
Systems & Control Letters 44 (2001) 1–12
www.elsevier.com/locate/sysconle

Adaptive low-gain integral control of linear systems with
input and output nonlinearities�

T. Fliegner ∗, H. Logemann, E.P. Ryan
Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, UK BA2 7AY

Received 4 October 2000; received in revised form 7 March 2001; accepted 21 March 2001

Abstract

An adaptive low-gain integral control framework is developed for tracking constant reference signals in a context of
2nite-dimensional, exponentially stable, single-input, single-output linear systems with positive steady-state gain and subject
to locally Lipschitz, monotone input and output nonlinearities of a general nature: the input nonlinearity is required to
satisfy an asymptotic growth condition (of su7cient generality to accommodate nonlinearities ranging from saturation to
exponential growth) and the output nonlinearity is required to satisfy a sector constraint in those cases wherein the input
nonlinearity is unbounded. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Within the context of the servomechanism problem, integral action is a fundamental technique in the control
repertoire. For linear 2nite-dimensional continuous-time single-input, single-output systems � (with transfer
function G) and with reference to Fig. 1, the following principle is well established (see for example [2,10]
or [11]): if � is exponentially stable and G(0)¿ 0, then there exists k∗ ¿ 0 such that, closing the loop, with
constant gain k ¿ 0, around � compensated by an integrator yields a stable closed-loop system that achieves
asymptotic tracking (by the output y) of an arbitrary constant reference signal r provided that k ¡k∗ (an
analogous result holds for multivariable systems, under suitable assumptions on the matrix G(0)).
In [4,5,7,8], the above principle is extended to classes of linear 2nite-dimensional and in2nite-dimensional

continuous-time single-input, single-output systems subject to input and=or output nonlinearities. In particular,
in [4] it is shown that the principle remains valid if (a) the plant to be controlled is a 2nite-dimensional expo-
nentially stable linear system �, with transfer function G satisfying G(0)¿ 0, subject to a globally Lipschitz
nondecreasing input nonlinearity and a locally Lipschitz, nondecreasing sector-bounded output nonlinearity,
and (b) the reference value r is feasible in an entirely natural sense; counterparts of these results in an
in2nite-dimensional setting are contained in [5]. We stress that in these extensions of the above principle, the
input nonlinearity is assumed to satisfy a global Lipschitz condition: whether or not the principle remains valid
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Fig. 1. Constant low-gain integral control.

Fig. 2. Adaptive low-gain integral control.

for input nonlinearities which are merely locally Lipschitz is, to the authors’ knowledge, an open question
to which the present paper provides a partially a7rmative answer (in an adaptive context). Speci2cally, we
consider a class of 2nite-dimensional continuous-time single-input, single-output exponentially stable linear
systems � having transfer function G with G(0)¿ 0 and subject to nondecreasing locally Lipschitz input
nonlinearities ’ and nondecreasing locally Lipschitz sector-bounded output nonlinearities  (the sector con-
straint on  may be weakened if ’ is bounded). Imposing only an asymptotic growth assumption on ’ (an
assumption su7ciently weak to allow, for example, ’ to exhibit exponential growth), we show that, if the
reference signal r is feasible (in the natural sense alluded to earlier), then asymptotic tracking (by the output)
of r can be achieved by adaptive low-gain integral control. In eIect, for each feasible r, the adaptive strategy
generates an asymptotic gain value su7ciently small to ensure tracking of r: however, we reiterate that the
question of existence of a single value k∗ ¿ 0 (independent of r) such that, for 2xed gain k ∈ (0; k∗), tracking
of every feasible r is achieved, remains unanswered. The adaptive approach is constructive: with reference to
Fig. 2, we provide an explicit class of control strategies of the form (the second equation of which manifests
the low-gain structure)

u̇(t)= k(t)�(r − y(t)); k̇(t)=− k2(t)#(�(|r − y(t)|)); (u(0); k(0))= (u0; k0)∈R× (0;∞)

each member of which is characterized by a pair of functions (�; #) and achieves the tracking objective for
all admissible plant triples (�; ’;  ).
The Dexibility in controller structure may have practical rami2cations vis 0a vis other performance indica-

