

Theorem 1 and 2 in the analysis and design of PID

control in the context of each of system structures (1)

and (2).

4.1 Systems of form (1)

Consider again a second-order system described by (1):

m €xþ c _xþ�ðxÞ ¼ uþ d�;

xð0Þ ¼ x0; _xð0Þ ¼ v0; m4 0; c4 0; d 2 R, ð18Þ

where d� is a constant disturbance signal. Assume

that r2R is a constant reference signal, in which case,

the control objective is to determine, by feedback,

the control input u to achieve the tracking objective:

x(t)! r as t!1. We will investigate the efficacy

Figure 5. The Preisach operator (12) with �¼ 0 and w0¼ 0.

Figure 6. Feedback system with hysteretic non-linearity.

Figure 7. Feedback system with integrator and hysteretic
non-linearity.

1336 B. Jayawardhana et al.
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of the following PID control in achieving this

objective:

uðtÞ ¼ �kpðxðtÞ � rÞ � kd _xðtÞ � ki

Z t

0

ðxð�Þ � rÞd� þ u0;

ð19Þ

where u02R is the initial condition of the integrator

and kp, kd, ki� 0 are suitably chosen gains. Let

05!�1. A function x2C2([0,!)) satisfying (18)

and (19) is said to be a solution on [0,!) of the closed-
loop system given by (18) and (19).

Theorem 3: Let � :C(Rþ)!C(Rþ) be a hysteresis

operator satisfying (N1), (N2) and (N3) (with asso-

ciated constant �4 0). Let r, d2R. If kp, kd, ki are

chosen such that

(A1) kd 4 � cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kp þ �Þm

p
,

(A2) 05 ki 5 kpðkp þ �Þ=ð2ðcþ kdÞÞ,

then, for each (x0,v0,u0)2R
3, the initial-value problem

given by (18) and (19) has a unique solution x2C2(Rþ),

x(t)! r, _x(t)! 0 and €x(t)! 0 as t!1; moreover,

(�(x))(t) converges to a finite limit as t!1

(all convergences being exponentially fast).

Proof: By standard arguments (as in, for example,

Logemann and Ryan (2003)), there exists a unique

solution x2C2(Rþ) of the initial-value problem given

by (18) and (19). Setting

zðtÞ :¼

Z t

0

xð�Þ � rð Þ d� �
1

ki
ðu0 þ dÞ, 8 t 2 Rþ

and p(s):¼ms3þ (cþ kd)s
2
þ kpsþ ki, it follows that

p
d

dt

� �
z ¼ ��ð _zþ r�Þ: ð20Þ

Let h2C3(Rþ) and �2C
3(Rþ) be the unique solutions

of the following two initial-value problems:

p
d

dt

� �
h ¼ 0, hð0Þ ¼ 0; _hð0Þ ¼ 0; €hð0Þ ¼

1

m

and

p
d

dt

� �
� ¼ 0, �ð0Þ ¼ zð0Þ ¼ �

u0 þ d

ki
;

_�ð0Þ ¼ _zð0Þ ¼ xð0Þ � r; €�ð0Þ ¼ €zð0Þ ¼ _xð0Þ;

respectively. Using the variation-of-parameters

formula for higher order systems, we can rewrite (20)

in the form

z ¼ �h ?� _zþ r�ð Þ þ �: ð21Þ

Clearly x¼ _zþ r�. Differentiating (21), writing g:¼ _h
and using the fact that h(0)¼ 0, yields

x ¼ _�þ r� � g ?� xð Þ, ð22Þ

which has the structure of (14) (with r1¼ 0 and
r2¼ _pþr�) to which Theorem 1 potentially applies.
First, however, we need to show that the hypotheses of
Theorem 1 hold in the context of (22). Clearly,
_�þ r� 2W1;1

locðRþÞ, so it remains to show that

ðaÞ g, €�2L2
� for some �50; ðbÞ inf

!2R
ReGði!Þ4�1=�,

where, G is the Laplace transform of g, that is,

GðsÞ ¼
s

ms3 þ ðcþ kdÞs2 þ kpsþ ki
¼

s

pðsÞ
:

