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ABSTRACT
Incremental stability and convergence properties for forced, infinite-dimensional, discrete-time Lur’e sys-
tems are addressed. Lur’e systems have a linear and nonlinear component and arise as the feedback
interconnection of a linear control system and a static nonlinearity. Discrete-time Lur’e systems arise in,
for example, sampled-data control and integro-difference models. We provide conditions, reminiscent
of classical absolute stability criteria, which are sufficient for a range of incremental stability proper-
ties and input-to-state stability (ISS). Consequences of our results include sufficient conditions for the
converging-input converging-state (CICS) property, and convergence to periodic solutions under periodic
forcing.
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1. Introduction

In systems and control theory, feedback interconnections com-
prising a linear system in the forward path and a static non-
linearity in the feedback path, as shown in Figure 1, are com-
monly referred to as Lur’e systems. In this paper, we investigate
certain stability and convergence properties of forced, infinite-
dimensional, discrete-time Lur’e systems. Our focus is centred
around incremental stability notions, input-to-state stability
(ISS) and converging-input converging-state (CICS) properties.
The concept of ISS first appeared in Sontag (1989) and is a
stability concept pertaining to the states of (possibly nonlin-
ear) control systems subject to external or exogenous inputs. It
ensures boundedness of the state in terms of the initial states and
inputs, respectively, generalising the familiar additive estimate

‖x(t)‖ ≤ �

(
γ t‖x0‖ + max

0≤s≤t−1
‖u(s)‖

)
, ∀ t ∈ N,

for some γ ∈ (0, 1) and � > 0, for the state x of the exponen-
tially stable discrete-time linear system

x(t + 1) = Ax(t)+ u(t), x(0) = x0, ∀ t ∈ Z+,

with input u. Importantly, the constants γ and � are indepen-
dent of x0 and u. Since its inception, much attention has been
devoted to ISS with numerous papers on the subject including,
but not restricted to, Dashkovskiy, Rüffer, and Wirth (2007),
Jayawardhana, Logemann, and Ryan (2009), Jayawardhana,
Logemann, and Ryan (2011), Jiang, Teel, and Praly (1994),
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Jiang andWang(2001), Jiang andWang (2002), Jiang andWang
(2005), Sontag (1998), Sontag and Wang (1995) and Sontag
and Wang (1997). The reader is referred to Dashkovskiy, Efi-
mov, and Sontag (2011) and Sontag (2008) for overviews of key
input-to-state stability ideas.

A related concept is incremental input-to-state stability
(δISS), which is simply an incremental version of the ISS con-
cept and ensures boundedness of the difference of two state
trajectories in terms of the difference of the initial conditions
and the difference of the inputs. Evidently, for linear systems
the notions of δISS and ISS coincide. The paper Angeli (2002)
constructs a suite of Lyapunov methods for δISS for finite-
dimensional, continuous-time nonlinear control systems.

The study of the stability properties of Lur’e systems con-
stitutes absolute stability theory which seeks to conclude sta-
bility of the feedback system shown in Figure 1 through the
interplay of frequency domain properties of the linear sys-
tem � and the boundedness or sector properties of the non-
linearity f. Absolute stability theory is typically concerned
with the development of criteria for global asymptotic stabil-
ity of an equilibrium (typically zero) of unforced Lur’e sys-
tems (Khalil, 2002; Liberzon, 2006), or for L2-stability in an
input-output setting (Vidyasagar, 2002). Classical absolute sta-
bility results include the circle criterion, the (complexified)
Aizerman conjecture, and the Popov criterion (Hinrichsen
& Pritchard, 2005; Khalil, 2002; Vidyasagar, 2002).

As is well-known, global asymptotic or exponential stabil-
ity of an equilibrium of an unforced nonlinear system does,
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Figure 1. Lur’e system with linear part�, nonlinearity f, output y and input v.

in general, not guarantee any stability or boundedness proper-
ties of the system in the presence of forcing. A recent line of
enquiry (Arcak & Teel, 2002; Bill, Guiver, Logemann, & Town-
ley, 2016, 2017; Jayawardhana et al., 2009, 2011; Sarkans&Loge-
mann, 2015, 2016a, 2016b) has been investigating towhat extent
classical absolute stability criteria can be modified to ensure
ISS and state convergence properties of forced Lur’e systems.
Indeed, a key finding has been that existing absolute stability cri-
teria, under slightly stronger assumptions, are sufficient for ISS
in many cases. The papers (Arcak & Teel, 2002; Jayawardhana
et al., 2009, 2011; Sarkans & Logemann, 2015, 2016a, 2016b)
derive, in finite-dimensional settings, sufficient conditions for
ISSwhich are reminiscent of the complexifiedAizerman conjec-
ture and the circle criterion. Furthermore, ISS properties under-
pin the paper (Bill et al., 2017), which considers the converging-
input converging-state (CICS) property for finite-dimensional,
continuous-time Lur’e systems.

Here we consider incremental ISS notions for forced infinite-
dimensional discrete-time Lur’e systems. Our main result,
Theorem3.2, presents sufficient conditions for δISS in terms of a
‘nonlinear incremental ball condition’ inspired by the complex-
ified Aizerman conjecture. We appeal to exponential weight-
ing and small-gain arguments to obtain a special type of δISS,
that being, exponential δISS. We subsequently utilise δISS to
obtain several different stability and convergence results. In
particular, Corollary 3.3 provides an ISS result, Corollary 3.7
provides sufficient conditions for δISS which are reminiscent
of the circle criterion, Theorem 4.3 gives sufficient conditions
for the CICS property and Theorem 4.8 presents sufficient
conditions for the existence of, and convergence to, periodic
solutions under periodic forcing. At the time of writing, the
study of ISS for infinite-dimensional, continuous-time con-
trol systems is an emerging research area, with papers includ-
ing Dashkovskiy and Mironchenko (2013), Guiver, Logemann,
and Opmeer (2019), Jacob, Nabiullin, Partington, and Schwen-
ninger (2018), Mironchenko, Karafyllis, and Krstic (2017),
Mironchenko and Wirth (2018), Pepe and Jiang (2006) and
Prieur and Mazenc (2012), but to the best of our knowledge,
there is no existing literature that overlaps with the current
paper.

A motivation for the present study is its applicability in
numerous areas. One such application is to infinite-dimensional
sampled-data systems (see, for example, Logemann, 2013; Loge-
mann, Rebarber, & Townley, 2003, 2005; Rosen &Wang, 1992).
The sampled-data systems considered here are obtained from
the feedback interconnection of a continuous-time infinite-
dimensional system and a static nonlinearity using sample-
and hold-operations. Theorem 6.1 provides conditions which

guarantee that if the continuous-time feedback system is ISS,
then the corresponding sampled-data system is ISS provided the
sampling period is sufficiently small. A second class of examples
arises in ecological modelling, and are so-called integral projec-
tion models (IPMs) (Childs, Rees, Rose, Grubb, & Ellner, 2003;
Easterling, Ellner, & Dixon, 2000; Ellner & Rees, 2006), which
are integro-difference models typically used for populations
partitioned according to a continuous variable such as size or
weight. Themodelling assumption that there are both linear and
nonlinear vital ratesmeans that IPMs often naturally lead a Lur’e
system structure. In Example 7.2, we demonstrate that, under
natural assumptions, the theory developed in Sections 3 and 4
applies to a forced IPM for the plant Platte thistle, based on the
model found in Rose, Louda, and Rees (2005).

The paper is structured as follows. In Section 2 we gather rel-
evant preliminary results regarding linear infinite-dimensional
discrete-time systems. Section 3 contains the main results ger-
mane to ISS and δISS. Then, in Section 4 we utilise these results
to yield convergence properties. Section 5 and Section 6 com-
prise applications of our earlier results in the form of ‘four-
block’ systems and sampled-data systems, respectively. Finally,
Section 7 contains detailed discussions of two examples.

Notation.Most notation we use is standard. The set of posi-
tive integers is denoted by N, and R and C denote the fields of
real and complex numbers, respectively. We set R+ := {r ∈ R :
r ≥ 0}, Z+ = N ∪ {0}, C0 = {s ∈ C : Re (s) > 0}, Dα := {z ∈
C : |z| < α} and Eα := {z ∈ C : |z| > α}, where α > 0. For
notational convenience, we let D := D1 and E := E1.

For normed spaces V and W, we let L(V ,W) denote the
normed space of bounded linear operators from V to W and
setL(V) := L(V ,V). Recall that an operatorA ∈ L(V) is expo-
nentially (or power) stable if the spectral radius of A is strictly
less than 1. It is well known that A ∈ L(V) is exponentially
stable if, and only if, there existM ≥ 1 and μ ∈ (0, 1) such that

‖An‖ ≤ Mμn, ∀ n ∈ Z+. (1)

In addition, the infimum of all μ > 0 satisfying (1) for some
M ≥ 1, is equal to the spectral radius of A. For L ∈ L(V ,W)

and r> 0, we let

B(L, r) := {M ∈ L(V ,W) : ‖M − L‖ < r} ,
denote the open ball of radius r, centred at L. Throughout, for
given normed spaces V andW we set∥∥∥∥

(
η

ξ

)∥∥∥∥
V×W

:= ‖η‖V + ‖ξ‖W , ∀
(
η

ξ

)
∈ V × W.

For a Banach spaceW and α > 0, we define the Hardy space

H∞
α (W) := {

g : Eα → W | g is holomorphic and bounded
}
,

with norm given by

‖g‖H∞
α

:= sup
z∈Eα

‖g(z)‖.

For ease of notation, we define

H∞(W) := H∞
1 (W).

For t ∈ R, we define 
t� to be the greatest integer less than or
equal to t and �t
 to be the smallest integer greater than or
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equal to t, that is, the floor and ceiling of t, respectively. For a
given τ ∈ Z+, we define τ := {0, 1, . . . , τ }, τ̄ := {τ , τ + 1, . . .}
and the left-shift operator
τ by (
τ v)(t) := v(t + τ) for every
t ∈ Z+ and every v : Z+ → V . For v : Z+ → V and t ∈ Z+, we
set

(πtv)(s) :=
{
v(s), ifs ∈ t
0, otherwise.

For p ∈ [1,∞), let �p(V) be the space of functions x : Z+ →
V such that (

∑∞
k=0 ‖x(t)‖pV)1/p < ∞, with norm ‖x‖�p :=

(
∑∞

k=0 ‖x(t)‖pV)1/p, and let �∞(V) be the space of func-
tions x : Z+ → V such that supt∈Z+ ‖x(t)‖V < ∞, with norm
‖x‖�∞ := supt∈Z+ ‖x(t)‖V . Furthermore, for ρ > 0, we define
the weighted �2 space

�2ρ(V) :=
⎧⎨
⎩x ∈ �2(V) :

( ∞∑
t=0

‖x(t)‖2ρ2t
)1/2

< ∞
⎫⎬
⎭ ,

with norm ‖ · ‖�2ρ , defined by

‖x‖�2ρ :=
( ∞∑

t=0
‖x(t)‖2ρ2t

)1/2

, x ∈ �2ρ(V).

We denote the set of functions from Z+ → V by VZ+ and the
set of continuous functions R+ → V by C(R+,V). Finally, for
ve ∈ V , we will abuse notation and interchangeably write ve to
denote an element ofV and the constant functionZ+ → V with
value ve.

2. Preliminaries

To begin with, we present some preliminary results regarding
the following linear difference equation

x+ = Ax + Bu + Bev,

y = Cx + Du + Dev,

}
(2)

where

(A,B,Be,C,D,De) ∈ L(X)× L(U,X)× L(V ,X)× L(X,Y)
× L(U,Y)× L(V ,Y) =: L,

u ∈ UZ+ and v ∈ VZ+ . Here X and V are complex Banach
spaces and U and Y are complex Hilbert spaces. The variables
x and y in (2) are called the state and output, respectively, and
u and v are inputs. Occasionally, it will be convenient to iden-
tify the linear system (2) and the sextuple (A,B,Be,C,D,De)
and to refer to the linear system (A,B,Be,C,D,De). For ease of
notation, we set� := (A,B,Be,C,D,De) ∈ L.

Before continuing, it is worth noting that (2) encompasses
other seemingly more general linear systems. For instance, the
linear system

x+ = Ax + Bu + v1,

y = Cx + Du + v2,

where v1 ∈ XZ+ and v2 ∈ YZ+ , is a special case of (2) with
V = X × Y , Be = (I 0), De = (0 I) and v =

(
v1

v2

)
.

We record some definitions associated with (2). First, we
define the behaviour of (2) as

Blin :=
{
(u, v, x, y) ∈ UZ+ × VZ+ × XZ+ × YZ+ :

(u, v, x, y) satisfies (2)
}
,

and set G(z) = C(zI − A)−1B + D, a L(U,Y)-valued function
of the complex variable z, the so-called transfer function of (2)
from u to y. If μ denotes the exponential growth constant of
A, then G ∈ H∞

α (L(U,Y)) for all α > μ, meaning that G is
bounded and holomorphic on the exterior of any open disc
in C centred at 0 with radius greater than μ. We say that
� ∈ L is stabilisable (respectively detectable) if (A,B,C,D) is
(exponentially) stabilisable (respectively detectable).

We define the set of admissible feedback operators by

A(D) := {L ∈ L(Y ,U) : I − DL is invertible}.
For L ∈ A(D), we set

AL := A + BL(I − DL)−1C, BL := B(I − LD)−1,

CL := (I − DL)−1C, DL := (I − DL)−1D.

}
(3)

We denote by GL the transfer function of (AL,BL,CL,DL), that
is,

GL(z) = CL(zI − AL)−1BL + DL = G(z)(I − LG(z))−1,

where the second equality follows easily from (3). For given
L ∈ A(D), the operatorsAL,BL,CL andDL arise by applying the
feedback u = Ly + ũ to (2) where ũ ∈ UZ+ . The transfer func-
tion from ũ to y is GL. Finally, we define the set of (complex)
stabilising feedback operators

S(G) := {M ∈ A(D) : GM ∈ H∞(L(U,Y))}.
We next state three lemmas which underpin our development.
The first lemma is a discrete-time version of Guiver, Logemann,
and Opmeer (2017, Proposition 5.6). We omit the proof, since
it is similar to that in Guiver et al. (2017).

Lemma2.1: Let� ∈ L, L ∈ A(D) and r> 0.We haveB(L, r) ⊆
S(G) if, and only if, ‖GL‖H∞ ≤ 1/r.

