Using R

(with applications in Time Series Analysis)

Dr. Gavin Shaddick

January 2004

These notes are based on a set produced by Dr R. Salway for the MA20035 course.

Contents

1 R Basics 4
1.1 Introduction to R L 4
1.1.1 Whatis R? . . . o o e 4
1.1.2 Advantages of R L L 4
1.1.3 Using R on the Library PCs e 4
1.1.4 Downloading R o . e 5

1.2 Getting Started in R oL 5
1.2.1 Starting R © . L 5
1.2.2 Entering Commands o e e e 5
1.2.3 Command history e e 6
1.24 Getting Help L o e 6
1.25 Quitting o L e 6

1.3 Commands and Objects L e 6
1.3.1 Simple Arithmetic e 6
1.3.2 Simple Numeric Functions L 7
1.3.3 Variables L 7
1.3.4 Logical Values e 8

1.4 Data o 8
1.4.1 Vectors L 8
1.4.1.1 Creating Vectors o it i e e e 9

1.4.2 Manipulating Vectors e 10
1.4.3 Functions of Vectors e 11
1.4.4 Data Frames L 11

1.5 Imput and Output 12
1.5.1 Entering Data 12
1.5.2 Saving Data L e 13
1.5.3 Using Scripts o o e 13
1.5.4 Recording Output e 13

1.6 Saving Graphics L L 13
1.6.1 Printing L e 14

1.6.2 Savingtoafile L e 14

1.6.3 Including agraphin Word L 14

2 Exploratory Data Analysis in R 16
2.04 Summarising Data e 16
2.0.4.1 Numerical Data o 16

2.0.4.2 Categorical Data 17

2.0.4.3 Making Numerical Data Categorical 17

2.0.5 Graphsand Plots L 18
2.0.5.1 Univariate Data e 18

2.0.5.2 Bivariate Data L e 19

2.0.5.3 Miscellaneous Graphics Commands L oL 20

3 Time series analysis in R 22
3.1 Introduction e 22
3.2 Removing atrend. oL e 24
3.2.1 Using the CO dataset e 24

3.3 Removing a periodiceffect 24
3.3.1 Using the nottem dataset e 24

3.4 Taking account of a regime shift o o 25
3.4.1 Using the UKDriverDeaths dataset 25
3.4.2 Using the sunspots dataset L 25

3.5 Fitting ARIMA models e 26
351 AR models e 26

About this Document

These notes provide an introduction to using the statistical software package R, for the course MA20035:
Statistical Inference 2. They do not demonstrate all the features of R but concentrate on those that are most
useful for the course.

Throughout this document I will use the following conventions:
The names of R commands in the text will appear in a different font, with parentheses; for example, summary ().

The names of R objects in the text will also appear in a different font, but have no parentheses; for example,
bird.data.

Commands that you should type in will appear indented in a different font, preceded by the symbol ‘> ’; you
do not need to type ‘> ’ when entering commands. For example,

> min(data)
R output will appear indented in a different font; for example,

[1] 38

Chapter 1

R Basics

1.1 Introduction to R

1.1.1 What is R?

R is a freely available language and environment for statistical computing and graphics providing a wide variety
of statistical and graphical techniques. It is very similar to a commercial statistics package called S-Plus, which
is widely used.

R is a command-line driven package. This means that for most commands you have to type the command
from the keyboard. The advantage of this is that it is very flexible to add different options to a command; for
example,

> hist(weights)

will draw a histogram of the data weights using the default options. However you may also specify some of
those options more exactly:

> hist(weights, breaks=5, freq=F, col=’lightblue’, main=’Histogram of Weights’)

The disadvantage of a command-line driven program is that it may take a little time to learn the commands.
However, most of the commands in R are intuitive. R also provides some commands in the menus; these mainly
relate to managing your R session.

1.1.2 Advantages of R

e R is free and available for all major platforms.

e It has excellent built-in help.

It has excellent graphical capacities.

e It is easy to use S-Plus once you have learnt R (and vice versa).

It is powerful with many built-in statistical functions.

It is easy to extend with user-defined functions.

1.1.3 Using R on the Library PCs

R is available on the PCs in the library. From the Start button choose
Programs — Departments — Mathematical Sciences - R — R 1.8.1

1.1.4 Downloading R

Since R is freely available under the GNU Public License, you may download a copy for use on your own
computer. Versions are available for Windows, Unix, Linux and Macintosh.

The R software itself and documentation can be obtained from the Comprehensive R Archive Network (CRAN)
at
http://cran.uk.r-project.org.