tors such as, for example, mollifying integrator windup or inDuencing transient behaviour through appropriate
choice of the functions (�; #). We emphasize the breadth of the class of allowable input nonlinearities which
ranges from bounded nonlinearities (with, for example, saturation and deadzone eIects) to unbounded nonlin-
earities with exponential growth. We also stress the rudimentary nature of the adaptive strategy which, at its
simplest, takes the form u̇= ke, k̇ =−k2|e|, where e(t)= r−y(t). Moreover, convergence of the nonincreasing
gain function k to a positive limit is generic behaviour in the sense that convergence to zero cannot occur in
all cases other than particular nongeneric cases in which the reference value r is, loosely speaking, commen-
surate with critical values of the plant input nonlinearity (if the latter nonlinearity is strictly increasing, then
a positive limit gain is guaranteed in all cases). In a nonadaptive context, distinct from the present paper,
other contributions to integral control of nonlinear systems may be found in, for example, [3,6] and references
therein.
In summary, the paper develops an adaptive low-gain integral control scheme which is universal in the sense

that tracking is achieved for all exponentially stable linear single-input, single-output systems with positive
steady-state gain and subject to input and output nonlinearities satisfying certain monotonicity and growth
conditions, provided the reference value is feasible in a natural sense.
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2. Problem formulation

The problem of tracking—by adaptive control—constant reference signals r will be addressed in a context
of uncertain single-input u∈L∞

loc(R+;R), single-output y∈L∞
loc(R+;R), 2nite-dimensional (state space RN )

linear systems �=(A; B; C; D), having a nonlinearity ’ in the input channel and a nonlinearity  in the
output channel:

ẋ=Ax + B’(u); x(0)= x0 ∈RN ; (1a)

y=  (Cx + D’(u)): (1b)

2.1. The class S of linear systems

In (1a), A is assumed to be Hurwitz (that is, every eigenvalue of A is assumed to have negative real part).
Furthermore, the transfer function G, given by

G(s)=C(sI − A)−1B+ D

is assumed to be such that G(0)¿ 0. Thus, the underlying class of 2nite-dimensional, real, linear systems
�=(A; B; C; D) is

S := {�=(A; B; C; D) |A Hurwitz; G(0)=D − CA−1B¿ 0}:

2.1.1. The positive-real condition
The proposition below is implicit in [9, Lemma 3:10].

Proposition 2.1. If G is the transfer function of a system �=(A; B; C; D)∈S; then

1 + �Re
G(s)
s
¿ 0 ∀s∈C with Re s¿ 0 (2)

for all �¿ 0 su3ciently small.

We refer to (2) as the positive-real condition. De2ne

�∗ := sup{�¿ 0 | (2) holds}¿ 0: (3)

The following is a statement of [4, Lemma 2:1] (a consequence of the positive-real condition in conjunction
with a variant [12, Theorem 1] of the Kalman–Yakubovich–Popov lemma).

Lemma 2.2. Let �=(A; B; C; D)∈S and �¿ 1=�∗. Then there exists P ∈RN×N such that P=PT ¿ 0 and[
PA+ ATP PA−1B− CT

(A−1B)TP − C −2�

]
¡ 0:

2.2. The tracking objective and feasibility

For �=(A; B; C; D)∈S, nonlinearities ’;  :R → R (of an admissible class, to be made precise in due
course) and reference value r ∈R, the tracking objective is to determine an input u such that the output y
of (1) has the property y(t) → r as t → ∞. To insure that this objective is achievable, we will impose a
feasibility condition on r, namely,

!r ∩ Q" �= ∅; where !r := {v∈R |  (G(0)v)= r}; " := im’; Q" := clos(")

and refer to the set

R := {r ∈R |!r ∩ Q" �= ∅}
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as the set of feasible reference values. The next proposition (a consequence of [5, Proposition 3:4]) asserts
that, if  is continuous and monotone, then r ∈R is close to being a necessary condition for tracking insofar
as, if the tracking objective is achievable whilst maintaining boundedness of ’ ◦ u, then r ∈R.

Proposition 2.3. Let �=(A; B; C; D)∈S and x0 ∈RN . Let ’;  :R→ R and let  be continuous and mono-
tone. Let u :R+ → R be such that ’ ◦ u∈L∞(R+;R) and let x :R+ → RN ; t �→ (expAt)x0 +

∫ t
0 (expA(t −

s))’(u(s)) ds be the unique solution of the initial-value problem (1a). Then

lim
t→∞  (Cx(t) + D’(u(t)))= r ⇒ r ∈R:

2.3. Admissible input=output nonlinearities

2.3.1. Preliminaries
For notational convenience, the following classes of nonlinearities are introduced:

L := {f :R→ R |f locally Lipschitz}; L0 := {f∈L |f(0)= 0}
L(%) := {f∈L | 06 (f(&)− f(0))&6 %&2 ∀&∈R}; L0(%) :=L0 ∩ L(%)

M := {f∈L |f nondecreasing}; M0 := {f∈M |f(0)= 0}
M(%) :=M ∩ L(%); M0(%)=M0 ∩ L(%):

Remark 2.4. We apply the terminology “sector bounded” to functions of class L(%) (and its subclasses
L0(%), M(%) and M0(%)). If f∈M(%), then, for each '∈R, there exists %̃¿ 0 such that the function
& �→ f(&+ ')− f(') is of class M0(%̃).