The following lemma relatesBlin to the behaviour of a certain
feedback system, a process often called ‘loop shifting’ in control
theory. The proof is relegated to Appendix 1.

Lemma2.2: Let�∈ L and L ∈ A(D). The quadruple (u, v, x, y)
is in Blin if, and only if, (u, v, x, y) satisfies

x+ = ALx + BL(u − Ly)+ (Be + BLLDe)v,

y = CLx + DL(u − Ly)+ (I − DL)−1Dev.

We set �L := (AL,BL,Be + BLLDe,CL,DL, (I − DL)−1De)
∈ L.
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Figure 2. Blockdiagramof the feedback interconnectionof (2)withu = f (y + w).

We now state the third lemma, the proof of which is elemen-
tary, and is therefore omitted.

Lemma 2.3: Let � ∈ L and assume that A is exponentially sta-
ble. Then there exist c1, c2, c3 > 0 such that, for every (u, v, x, y) ∈
Blin, we have

‖πtx‖�2 ≤ c1‖x(0)‖X + c2‖πt−1u‖�2 + c3‖πt−1v‖�2 , ∀ t ∈ N,

and

‖πty‖�2 ≤ c1‖x(0)‖X + ‖G‖H∞‖πtu‖�2 + c3 ‖πtv‖�2 ,
∀ t ∈ Z+.

The nonlinear control systems considered in the current
paper are given by the interconnection of (2) with the nonlinear
feedback u = f (y + w) for some f : Y → U, where w ∈ YZ+ is
an output disturbance (see Figure 2).

Namely, we study

x+ = Ax + Bu + Bev,

y = Cx + Du + Dev,

u = f (y + w),

⎫⎪⎬
⎪⎭ (4)

where� ∈ L, v ∈ VZ+ , w ∈ YZ+ and f : Y → U.
We note that in the case that I−Df is invertible, then (4) may

be expressed more succinctly as

x+ = Ax + Bf
(
(I − Df )−1(Cx + Dev + w)

) + Bev.

We define the behaviour of (4) as

B :=
{
(v,w, x, y) ∈ VZ+ × YZ+ × XZ+ × YZ+ :

(v,w, x, y) satisfies (4)
}
.

Note that if f (0) = 0, then (0, 0, 0, 0) ∈ B. An important obser-
vation is that B is left-shift invariant:

(v,w, x, y) ∈ B ⇒ (
τ v,
τw,
τx,
τ y) ∈ B,
∀ τ ∈ Z+. (5)

Associated with (4) is the following initial-value-problem.

x+ = Ax + Bu + Bev, x(0) = x0 ∈ X,

y = Cx + Du + Dev,

u = f (y + w).

⎫⎪⎬
⎪⎭ (6)

For a given x0 ∈ X, v ∈ VZ+ and w ∈ YZ+ , we say that (x, y) ∈
XZ+ × YZ+ is a solution of (6) if x(0) = x0 and (v,w, x, y) ∈ B.

It is straightforward to prove that if the map I−Df is surjective,
then, for a given x0 ∈ X, v ∈ VZ+ andw ∈ YZ+ , solutions to (6)
exist. It is also straightforward to prove that if I − Df is injective,
then, for a given x0 ∈ X, v ∈ VZ+ andw ∈ YZ+ , there is at most
one solution of (6). We note that both of these properties are
evidently satisfied ifD= 0. The following example demonstrates
that each of the previous conclusions need not hold if injectivity
or surjectivity of I−Df are respectively dropped.

Example 2.4: Consider (6) in the finite-dimensional single-
input single-output case wherein X = U = V = Y = C and
A = B = C = D = Be = De = 1. Thus (6) becomes

x+ = x + f (y + w)+ v, x(0) = x0 ∈ X,

y = x + f (y + w)+ v.

}
(7)

(i) Let f (z) = z − ez, for all z ∈ C, and let x0 = 0 and v(0) =
w(0) = 0. Suppose that (x, y) is a solution to (7). Then,
in particular, y(0) = f (y(0)) and so, ey(0) = 0, which is
impossible. Therefore, for x0 = 0 and v(0) = w(0) = 0, (7)
has no solutions.

(ii) Let f (s) = 2s − s2 − s3, for all s ∈ C. Note that it is easy to
verify that there exist multiple solutions to (7) with x0 = 1
and v = w = 0.

3. Exponential incremental stability

In this section, we recall notions of exponential input-to-
state stability, define notions of exponential incremental input-
to-state stability and present a condition which guarantees
that the Lur’e system (4) is exponentially incrementally input-
to-state/output stable. Throughout the following definitions
we let � ∈ L and f : Y → U. A quadruple (ve,we, xe, ye) ∈
V × Y × X × Y is called an equilibrium quadruple of (4) if
(ve,we, xe, ye) ∈ B. An equilibrium quadruple (ve,we, xe, ye) is
said to be exponentially input-to-state stable (ISS) if there exist
c> 0 and a ∈ (0, 1) such that, for all (v,w, x, y) ∈ B we have

‖x(t)− xe‖X ≤ c
(
at‖x(0)− xe‖X

+ max
s∈t−1

∥∥∥∥
(
v(s)
w(s)

)
−

(
ve

we

)∥∥∥∥
V×Y

)
, ∀ t ∈ N. (8)

Further, an equilibrium quadruple is said to be exponentially
input-to-state/output stable (ISOS) if there exist c> 0 and a ∈
(0, 1) such that, for all (v,w, x, y) ∈ B, (8) holds and

‖y(t)− ye‖Y ≤ c
(
at‖x(0)− xe‖X

+max
s∈t

∥∥∥∥
(
v(s)
w(s)

)
−

(
ve

we

)∥∥∥∥
V×Y

)
, ∀ t ∈ Z+.

We say that (4) is exponentially ISS (respectively, ISOS) if
(0, 0, 0, 0) is an exponentially ISS (respectively, ISOS) equilib-
rium quadruple of (4).

The following example demonstrates a situation where (4) is
exponentially ISS but not exponentially ISOS.
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Example 3.1: Consider (4) where X = U = V = Y = C
2, f is

the identity map, A ∈ R
2×2 is exponentially stable,

B :=
(
0 1
0 0

)
, C :=

(
1 0
0 0

)
=: D, and

Be :=
(
1 0
0 1

)
=: De.

Since BC= 0=BD and A is exponentially stable, it is easily
checked that (4) is exponentially ISS.We shall now show that (4)
is not exponentially ISOS. To this end, first let x0 ∈ R

2 and let
x := (x1, x2)T ∈ (R2)Z+ be such that

x+ = Ax, x(0) = x0.

By settingw := (−x1, 0)T ∈ (R2)Z+ and y := (y1, 0)T ∈ (R2)Z+

for arbitrary y1 ∈ R
Z+ , we see that

Cx + D(y + w) =
(
x1
0

)
+

(
y1 − x1

0

)
=

(
y1
0

)
= y

and, since BC= 0=BD and Bw= 0,

x+ = Ax = Ax + B(Cx + D(y + w)+ w) = Ax + B(y + w).

Hence, (0,w, x, y) ∈ B. This holds for any y1 ∈ R
Z+ and so (4)

is not ISOS.

For a non-empty subset S ⊆ Y , we define the following sub-
behaviour of (4)

BS := {(v,w, x, y) ∈ B : y(t)+ w(t) ∈ S, ∀ t ∈ Z+},
and note that BY = B.

We say that (4) is exponentially incrementally input-to-state
stable (δISS) with respect to the non-empty sets S1, S2 ⊆ Y if there
exist c> 0 and a ∈ (0, 1) such that, for all (v1,w1, x1, y1) ∈ BS1

and for all (v2,w2, x2, y2) ∈ BS2 we have

‖x1(t)− x2(t)‖X ≤ c
(
at‖x1(0)− x2(0)‖X

+ max
s∈t−1

∥∥∥∥
(
v1(s)
w1(s)

)
−

(
v2(s)
w2(s)

)∥∥∥∥
V×Y

)
, ∀ t ∈ N. (9)

Further, (4) is exponentially incrementally input-to-state/output
stable (δISOS) with respect to the sets S1 and S2, if there exist c> 0
and a ∈ (0, 1) such that, for all (v1,w1, x1, y1) ∈ BS1 and for all
(v2,w2, x2, y2) ∈ BS2 , (9) holds and

‖y1(t)− y2(t)‖Y ≤ c
(
at‖x1(0)− x2(0)‖X

+max
s∈t

∥∥∥∥
(
v1(s)
w1(s)

)
−

(
v2(s)
w2(s)

)∥∥∥∥
V×Y

)
, ∀ t ∈ Z+.

In the case that f (0) = 0, if (4) is δISS (respectively, δISOS) with
respect to S1 := Y and S2 := {0}, then, trivially, (4) is also ISS
(respectively, ISOS). The Lur’e system (4) is said to be exponen-
tially δISS or exponentially δISOS if S1 = S2 = Y in the above
respective definitions. Trivially, exponential δISOS with respect
to S1 and S2 implies exponential δISS with respect to the same
sets. The following theorem is the main result of this section.

Theorem 3.2: Let � ∈ L be stabilisable and detectable and let
S1, S2 ⊆ Y be non-empty. Assume that r> 0 and K ∈ L(Y ,U)
satisfy B(K, r) ⊆ S(G) and that there exists δ ∈ (0, r) such that

‖f (ξ)− f (ζ )− K(ξ − ζ )‖U ≤ (r − δ)‖ξ − ζ‖Y ,
∀ ξ ∈ S1, ∀ ζ ∈ S2. (10)

Then the following hold.

(i) There exist constants a > 0, b> 0 and ω > 1 such that, for
all (v1,w1, x1, y1) ∈ BS1 , (v2,w2, x2, y2) ∈ BS2 , and all ρ ∈
[1,ω], we have

‖πt(x1 − x2)‖�2ρ ≤ a

(
‖x1(0)− x2(0)‖X

+
∥∥∥∥πt−1

(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

)
, ∀ t ∈ N, (11)

and

‖πt(y1 − y2)‖�2ρ ≤ b

(
‖x1(0)− x2(0)‖X

+
∥∥∥∥πt

(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

)
, ∀ t ∈ Z+. (12)

(ii) For q ∈ [2,∞], there exist constants c > 0, d> 0 and
θ ∈ (0, 1) such that, for all (v1,w1, x1, y1) ∈ BS1 and
(v2,w2, x2, y2) ∈ BS2 , we have

‖x1(t)− x2(t)‖X ≤ c

(
θ t‖x1(0)− x2(0)‖X

+
∥∥∥∥πt−1

(
v1 − v2
w1 − w2

)∥∥∥∥
�q

)
, ∀ t ∈ N, (13)

and

‖y1(t)− y2(t)‖Y ≤ d

(
θ t‖x1(0)− x2(0)‖X

+
∥∥∥∥πt

(
v1 − v2
w1 − w2

)∥∥∥∥
�q

)
, ∀ t ∈ Z+. (14)

Here c and d depend on q, but θ does not.

As an immediate consequence of Theorem 3.2, by taking
q = ∞, we obtain the following corollary.

Corollary 3.3: Under the assumptions of Theorem 3.2, the Lur’e
system (4) is exponentially δISOS with respect to S1 and S2. In
particular, the following statements hold.

(i) If (10) holds with S1 = S2 = Y , then (4) is exponentially
δISOS.

(ii) If (ve,we, xe, ye) is an equilibrium quadruple of (4) and (10)
holds with S1 = Y and S2 = {ye + we}, then (ve,we, xe, ye)
is an exponentially ISOS equilibrium quadruple of (4).
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Proof of Theorem 3.2: The proof uses a combination of small-
gain and exponential weighting arguments. Since � is stabilis-
able and detectable, it follows that�K is as well. Moreover, since
GK ∈ H∞(L(U,Y)), it follows that AK is exponentially stable,
with exponential growth constant μ ∈ (0, 1). Let α ∈ (μ, 1) so
that GK ∈ H∞

α (L(U,Y)) and consider GK on the closed annu-
lusA := {z ∈ C : β ≤ |z| ≤ 1}, where β ∈ (α, 1). Owing to the
continuity of GK on Eα , GK is uniformly continuous on A.
Thus, there exists γ ∈ (0, 1 − β) such that for all s1, s2 ∈ Awith
|s1 − s2| < γ , we have

‖GK(s1)− GK(s2)‖ < 1
r − δ/2

− 1
r
.

Invoking Lemma 2.1, we have that ‖GK‖H∞ ≤ 1/r. Thus, for all
s ∈ C with 1 − γ < |s| ≤ 1,

‖GK(s)‖ ≤ ‖GK(s)− GK(s∗)‖ + ‖GK(s∗)‖

<
1

r − δ/2
− 1

r
+ 1

r
= 1

r − δ/2
,

where s∗ = s/|s|. Hence, for γ ∗ ∈ (1 − γ , 1)

sup
s∈Eγ ∗

‖GK(s)‖ ≤ 1
r − δ/2

<
1

r − δ
.

To prove statement (i), set ω := 1/γ ∗ > 1 and let ρ ∈ [1,ω].
DefineH(s) := GK(s/ρ) to obtain

‖H‖H∞ = sup
s∈E

‖H(s)‖ ≤ sup
s∈Eγ ∗

‖GK(s)‖ < 1
r − δ

. (15)

By the choice of ρ, we have that

ρμ <
μ

1 − γ
<
μ

β
< 1,

and thus ρAK is exponentially stable.
Let (v1,w1, x1, y1) ∈ BS1 and (v2,w2, x2, y2) ∈ BS2 . By

Lemma 2.2, it follows that, for i ∈ {1, 2},

x+
i = AKxi + BK

(
f (yi + wi)− Kyi

) + (Be + BKKDe)vi,

yi = CKxi + DK (
f (yi + wi)− Kyi

) + (I − DK)−1Devi.

Forming the differences gives

(x1 − x2)+ = AK(x1 − x2)+ BK(f (y1 + w1)− f (y2 + w2)

− K(y1 + w1 − y2 − w2))+ η, (16)

y1 − y2 = CK(x1 − x2)+ DK(f (y1 + w1)− f (y2 + w2)

− K(y1 + w1 − y2 − w2))+ ν, (17)

where

η := (Be + BKKDe)(v1 − v2)+ BKK(w1 − w2) and

ν := (I − DK)−1De(v1 − v2)+ DKK(w1 − w2).