To conclude (a), it suffices to show that p is Hurwitz, in
which case h, _h ¼ g; €h ¼ _g; �; _� and €� are exponential
decaying functions. By the Routh-Hurwitz criterion, p
is Hurwitz if, and only if,

cþ kd 4 0 and 05 ki 5 kpðcþ kdÞ=m: ð23Þ

Clearly (A1) implies the first of inequalities (23)
and, moreover, implies that (2kpþ �)/(cþ kd) 5
(cþ kd)/m which, together with (A2), gives the second
of inequalities (23):

05 ki 5
kpðkp þ �Þ

2ðcþ kdÞ
5

kpð2kp þ �Þ

cþ kd
5

kpðcþ kdÞ

m
:

It remains to show that (b) holds. First observe that

inf
!2R

Re
i!

mði!Þ3 þ ðcþ kdÞði!Þ
2
þ kpði!Þ þ ki

 !
4 �

1

�

, inf
!2R

kp!
2 �m!4

ðkp!�m!3Þ
2
þ ðki � ðcþ kdÞ!2Þ

2
4 �

1

�

, ðkp!�m!3Þ
2
þ �ðkp!

2 �m!4Þ þ ðki

� ðcþ kdÞ!
2Þ

2 4 0 8! 2 R

, m2!6 þ �!4 þ ðk2p þ �kp � 2kiðcþ kdÞÞ!
2

þ k2i 4 0 8! 2 R

, m2�3 þ ��2 þ ðk2p þ �kp � 2kiðcþ kdÞÞ�

þ k2i 4 0 8� 2 Rþ; ð24Þ

where �:¼ (cþ kd)
2
�(2kpþ �)m. Now observe that the

inequality (24) holds since, by (A1) and (A2), the
polynomial in � on the LHS of (24) has positive
coefficients, whence hypothesis (b) is satisfied. All
hypotheses of Theorem 1 are now in place (in the
context of system (22)), and so we may conclude that
x(t) and (�(x))(t) converge to finite limits as t!1,
the convergence being exponentially fast. Since h,� are

International Journal of Control 1337
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exponentially decaying functions and since (�(x))(t)¼
(�( _zþ r�))(t) converges exponentially, as t!1, to a
finite limit, we conclude from (21) that z(t) also
converges, as t!1, to a finite limit at exponential
rate. Consequently, since both
zðtÞ ¼

R t
0ðxð�Þ � rÞd� � ðu0 þ dÞ=ki and x(t)� r have

finite limits as t!1, and converge exponentially, we
conclude that x(t)� r! 0 exponentially as t!1. A
routine argument involving the differentiation of (22)
now shows that _x(t)! 0 exponentially as t!1.
Consequently, the control signal u(t) given by (19)
converges exponentially fast to a finite limit as t!1.
Finally, invoking (18), we obtain that, €x(t) converges
exponentially fast to a finite limit as t!1.
Boundedness of _x shows that this limit is equal to 0.œ

Remark 2: Assume that the parameters m, c and � are
unknown, but belong to known intervals, viz. m2
(0,mþ], c2 [c�, cþ] and �2(0, �þ], where mþ4 0,
05 c�� cþ and �þ4 0 are known constants. If the
PID controller gains are determined by using the
following procedure:

(P1) let kp4 0 be arbitrary,
(P2) choose kd such that kd > �c� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kp þ �þÞmþ

p
;

(P3) choose ki such that 05 ki 5 k2p=ð2ðcþ þ kdÞÞ;

then (A1) and (A2) hold and Theorem 3 applies to
conclude that the PID controller, with the above choice
of gain, solves the tracking and disturbance rejection
problem.

4.2 Systems of form (2)

In this subsection we consider second-order systems
described by (2):

m €xþ c _xþkx¼ d1�þ�ðuþd2�Þ,

xð0Þ ¼x0;

_xð0Þ ¼ v0; m40, c40, k40, d1,d2 2R

9>=
>;
ð25Þ

where d1� and d2� are constant disturbance signals. We
will investigate the efficacy of the control structure (19)
in both the absence (kd¼ 0) and presence (kd4 0) of
derivative feedback.