To download a self-extracting set-up file for Windows, select the Windows (95 or later) option from the ’Pre-
compiled Binary Distributions’ section and click on base/. The most recent version of R at the time of writing
is version 1.8.1, and the set up program is the file rw1081.exe; click on it to download. (If a more recent version
is available, it will be the file beginning rw.) This file is around 20 Mb, so may take some time. When you have
downloaded it on to your computer, double click on the file and follow the instructions to install R choosing the
default options. You will require around 35-40Mb of free space on your hard drive for a standard installation.

1.2 Getting Started in R

1.2.1 Starting R

When R starts you should see a window with the following text (the text may differ slightly depending on the
version you are using):

R : Copyright 2003, The R Foundation for Statistical Computing
Version 1.8.1 (2003-11-21), ISBN 3-900051-00-3

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R in publicatioms.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for a HTML browser interface to help.
Type ’q()’ to quit R.

>

The symbol ‘> * appears in red, and is called the prompt; it indicates that R is waiting for you to type a
command. If a command is too long to fit on a line a ‘+’ is used to indicate that the command is continued
from the previous line. All commands that you type in appear in red, and R output appears in blue.

In the code examples that follow, you do not need to type the prompt ‘> .

1.2.2 Entering Commands

The easiest way of using R is to enter commands directly in this window. For example, try typing 2+2 at the
command prompt and pressing enter. You should see the output:

[1] 4

The [1] indicates that the answer is a vector of length one; we will return to this later.

You can use the cursor keys to edit the command line as normal. Use the up and down cursor keys to scroll
backward and forward through your previous commands; this can save you a lot of typing.

The main window is called the command window. Other windows you may come across are the command
history window and graphics windows.

1.2.3 Command history

Rather than scrolling through a long list of previous commands using the cursor keys, R provides another way
of retrieving previous commands. Type history() and a new window will appear listing the last 25 commands
and you can copy and paste the command or commands you want. To retrieve more previous commands, for
example the last 100, use history(100).

1.2.4 Getting Help

R provides two types of help, both available through the Help menu. The easiest to use is the Html help; select
Help — R language (html). This displays help in Internet Explorer just like a web page. The main page
has several categories. ‘An Introduction to R’ provides basic help similar to this document. ‘Search Engine &
Keywords’ allows you to search for different commands by keyword, or sorted into topics.

Use the html help to read the page on the command history().

1.2.5 Quitting
To close R, use the command
> q0

or choose Exit from the File menu. You will be asked if you wish to save the workspace; you should answer
yes to this if you want to keep any data you have created.

1.3 Commands and Objects

R is an object-oriented language. This means that every piece of information is a type of object, for example
data, vectors and results of analysis, and each object has a name. The user can perform actions on these objects
via functions. Some functions behave differently depending on the type of object.

Although this sounds complicated, in practice it makes R very easy to use. Most of the time you don’t need to
know or understand how this works. We will discuss this further later on.

1.3.1 Simple Arithmetic

An expression typed at the prompt is evaluated and the result printed. You can use simple arithmetic:

>14+2+3 # addition

[1] 6

>3 x4+ 2 # multiplication is done first

[1] 14

> 1+ 3/2 # so is division

[1] 2.5

> (1 + 3)/2 # Use brackets to change the order
[11 2

> 4x*x2 # use ** for power...

[1] 16

> 472 # ...or use ~
[1] 16

The hash # in the commands above simply means a comment; R ignores everything after the hash. This allows
us to insert comments to explain the code; this is particularly useful in a long and complicated analysis.

1.3.2 Simple Numeric Functions

More complicated mathematical expressions can be calculated using functions. These have a name and an
argument. For example, the function to calculate a square root has the name sqrt(). The argument is the
value we want to find the square root of; to call the function, place the argument inside the bracket. So, to find
the square root of 2, the argument is 2, so we type:

> sqrt(2)
[1] 1.414214

Similarly,

> log(3.14159) # log of pi
[1] 1.144729

> > log(pi) # pi can be used as a given constant
[1] 1.14473

A table of commonly used mathematical functions is given below.

abs () Absolute value (without +/-)

sign() 1 if argument is positive, -1 if it is negative.
sqrt) square root

log() natural logarithm

exp() exponential

1
1

sin(), asin() | sin and sin™
cos(), acos() | cos and cos™
tan(), atan() | tan and tan—!

1.3.3 Variables

Variables are called objects in R. You can assign a value to an object using ”=" or the assignment operator <—
(a less than’ sign followed by a minus sign); the two are interchangeable.

> x <— 5
From now on you can use x in place of the number 5:

> x + 2
[11 7

> sqrt(x)
[1] 2.236068

> y = sqrt(x)
Typing the name of an object prints the value of it to screen.

>y
[1] 2.236068

1.3.4 Logical Values

A logical value is either TRUE or FALSE.