As all the operators involved are bounded, there exists κ > 0
such that∥∥∥∥

(
ρη(t)
ν(t)

)∥∥∥∥
X×Y

≤ κ

∥∥∥∥
(
(v1 − v2)(t)
(w1 − w2)(t)

)∥∥∥∥
V×Y

, ∀ t ∈ Z+.

(18)
Defining ũρ(t) = ρtũ(t), for all t ∈ Z+ and all sequences ũ,
then (16) and (17) yield that

(x1 − x2)+ρ = ρAK(x1 − x2)ρ + ρBKgρ + ρηρ ,

(y1 − y2)ρ = CK(x1 − x2)ρ + DKgρ + νρ ,

}
(19)

where

g(t) := f (y1(t)+ w1(t))− f (y2(t)+ w2(t))

− K(y1(t)+ w1(t)− y2(t)− w2(t)), ∀ t ∈ Z+.

We thus have that(
gρ ,

(
ρηρ
νρ

)
, (x1 − x2)ρ , (y1 − y2)ρ

)

is in the behaviour of the linear system (ρAK , ρBK , (I 0),CK ,
DK , (0 I)) ∈ L where V = X × Y . Therefore, since ρAK is
exponentially stable, an application of Lemma 2.3 to system (19)
yields that, for all t ∈ Z+,

‖πt(y1 − y2)ρ‖�2 ≤ c1‖(x1 − x2)ρ(0)‖X + ‖H‖H∞‖πtgρ‖�2

+ c3

∥∥∥∥πt
(
ρηρ
νρ

)∥∥∥∥
�2
, (20)

where c1 and c3 are constants independent of (v1,w1, x1, y1) and
(v2,w2, x2, y2). By definition of g and assumption (10), we have,
for all t ∈ Z+,

‖gρ(t)‖U = ρt‖f (y1(t)+ w1(t))− f (y2(t)+ w2(t))

− K(y1(t)+ w1(t)− y2(t)− w2(t))‖U
≤ (r − δ)ρt‖(y1 + w1 − y2 − w2)(t)‖Y
= (r − δ)‖(y1 + w1 − y2 − w2)ρ(t)‖Y ,

therefore

‖πtgρ‖�2 ≤ (r − δ)‖πt(y1 − y2)ρ‖�2
+ (r − δ)‖πt(w1 − w2)ρ‖�2 , ∀ t ∈ Z+. (21)

Substituting (15), (18) and (21) into (20) and rearranging yields

‖πt(y1 − y2)‖�2ρ = ‖πt(y1 − y2)ρ‖�2
≤ c4‖(x1 − x2)ρ(0)‖X

+ c5

∥∥∥∥πt
(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�2
, ∀ t ∈ Z+.

(22)

where

c4 := c1
1 − (r − δ)‖H‖H∞

, c5 := κc3 + (r − δ)‖H‖H∞

1 − (r − δ)‖H‖H∞
.



INTERNATIONAL JOURNAL OF CONTROL 7

Inequality (12) now follows from (22) with b := max{c4, c5}.
Similarly, by another application of Lemma 2.3 to (19), we
obtain that

‖πt(x1 − x2)ρ‖�2 ≤ c1‖(x1 − x2)(0)‖X + c2‖πt−1gρ‖�2

+ c3

∥∥∥∥πt−1

(
ρηρ
νρ

)∥∥∥∥
�2
, ∀ t ∈ N.

Substituting (21) and (22) into the above, we see that, for all
t ∈ N,

‖πt(x1 − x2)‖�2ρ = ‖πt(x1 − x2)ρ‖�2
≤ c1‖(x1 − x2)(0)‖X + c2(r − δ)

(‖πt−1(y1 − y2)ρ‖�2

+ ‖πt−1(w1 − w2)ρ‖�2
) + c3

∥∥∥∥πt−1

(
ρηρ
νρ

)∥∥∥∥
�2

≤ c6‖(x1 − x2)(0)‖X + c7

∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�2
,

where c6 := c1 + c2(r − δ)c4 and c7 := c3κ + c2(r − δ)

(c5 + 1). Setting a := max{c6, c7} in the above inequality
gives (11), proving statement (i).

We proceed to prove statement (ii). Since ρAK is exponen-
tially stable, we have that

c8 := sup
t∈Z+

‖(ρAK)t‖ < ∞.

Applying the variation-of-parameters formula to (19) gives

(x1 − x2)ρ(t) = (ρAK)t(x1 − x2)(0)

+
t−1∑
k=0

(ρAK)t−1−kρBKgρ(k)

+
t−1∑
k=0

(ρAK)t−1−kρηρ(k), ∀ t ∈ N.

An application of the triangle andHölder’s inequalities yield, for
all t ∈ N,

‖(x1 − x2)ρ(t)‖X ≤ c8‖(x1 − x2)(0)‖X

+ ‖ρBK‖
t−1∑
k=0

‖(ρAK)t−1−k‖‖gρ(k)‖U

+ ρ

t−1∑
k=0

‖(ρAK)t−1−k‖‖ηρ(k)‖U

≤ c8‖(x1 − x2)(0)‖X + ‖ρBK‖

×
( t−1∑
k=0

‖(ρAK)k‖2
)1/2

‖πt−1gρ‖�2

+ ρ

( t−1∑
k=0

‖(ρAK)k‖2
)1/2

‖πt−1ηρ‖�2 .

Substituting (21), and then (22) and (18), into the above estimate
gives

‖(x1 − x2)ρ(t)‖X ≤ c8‖(x1 − x2)(0)‖X

+ ρ

( t−1∑
k=0

‖(ρAK)k‖2
)1/2

‖πt−1ηρ‖�2

+ (r − δ)‖ρBK‖
( t−1∑
k=0

‖(ρAK)k‖2
)1/2

× (‖πt−1(y1 − y2)ρ‖�2 + ‖πt(w1 − w2)ρ‖�2
)

≤ c9‖(x1 − x2)(0)‖X

+ c10

∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�2
, ∀ t ∈ N,

(23)

where

c9 := c8 + c4(r − δ)‖ρBK‖
( ∞∑
k=0

‖(ρAK)k‖2
)1/2

,

and

c10 := κ

( ∞∑
k=0

‖(ρAK)k‖2
)1/2

+ (c5 + 1)(r − δ)‖ρBK‖

×
( ∞∑
k=0

‖(ρAK)k‖2
)1/2

.

Estimate (23) can be written as

‖(x1 − x2)(t)‖X ≤ c9ρ−t‖(x1 − x2)(0)‖X

+ c10ρ−t
∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�2
, ∀ t ∈ N. (24)

If q ∈ (2,∞), then there exists p ∈ (1,∞) such that 2/q +
1/p = 1 and, using Hölder’s inequality again,

∥∥∥∥πt
(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥2
�2

=
t∑

k=0

ρ2k
∥∥∥∥
(
(v1 − v2)(k)
(w1 − w2)(k)

)∥∥∥∥2
V×Y

≤
( t∑
k=0

ρ2kp

)1/p ∥∥∥∥πt
(
v1 − v2
w1 − w2

)∥∥∥∥2
�q

=
(
ρ2p(t+1) − 1
ρ2p − 1

)1/p ∥∥∥∥πt
(
v1 − v2
w1 − w2

)∥∥∥∥2
�q

≤ ρ2t
(

ρ2

(ρ2p − 1)1/p

)∥∥∥∥πt
(
v1 − v2
w1 − w2

)∥∥∥∥2
�q
,

∀ t ∈ Z+.
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If q = 2, then since ρ > 1,

∥∥∥∥πt
(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�2

=
( t∑
k=0

ρ2k
∥∥∥∥
(
(v1 − v2)(k)
(w1 − w2)(k)

)∥∥∥∥2
V×Y

)1/2

≤ ρt
∥∥∥∥πt

(
v1 − v2
w1 − w2

)∥∥∥∥
�2
, ∀ t ∈ Z+.

Finally, if q = ∞,

∥∥∥∥πt
(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�2

=
( t∑
k=0

ρ2k
∥∥∥∥
(
(v1 − v2)(k)
(w1 − w2)(k)

)∥∥∥∥
2

V×Y

)1/2

≤
( t∑
k=0

ρ2k

)1/2

max
s∈t

∥∥∥∥
(
(v1 − v2)(s)
(w1 − w2)(s)

)∥∥∥∥
V×Y

=
(
ρ2(t+1) − 1
ρ2 − 1

)1/2

max
s∈t

∥∥∥∥
(
(v1 − v2)(s)
(w1 − w2)(s)

)∥∥∥∥
V×Y

≤ ρt
(

ρ

(ρ2 − 1)1/2

)∥∥∥∥πt
(
v1 − v2
w1 − w2

)∥∥∥∥
�∞

,

∀ t ∈ Z+.

Therefore, for every q ∈ [2,∞], there exists a positive constant
c11 such that∥∥∥∥πt

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�2

≤ ρtc11

∥∥∥∥πt
(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�q
,

∀ t ∈ Z+,

which, when substituted into (24) gives that, for any q ∈ [2,∞],

‖(x1 − x2)(t)‖X ≤ c9ρ−t‖(x1 − x2)(0)‖X

+ c10ρ−1c11

∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�q

≤ c9ρ−t‖(x1 − x2)(0)‖X

+ c10c11

∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�q
,

∀ t ∈ N.

Setting c := max{c9, c10c11} and θ = ρ−1 gives (13).
It remains to establish (14). We note that,

‖DK‖ ≤ ‖GK‖H∞ ≤ 1
r
<

1
r − δ

, (25)

whence, appealing to (10) and (17),

‖(y1 − y2)(t)‖Y ≤ ‖CK‖‖(x1 − x2)(t)‖X
+ ‖DK‖(r − δ)(‖(y1 − y2)(t)‖Y
+ ‖(w1 − w2)(t)‖Y)+ ‖ν(t)‖Y

∀ t ∈ Z+. (26)

Define

d1 := 1
1 − (r − δ)‖DK‖ ,

which is positive by (25). Substituting (13) into (26) and set-
ting d2 := d1‖CK‖c and d3 := d1(‖CK‖c + κ + (r − δ)‖DK‖),
we see that

‖(y1 − y2)(t)‖Y ≤ d2θ t‖(x1 − x2)(0)‖X

+ d3

∥∥∥∥πt
(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
�q

∀ t ∈ Z+.

Setting d := max{d2, d3} completes the proof. �

Remark 3.4:
(a) By inspecting the above proof, we are able to see that

Theorem 3.2 holds true if X and V are real Banach
spaces and Y and U are real Hilbert spaces, pro-
vided that the complex ball condition Bc(K, r) ⊆ Sc(G)
holds, with Bc(K, r) := {M ∈ L(Yc,Uc) : ‖M − K‖ < r}
and Sc(G) := {M ∈ L(Yc,Uc) : I − DM is invertible and
GM ∈ H∞(L(Uc,Yc))}, where Yc and Uc denote the com-
plexifications ofY andU, respectively. The same can be said
of the rest of the results in Sections 3, 4, 5 and 6.

(b) For later purposes, it will be useful to consider Theorem 3.2
in the (rather degenerate) situation wherein G = 0. If G =
0, then GK = 0 for all K ∈ L(Y ,U) and by Lemma 2.1, it
follows that B(K, r) ⊆ S(G) for all r> 0. Consequently, in
the case wherein G = 0, the conclusions of Theorem 3.2
hold, provided that there exists K ∈ L(Y ,U) such that

sup
(ξ ,ζ )∈S1×S2, ξ �=ζ

‖f (ξ)− f (ζ )− K(ξ − ζ )‖U
‖ξ − ζ‖Y < ∞. (27)

We next present a corollary to Theorem 3.2 which is rem-
iniscent of the circle criterion. To this end, for α ∈ (0, 1],
we denote by H∗

α(L(U,Y)) the set of functions H : Eα →
L(U,Y) which are holomorphic on Eα , with the exception
of isolated singularities, that is, poles and essential singulari-
ties. We always assume that removable singularities have been
removed via holomorphic extension. For convenience, we set
H∗(L(U,Y)) := H∗

1 (L(U,Y)).
LetH ∈ H∗

α(L(U)). We define�H ⊆ Eα to be the set of iso-
lated singularities of H. The function H is said to be positive
real if

Re 〈H(z)u, u〉U ≥ 0, ∀ u ∈ U, ∀ z ∈ E\�H.

The following lemma is an analogue to Guiver et al. (2017,
Proposition 3.3), which concerns positive real functions on
the right-half complex plane, for positive real functions on the
exterior of the unit disc. We relegate the proof to Appendix 1.

Lemma 3.5: Let H ∈ H∗(L(U)) be positive real. Then H does
not have any singularities in E ∪ {∞}.

We shall also require the following technical lemma, the
proof of which is identical, mutatis mutandis, to that of Guiver
et al. (2017, Corollary 2.3).

Lemma3.6: LetH ∈ H∗(L(U)) be positive real. Then, I + H(z)
is invertible for every z ∈ E and

‖(I − H)(I + H)−1‖H∞ ≤ 1.
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Corollary 3.7: Let � ∈ L be stabilisable and detectable, S ⊆
Y non-empty and K1,K2 ∈ L(Y ,U) with K1 ∈ A(D). If (I −
K2G)(I − K1G)−1 is positive real and there exists ε > 0 such that

Re
〈
f (ζ + ξ)− f (ξ)− K1ζ , f (ζ + ξ)− f (ξ)− K2ζ

〉
U

≤ −ε‖ζ‖2Y , ∀ ζ ∈ Y , ∀ ξ ∈ S, (28)

then statements (i) and (ii) of Theorem 3.2 with S1 = Y , S2 = S
hold.

The following proof is in part inspired by a method outlined
in the proof of Guiver et al. (2017, Theorem 6.8).

Proof: We define

L := (K1 − K2)/2, M := (K1 + K2)/2,

and rewrite (28) so that

−ε‖ζ‖2Y ≥ Re
〈
f (ζ + ξ)− f (ξ)− (L + M)ζ , f (ζ + ξ)

−f (ξ)+ (L − M)ζ
〉

= −‖Lζ‖2U + ‖f (ζ + ξ)− f (ξ)− Mζ‖2U ,
∀ ζ ∈ Y , ∀ ξ ∈ S. (29)

We deduce from (29) that ‖Lζ‖U ≥ √
ε‖ζ‖Y , for all ζ ∈ Y ,

which in turn implies that

‖L∗Lζ‖Y‖ζ‖Y ≥ | 〈L∗Lζ , ζ
〉 | = ‖Lζ‖2U ≥ ε‖ζ‖2Y ∀ ζ ∈ Y .