Theorem 4: Let � : C(Rþ)!C(Rþ) be a hysteresis
operator satisfying (N1)–(N6) with associated �4 0.
Let r, d1, d22R and assume that rk� d1 2 NVS�:

Case (a) Set kd¼ 0 and let kp, ki4 0 be chosen such
that

(A) 05 ki 5
kpk

c
5

ck

�m
:

Case (b) Let kp, ki, kd4 0 be chosen such that

(B1) 05 ki51,

(B2) kp 4
cki
k
;

(B3) kd 4
mkp

c
:

Then there exists a unique solution x2C2(Rþ) of the

closed-loop system given by (19) and (25), and

lim
t!1

xðtÞ ¼ r, lim
t!1

_xðtÞ ¼ 0, lim
t!1

€xðtÞ ¼ 0,

lim
t!1
ð�ðuþ d2�ÞÞðtÞ ¼ rk� d1:

Moreover, if rk� d1 is an interior point of NVS�, then

the control signal u given by (19) is bounded.

Proof: By standard arguments (as in, for example,

Logemann and Ryan (2003)), there exists a unique

solution x2C2(Rþ) of the closed-loop system given by

(19) and (25). Set p(s):¼ms2þ csþ k, let h be the

solution of the initial-value problem

p
d

dt

� �
h ¼ 0; hð0Þ ¼ 0; _hð0Þ ¼

1

m
,

and let � be the solution of the initial-value problem

p
d

dt

� �
� ¼ 0; �ð0Þ ¼ x0; _�ð0Þ ¼ v0:

Then the solution x of the closed-loop system given by

(19) and (25) satisfies

x ¼ h �
h
�


� kpðx� r�Þ � kd _x� ki

Z �

0

ðxð�Þ � rÞd�

þ ðu0 þ d2Þ�
�
þ d1�

i
þ �: ð26Þ

Define w2C1(Rþ) by

wðtÞ :¼ uðtÞ þ d2

¼ �kpðxðtÞ � rÞ � kd _xðtÞ

� ki

Z t

0

ðxð�Þ � rÞd� þ u0 þ d2, 8t � 0,

which, together with (26) and the facts that h(0)¼ 0

and _h(0)¼ 1/m, implies

_w ¼ �kp _x� kd €x� kiðx� r�Þ ð27Þ

¼ kiðr� þ q� d1g ? � � g ?�ðwÞÞ; ð28Þ

¼ �kpðx0 � rÞ � kdv0 þ u0 þ d2,

where

g :¼
kd
ki

€hþ
1

m
�0

� 

þ
kp

ki
_hþ h,

�0 being the unit point mass at 0 (the Dirac distribution

with support at t¼ 0), and

q :¼ �
kd
ki

€��
kp

ki
_�� �:

Noting that (28) has the structure of (17) (with the

roles of y, 
, r1 and r2 being played by w, ki, �d1 and r,

respectively), we seek to apply Theorem 2 by showing

1338 B. Jayawardhana et al.
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that all hypotheses therein hold in the present context.

Since m, c, k, ki, kp4 0 and kd � 0, it follows that h, _h, €h

and q are exponentially decaying functions. Therefore,

g 2 L1
�ðRþÞ þ R�0, for some �5 0. Moreover, the

Laplace transform of g is given by

GðsÞ ¼
1

ki

kds
2 þ kpsþ ki

ms2 þ csþ k
:

Since k4 0, we have G(0)¼ 1/k4 0. By assumption,

rk� d1 2 NVS�, and we see that the hypothesis of

Theorem 2 involving NVS� is satisfied.
It remains to show that hypothesis (16) of Theorem

2 holds (with 
 replaced by ki). To this end, observe

that

fðGÞ ¼ inf
!2R�

Re
Gði!Þ

i!

� �

¼ inf
!2R�

Re
kdði!Þ

2
þkpi!þki

kiðmði!Þ
3
þ cði!Þ2þki!Þ

 !

¼ inf
!2R

ðkkp� ckiÞþ!
2ðckd�mkpÞ

ki
�
m2!4þðc2�2mkÞ!2þk2

�
 !

¼ inf
�2Rþ

ðkkp� ckiÞþ �ðckd�mkpÞ

ki
�
ðm��kÞ2þ c2�

�
 !