With each function f∈L, we associate functions f† :R+ → R+ and f−; f♦ :R→ R de2ned by

f†(') := inf{%∈R+| |f(u)− f(v)|6 %|u− v| ∀u; v∈ [− '; ']};

f−(&) := lim inf
(→&
h↓0

f((+ h)− f(()
h

;

f♦(&) := lim inf
n→∞ n[f(&+ 1=n)− f(&)]:

Remark 2.5. It is readily veri2ed that, for each '∈R+, the set {%∈R+| |f(u)−f(v)|6 %|u−v| ∀u; v∈ [−'; ']}
is closed (and is evidently bounded from below by 0): therefore, “inf” in the de2nition of f†(') may be
replaced by “min”. Thus, the quantity f†(') furnishes the smallest Lipschitz constant for the restriction, to
the compact set [− '; '], of a locally Lipschitz function f.

If f is continuously diIerentiable with derivative f′, then f− =f♦ =f′. If f is piecewise continu-
ously diIerentiable (and so its left f′

−(&) and right f′
+(&) derivatives exist at every point &∈R), then

f−(&)6min{f′
−(&); f

′
+(&)} and f♦(&)=f′

+(&).

Lemma 2.6. Let f∈L. Then
(i) f† is nondecreasing;
(ii) f− is lower semicontinuous;
(iii) f♦ is Borel measurable;
(iv) f−(&)6f♦(&) for all &∈R;
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(v) if g :R+ → R is absolutely continuous; then f ◦ g is absolutely continuous with derivative

(f ◦ g)′(t)=f♦(g(t))ġ(t) for a:a: t ∈R+;

(vi) for every ,¿ 0; |f♦(&)|6f†(|&|+ ,) for all &∈R.

Proof. (i) That f† is nondecreasing is an immediate consequence of its de2nition.
(ii) Noting that, for all &∈R, f−(&)= − f◦(&;−1) (the Clarke directional derivative of f at & in

“direction” −1), the assertion follows by upper semicontinuity of f◦ (see, [1, Proposition 2:1:1]).
(iii) Being the pointwise lower limit of a sequence of continuous functions, f♦ is Borel measurable.
(iv) The claim is an immediate consequence of the de2nitions of f− and f♦.
(v) Being the composition of a locally Lipschitz function f and an absolutely continuous function g, f ◦ g

is absolutely continuous. Let D ⊂ R+ denote the set (of full measure) of all points t ¿ 0 at which both
derivatives (f ◦ g)′(t) and ġ(t) exist and de2ne D0 := {t ∈D | ġ(t) �=0}. By the local Lipschitz property of f,
for each t ∈D and -¿ 0, there exists %¿ 0 such that

|f(g(t + h))− f(g(t) + hġ(t))|6 %|g(t + h)− g(t)− hġ(t)| ∀h∈ (−-; -)

and so limh→0[f(g(t + h))− f(g(t) + hġ(t))]=h=0. Since

f(g(t) + hġ(t))− f(g(t))= (f ◦ g)(t + h)− (f ◦ g)(t) + f(g(t) + hġ(t))− f(g(t + h)) ∀t ∈D;

we may conclude that, for each t ∈D0, f is diIerentiable at g(t), with derivative f′(g(t)) satisfying

f′(g(t))ġ(t)= (f ◦ g)′(t) ∀t ∈D0

and, for each t ∈D \D0 (in which case, ġ(t)= 0), (f ◦ g)′(t)= 0. Recalling that R+ \D has measure zero
and noting that, if f is diIerentiable at &, then f′(&)=f♦(&), if follows that

(f ◦ g)′(t)=f♦(g(t))ġ(t) for a:a: t ∈R+:

(vi) Let ,¿ 0 and &∈R be arbitrary. Let N ∈N be such that N ¿ 1=,. Then |f(&+(1=n))−f(&)|6f†(|&|+
,) for all n¿N and so |f♦(&)|6f†(|&|+ ,).

2.3.2. Critical values
Let f∈M. A point &∈R is said to be a critical point (and f(&) is said to be a critical value) of f if

f−(&)= 0. We denote, by C(f), the set of critical values of f∈M:

C(f) := {f(&) | &∈R; f−(&)= 0}:
For example, if f∈M is strictly increasing, then C(f)= ∅; if f∈M is piecewise continuously diIerentiable,
with left and right derivatives f′

− and f′
+, then f(&)∈C(f) if f′

−(&)f
′
+(&)= 0 (that is, if at least one of

the one-sided derivatives is zero at &).