Hence L∗L is bounded away from 0 and, by combining this
with the self-adjointness of L∗L, we have that L∗L is invertible.
We define L# := (L∗L)−1L∗ and let Q := LL#. It is clear that
Q2 = LL#LL# = Q and, since L has a left inverse, im L is closed.
Thus,

im L = (ker L∗)⊥ = (ker L#)⊥.

Therefore, Q is the orthogonal projection onto (ker L#)⊥ along
ker L#. Utilising this with (29) gives that

‖(f ◦ L#)(ζ + ξ)− (f ◦ L#)(ξ)− ML#ζ‖2U
≤ ‖Qζ‖2U − ε‖L#ζ‖2Y
≤ ‖ζ‖2Y − ε‖L#ζ‖2Y , ∀ ζ ∈ Y , ∀ ξ ∈ S. (30)

Moreover, since L# is bounded away from 0 on im L, there exists
ν > 0 such that

‖L#ζ‖Y ≥ ν‖ζ‖Y , ∀ ζ ∈ im L.

Hence, combining this with (30) yields

‖(f ◦ L#)(ζ + ξ)− (f ◦ L#)(ξ)− ML#ζ‖2U
= ‖(f ◦ L#)(Qζ + Qξ)− (f ◦ L#)(Qξ)− ML#Qζ‖2U
≤ ‖Qζ‖2U − εν2‖Qζ‖2U , ∀ ζ ∈ Y , ∀ ξ ∈ S,

and so

‖(f ◦ L#)(ζ + ξ)− (f ◦ L#)(ξ)− ML#ζ‖U
≤

√
1 − εν2‖ζ‖Y , ∀ ζ ∈ Y , ∀ ξ ∈ S. (31)

Next, on the one hand we compute that

(I − K2G)(I − K1G)−1 = (I − K1G + 2LG)(I − K1G)−1

= I + 2LG(I − K1G)−1, (32)

and, on the other, that

(I − K2G)(I − K1G)−1 = (I − 2MG + K1G)(I − K1G)−1.
(33)

Invoking the positive realness of (I − K2G)(I − K1G)−1 along
with Lemma 3.6, employing the expressions (32) and (33) yields
that

1 ≥
∥∥∥∥2LG(I − K1G)−1

(
I + (I − 2MG + K1G)(I − K1G)−1

)−1
∥∥∥∥

= ‖2LG(2I − 2MG)−1‖
= ‖LG(I − MG)−1‖.

In addition, evidently

LG(I − MG)−1 = LG(I − ML#LG)−1 = (LG)ML# ,

and thus, by Lemma 2.1, we see that

B(ML#, 1) ⊆ S(LG). (34)

Finally, let (v,w, x, y) ∈ B and note that, since I = L#L,

x+ = Ax + B(f ◦ L#)(Ly + Lw)+ Bev,

Ly = LCx + LD(f ◦ L#)(Ly + Lw)+ LDev,

which shows that (v, Lw, x, Ly) satisfies (4) with non-linearity
f ◦ L# and linear component given by (A,B,Be, LC, LD, LDe).
Moreover, since � is stabilisable and detectable, it is clear, by
the left invertibility of L, that (A,B,Be, LC, LD, LDe) is also sta-
bilisable and detectable. Combining this with (31) and (34), we
see that the hypotheses of Theorem 3.2 are satisfied, and so the
left-invertibility of L completes the proof. �

Remark 3.8: An inspection of the proof of Corollary 3.7 shows
that if the estimate given in (28) instead holds for all ζ ∈ S1 and
for all ξ ∈ S, where S1 is a non-empty subset of Y , then the con-
clusions of Corollary 3.7 remain valid, provided that K1 − K2 is
left invertible.

4. Convergence properties

In this section we use Theorem 3.2 to establish convergence
properties of the state x and output y of the Lur’e system (4)when
subject to converging or periodic inputs v and w.
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4.1 The converging-input converging-state property

Here we give conditions under which the Lur’e system exhibits
the so-called converging-input converging-state property. We say
that, for � ∈ L and f : Y → U, the discrete-time Lur’e sys-
tem (4) has the converging-input converging-state (CICS) prop-
erty if, for every v∞ ∈ V and w∞ ∈ Y , there exists x∞ ∈ X
such that, for every (v,w, x, y) ∈ B with limt→∞ v(t) = v∞
and limt→∞ w(t) = w∞, we have that limt→∞ x(t) = x∞. We
note that some authors (see, for example, Sontag, 2008) use the
term CICS for the special case wherein v∞ = 0, w∞ = 0 and
x∞ = 0.

Our main result of this section is Theorem 4.3, from
which we obtain sufficient conditions for the CICS property
in Corollary 4.6. We comment that if w in (4) is perceived
to be an output disturbance to the system, then convergence
of w is not an assumption which will be generically satisfied.
Hence, in addition to considering the CICS property, we also
develop a result for bounded but not necessarily convergent w,
see Corollary 4.7.

Let K ∈ S(G) and define the map

FK : Y → Y , ξ �→ ξ − GK(1)(f (ξ)− Kξ). (35)

For ease of notation in the sequel, for given ξ ∈ Y , we write
F−1
K (ξ) to denote the inverse image of the singleton {ξ} under

FK , instead of the more cumbersome F−1
K ({ξ}). Moreover, we

denote the cardinality of F−1
K (ξ) by #F−1

K (ξ).
To facilitate the proofs of the main results in this section, it

is useful to state two lemmas, the proofs of which may be found
in Appendix 1.

Lemma 4.1: Let � ∈ L, S ⊆ Y be non-empty, K ∈ S(G), FK be
given by (35), and assume that γ := 1/‖GK‖H∞ < ∞ and

‖f (ζ + ξ)− f (ξ)− Kζ‖U < γ ‖ζ‖Y , ∀ ζ ∈ Y\{0}, ∀ ξ ∈ S.
(36)

Then the following statements hold.

(i) #F−1
K (ξ) = 1, for all ξ ∈ Y such that F−1

K (ξ) ∩ S �= ∅.If
there exists δ > 0 such that f and K satisfy (10) with r = γ

and S1 = S2 = Y , then
(ii) FK is globally Lipschitz and bijective;
(iii) the inverse F−1

K is globally Lipschitz.

Although we assume that γ < ∞ in Lemma 4.1, if actually
‖GK‖H∞ = 0, then FK is the identity map which is trivially
globally Lipschitz and bijective.

Lemma 4.2: Let � ∈ L be stabilisable and detectable, v∞ ∈ V
and w∞ ∈ Y. Assume that K ∈ S(G) and

TK := F−1
K

(
CK(I − AK)−1 (Be + BKKDe

)
v∞

+ (I − DK)−1Dev
∞ + (

I + GK(1)K
)
w∞

)
(37)

is nonempty. Let z∞ ∈ TK and define y∞ := z∞ − w∞ and

x∞ := (I − AK)−1 (BK(f (z∞)− K(y∞))

+ (Be + BKKDe)v
∞)

. (38)

Then

y∞ = CKx∞ + DK(f (z∞)− K(y∞))+ (I − DK)−1Dev
∞,
(39)

and (v∞,w∞, x∞, y∞) is an equilibrium quadruple of the Lur’e
system (4).

The formulae in (37), (38) and (39) are motivated by the
desire to solve the steady-state equations

x∞ = Ax∞ + Bf (y∞ + w∞)+ Bev∞ and

y∞ = Cx∞ + Df (y∞ + w∞)+ Dev
∞,

where v∞ and w∞ are given, for x∞ and y∞ to yield an equi-
librium quadruple (v∞,w∞, x∞, y∞). However, I−A need not
be invertible, and so G(1) not well defined, hence the inclu-
sion of the loop-shifting term K. In the simple case wherein
U =V , Be = B, De = D, K = 0 and w∞ = 0, the condition
that F−1

K (G(1)v∞) is nonempty is equivalent to the existence
of y∞ ∈ Y such that

y∞ − G(1)f (y∞) = G(1)v∞,

and, in this case, (38) and (39) respectively read

x∞ := (I − A)−1B(f (y∞)+ v∞) and

y∞ := Cx∞ + Df (y∞)+ Dv∞.

We now state the main theorem in this section.

Theorem 4.3: Let � ∈ L be stabilisable and detectable, S ⊆
Y be non-empty, K ∈ S(G), v∞ ∈ V and w∞ ∈ Y. Further-
more, assume that TK ∩ S �= ∅, where TK is given by (37). If
γ := 1/‖GK‖H∞ < ∞ and there exists δ ∈ (0, γ ) such that (10)
holds with r = γ , S1 = Y and S2 = S, then #TK = 1 and writ-
ing y∞ := z∞ − w∞, where z∞ ∈ TK , there exist c> 0 and a ∈
(0, 1) such that for all (v,w, x, y) ∈ B and all t ∈ Z+, we have

‖x(t)− x∞‖X + ‖y(t)− y∞‖Y

≤ c

(
at‖x(0)− x∞‖X + a�t/2


+ max
s∈
t/2�

∥∥∥∥
(
v(s)
w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

+ max
s∈�t/2


∥∥∥∥
(
(

t/2�v)(s)
(

t/2�w)(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

)
. (40)

Here x∞ is as in (38) and (v∞,w∞, x∞, y∞) is an equi-
librium quadruple of (4). In particular, for all (v,w, x, y) ∈
B with limt→∞ v(t) = v∞ and limt→∞ w(t) = w∞, we have
limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞.

Before proving Theorem 4.3, we provide some commentary.

Remark 4.4:
(a) Under the hypotheses of Theorem 4.3, we note that x∞ and

y∞ given by (38) and (39) do not depend on the choice of
K. Indeed, if K1,K2 ∈ S(G), v∞ ∈ V , w∞ ∈ Y ,� is stabil-
isable and detectable and (10) holds for each Kl and γl :=
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1/‖GKl‖H∞ , where l ∈ {1, 2}, then Theorem 4.3 guarantees
that x∞

1 = x∞
2 and y∞

1 = y∞
2 , where

x∞
l := (I − AKl)−1 (BKl(f (y∞

l + w∞)− Kly∞
l )

+(Be + BKlKlDe)v
∞)

,

y∞
l = CKlx∞ + DKl(f (y∞

l + w∞)− Kly∞
l )

+ (I − DKl)
−1Dev

∞,

for l ∈ {1, 2}.
(b) Assumption (10) with r = γ and S1 = S2 = Y may be

rewritten as

sup
ζ ,ξ∈Y
ζ �=0

‖f (ζ + ξ)− f (ξ)− Kζ‖U
‖ζ‖Y < γ , (41)

which trivially implies (36) with S=Y , and is itself equiv-
alent to the function ξ �→ f (ξ)− Kξ being globally Lips-
chitz with Lipschitz constant smaller than γ . In this case,
arguments similar to those used in the proof of Lemma 4.1
show that themap I − DK(f − K) is bijective and hence, by
using Lemma 2.2, for all x0 ∈ X, v ∈ VZ+ and allw ∈ YZ+ ,
the initial-value problem (6) has a unique solution.

(c) Under the assumptions of Theorem 4.3, a consequence of
Lemma 4.1 is that the ‘steady state gainmaps’ (v∞,w∞) �→
x∞ and (v∞,w∞) �→ y∞ are globally Lipschitz.

(d) We recall that a subset V ⊆ VZ+ × YZ+ is said to be equi-
convergent to (v∞,w∞) ∈ V × Y if, for all ε > 0, there
exists τ ∈ Z+ such that, for all (v,w) ∈ V

∥∥∥∥
(
(
τ v)(t)
(
τw)(t)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

≤ ε, ∀ t ∈ Z+.

The convergence property provided by Theorem 4.3 is uni-
form in the following sense: given a set of inputs V ⊆
VZ+ × YZ+ which is equi-convergent to (v∞,w∞) and
κ > 0, the set of solutions

{(
x
y

)
∈ XZ+ × YZ+ : ∃

(
v

w

)
∈ Vs.t.(v,w, x, y) ∈ B and

+ ‖x(0)‖X + max
t∈Z+

∥∥∥∥
(
v(t)
w(t)

)∥∥∥∥
V×Y

≤ κ

}
,

is equi-convergent to (x∞, y∞).

Proof of Theorem 4.3: First, statement (i) of Lemma 4.1 yields
that #TK = 1. Using Lemma 4.2 gives that (v∞,w∞, x∞, y∞)
is an equilibrium quadruple of (4) and since y∞ + w∞ ∈ S, we
have that (v∞,w∞, x∞, y∞) ∈ BS. We invoke statement (ii) of
Theorem 3.2, with q = ∞, to obtain c,d> 0 and a ∈ (0, 1) such
that for all (v,w, x, y) ∈ B and all t ∈ Z+, we have

‖x(t)− x∞‖X ≤ cat‖x(0)− x∞‖X

+ cmax
s∈t

∥∥∥∥
(
v(s)
w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

, (42)

and

‖y(t)− y∞‖Y ≤ dat‖x(0)− x∞‖X

+ dmax
s∈t

∥∥∥∥
(
v(s)
w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

. (43)

Let (v,w, x, y) ∈ B and fix t ∈ Z+. Note that (42) and (43) hold
for

(

t/2�v,

t/2�w,

t/2�x,

t/2�y) ∈ B,
from the time-invariance property (5). In light of the identity
�t/2
 + 
t/2� = t, it follows that

‖x(t)− x∞‖X = ‖(

t/2�x)(�t/2
)− x∞‖X
≤ ca�t/2
‖x(
t/2�)− x∞‖X

+ c max
s∈�t/2


∥∥∥∥
(


t/2�v(s)


t/2�w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

.

Appealing to (42) again yields

‖x(t)− x∞‖X ≤ c2a�t/2
a
t/2�‖x(0)− x∞‖X

+ c2a�t/2
 max
s∈
t/2�

∥∥∥∥
(
v(s)
w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

+ c max
s∈�t/2


∥∥∥∥
(


t/2�v(s)


t/2�w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

.

Finally, using the properties of the ceiling and floor functions
we arrive at

‖x(t)− x∞‖X ≤ c2at‖x(0)− x∞‖X

+ c2a�t/2
 max
s∈
t/2�

∥∥∥∥
(
v(s)
w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

+ c max
s∈�t/2


∥∥∥∥
(


t/2�v(s)


t/2�w(s)

)
−

(
v∞
w∞

)∥∥∥∥
V×Y

.