: ð29Þ

Define � :Rþ!R by

�ð�Þ ¼
ðkkp � ckiÞ þ �ðckd �mkpÞ

ki
�
ðm� � kÞ2 þ c2�

� : ð30Þ

We consider Case (a) and Case (b) separately.

Case (a). Let kd¼ 0 and let (A) hold. Then we

have kkp� cki4 0 and so

04 f ðGÞ ¼ inf
�2Rþ

�ð�Þ � inf
�2Rþ

�̂ð�Þ;

where �̂ð�Þ : ¼
�mkp�

ki
�
ðm� � kÞ2 þ c2�

� :
It is readily verified that �̂ attains a global minimum

over Rþ at �¼ k/m. Therefore,

04 f ðGÞ � �̂ðk=mÞ ¼ �
mkp

c2ki
:

Moreover, by (A), 1 < c2=ð�mkpÞ and so

ki 5
kic

2

�mkp
�

1

�jf ðGÞj
:

Case (b). Let kp, ki, kd4 0 be such that (B1), (B2)

and (B3) hold. In this case, we have kkp� cki4 0 and

ckd�mkp4 0. Therefore, �(�)� 0 for all � 2Rþ and

f ðGÞ ¼ lim
�!1

�ð�Þ ¼ 0:

Therefore, in each of Cases (a) and (b), hypothesis (16)

of Theorem 3.2 holds. As a consequence, we may apply

Theorem 2 to conclude that there exists a unique

solution w 2W1;1
locðRþÞ of (28) with the following

properties: _w(t)! 0 and (�(w))(t)! rk� d1 as

t!1. Next, we show that e(t):¼ x(t)� r! 0 and
_e(t)¼ _x(t)! 0 as t!1. Indeed, by (27),

kd €eþ kp _eþ kie ¼ � _w: ð31Þ

Since kp, ki4 0 and kd� 0, the system described by (31)

(with � _w as input) is asymptotically stable.

Consequently, since _w(t)! 0 as t!1, we may

conclude that e(t)! 0 and _e(t)¼ _x(t)! 0 as t!1.

It now follows from (25) that €x(t)! 0 as t!1.

Finally, if rk� d1 is in the interior of NVS�, then

boundedness of w, and hence of u, follows from the last

part of Theorem 2. œ

Remark 3: (i) Assume that the parameters m, c, k and

� are unknown, but belong to known intervals:

m 2 ð0;mþ�; c 2 ½c�; cþ�; k 2 ½k�;1Þ;

and � 2 ð0; �þ�

where mþ, c�, cþ, k� and �þ are known positive

constants. We give procedures for choosing the PID-

controller gains in terms of the constants mþ, c�, cþ,

k� and �þ.
Case (a). Set kd¼ 0. If the gains kp, ki of the PI

controller are determined by the following procedure:
(PA) choose kp, ki such that

05 ki 5
kpk�

cþ
5

c2�k�
�þmþcþ

,

then (A) holds and Theorem 4 applies to conclude that

the PI controller, with the above gain selection, solves

the tracking and disturbance rejection problem.

Case (b). In the case of PID control, if the

controller gains are determined by the following

procedure:

(PB1) choose 05 ki51,
(PB2) choose kp4 0 such that kp4 cþki/ k� ,
(PB3) choose kd4 0 such that kd4mþkp/c�,

then (B1), (B2) and (B3) hold and Theorem 4 applies to

conclude that the PID controller, with the above gain

selection, solves the tracking and disturbance rejection

problem.
(ii) In general d1 is unknown (as is d2), but it is

reasonable to assume that d1 2 ½d
�
1 ; d

þ
1 �, where d�1 and

dþ1 are known. Moreover, it is reasonable to assume

International Journal of Control 1339
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that k2 [k�,kþ], where 05 k�5 kþ are known con-

stants. The conditions

rk� � dþ1 ; rkþ � d�1 2 NVS�, if r � 0,

rkþ � dþ1 ; rk� � d�1 2 NVS�, if r5 0

are sufficient conditions in terms of d�1 ; d
þ
1 ; k� and kþ

guaranteeing that rk� d1 2 NVS� for all d1 2 ½d
�
1 ; d

þ
1 �

and all k2[k�,kþ].