2.3.3. The class N(-) of input=output nonlinearities
We are now in a position to de2ne the class N(-) (parameterized by -¿ 0 and with the property that

N(-1) ⊂ N(-2) if -16 -2) of admissible pairs (’;  ) of input/output nonlinearities. In essence, the class
comprises all pairs (’;  ) of locally Lipschitz, nondecreasing functions R→ R with the following additional
properties: (i) ’† satis2es an exponential growth constraint (quanti2ed by -¿ 0); (ii) if ’ is unbounded, then
 is sector bounded. Speci2cally,

N(-) := {(’;  )∈M×M |’†(')= o(exp(-')) as ' → ∞;

’ unbounded ⇒  ∈M(%) for some %¿ 0}: (4)
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For example, if  ∈M(%) for some %¿ 0 and ’∈M is such that ’ is piecewise continuously diIerentiable
with polynomially bounded derivative, viz. for some constants (¿ 0 and n∈N, ’′(&)6 ([1 + |&|n] at every
point & of continuity of ’′, then (’;  )∈N(-) for all -¿ 0 (if ’ has exponentially bounded derivative, viz.
for some constants (; .¿ 0, ’′(&)6 . exp((|&|) at every point & of continuity of ’′, then (’;  )∈N(-) for
all -¿().

3. Adaptive integral control

3.1. The feedback system

In the context of (1), we will investigate adaptive integral control action

u(t)= u0 +
∫ t

0
k(/)�(r − y(/)) d/; (5)

with time-varying gain k(·) generated by the adaptive law

k(t)=
1

l(t)
; l̇(t)=#(|�(r − y(t))|); l(0)= l0 =

1
k0

¿ 0; (6)

for appropriate choices of �; #∈L. Equivalently, we may express the adaptive control in the form of a system
of diIerential equations

u̇= k�(r − y); k̇ =− k2#(|�(r − y)|); (u(0); k(0))= (u0; k0)∈R× (0;∞): (7)

An application of the control (5) and (6) (equivalently, (7)) to (1) leads to the following system of nonlinear
autonomous diIerential equations:

ẋ=Ax + B’(u); x(0)= x0 ∈RN ; (8a)

u̇= k�(r −  (Cx + D’(u))); u(0)= u0 ∈R; (8b)

k̇ =− k2#(|�(r −  (Cx + D’(u)))|); k(0)= k0 ∈ (0;∞): (8c)

Lemma 3.1. Let �=(A; B; C; D)∈S; ’;  ; �; #∈L and r ∈R. Assume further that #(&)¿ 0 for all &∈R+.
For each (x0; u0; k0)∈RN ×R× (0;∞); the initial-value problem (8) has a unique maximal solution (x; u; k) :
[0; T ) → RN × R× (0;∞). Moreover; if T ¡∞; then lim supt→T |u(t)|=∞.

Proof. Noting that the right-hand sides of the diIerential equations in (8) are locally Lipschitz functions, the
existence of a unique maximal solution (x; u; k) : [0; T ) → RN ×R×(0;∞) of the initial-value problem follows
by the classical theory of ordinary diIerential equations: moreover, if T ¡∞, then the solution is unbounded.
Nonnegativity of the values of # on R+, together with (8c), implies that the solution component k is bounded.
By continuity of ’ and the Hurwitz property of A, we see that component x is bounded whenever component
u is bounded. Therefore, if T ¡∞, then lim supt→T |u(t)|=∞.

3.2. The controller class

We introduce a set Nc(-) (parameterized by -¿ 0) of functions de2ned by

Nc(-) := {(�; #) |�∈L0(%) for some %¿ 0; �−1(0)= {0}; #∈L0; #(')¿ -'∀'∈R+}:
In words, Nc(-) (with the property that Nc(-1) ⊃ Nc(-2) if -16 -2) comprises all pairs (�; #) of locally
Lipschitz functions R → R such that � is sector bounded, �−1(0)= {0}, # is bounded from below on R+

by the linear function ' �→ -' and #(0)= 0. The controller class (parameterized by -¿ 0) consists of all
strategies of the form (5) and (6) (equivalently, (7)) with (�; #)∈Nc(-).
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3.3. The main result

We now arrive at the main result of the paper, the essence of which is an assertion that, for each -¿ 0
and all plants (�; ’;  )∈S×N(-), the objective of tracking any feasible reference signal r ∈R is achieved
by control (5) and (6) (equivalently, (7)) provided that the functions (�; #) are chosen from Nc(-).