Starting instead from (43) and proceeding in the same man-
ner, we obtain a similar estimate for ‖y(t)− y∞‖. Thus, we
obtain (40) after estimating and relabelling the constants appro-
priately. �

Remark 4.5: By inspecting the above proof we see that in
the situation where γ = ∞ and (27) holds with S1 = Y and
S2 = S, then the conclusions of Theorem 4.3 remain valid (see
Remark 3.4(b)).

As a corollary to Theorem 4.3 (with S=Y ), we see that
condition (41) is sufficient for the CICS property.

Corollary 4.6: Let � ∈ L be stabilisable and detectable, K ∈
S(G) and γ := 1/‖GK‖H∞ (where γ := ∞ if ‖GK‖H∞ = 0). If
either:

(i) γ < ∞ and there exists δ ∈ (0, γ ) such that (10) holds with
r = γ and S1 = S2 = Y , or;

(ii) γ = ∞ and (27) holds with S1 = S2 = Y ,

then the Lur’e system (4) has the CICS property.
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As previously mentioned at the start of this section, if w
in (4) is considered to be an output disturbance, then it may
be unreasonable to expect convergence of w. The next result is
an immediate corollary to Theorem 4.3 and yields that asymp-
totic ‘closeness’ of the state and output of (4) to the equilibrium
components x∞ and y∞, respectively, is linearly bounded by
‖w‖�∞ .

Corollary 4.7: Under the assumptions of Theorem 4.3 with
w∞ = 0, for all (v,w, x, y) ∈ B with limt→∞ v(t) = v∞

lim sup
t→∞

(‖x(t)− x∞‖X + ‖y(t)− y∞‖Y
) ≤ c lim sup

t→∞
‖w(t)‖,

where c> 0 is as in (40).

Proof: The claim follows from (40), the time-invariance prop-
erty (5), and a standard time-invariance argument. �

4.2 Periodic inputs

For given τ ∈ N and normed spaceW, we say that v ∈ WZ+ is
τ -periodic if
τv = v. We say that (v,w, x, y) ∈ B is τ -periodic
if each of the functions v, w, x and y is τ -periodic.

Theorem 4.8: Let τ ∈ N and let vp ∈ VZ+ and wp ∈ YZ+

be τ -periodic. If the assumptions of Theorem 3.2 hold with
S1 = S2 = Y , then there exist a unique τ -periodic trajectory
(vp,wp, xp, yp) ∈ B and κ > 1 such that

lim
t→∞ ‖(x − xp)(t)κ t‖X = 0 = lim

t→∞ ‖(y − yp)(t)κ t‖Y ,
∀ (vp,wp, x, y) ∈ B. (44)

Proof: The proof is in part inspired by that of Angeli (2002,
Proposition 4.4). The hypotheses of Theorem 3.2 hold and
so by statement (ii) of that result with q = ∞, it follows
that there exist c> 0 and θ ∈ (0, 1) such that (13) holds for
all (v1,w1, x1, y1), (v2,w2, x2, y2) ∈ B. An application of state-
ment (ii) of Lemma 4.1 gives that FK is bijective and so, see
Remark 4.4(b), for each ve ∈ V andwe ∈ Y , there exist (unique)
xe ∈ X and ye ∈ Y such that (ve,we, xe, ye) is an equilibrium
quadruple of the Lur’e system (4). Let (vp,wp, x, y) ∈ B. Invok-
ing (13) with (vp,wp, x, y) and (ve,we, xe, ye), we see that there
exists μ > 0 such that

‖x(t)‖X + ‖y(t)‖Y ≤ μ, ∀ t ∈ Z+,

hence showing that x and y are bounded. Moreover, since
(
σ v

p,
σwp,
σ x,
σ y) ∈ B for every σ ∈ Z+ and 
σvp =

σ+kτ v

p and 
σwp = 
σ+kτwp for every k, σ ∈ Z+, state-
ment (ii) of Theorem 3.2 ensures that there exist c> 0 and θ ∈
(0, 1) such that

‖(
σ x −
σ+kτx)(t)‖X + ‖(
σ y −
σ+kτ y)(t)‖Y
≤ cθ t‖x(σ )− x(σ + kτ)‖X , ∀ σ , k, t ∈ Z+.

Thus, for all t, n,m ∈ Z+ withm ≥ n, we have
‖(
nτ x −
mτ x)(t)‖X + ‖(
nτ y −
mτ y)(t)‖Y

= ‖(
tx −
t+(m−n)τ x)(nτ)‖X + ‖(
ty −
t+(m−n)τ y)(nτ)‖Y
≤ 2μcθnτ .

Therefore, (
nτx)n∈Z+ and (
nτ y)n∈Z+ are Cauchy sequences
in �∞(X) and �∞(Y), respectively. We denote their respective
limits by xp and yp. The calculation

xp(t) = lim
n→∞(
nτ x)(t) = lim

n→∞(
(n+1)τx)(t)

= lim
n→∞(
nτ x)(t + τ) = xp(t + τ), ∀ t ∈ Z+,

shows that xp is τ -periodic. The τ -periodicity of yp is proven
similarly. We proceed to show that (vp,wp, xp, yp) ∈ B. Indeed,
for all n ∈ Z+, we have that

(
nτx)+ = A(
nτ x)+ Bf (
nτ y + wp)+ Bevp (45)

(
nτ y) = C(
nτx)+ Df (
nτ y + wp)+ Dev
p. (46)

The estimate (10) gives that f is continuous and hence, by taking
the limit as n → ∞ in (45) and (46), we yield that

(xp)+ = Axp + Bf (yp + wp)+ Bevp

yp = Cxp + Df (yp + wp)+ Dev
p,

whence (vp,wp, xp, yp) ∈ B.
Moreover, let κ ∈ (1, 1/θ) and invoke (13) to obtain

lim
t→∞

((‖(x − xp)(t)‖X + ‖(y − yp)(t)‖Y
)
κ t
)

≤ lim
t→∞ cκ tθ t‖(x − xp)(0)‖X = 0.

Finally, to establish uniqueness of (vp,wp, xp, yp), assume that
(vp,wp, x̃p, ỹp) ∈ B is also τ -periodic. Then (44) implies that
xp = x̃p and yp = ỹp, hence completing the proof. �

5. Application to four-block Lur’e systems

In the following, we demonstrate how the results of earlier sec-
tions apply to the related class of so-called ‘four-block’ Lur’e
systems which are informally described by the block diagram
arrangement in Figure 3, where � = (A,B,Be,C,D,De) ∈ L

and the signal y is given by

y =
(
y1
y2

)
.

In this section we use superscripts to denote decompositions
of signals, as opposed to subscripts which have been used to
distinguish trajectories in the context of incremental stability.
The motivation for studying the four-block setting is that there
may be outputs which are of interest, but not used for feedback
(denoted y1 in Figure 3).

Throughout this section, we assume that the output space
Y is of the form Y = Y1 × Y2, where Y1 and Y2 are complex
Hilbert spaces, and we define the maps

Pj : Y → Yj,
(
y1
y2

)
�→ yj, j = 1, 2.

To fix notation, we assume that (only) the component y2 := P2y
of (4) is used for feedback purposes, giving rise to the Lur’e
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Figure 3. Blockdiagramof a four-block forced Lur’e system: the feedback intercon-
nection of a linear system specified by� and the static nonlinearity f, with output
disturbancew.

system

x+ = Ax + Bu + Bev,

y = Cx + Du + Dev,

u = f (y2 + w),

⎫⎪⎪⎬
⎪⎪⎭ (47)

where� := (A,B,Be,C,D,De) ∈ L, v ∈ VZ+ ,w ∈ (Y2)Z+ and
f : Y2 → U. The forced nonlinear difference equation (47) pro-
vides the formal description of the feedback system illustrated
in Figure 3.

The decomposition of the output space Y = Y1 × Y2

induces two linear systems, viz.

(A,B,Be,Cj,Dj,Dj
e), j = 1, 2,

where

Cj := PjC, Dj := PjD, Dj
e = PjDe.

In this section, we set �j := (A,B,Be,PjC,PjD,PjDe) and we
denote the behaviour of (47) by B̃, that is,

B̃ :=
{
(v,w, x, y) ∈ VZ+ × (Y2)Z+ × XZ+ × YZ+ :

(v,w, x, y) satisfies (47)
}
.

For S ⊆ Y2, we set

B̃S := {(v,w, x, y) ∈ B̃ : y2(t)+ w(t) ∈ S, ∀ t ∈ Z+}.
As before, we write G(z) = C(zI − A)−1B + D.

Our main result of this section states that the conclusions of
Theorem 3.2 apply to (47) provided the linear system �2 and f
satisfy the assumptions of Theorem 3.2.

Corollary 5.1: Let � ∈ L, let S1, S2 ⊆ Y2 be non-empty.
Assume that �2 is stabilisable and detectable, r> 0 and K2 ∈
L(Y2,U) satisfy B(K2, r) ⊆ S(P2G) and that there exists δ ∈
(0, r) such that (10) holds with K and Y replaced by K2 and Y2,
respectively. Then the conclusions of Theorem 3.2 hold for the Lur’e
system (47).

Proof: In the following, we shall only prove that statement (i)
of Theorem 3.2 holds for (47), since the proof of statement (ii)
for (47) is similar. We shall consider the Lur’e system

x+ = Ax + Bf (y2 + w)+ Bev,

y2 = C2x + D2f (y2 + w)+ D2
ev,

}
(48)

which is obtained from (47) by applying P2 to the output
equation. Note that the Lur’e system (48) is of the form (4) with
Y ,C,D,De and y replaced byY2,C2,D2,D2

e and y2, respectively.

By hypothesis, the conclusions of Theorem 3.2 apply to (48)
and so there exist constants a > 0, b> 0 and ω > 1 such that,
for all (v1,w1, x1, y1) ∈ B̃S1 , (v2,w2, x2, y2) ∈ B̃S2 , and all ρ ∈
[1,ω], we have

‖πt(x1 − x2)‖�2ρ ≤ a

(
‖x1(0)− x2(0)‖X

+
∥∥∥∥πt−1

(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

)
, ∀ t ∈ N,

(49)

and

‖πt(y21 − y22)‖�2ρ ≤ b

(
‖x1(0)− x2(0)‖X

+
∥∥∥∥πt

(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

)
, ∀ t ∈ Z+.

(50)

It remains to establish that an estimate of the form (50) holds for
the difference y1 − y2. For which purpose, fix (v1,w1, x1, y1) ∈
B̃S1 and (v2,w2, x2, y2) ∈ B̃S2 . Since K2 ∈ A(P2D), it is eas-
ily seen that K := K2P2 ∈ A(D). Hence, by using Lemma 2.2
and (47), we have that the difference y1 − y2 satisfies

y1 − y2 = CK(x1 − x2)

+ DK (
f (y21 + w1)− f (y22 + w2)− K2(y21 − y22)

)
+ (I − DK)−1De(v1 − v2). (51)

Estimating (51) by invoking (10), (49) and (50) gives

‖πt(y1 − y2)‖�2ρ ≤ ‖CK‖‖πt(x1 − x2)‖�2ρ + (r − δ)

‖DK‖‖πt(y21 − y22 + w1 − w2)‖�2ρ
+ ‖(I − DK)−1De‖‖πt(v1 − v2)‖�2ρ
+ ‖DKK2‖‖πt(w1 − w2)‖�2ρ

≤ a‖CK‖
(

‖x1(0)− x2(0)‖X

+
∥∥∥∥πt

(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

)

+ b(r − δ)‖DK‖
(

‖x1(0)− x2(0)‖X

+
∥∥∥∥πt

(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

)

+ ζ

∥∥∥∥πt
(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

,
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for some ζ > 0. Thus, setting b̃ := a‖CK‖ + b(r − δ)‖DK‖ +
ζ , it follows that

‖πt(y1 − y2)‖�2ρ ≤ b̃

(
‖x1(0)− x2(0)‖X

+
∥∥∥∥πt

(
v1 − v2
w1 − w2

)∥∥∥∥
�2ρ

)
, ∀ t ∈ Z+,

completing the proof. �

We close the current section by remarking that the various
results presented in Sections 3 and 4 for the forced Lur’e sys-
tem (4) also have obvious extensions to the four-block settings
considered here, namely system (47). For brevity and to avoid
repetition, we do not give formal statements of these results.

6. Application to sampled-data systems

In this section we provide an application of Theorem 3.2 in the
form of an ISS result for a class of forced, infinite-dimensional
sampled-data control systems.

Let A be the generator of a strongly continuous semigroup
on X, denoted by (T(t))t≥0, B ∈ L(U,X) and C ∈ L(X,Y), and
consider the following continuous-time, infinite-dimensional
linear system

ẋ = Ax + Bu + v, x(0) = x0 ∈ X,

y = Cx.

}
(52)

As usual, x and y in (52) denote the state and output, and u
and v are inputs, with the former being available for feedback
purposes.

Throughout this section, we assume that

• X, U and Y are Hilbert spaces, with U and Y finite-
dimensional;

• the pair (A,B) is (exponentially) stabilisable, that is, there
exists F ∈ L(X,U) such that the strongly continuous semi-
group generated by A+BF is exponentially stable;

• the pair (C,A) is (exponentially) detectable, that is, there
exists H ∈ L(Y ,X) such that the strongly continuous semi-
group generated by A+HC is exponentially stable.

Let ω(T) be the exponential growth constant of T, that is,

ω(T) := lim
t→∞

1
t
ln ‖T(t)‖,

and we letH denote the transfer function of (52), that is,H(s) =
C(sI − A)−1B. Furthermore, forK ∈ L(Y ,U), we defineHK :=
H(I − KH)−1. We denote the set of stabilising feedback opera-
tors by

S
c(H) := {K ∈ L(Y ,U) : HK is bounded

and holomorphic function on C0},

where the superscript ‘c’ indicates the continuous-time setting.

Figure 4. Block diagram illustrating the sampled-data Lur’e system (54).