5. Examples

In this section, we illustrate our main results in the

context of Prandtl operators, as discussed in x2. In

particular, recalling (11), we consider the hysteresis

operator P0:C(Rþ)! C(Rþ) defined by

ðP0ðuÞÞðtÞ¼

Z 1
0

ðBh,0ðuÞÞðtÞ�½0,l�dh

¼

Z l

0

ðBh;0ðuÞÞðtÞdh, 8u2CðRþÞ; 8t2Rþ, ð32Þ

where l4 0 is a positive constant and �[0, l ] is the

indicator function of the interval [0, l ]. This operator

satisfies (N1)–(N6) (with �¼ l in (N3)), has numerical

value set NVS P0¼R, and exhibits nested loops as

depicted in Figure 8.

5.1 Systems of form (1)

Consider system (18) with �¼P0 and with m2 (0, 2],

c2 [1, 3] and l¼ �2 (0, 10]. Assume a constant distur-

bance d¼ 1, reference signal r¼ 1 and zero initial

condition u0¼ 0 on the integrator. Using the procedure

in Remark 2, the gains of PID controller are chosen as

follows: kp¼ 10, kd¼ 8, ki¼ 4. For nominal plant

parameters values m¼ 1, c¼ 2 and �¼ 5, Figure 9

shows the evolution of the closed-loop system with

zero initial state.
With appropriate modifications (viz re-initialisation

of the problem at points of discontinuity of the reference

signal), our analysis extends to the problem of tracking

piecewise constant signals. Consider, for example, a

periodic function r with period 40 and r(t)2{0,1} for all

t. With nominal plant parameter values and controller

gain values as above, Figure 10 illustrates system

behaviour under PID control.

5.2 Systems of form (2)

Finally, consider system (25) with � as above and with

m2 (0, 2], c2 [1, 3], �2 (0, 10] and k� 4. Assume a

Figure 9. System (1) under PID control.

Figure 10. System (1), with periodic reference signal r, under
PID control.

Figure 8. Behaviour of the hysteresis operator P0 with l¼ 5.

1340 B. Jayawardhana et al.
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constant disturbance d1¼ 1, reference signal r¼ 1, zero
disturbance d2¼ 0 and u0¼ 0.

Case (a). Set kd¼ 0. Using the procedure in Case (a) of
Remark 3, the gains of PI controller are chosen as

follows: kp¼ 0.04, ki¼ 0.05. For nominal plant para-

meters values m¼ 1, c¼ 2, k¼ 4 and �¼ 5, Figure 11
shows the evolution of the closed-loop system with

zero initial state: as t!1, x(t) converges (albeit

slowly) to the constant reference signal r as predicted
by Theorem 4.

Case (b). We now include derivative feedback action
(kd4 0). In this case, a PID controller is used

instead of PI controller. Using the procedure in Case

(b) of Remark 3, the gains of PID controller may be
chosen as follows: ki¼ 10, kp¼ 10 and kd¼ 30.

Again, with nominal plant parameter values m¼ 1,

c¼ 2, k¼ 4 and �¼ 5, Figure 11 shows the evolution
of the closed-loop system with zero initial state. It

can be seen from this figure that, although the

displacement x(t) converges asymptotically to the
constant reference signal r under either PI or PID

control, the PID controller generates the faster

response: this is not unexpected given the presence
of derivative feedback action in the latter. Finally,

we illustrate the case of a periodic reference signal r
with period 100 and r(t)2 {0,1} for all t. For the

nominal plant parameter values and PID controller

gains as above, Figure 12 depicts the system
behaviour under PID control.

6. Concluding remarks

The efficacy of PID control for set point regulation
and disturbance rejection has been demonstrated in a
context of second-order systems with hysteretic com-
ponents. In each of the two basic structures studied,
robust conditions on the PID gains, explicitly for-
mulated in terms of bounds on the system data have
been determined under which asymptotic tracking of
constant reference signals and rejection of constant
disturbance signals is guaranteed. Future work will
focus on obtaining similar results for higher-order
systems and on exploiting a recently developed input-
to-state stability theory for hysteretic systems (see
Jayawardhana et al. (2007)) in the design of PID
control.
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