Remark 3.2. If � : & �→ & (the identity map) and # : & �→ -&; then it is clear that (�; #)∈Nc(-) and so the
simple control strategy given by u̇= k(r − y) and k̇ = − -k2|r − y| provides S × N(-)-universal tracking
of feasible reference signals r ∈R. Nevertheless; the Dexibility furnished by Nc(-) permits other choices of
(�; #) which may be preferable with respect to other performance indicators: for example, � may be chosen
to be a bounded function, in which case the function u has at most linear growth—a feature which may help
mitigate eIects, undesirable from a practical viewpoint, such as “integrator windup”.

Theorem 3.3. Let �=(A; B; C; D)∈S; -¿ 0; (’;  )∈N(-) and r ∈R. If (�; #)∈Nc(-); then; for each
(x0; u0; k0)∈RN × R × (0;∞); the unique maximal solution (x; u; k) : [0; T ) → RN × R × (0;∞) of the
initial-value problem (8) is such that the following hold:
(i) T =∞;
(ii) limt→∞ ’(u(t))= : ’r ∈!r ∩ Q";
(iii) limt→∞ x(t)=− A−1B’r;
(iv) limt→∞ y(t)= r; where y(t)=  (Cx(t) + D’(u(t)));
(v) if !r ∩ Q"=!r ∩ "; then limt→∞ dist (u(t); ’−1(’r))= 0;
(vi) if !r ∩ Q"=!r ∩ int ("); then u is bounded;
(vii) if !r ∩ Q"=!r ∩ " and !r ∩ C(’)= ∅; then the monotone function k converges to a positive value.

Proof. Introducing functions e :R+ → R and p :R+ → R+ de2ned by

e(t) := �(r −  (Cx(t) + D’(u(t)))) and p(t) :=
∫ t

0
k(s)#(|e(s)|) ds;

we 2rst record that

k(t)= k0 exp(−p(t)) ∀t ∈ [0; T ) (9)

and (d=dt)|u(t)|6 k(t)|e(t)|6 k(t)#(|e(t)|)=- for almost all t ∈ [0; T ), whence

|u(t)|6 |u0|+ p(t)=- ∀t ∈ [0; T ): (10)

Therefore, invoking monotonicity of ’ (in which case, ’♦(u(t))¿ 0) together with statements (i) and (vi)
of Lemma 2.6,

06 k(t)’♦(u(t))6 k0e−p(t)’†(|u(t)|+ 1)6 k0e−p(t)’†(|u0|+ 1 + p(t)=-) ∀t ∈ [0; T ): (11)

Step I: We will prove assertion (i) and, in addition, establish that limt→∞’(u(t)) exists and is 2nite and
that K(t) :=

∫ t
0 k → ∞ as t → ∞.

By monotonicity, positivity and boundedness of k, there exists k̂¿ 0 such that

lim
t↑T

k(t)= k̂¿ 0:

We will consider separately the two possible cases: k̂ ¿ 0 or k̂ =0.
Case A: Assume k̂ ¿ 0. By (9), it follows that the monotone function p is bounded and so, by (10), u is

bounded. By Lemma 3.1, we may conclude that T =∞. Noting that

1
k(t)

=
1
k0

+
∫ t

0
#(|e(/)|) d/ → 1

k̂
as t → ∞;



8 T. Fliegner et al. / Systems & Control Letters 44 (2001) 1–12

we may conclude that #(|e(·)|)∈L1(R+;R). By properties of Nc(-), -|e(t)|6#(|e(t)|) for all t, whence
e∈L1(R+;R). Therefore, by (8b), u(t) converges to a 2nite limit as t → ∞ and, by continuity of ’, it
follows that ’(u(t)) converges to a 2nite limit as t → ∞. Since k̂ ¿ 0, it is clear that K(t)=

∫ t
0 k → ∞ as

t → ∞.
Case B: Assume k̂ =0. Then, by (9), p(t) → ∞ as t → T . Setting p̂(t) := |u0|+ 1 + p(t)=- and invoking

properties of N(-), we have exp(−-p̂(t))’†(p̂(t)) → 0 as t → T . By (11), it follows that

k(t)’♦(u(t)) → 0 as t ↑ T: (12)

By assumption, r ∈R and so !r ∩ Q" �= ∅: Let ’∗ ∈!r ∩ Q". Introduce functions

 ̃ :R→ R; & �→  (&+ G(0)’∗)− r;