For a fixed sampling period τ > 0, we define the sampling
operator S : C(R+,Y) → YZ+ as

(Sy)(k) := y(kτ), ∀ y ∈ C(R+,Y), ∀ k ∈ Z+,

and the (zero order) hold operatorH as

(Hu)(t) := u(k), ∀ u ∈ UZ+ , ∀ t ∈ [kτ , (k + 1)τ ),

which maps UZ+ into the set of step-functions mapping [0,∞)

to U. We shall consider the forced sampled-data Lur’e sys-
tem arising from the feedback interconnection of (52) and the
nonlinear sampled-data output feedback control

u = H(f (S(y)+ w)), (53)

where w ∈ YZ+ is an output disturbance and f : Y → U with
f (0) = 0. Thus, for given x0 ∈ X, v ∈ L∞

loc(R+,X) andw ∈ YZ+ ,
we consider the initial-value problem

ẋ = Ax + BH(f (S(Cx)+ w))+ v, x(0) = x0 ∈ X, (54)

see Figure 4.
We say that x ∈ C(R+,X) is a (mild) solution to (54) if x

satisfies x(0) = x0 and

x(kτ + t) = T(t)x(kτ)+
∫ t

0
T(t − s)Bf (Cx(kτ)+ w(k)) ds

+
∫ t

0
T(t − s)v(kτ + s) ds, ∀ t ∈ (0, τ ], ∀ k ∈ Z+.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(55)

It is clear that, for all x0 ∈ X, v ∈ L∞
loc(R+,X) and w ∈ YZ+ ,

there exists a unique solution of (54). Note that if x0 = 0, v= 0
and w= 0, then 0 is a solution of (54), as f (0) = 0.

The sampled-data Lur’e system (54) is said to be exponen-
tially input-to-state stable (ISS) if there exist constants c, γ > 0
such that, for all initial states x0 ∈ X, all inputs v ∈ L∞

loc(R+,X)
and all output disturbances w ∈ YZ+ , the solution x of (54)
satisfies

‖x(kτ + t)‖ ≤ c
(
e−γ (kτ+t)‖x0‖ + ‖v‖L∞([0,kτ+t])

+‖πkw‖l∞
)
, ∀ t ∈ (0, τ ], ∀ k ∈ Z+.

The following theorem gives a sufficient condition for exponen-
tial ISS of (54).
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Theorem 6.1: Assume that K ∈ S
c(H) and

‖f (ξ)− Kξ‖ ≤ r‖ξ‖, ∀ ξ ∈ Y , (56)

where r < 1/ sups∈C0
‖HK(s)‖. Then there exists τ ∗ > 0 such

that (54) is exponentially ISS for all τ ∈ (0, τ ∗).

We note that under the assumptions of Theorem 6.1, it fol-
lows fromGuiver et al. (2019, Theorem4.1) that the continuous-
time Lur’e system

ẋ = Ax + Bf (Cx)+ v, x(0) = x0 ∈ X, (57)

is exponentially ISS. Theorem 6.1 shows that exponential ISS
is inherited by the sample-hold discretization (53) of the
continuous-time system (57), provided the sampling period is
sufficiently small.

To facilitate the proof of Theorem 6.1, we state a technical
lemma. To this end, for τ > 0, we set

Aτ := T(τ ), Bτ :=
∫ τ

0
T(s)B ds and

AK
τ = (Aτ )K = Aτ + BτKC

and, for L ∈ L(Y ,U) and r> 0, we let

B
cl(L, r) := {M ∈ L(Y ,U) : ‖M − L‖ ≤ r}

denote the closed ball of radius r, centred at L.

Lemma 6.2: Let r> 0 and K ∈ L(Y ,U) and assume that
B
cl(K, r) ⊆ S

c(H). Then there exists τ ∗ > 0 such that for all L ∈
B
cl(K, r) and every τ ∈ (0, τ ∗), the operator AL

τ is exponentially
stable.

To avoid disruption of the flow of the presentation, the proof
of the lemma is placed at the end of this section.

Proof of Theorem 6.1: Let x0 ∈ X, v ∈ L∞
loc(R+,X), w ∈ YZ+

and let x be a solution of (54). Then, for every k ∈ Z+ and all
t ∈ (0, τ ], x satisfies (55). Letting t = τ in (55) and changing
variables, it follows that, for every k ∈ Z+,

x((k + 1)τ ) = T(τ )x(kτ)+
∫ τ

0
T(s)B dsf (Cx(kτ)+ w(k))

+
∫ τ

0
T(s)v((k + 1)τ − s) ds.

Setting xk := x(kτ), wk := w(k) and vk :=
∫ τ
0 T(s)v((k + 1)τ

− s) ds for all k ∈ Z+, we see that (vk,wk, xk) satisfies the fol-
lowing discrete-time system

xk+1 = Aτxk + Bτ f (Cxk + wk)+ vk, x(0) = x0 ∈ X,

yk = Cxk.

Let ρ ∈ R be such that r < ρ < 1/ sups∈C0
‖HK(s)‖. Then,

by Guiver et al. (2017, Proposition 5.6), B
cl(K, ρ) ⊆ S

c(H).
Consequently, by Lemma 6.2, there exists τ ∗ > 0 such that for
all L ∈ B

cl(K, ρ) and every τ ∈ (0, τ ∗), the operatorAL
τ is expo-

nentially stable. Therefore, statement (ii) of Theorem 3.2 yields

the existence of constants c1 > 0 and θ ∈ (0, 1) such that, for all
k ∈ N,

‖xk‖X ≤ c1
(
θk‖x0‖X + max

σ∈k−1

∥∥∥∥
(
vσ
wσ

)∥∥∥∥
X×Y

)
. (58)

Let

μ := τ sup
s∈[0,τ ]

‖T(s)‖

and note that, for all k ∈ Z+,

‖vk‖X ≤ μ ‖v‖L∞([kτ ,(k+1)τ ]) .

Hence, there exists c2 > 0 such that

‖xk‖X ≤ c2
(
θk‖x0‖X + μ ‖v‖L∞([0,kτ ]) + ‖πk−1w‖l∞

)
,

∀ k ∈ Z+. (59)

It remains to use the discrete-time estimate (59) to bound the
state x over all times. To this end, note that for all k ∈ Z+ and
all t ∈ (0, τ ],

x(kτ + t) = T(t)xk +
∫ t

0
T(s)Bdsf (Cx(kτ)+ w(k))

+
∫ t

0
T(t − s)v(kτ + s) ds. (60)

Appealing to (56), we estimate

∥∥∥∥
∫ t

0
T(s) dsBf (Cx(kτ)+ w(k))

∥∥∥∥
≤ μ‖B‖(r + ‖K‖)(‖C‖‖xk‖ + ‖wk‖), ∀ t ∈ (0, τ ]. (61)

Moreover,
∥∥∥∥
∫ t

0
T(t − s)Bv(kτ + s) ds

∥∥∥∥ ≤ μ‖v‖L∞([kτ ,kτ+t]),

∀ k ∈ Z+, ∀ t ∈ (0, τ ]. (62)

Taking norms in (60) and substituting in (61) and (62) yields
that, for all k ∈ Z+ and all t ∈ (0, τ ],

‖x(kτ + t)‖ ≤ (‖T(t)‖ + μ‖B‖(r + ‖K‖)‖C‖) ‖xk‖
+ μ ‖v‖L∞([kτ ,kτ+t]) + μ‖B‖(r + ‖K‖)‖wk‖.

The claim now follows in light of the above inequality and (59).
�

Proof of Lemma 6.2: The proof is a refinement of that of Loge-
mann et al. (2003, Theorem 3.1). For F ∈ L(Y ,U), we let
TF denote the strongly continuous semigroup generated by
A+BFC. By hypothesis, Bcl(K, r) ⊆ S

c(H), (A,B) is stabilisable
and (C,A) is detectable, and so, by Curtain and Zwart (1995,
Theorem 7.32), for each F ∈ B

cl(K, r), there exist ωF < 0 and
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MF ≥ 1 such that ‖TF(t)‖ ≤ MF eωFt for all t ≥ 0. We seek to
show that there exists ω < 0 and 1 ≤ M < ∞ such that

‖TF(t)‖ ≤ M eωt , ∀ t ≥ 0, ∀ F ∈ B
cl(K, r). (63)

To this end, note that for each F ∈ B
cl(K, r), there exists εF > 0

such that

ωF + MF‖B(L − F)C‖ ≤ ωF

2
, ∀ L ∈ B(F, εF)

and thus, by Pazy (1983, Theorem 1.1, Chapter 3),

‖TL(t)‖ ≤ MF e(ωF/2)t , ∀ t ≥ 0, ∀ L ∈ B(F, εF).

The balls B(F, εF) form an open cover of B
cl(K, r) and, since U

and Y are finite dimensional, Bcl(K, r) is compact. Hence, there
exist finitely many F1, . . . , Fn ∈ B

cl(K, r), ε1, . . . , εn ∈ (0,∞)

and ω1, . . . ,ωn ∈ (−∞, 0) such that B
cl(K, r) ⊆ ∪n

i=1B(Fi, εi)
and

‖TL(t)‖ ≤ MFi e
ωit , ∀ t ≥ 0, ∀ L ∈ B(Fi, εi), ∀ i ∈ {1, . . . , n}.

By setting M := max{MF1 , . . . ,MFn} and ω := max{ω1, . . . ,
ωn}, it follows that (63) holds.

Next, we claim that for all ε > 0, there exists T> 0 such that

‖FC(I − TF(t))‖ < ε, ∀ F ∈ B
cl(K, r), ∀ t ∈ [0,T]. (64)

To prove (64), we will show that for all ε > 0 and all F ∈
B
cl(K, r), there exist rF > 0 and TF > 0 such that

‖LC(I − TL(t))‖ < ε, ∀ t ≤ TF , ∀ L ∈ B(F, rF)

and then use another compactness argument. To this end, fix
ε > 0 and letF ∈ B

cl(K, r). SinceU andY are finite dimensional
and C is bounded, it follows that FC ∈ L(X,U) is a compact
operator. Furthermore, as X is a Hilbert space, Pazy (1983,
Corollary 10.6, Chapter 1) yields thatT∗

F is a strongly continuous
semigroup, and thus

lim
t→0

(I − TF(t))∗x = 0 ∀ x ∈ X.

Therefore, we invoke Logemann et al. (2003, Lemma 2.1) to
yield that

lim
t→0

‖FC(I − TF(t))‖ = 0.

Choose rF > 0 such that

‖L − F‖‖C‖M <
ε

6
, ∀ L ∈ B(F, rF)

and let T̃F > 0 be such that

‖FC(I − TF(t))‖ < ε

3
∀ t ∈ [0, T̃F].

We invoke Pazy (1983, Corollary 1.3, Chapter 3) to obtain

‖TL(t)− TF(t)‖ ≤ M eωt(eM‖B‖‖L−F‖‖C‖t − 1)

≤ M eωt(erFM‖B‖‖C‖t − 1), ∀ L ∈ B(F, rF),

whence

‖LC‖‖TL(t)− TF(t)‖ ≤ (‖F‖ + rF)‖C‖M eωt

× (erFM‖B‖‖C‖t − 1), ∀ L ∈ B(F, rF).

Let T̂F > 0 be such that

‖LC‖‖TL(t)− TF(t)‖ < ε

6
∀ t ∈ [0, T̂F], ∀ L ∈ B(F, rF).

Setting TF := min{T̃F , T̂F}, it follows that, for all t ∈ [0,TF] and
all L ∈ B(F, rF),

‖LC(I − TL(t))‖ ≤ ‖LC − FC‖ + ‖LCTL(t)− FCTF(t)‖
+ ‖FC(I − TF(t))‖

<
ε

6
+ ‖LC‖‖TL(t)− TF(t)‖

+ ‖L − F‖‖C‖‖TF(t)‖ + ε

3
< ε.

Hence, for all ε > 0 and for all F ∈ B
cl(K, r), there exists rF > 0

and TF > 0 such that

‖LC(I − TL(t))‖ < ε, ∀ t ∈ [0,TF], ∀ L ∈ B(F, rF).

A compactness argument similar to that establishing (63) can
now be used to prove that for all ε > 0, there exists T> 0 such
that (64) holds.

Finally, we seek to use (63) and (64) to yield the existence
of τ ∗ > 0 such that AL

τ is discrete-time exponentially stable
for all L ∈ B

cl(K, r) and every τ ∈ (0, τ ∗). To that end, fix L ∈
B
cl(K, r). The variation-of-parameters formula for perturbed

semigroups (Pazy, 1983, Equation (1.2), page 77) gives, for all
τ ≥ 0 and all x ∈ X,

Aτx + BτLCx = T(τ )x +
∫ τ

0
T(s)B dsLCx

= T(τ )x +
∫ τ

0
T(τ − s)BLC(I − TL(s))x ds

+
∫ τ

0
T(τ − s)BLCTL(s)x ds

= TL(τ )x + Pτx, (65)

where Pτx := ∫ τ
0 T(τ − s)BLC(I − TL(s))x ds for all x ∈ X.

As in Logemann et al. (2003, Theorem 3.1), let us introduce
a new norm on X given by

|x| := sup
t≥0

‖TL(t)x‖e−ωt , ∀ x ∈ X,

where ω < 0 is as in (63). Note that

‖x‖ ≤ |x| ≤ M‖x‖, ∀ x ∈ X, (66)
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whereM ≥ 1 is as in (63). For all x ∈ X and all t ≥ 0, we have

|TL(t)x| = sup
s≥0

‖TL(s)TL(t)x‖e−ωs

= sup
s≥0

‖TL(s + t)x‖e−ω(s+t) eωt

≤ sup
s≥0

‖TL(s)x‖e−ωs eωt .

Therefore,

|TL(t)x| ≤ eωt|x|, ∀ t ≥ 0, ∀ x ∈ X. (67)

For G ∈ L(X), let |G| denote the operator norm of G induced
by the new norm, that is,

|G| = sup
x∈X
x �=0

|Gx|
|x| .

Combining (65) with (66), (67) and the inequality

eωτ ≤ 1 + ωτ eωτ , ∀ τ ∈ R+,

we obtain that

|Aτ + BτLC| ≤ eωτ + M‖Pτ‖
≤ 1 + ωτ + (

ω(−1 + eωτ )+ h(τ )
)
τ ,

∀ τ ∈ R+,

where

h(τ ) := M sup
s∈[0,τ ]

‖T(τ − s)BLC(I − TL(s))‖.

Combining this with (64) shows that, for fixed δ ∈ (0,−ω),
there exists τ ∗ > 0 (independent of L ∈ B

cl(K, r)) such that

|Aτ + BτLC| < 1 + (ω + δ)τ < 1, ∀ τ ∈ (0, τ ∗). (68)

Finally, invoking (66), we obtain that, for all τ ∈ (0, τ ∗) and all
n ∈ Z+,

‖(Aτ + BτLC)nx‖ ≤ |(Aτ + BτLC)nx| ≤ |Aτ + BτLC|n|x|
≤ M|Aτ + BτLC|n‖x‖, ∀ x ∈ X.

In light of (68), the above inequality yields the exponential sta-
bility of AL

τ for all L ∈ B
cl(K, r) and all τ ∈ (0, τ ∗), completing

the proof. �

7. Examples

We conclude the paper with a detailed discussion of two exam-
ples.

Example 7.1: Consider the following controlled and observed
heat equation describing the temperature evolution at position
ξ ∈ (0, 1) and time t > 0 in a unit rod

zt(ξ , t) = zξξ (ξ , t)+ 2χ[1/2,1](ξ)u(t)+ be(ξ)v(t),

zξ (0, t) = zξ (1, t) = 0, z(ξ , 0) = z0,

y(t) = 2
∫ 1

2

0
z(t, ζ ) dζ .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(69)

Here z(ξ , t) denotes the temperature of the rod at position ξ
and time t, z0 ∈ L2(0, 1) is the initial temperature distribution,
χ[1/2,1] is the indicator function of the interval [1/2, 1] and be ∈
L2(0, 1). Further, u and v are inputs and y is the output (or obser-
vation). It is shown inCurtain andZwart (1995, Example 4.3.11)
that (69) (with v= 0) may be written in the form (52), with
state-space X = L2(0, 1), A the Laplacian with zero Neumann
boundary conditions, and bounded B andC operators. Further-
more, (A,B) is stabilisable and (C,A) is detectable by Curtain
and Zwart (1995, Example 5.2.8). The transfer functionH from
u to y is given by

H(s) = 2 tanh(
√
s/2)

s
√
s

,

which has a simple pole at s= 0 and so (69) is neither expo-
nentially nor input-output stable. To illustrate the sampled-data
control results of Section 6, we consider the following problem:
find conditions which are sufficient for the sampled-data system
given by (69) and the feedback (53) to be exponentially ISS.

Writing L(s) := sH(s) enables us to exploit the results
of Logemann, Ryan, and Townley (1999) to compute stabilis-
ing gains for H. For which purpose, we note that L(0) = 1 > 0
and that L is bounded and holomorphic on {s ∈ C : Re (s) > α}
for every α > −π2. Setting

λ := 2 sup
ω∈R

∣∣∣∣ReL(iω)− L(0)
iω

∣∣∣∣ > 0,

an application of Logemann et al. (1999, Lemma 3.1 and
Corollary 3.4) yields that

sup
s∈C

|H−k(s)| = 1/k, ∀ k ∈ (0, 1/λ).

In light of Guiver et al. (2017, Proposition 5.6), it follows that

B(−k, k) ⊆ S
c(H), ∀ k ∈ (0, 1/λ),

whence, for all ρ ∈ (0, 1),

B
cl(−k, ρk) ⊆ B(−k, k) ⊆ S

c(H), ∀ k ∈ (0, 1/λ). (70)

Consequently, Theorem 6.1 ensures that, for all k ∈ (0, 1/λ) and
all ρ ∈ (0, 1), if f : R → R is such that

|f (θ)+ kθ | ≤ ρk|θ |, ∀ θ ∈ R, (71)

then there exists τ ∗ > 0 such that the sampled-data feedback
interconnection of (69) and (53) is exponentially ISS for all
sampling/hold periods τ ∈ (0, τ ∗).

For a numerical illustration, we first compute numerically
that λ ≈ 0.3707, so that 5/2 < 1/λ.We take k= 1, ρ = 0.95 and

f : R → R, f (θ) = −θ + 0.95
(
1 − e−|θ |

)
sin(3θ), (72)

so that (70) and (71) both hold. Note that f is Lipschitz, but has
Lipschitz constant bigger than one. Figure 5 illustrates the sector
condition (71).

We set be = χ[1/4,1/2], and define the constant and periodic
input v1 = 3 and v2(t) = 3 sin(2t) for all t ≥ 0, respectively.



18 M. E. GILMORE ET AL.

Figure 5. Graph of f (θ)+ θ against θ , for f in (72). The dashed lines have gradient
±0.95.

Certain simulations use the initial temperature distribution
z0(ξ) = e−|ξ−1/2|2 . We simulate the closed-loop feedback sys-
tem (69) and (53) by performing a semi-discretization in space
using a finite-element method with 31 elements, the details of
which are given in Appendix 2. Figures 6(a)–6(d) show plots of
‖x(t)‖ against t in the following situations described in Table 1.
Simulation data are also listed in Table 1.

In Figure 6(a), we see the exponential stability property of
the unforced (v= 0) sampled-data feedback system – a conse-
quence of exponential ISS. In Figures 6(a) and 6(c), we see the
ISS property – the state is bounded in the presence of persistent
inputs and, as might be expected, ‖x(t)‖ increases as ‖v‖L∞(0,t)
increases.

To conclude the example, we comment that although tak-
ing τ = 0.25 appears to ‘work’, in the sense that the numerical
results agree with what the theory predicts, in fact the con-
stant τ ∗, the existence of which is guaranteed by Theorem 6.1,
could be either smaller or larger than 0.25. Determining the
maximal τ ∗ analytically or numerically is a difficult open prob-
lem. It seems that Figure 6(d) shows divergence when τ = 2.5,
indicating that τ ∗ < 2.5.

Example 7.2: We consider a forced Integral Projection Model
(IPM) for the monocarpic plant Platte thistle (Cirsiumcan
escens), based on the model presented in Briggs et al. (2010)
and Rose et al. (2005). For a recent overview of IPMs we refer
the reader to Merow et al. (2014). Platte thistle is a perennial
plant native to central North America. The IPM describes the
distribution of plant size, according to the natural logarithm
of the crown diameter in mm. Following Briggs et al. (2010),
we assume that the continuous variable of natural logarithm of
crown diameter takes minimum and maximum values given by
m1 = −0.5 and m2 = 3.5 (so that roughly em1 = 0.6mm and
em2 = 33mm), respectively, and that the time-steps correspond
to years. Incorporating an additive input, the model is

η(t + 1, ξ) =
∫ m2

m1

p(ξ , ζ )η(t, ζ ) dζ

+ b(ξ)h(c∗η(t, ξ))c∗η(t, ξ)

+ be(ξ)v(t),

η(0, ξ) = η0(ξ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

∀ t ∈ Z+
a.e. ξ ∈ [m1,m2],

(73)

where η(t, ·) denotes the distribution of plant size at time-step t,
with initial distribution η0 ∈ L1([m1,m2]). In the following, our
aim is to write (73) in the form of a forced, infinite-dimensional
Lur’e system (4) with the natural state space X = L1(�), where
� := [m1,m2]. Before doing this, we provide some commen-
tary on the model (73).

The first term on the right hand side of the difference
equation in (73) models survival and growth of existing plants.
Here p(ξ , ζ ) denotes the probability of an individual of size ζ
surviving to one of size ξ in one time-step, and is assumed
in Briggs et al. (2010) and Rose et al. (2005) to have the structure

p(ξ , ζ ) = s(ζ )(1 − fp(ζ ))g(ξ , ζ ), ∀ ξ , ζ ∈ �, (74)

where s(ζ ) is the survival probability of an individual of size
ζ , fp(ζ ) is the probability that an individual of size ζ flowers,
and g(ξ , ζ ) is the probability of an individual of size ζ grow-
ing to size ξ , each over one time-step. We take s, fp and g as
in Briggs et al. (2010, Table 2). The term 1 − fp appears on the
right-hand side of (74) as flowering is fatal to Platte thistle, that
is, it is monocarpic.

The second term on the right hand side of the difference
equation in (73) models reproduction and recruitment into the
population. In particular, b ∈ X denotes the distribution of off-
spring plant size, c∗x equals the total number of new seeds
recruited into the population by the distribution z ∈ X in one
time-step, and is given by

c∗z =
∫
�

s(θ)fp(θ)S(θ)z(θ) dθ , ∀ z ∈ X.

In addition to the terms in (74), S(θ) denotes the number of
seeds produced on average by a plant of size θ . We take b= J,
where J is as in Briggs et al. (2010, Table 2), and the function
S is given in Briggs et al. (2010, Table 2). We have c∗ ∈ X∗ as
θ �→ s(θ)fp(θ)S(θ) ∈ L∞(�). The function h in (73) denotes
the probability of seed germination, and is a nonlinear func-
tion of the total number of seeds produced, and so seeks to
model density-dependence in the seed germination probabil-
ity. As such, it is assumed to be non-increasing, representing
competition or crowding affects at higher seed abundances. Two
situations are explored in Briggs et al. (2010): first, h is constant
with value 0.067, and; second, h is defined by h(s) = s−0.33. We
note that there is uncertainty in modelling nonlinear terms for
Platte thistle, see Eager, Rebarber, and Tenhumberg (2012), and
in order to demonstrate different settings where the incremental
condition (10) holds, we shall choose a different h below.

The third term term on the right hand side of the difference
equation in (73) is an additive input, whichmay be the arrival of
new plants via planned replanting schemes, or accidental move-
ment. We assume that be ∈ X and v ∈ (R+)Z+ , which capture
the distribution and magnitude, respectively.

We define the integral operator A : X → X by

(Ax)(·) =
∫
�

p(·, ζ )x(ζ ) dζ , ∀ x ∈ X,

and impose the ecologically reasonable assumption

sup
ζ∈�

∫
�

p(ξ , ζ ) dξ < 1,
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Figure 6. Numerical simulation of the sampled-data feedback interconnection of (69) and (53) from Example 7.1.

Table 1. Model parameters used in the numerical simulations in Example 7.1. Here
j ∈ {1, 2, 3}.
Figure Initial condition z(·, 0) Input v Sampling/hold period τ

6(a) j2z0 0 0.25
6(b) 0 jv1 0.25
6(c) 0 jv2 0.25
6(d) z0 0 1, 2, 2.5

which corresponds to some positive level of mortality in the
population at all sizes. An application of Lax (2002, Theorem 1,
p. 173) yields that ‖A‖ < 1.

Combining the above, and setting x(t) = η(t, ·) for all t ∈
Z+, we see that (73) may be written as a forced Lur’e system,

x+ = Ax + bf (c∗x)+ bev, (75)

on the state-spaceX = L1(�), and withU = V = Y = R. Here
f (s) := h(s)s for s ≥ 0 andwe extend h and f to all ofR by setting
h(s) = f (s) = 0 for s ∈ (−∞, 0). The extension is to ensure that
f is defined on the whole of Y , so that the results of the paper
are applicable.

We seek to apply Theorems 3.2, 4.3 and 4.8 to (75) to infer
various (incremental) stability and convergence notions. To
simulate (75) we use a finite-element approximation, the details
of which are given in Appendix 3.

The property ‖A‖ < 1 implies that B(0, r) ⊆ S(G) for
all r ∈ (0, 1/‖G‖H∞), where G(z) = c∗(zI − A)−1b. Moreover,

by Franco, Guiver, Logemann, and Peràn (2019, Proposi-
tion 3.1), we have that ‖G‖H∞ = G(1), andwe compute numer-
ically that G(1) ≈ 43.8. We propose a negative sigmoid type
function for h : R → R+, namely

h(s) =
⎧⎨
⎩
0 s < 0,

ρ1

1 + eρ2(s−ρ3)
s ≥ 0, (76)

where ρ1, ρ2 and ρ3 are positive parameters. Broadly, ρ1 cap-
tures the probability of germination at low abundance, ρ2 deter-
mines the rate of transition and ρ3 the value at which the tran-
sition occurs. Figure 7 contains plots of h for several parameter
values.

Since h is nonnegative-valued and nonincreasing, it follows
that there exists δ > 0 such that s �→ f (s) = h(s)s satisfies (10)
with K = 0, S1 = R, S2 = {0} and r = 1/G(1) whenever

h(0) = ρ1

1 + e−ρ2ρ3
<

1
G(1)

. (77)

If (77) holds, then Theorem 3.2 yields that (75) is exponentially
ISS. If the inequality

sup
s>0

|f ′(s)| < 1
G(1)

, (78)

holds, then f satisfies (10) with K = 0, S1 = S2 = R, and hence
Theorem 3.2 yields that (75) is exponentially δISS. In this case, it
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Figure 7. Graph of function h in (76) for nonnegative arguments. Hereρ1 = 1 and
ρ3 = 10, and ρ2 varies.

also follows from Theorem 4.3 that (75) has the CICS property.
Moreover, the inequality (78) is sufficient for the hypotheses of
Theorem 4.8 to hold, which ensures that (75) admits a periodic
trajectory when subject to periodic inputs, and that all other tra-
jectories generated by the same periodic input asymptotically
approach this trajectory.

Table 2. Model parameters used in the numerical simulations in Example 7.2,
where j ∈ {1, 2, 3}.
Figure Initial condition x(0) Input v

8(a) Randomwith ‖x(0)‖ = 4j2 0
8(b) 0 v(t) small random perturbation of 4j2

8(c) Randomwith ‖x(0)‖ = 4j2 v1(t) and v2(t) convergent to 4j2

8(d) Randomwith ‖x(0)‖ = 4j2 v(t) = 4 sin(2π t/12)

Numerical simulations are plotted in Figure 8. Throughout
we take

ρ1 = 0.9
G(1)

, ρ2 = 2, ρ3 = 20,

and with these parameter values it can be shown that f satis-
fies (78). Additional simulation data are recorded in Table 2.
Panels (a)–(c) respectively show: the 0-GES property; ISS; incre-
mental stability; and asymptotically periodic response to peri-
odic forcing. Note that panel (c) shows that, asymptotically, the
responses to the same input are identical and do not depend on
the initial conditions, thereby illustrating a typical aspect of ISS.

Disclosure statement
No potential conflict of interest was reported by the authors.

Figure 8. Numerical simulation of the IPM (73) from Example 7.2. In each panel the solid, dashed and dashed-dotted lines correspond to j= 1,2,3, respectively.
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Appendices

Appendix 1. Proofs of technical lemmas
We give the proofs of several technical lemmas not provided in the main
text.