5 :R→ R+; & �→
{−�(− ̃ (&))=&; & �=0

0; &=0

and functions z, v, w, 7, 8 de2ned by

z(t) := x(t) + A−1B’(u(t)); v(t) :=’(u(t))− ’∗; w(t) :=Cz(t) + G(0)v(t);

7(t) :=’♦(u(t))5(w(t)); 8(t) := − k(t)7(t)w(t) ∀t ∈ [0; T ):

Note that

e(t)= �(r −  (Cx(t) + D’(u(t))))= �(− ̃ (w(t)))=− 5(w(t))w(t) ∀t ∈ [0; T ) (13)

and, by statement (v) of Lemma 2.6 and (8b), we have

v̇(t)= (d=dt)’(u(t))=’♦(u(t))u̇(t)= k(t)’♦(u(t))e(t)=− k(t)7(t)w(t)= 8(t)

for a:a: t ∈ [0; T ):

From (8a), it now follows that

ż(t)=Az(t) + A−1B8(t) for a:a: t ∈ [0; T ); (14a)

v̇(t)= 8(t) for a:a: t ∈ [0; T ); (14b)

with initial values z(0)= z0 := x0 + A−1B’(u0) and v(0)= v0 :=’(u0)− ’∗.
Next, we claim that, for some %̂¿ 0,

06 7(t)6’♦(u(t))%̂ ∀t ∈ [0; T ): (15)

To establish the claim we consider separately the two cases: ’ bounded and ’ unbounded. If the former is
the case, then, by the Hurwitz property of A, w is bounded: therefore, since  ̃ ∈M0, there exists %̃ such that
| ̃ (w(t))|6 %̃|w(t)| for all t ∈ [0; T ). If the latter is the case, then, by properties of N(-),  ∈M(%) for some
%¿ 0: hence,  ̃ ∈M0(%̃) for some %̃¿ 0 (recall Remark 2.4) and so | ̃ (w(t))|6 %̃|w(t)| for all t ∈ [0; T ).
Recalling that, by properties of Nc(-), �∈L0(%), we may conclude that, in each case,

06 5(w(t))|w(t)|= |�(− ̃ (w(t)))|6 %| ̃ (w(t))|6 %%̃|w(t)| ∀t ∈ [0; T ):

Therefore, 06 5(w(t))6 %%̃ for all t ∈ [0; T ), which, on setting %̂= %%̃, yields (15).
Fix �¿ 1=�∗, where �∗ is given by (3). By Lemma 2.2 there exists P ∈RN×N ; P=PT ¿ 0 such that

9 :=

[
PA+ ATP PA−1B− CT

(A−1B)TP − C −2�

]
¡ 0:
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De2ne the absolutely continuous function

V :R+ → R+; t �→ 〈z(t); Pz(t)〉+ G(0)v2(t):

Then,

V̇ (t) = 〈z(t); (PA+ ATP)z(t)〉+ 2(A−1B)TPz(t)8(t) + 2G(0)v(t)8(t)

= 〈z(t); (PA+ ATP)z(t)〉+ 2[(A−1B)TP − C]z(t)8(t) + 2w(t)8(t)

= 〈[zT(t); 8(t)]T; 9[zT(t); 8(t)]T〉+ 2�82(t)− 2k(t)7(t)w2(t)

6−([||z(t)||2 + 82(t)]− 2k(t)7(t)[1− k(t)7(t)�]w2(t) for a:a: t ∈ [0; T );

where ( := 1=||9−1||. Invoking (12) and (15), we see that there exists t0 ∈ [0; T ) such that

k(t)7(t)�¡ 1
2 ∀t ∈ [t0; T ): (16)

Therefore,

V̇ (t)6− ([||z(t)||2 + 82(t)]− k(t)7(t)w2(t) for a:a: t ∈ [t0; T ): (17)

In particular, it follows that V is bounded which, in turn, implies boundedness of ’ ◦ u, z and e. By (5), we
see that u is bounded on bounded intervals and so, by Lemma 3.1, we may conclude that T =∞.

Introduce functions q :R+ → R+ and W= :R+ → R+ (parameterized by =¿ 0) de2ned by

q(t) :=
∫ t

0
k7 and W=(t) := exp(2=q(t))V (t):

We remark that the function 5 is lower semicontinuous and, by statement (iii) of Lemma 2.6, the function ’♦ is
Borel measurable, whence (Lebesgue) measurability of the composition ’♦◦u: therefore, k7= k(’♦◦u)(5◦w),
being the product of (Lebesgue) measurable functions, is (Lebesgue) measurable and so q is well de2ned.
Noting that, for some constant .¿ 0,

V (t)= 〈z(t); Pz(t)〉+ [w(t)− Cz(t)]2=G(0)6 .[||z(t)||2 + w2(t)] ∀t ∈R+

and invoking (16) and (17), we have

Ẇ =(t) = exp(2=q(t))[V̇ (t) + 2=k(t)7(t)V (t)]

6 exp(2=q(t))[− ((− (.=)=�)||z(t)||2 − k(t)7(t)(1− 2.=)w2(t)] for a:a: t¿ t0:

Choose =¿ 0 su7ciently small so that 0¡.=6min{(�; 14}, in which case

Ẇ =(t)6− 1
2 exp(2=q(t))k(t)7(t)w

2(t) for a:a: t¿ t0;

whence
1
2

∫ ∞

t0
exp(2=q(t))k(t)7(t)w2(t) dt6W=(t0)¡∞:

Therefore,∫ ∞

t0
k(t)7(t)|w(t)| dt =

∫ ∞

t0
exp(−=q(t))

√
k(t)7(t)

√
k(t)7(t) exp(=q(t))|w(t)| dt

6
1
2

∫ ∞

t0
exp(−2=q(t))q̇(t) dt +

1
2

∫ ∞

t0
exp(2=q(t))k(t)7(t)w2(t) dt

6
exp(−2=q(t0))

4=
+W=(t0)¡∞

and so 8=−k7w∈L1(R+;R). By (14b), we may now infer that v(t), and hence ’(u(t)), converges to a 2nite
limit as t → ∞.
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By the Hurwitz property of A, it follows that x (and hence #(|e(·)|)) is bounded and so, for some constant
c¿ 0,

1
k(t)

=
1
k0

+
∫ t

0
#(|e(/)|) d/6 c(1 + t) ∀t ∈R+:

Therefore, K(t)=
∫ t
0 k → ∞ as t → ∞.

We have now established assertion (i) and, moreover, that limt→∞ ’(u(t))= : ’r exists and is 2nite and
that the monotone function K is unbounded. Furthermore, we have established the following fact which we
record for later reference

k(t) ↓ 0 as t → ∞ ⇒ 8=− k7w∈L1(R+;R): (18)

This completes Step I.
Step II. We will prove the truth of statements (ii)–(vi). By Step I, there exists ’r ∈R such that limt→∞

’(u(t))=’r which, together with the Hurwitz property of A, implies that

lim
t→∞[Cx(t) + D’(u(t))]=G(0)’r: (19)

Evidently, ’r ∈ Q" and so, to establish (ii), it su7ces to show that ’r ∈!r . Seeking a contradiction, suppose
that ’r �∈ !r . This supposition implies that

c := r −  (G(0)’r) �=0:

Recalling that, by properties of Nc(-), �∈L0(%) and �−1(0)= {0}, we have c�(c)¿ 0 and so, by continuity
and (19), there exists s¿ 0 such that

c�(r − y(t))= c�(r −  (Cx(t) + D’(u(t))))¿ c�(c)=2= : c∗ ¿ 0 ∀t¿ s:

Noting that u̇(t)= k(t)�(r − y(t)), we have cu̇(t)¿ c∗k(t) for all t¿ s, which, on integration, yields

c[u(t)− u(s)]¿ c∗(K(t)− K(s)) ∀t¿ s:

Since K(t) → ∞ as t → ∞, we conclude that cu(t) → ∞ as t → ∞. Therefore,

lim
t→∞’(u(t))=’r =

{
sup Q" if c¿ 0

inf Q" if c¡ 0:
(20)

Let ’∗ ∈!r ∩ Q". Then, c’∗6 c’r and  (G(0)’∗)= r which, together with the nondecreasing property of
 , yields the contradiction

0= c[r −  (G(0)’∗)]¿ c[r −  (G(0)’r)]= c2 ¿ 0:

Therefore, we may conclude ’r ∈!r ∩ Q" which is statement (ii). Statement (iii) follows from (ii) and the
Hurwitz property of A. Statement (iv) is a consequence of (i), (ii) and continuity of  .
Next, we establish statement (v). Assume !r ∩ Q"=!r ∩ " which, together with (ii), implies the existence

of &∗ ∈R such that ’r =’(&∗). Seeking a contradiction, suppose that dist(u(t); ’−1(’r)) 9 0 as t → ∞.
Then there exist j¿ 0 and a sequence (tn)∈R+ with tn → ∞ as n → ∞, such that

dist (u(tn); ’−1(’r))¿ ,: (21)

If the sequence (u(tn)) is bounded, we may assume without loss of generality that it converges to a 2nite limit
u∞. By continuity, ’(u∞)=’r and so u∞ ∈’−1(’r). This contradicts (21). Therefore, we may assume that
(u(tn)) is unbounded. Extracting a subsequence if necessary, we may then assume that either u(tn) → ∞ or
u(tn) → −∞ as n → ∞: if the former holds, then u(tn)¿&∗ for all n su7ciently large; if the latter holds, then
u(tn)¡&∗ for all n su7ciently large. In either case, by monotonicity of ’ it follows that ’(u(tn))=’(&∗)=’r

for all n su7ciently large. Clearly, this contradicts (21) and so statement (v) must hold.