Proof of Lemma 2.2: Let (u, v, x, y) ∈ Blin. Then (I − DL)y = Cx + D
(u − Ly)+ Dev and so,

y = CLx + DL(u − Ly)+ (I − DL)−1Dev. (A1)

Furthermore, noting that BL = B(I − LD)−1 = B + BLDL and invok-
ing (A1),

x+ = ALx + Bu + Bev − BL(I − DL)−1Cx

= ALx + Bu + Bev − BLy + BLDL(u − Ly)+ BL(I − DL)−1Dev

= ALx + (B + BLDL)(u − Ly)+ Bev + BLLDev

= ALx + BL(u − Ly)+ (Be + BLLDe)v,

as required. The converse can be proven by reversing the previous argument
and therefore we omit the proof. �

Proof of Lemma 3.5: We begin by showing that �H ∩ E = ∅. Seeking a
contradiction, suppose that�H ∩ E �= ∅ and let z0 ∈ �H ∩ E. Then, there
exists a punctured open disc � := {z ∈ C : |z − z0| < ε, z �= z0} centred
at z0 and of radius ε > 0 such that

H(z) =
∞∑

−∞
Hj(z − z0)j, ∀ z ∈ �,

where Hj ∈ L(U) for all j ∈ Z. For u ∈ U, define

Ju := {j > 0 : 〈H−ju, u〉 �= 0}.
Let v ∈ U be such that Jv �= ∅. Such a v ∈ U does exist, because otherwise
Lemma 2.1 in Guiver et al. (2017) would yield thatH−j = 0 for every j> 1
and so z0 would not be a singularity, thus yielding a contradiction. Define
h ∈ H∗(C) by h(z) = 〈H(z)v, v〉 for all z ∈ E. If Jv is infinite, then h has an
essential singularity at z0 and so, using the Casorati-Weierstrass theorem
(Rudin, 1987, Theorem 10.21), there exists z∗ ∈ � such that

Re〈H(z∗)u, u〉 = Re h(z∗) < 0,

contradicting the positive realness ofH.
Now, assume that Jv is finite and set k := max Jv . In this case, h has a

pole of order k at z0 and so h can be written as

h(z) = h0 + g(z)
(z − z0)k

, ∀ z ∈ �,

where h0 �= 0, g is holomorphic on� ∪ {z0} and g(z0) = 0. For sufficiently
small r > 0, we have

h(z0 + r eiθ ) = r−k e−ikθ (h0 + g(z0 + r eiθ )), ∀ θ ∈ (−π ,π].
Let θ0 ∈ (−π ,π] be such that Re(e−ikθ0h0) < 0. Note that, using that
g(z0) = 0, we obtain, for sufficiently small r > 0,

〈ReH(z0 + r eiθ0 )v, v〉 = Reh(z0 + r eiθ0 ) < 0,

Contradicting the positive realness of H. Consequently H does not have
any singularities in E.

Finally, we show that H is holomorphic at infinity. We define H̃ :
D\{0} → L(U,Y) by

H̃(z) := H(1/z), ∀ z ∈ D\{0}
and note that Re〈H̃(z)u, u〉 ≥ 0 for all u ∈ U and z ∈ D, z �= 0. Thus, by
supposing that 0 ∈ �H̃ and by following the same method as above, we
obtain a contradiction, completing the proof. �

Proof of Lemma 4.1: (i) Let ξ ∈ Y be such that F−1
K (ξ) ∩ S �= ∅. Let ξ1 ∈

F−1
K (ξ) ∩ S and ξ2 ∈ F−1

K (ξ). We seek to show ξ1 = ξ2. Note that

‖ξ2 − ξ1‖Y = ‖FK(ξ2)+ GK(1)(f (ξ2)− Kξ2)− FK(ξ1)

− GK(1)(f (ξ1)− Kξ1)‖Y
≤ ‖GK‖H∞‖f (ξ2)− f (ξ1)− K(ξ2 − ξ1)‖U .

Seeking a contradiction, suppose that ξ1 �= ξ2. Then, by (36), we obtain that

‖ξ2 − ξ1‖Y < γ ‖GK‖H∞‖ξ2 − ξ1‖Y = ‖ξ2 − ξ1‖Y ,

which is a contradiction. Hence, ξ1 = ξ2 and #F−1
K (ξ) = 1.

(ii) By (41), there exists λ < γ such that ‖f (ζ + ξ)− f (ξ)− Kζ‖U ≤
λ‖ζ‖Y for all ζ , ξ ∈ Y , and so ξ �→ f (ξ)− Kξ is globally Lipschitz with
Lipschitz constant λ. Thus, it is clear that FK is globally Lipschitz with
Lipschitz constant 1 + ‖GK‖H∞λ.

To show injectivity, assume that FK(ξ) = FK(ζ ), where ξ , ζ ∈ Y . Seek-
ing a contradiction, suppose that ξ �= ζ . Then, by definition of FK , we
obtain

‖ξ − ζ‖Y = ‖GK(1)(f (ξ)− Kξ)− GK(1)(f (ζ )− Kζ )‖Y
≤ ‖GK‖H∞‖f (ξ)− f (ζ )− K(ξ − ζ )‖U
< ‖GK‖H∞γ ‖ξ − ζ‖Y
= ‖ξ − ζ‖Y ,

yielding a contradiction. It now follows that ξ = ζ and FK is injective.
We proceed to show surjectivity. To that end, observe that the map

Y → Y , ξ �→ GK(1)(f (ξ)− Kξ) is a contraction. Indeed, by (41),

‖GK(1)(f (ξ)− Kξ)− GK(1)(f (ζ )− Kζ )‖Y ≤ ‖GK‖H∞λ‖ξ − ζ‖Y ,
∀ ζ , ξ ∈ Y ,

and, furthermore, ‖GK‖H∞λ < ‖GK‖H∞γ = 1.
Fix y ∈ Y and define the map hy : Y → Y by

hy(z) := z − FK(z)+ y ∀ z ∈ Y .

We note that hy is also a contraction since,

‖hy(ξ)− hy(ζ )‖Y = ‖GK(1)(f (ξ)− Kξ)− GK(1)(f (ζ )− Kζ )‖Y
≤ ‖GK‖H∞λ‖ξ − ζ‖Y , ∀ ξ , ζ ∈ Y .

Hence, by the contraction mapping theorem, there exists a (unique) fixed
point of hy, that is, there exists x∗ ∈ Y such that hy(x∗) = x∗. This is
equivalent to

x∗ − FK(x∗)+ y = x∗,

and so FK(x∗) = y, showing that FK is surjective.
(iii) Let ξ , ζ ∈ Y . Since FK is surjective, there exist η1, η2 ∈ Y such that

FK(η1) = ξ , FK(η2) = ζ .

Now, by definition of FK and using (41),

‖η1 − η2‖Y = ‖FK(η1)+ GK(1)(f (η1)− Kη1)− FK(η2)

− GK(1)(f (η2)− Kη2)‖Y
≤ ‖ξ − ζ‖Y + ‖GK‖H∞‖f (η1)− f (η2)− K(η1 − η2)‖Y
≤ ‖ξ − ζ‖Y + ‖GK‖H∞λ‖η1 − η2‖Y .

Now F−1
K (ξ) = η1, F−1

K (ζ ) = η2, λ‖GK‖H∞ < 1 and we conclude that

‖F−1
K (ξ)− F−1

K (ζ )‖Y ≤ 1
1 − λ‖GK‖H∞

‖ξ − ζ‖Y ,

completing the proof. �
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Proof of Lemma 4.2: Setting f K(ξ) := f (ξ)− K(ξ) and invoking defini-
tions of x∞ and y∞, we obtain

CKx∞ = CK(I − AK)−1
(
BK(f (z∞)− K(z∞ − w∞))

+ (Be + BKKDe)v
∞
)

= GK(1)f K(z∞)− DKf K(z∞)

+ CK(I − AK)−1 ((Be + BKKDe)v
∞ + BKKw∞)

= z∞ − FK(z∞)− DKf K(z∞)

+ CK(I − AK)−1 ((Be + BKKDe)v
∞ + BKKw∞)

.

Noting that FK(z∞) = CK(I − AK)−1(Be + BKKDe)v
∞ + (I − DK)−1

Dev
∞ + (I + GK(1)K)w∞, it is easily seen that

y∞ = CKx∞ + DK(f (y∞ + w∞)− Ky∞)+ (I − DK)−1Dev
∞,

as required. To prove that (v∞,w∞, x∞, y∞) is an equilibrium quadruple,
we note that

x∞ = AKx∞ + BK(f (y∞ + w∞)− Ky∞)+ (Be + BKKDe)v
∞.

Invoking Lemma 2.2 completes the proof. �

Appendix 2. Sampled-data example: further details
We provide details on the numerical approximation used in Example 7.1.
We first derive the weak form of (69), from which the finite-element
approximation is computed. Given z0 ∈ X and v ∈ L∞

loc(R+), let z denote a
solution of (69). Multiplying both sides of the PDE in (69) byψ ∈ H1(0, 1),
integrating over the spatial domain and integrating by parts gives∫ 1

0
zt(ξ)ψ(ξ) dξ = −

∫ 1

0
zξ (ξ)ψξ (ξ) dξ +

(
2
∫ 1

1/2
ψ(ξ) dξ

)
u

+
(∫ 1

0
be(ξ)ψ(ξ) dξ

)
v. (A2)

Observe that we do not need to impose any boundary conditions on the
space of test functions, so we take H1(0, 1) as the test function space. We
seek an approximate solution to (A2) of the form

zN(t, ξ) =
N∑
j=0

aj(t)φj(ξ), ∀ t > 0, ∀ ξ ∈ (0, 1),

where N ∈ N and φj ∈ H1(0, 1) are the usual (piecewise linear) hat or
tent functions over the uniform mesh on [0, 1], and the ai(t) are scalar
coefficients. Therefore, setting

x := (
a1 a2 . . . aN

)T ,
and taking ψ = φi for all i ∈ {0, 1, . . . ,N} in (A2) yields

Mẋ = −Dx + Fu + Jv.

Here (M,D, F, J) ∈ R(N+1)×(N+1) × R(N+1)×(N+1) × R(N+1) × R(N+1)

have components

Mij :=
∫ 1

0
φi(ξ)φj(ξ) dξ , Dij :=

∫ 1

0
φ′
i(ξ)φ

′
j (ξ) dξ

Fi := 2
∫ 1

1/2
φi(ξ) dξ , Ji :=

∫ 1

0
be(ξ)φi(ξ) dξ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀ i, j ∈ {0, 1, . . . ,N}.

The matrices M, D and F may be found analytically, whilst J may have to
be computed numerically. It is straightforward to show thatM = MT > 0,
and so we obtain the controlled linear system

ẋ = −M−1Dx + M−1Fu + M−1Jw,

with output

y = Lx, where Li := 2
∫ 1/2

0
φi(ξ) dξ ∀ i ∈ {0, 1, . . . ,N}.

In our numerical simulations we take N = 30. The resulting sampled-data
ordinary differential equation is solved numerically using the Mathwork’s

MATLAB (MATLABRelease, 2014) commandode45, over each sampling
period.

Appendix 3. IPM example: further details
We provide details on the numerical approximation used in Example 7.2.
For notational convenience in this section we set N := {1, 2, . . . ,N} for
each N ∈ N. To derive a finite element approximation of the forced
IPM (75), we first derive a weak form. For which purpose, wemultiply both
sides of (75) by ψ ∈ L1(�) and integrate over� to give∫
�

ψ(ξ)x(t + 1, ξ) dξ =
∫
�

ψ(ξ)
[
(Ax)(ξ)+ b(ξ)f (c∗x)+ be(ξ)v(t)

]
dξ

=
∫
�

ψ(ξ)

(∫
�

p(ξ , ζ )x(t, ζ ) dζ
)
dξ

+
(∫

�

ψ(ξ)b(ξ) dξ
)
f (c∗x)

+
(∫

�

ψ(ξ)be(ξ) dξ
)
v(t). (A3)

We seek an approximate solution to (A3) of the form

xN(t, ξ) =
N∑
j=1

aj(t)φj(ξ), ∀ t ∈ Z+, ∀ ξ ∈ �, (A4)

where N ∈ N, φj are given L1 functions and aj(t) are scalar coefficients.
Substituting (A4) into (A3), and testing againstψ = φi for each i ∈ N gives

N∑
j=0

(∫
�

φi(ξ)φj(ξ) dξ
)
aj(t + 1)

=
N∑
j=0

(∫
�

φi(ξ)

∫
�

p(ξ , ζ )φj(ξ) dξ
)
aj(t)

+
(∫

�

φi(ξ)b(ξ) dξ
)
f (c∗xN)+

(∫
�

φi(ξ)be(ξ) dξ
)
v(t). (A5)

Noting that

c∗xN(t, ·) =
N∑
j=0

(∫
�

c(ξ)φj(ξ) dξ
)
aj(t), ∀ t ∈ Z+,

and setting

z(t) := (
a1(t) . . . aN(t)

)T ∈ R
N ∀ t ∈ Z+,

we see that (A5) may be expressed in matrix form as

z+ = M−1Dz + M−1Ff (Lz)+ M−1Jv. (A6)

Here (M,D, J, F, LT) ∈ RN×N × RN×N × RN × RN × RN are given com-
ponentwise by

Mij :=
∫
�

φi(ξ)φj(ξ) dξ , Fi :=
∫
�

φi(ξ)b(ξ) dξ

Ji :=
∫
�

φi(ξ)be(ξ) dξ , Li :=
∫
�

φi(ξ)c(ξ) dξ

⎫⎪⎪⎬
⎪⎪⎭ ∀ i, j ∈ N, (A7)

and

Dij :=
∫
�

φi(ξ)

(∫
�

p(ξ , ζ )φj(ζ ) dζ
)
dξ , ∀ i, j ∈ N. (A8)

Since we are seeking to approximate the L1(�) functions x(t, ·) in L1(�)
(that is, we are not approximating any derivatives), we choose as finite-
dimensional approximation spaces the linear span of N piecewise con-
stant functions. Specifically, for fixed N ∈ N, we define ξj := m1 + j(m2 −
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m1)/N for j ∈ {0, 1, . . . ,N},� := (m2 − m1)/N and

φi : � → R+, φi(ξ) :=
{

1√
�

ξi−1 ≤ ξ ≤ ξi

0 else,
∀ i ∈ N.

An advantage of such a choice is that, as readily seen, M = I, because
Mij = 0 if i �= j and

Mii =
∫ m2

m1

φ2i (ξ) dξ = 1
�

∫ ξi

ξi−1

1dξ = 1, ∀ i ∈ N.

Consequently, (A6) becomes

z+ = Dz + Ff (Lz)+ Jv. (A9)
Moreover, by inspection of (A7) and (A8), it follows that with the above
choice of piecewise constant φj, the matrices D, L, F and J in (A8) are
componentwise nonnegative.

For the simulations in Example 7.2 we use (A9) with N = 30, and the
matrices D, L, J and F are computed numerically.
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