T. Fliegner et al. / Systems & Control Letters 44 (2001) 1–12 11

To establish (vi), assume that !r ∩ Q"=!r ∩ int(") and, for contradiction, suppose that u is unbounded.
Then there exists a sequence (tn) ⊂ (0;∞) with tn → ∞ and |u(tn)| → ∞ as n → ∞. By monotonicity of ’
and (ii), it then follows that either ’r =sup" or ’r = inf ", contradicting the fact that ’r ∈!r ∩ int(") ⊂
int("). Therefore, u is bounded.
This completes Step II.
Step III. It remains only to establish statement (vii).
By (ii),

’(u(t)) → ’r ∈!r ∩ Q" as t → ∞:

By hypothesis, !r ∩ Q"=!r ∩ " and !r ∩ C(’)= ∅. Therefore, ’r ∈" and ’r �∈ C(’). Thus, the preimage
’−1(’r) is a singleton {ur} and ’−(ur)¿ 0. By statement (v), u(t) → ur as t → ∞. Invoking statements
(ii) and (iv) of Lemma 2.6, there exists s¿ 0 such that

’♦(u(t))¿’−(u(t))¿’−(ur)=2= c¿ 0 ∀t¿ s: (22)

Seeking a contradiction, suppose k(t) ↓ 0 as t → ∞. Then, by (9), p(t) → ∞ as t → ∞ and so k(·)#(|e(·)|) �∈
L1(R+;R). By (iv), e is bounded and so, since #∈L0 (and hence is locally Lipschitz with #(0)= 0),
there exists a constant %̂¿ 0 such that #(|e(t)|)= |#(|e(t)|) − #(0)|6 %̂|e(t)| for all t ∈R+. Therefore, ke �∈
L1(R+;R). Since ’♦(u(t))¿ c¿ 0 for all t¿ s and invoking (13), we may conclude that −k’♦(u)e= k7w �∈
L1(R+;R), which contradicts (18). Therefore, k converges to a positive limit. This completes the proof.

Remark 3.4. If im’ is compact, then the assertions of the above theorem remain true when the hypothesis
on the growth of #∈L0 is replaced by the weaker hypothesis: lim inf '↓0 #(')='¿ -¿ 0. For brevity, we
omit details here.

4. Example

Consider the second-order system

ẋ1 = x2; ẋ2 =− ax2 − bx1 + ’(u); y=  (x1);

with a; b¿ 0 and (’;  )∈N(1). Choosing # : & �→ & and �∈M0(1) of saturation type, de2ned as follows:

� : & �→ sat (&) :=

{
sgn(&); |&|¿ 1

&; |&|6 1

then (�; #)∈Nc(1).
For purposes of illustration, assume that the input and output nonlinearities take the forms

’ : & �→ &3;  : & �→ arctan(&):

The transfer function G of the associated linear system � is given by

G(s)=
1

s2 + as+ b
; with G(0)= 1=b¿ 0:

Since !r = {v∈R |  (G(0)v)= r} �= ∅ if and only if r ∈ (−?=2; ?=2), we have !r ∩ Q" �= ∅ if and only if
r ∈ (−?=2; ?=2). Thus, the set R of feasible reference values is given by R=(−?=2; ?=2).

By Theorem 3.3, it follows that the adaptive controller

u̇= k sat(r − y); k̇ =− k2|r − y|; (u(0); k(0))= (u0; k0)∈R× (0;∞)

achieves the tracking objective for each feasible reference value r ∈R. Moreover, if r �=0 (so that !r ∩
C(’)= ∅), then the adapting gain k converges to a positive value. For plant parameter values a=2, b=1,
initial data (x1(0); x2(0); u0; l0)= (0; 0; 0; 1) and the feasible reference value r=1, Fig. 3 (generated using
SIMULINK Simulation Software under MATLAB) depicts the system performance under adaptive control. In
this case, !r ∩C(’)=  −1(1)∩{0}= ∅ and so the gain converges to a positive limit, as is evident in Fig. 3.
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Fig. 3. Performance under adaptive control.
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