> x =10 # Set x equal to 10

> x > 10 # is x strictly greater than 10 7

[1] FALSE

> x <= 10 # is x strictly less than or equal to 107
[1] TRUE

> x == 10 # is x equal to 107

[1] TRUE

To test if an object is equal to something, you must use the == operator, with a double equals sign. Be careful
with this; it is easy to make a mistake and use ”=" instead.

1.4 Data

Statistics is about the analysis of data, so R provides lots of functions to store, manipulate and perform statistical
analysis on all sorts of data.

1.4.1 Vectors

A vector is simply a collection of numbers or variables. Vectors are convenient ways to store a series of data,
for example a list of measurements. In R, vectors are also objects. To create a vector, use the c() function (c
stands for ’concatenate’).

For example,

> x <- ¢(2,3,5,7) # the first 4 prime numbers
> X
[11 2357

Functions and logical operations work on each element of the vector.

> x72

[1] 4 9 25 49

> log(x)

[1] 0.6931472 1.0986123 1.6094379 1.9459101
> x>5

[1] FALSE FALSE FALSE TRUE

Two vectors are combined element by element:

> >y =c(1,2,3,4)
>x+y
[1] 3 5 8 11

> X xy

[1] 2 6 15 28

Notice that x * y does not calculate the vector cross product. To get the cross product use:

> > x hxhy
[1] 51

When two vectors have different lengths, the shorter is repeated to match the longer one. This is called the
recycling rule. If the length of the shorter vector is not a multiple of the length of the other a warning is printed.

> y= c(1,2)
>x+y
[1] 3569

Here, x is of length 4 while y is of length 2. To produce x+y the variable y is repeated to make ¢(1,2,1,2) and
then added to x as usual.

This can cause mistakes if you’re not used to it;

1.4.1.1 Creating Vectors
Often you need to create a vector that is a sequence of numbers, or perhaps with all elements the same. There
are several shortcuts to doing this.

To create a list of numbers between 10 and 50, we use

> x = 10:50

> X

[1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[20] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[39] 48 49 50

The numbers in square brackets tell you which element of the vector starts the new line. So the first line starts
with the first element (10), the second line starts with the 20th element (29) etc. This is why previously R put
[1] before each answer; if the answer is just a single number this is the same as a vector of length 1.

You can achieve the same result using the seq() function:
> x = seq(10,50,by=1)

This creates a sequence of numbers between 10 and 50 inclusive, incrementing by 1 each time. Alternatively,
you can specify how many numbers in the result; numbers will be equally spaced:

> x = seq(10,50,length=41)
x = seq(10,50,length=40) # The result need not be integer values!

Another useful function is rep(); this can be used to create a vector by repeating a number a set number of
times. For example, to repeat a number 5 times:

> rep(3,5)
[1] 33333

The arguments to rep() can also be vectors.

See if you can predict what the following will do, and then check:

1. seq(1,10,2)

2. seq(5,1,-1)

3. seq(1,5,1length=11)

4, > x=c¢(1,2,3)
> rep(x,3)
o. > y=x
> rep(x,y)

1.4.2 Manipulating Vectors

R allows you to manipulate vectors in many ways. You can extract a particular element of a vector using square
brackets []1:

> x=1:5

> x[3] #extract 3rd element of x

[11 3

> x[-3] #everything except the 3rd element
[11 1245

> x[3]=10 # change 3rd element

> X

[11 1 2 10 4 5

> i=c(1,3,5)

> x[il # use another vector, i, to extract a list of elements

[1] 1 10 5

> x[-1i] # everything except those in i

[1]1 2 4

> x[6] = 6 # add a new element

> x=c(x,7) # another way to add a new element using the c() function
> X

[1] 12104567

A useful function is the which(logical) function. This evaluates the logical function logical to get a vector
of TRUE and FALSE, and reports the positions of elements which are TRUE. For example,

> x = c(10, 7, 9, 10, 10, 12, 9, 10)

> x==10 # Recall == for logical equal to

[1] TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

> which(x==10) # which elements are equal to 107

[1] 1 4 58

> x[which(x==10)] # combine which with [] to extract those elements
[1] 10 10 10 10

> x[which(x<10)] # values of x which are less than 10

[11 799

10

1.4.3 Functions of Vectors

The simple functions we saw earlier work on each element of a vector. There are also some useful functions that
work on the whole vector to give a single answer.

Function name
length(x)

max (x)

min(x)

sum(x)

prod(x)

mean (x)

sd(x)

var (x)

Value returned

The number of elements in x

The largest value of x

The smallest value in the vector x

The sum of elements in x

The product of elements in x

The mean of elements in x

The standard deviation of elements in x
The variance of elements in x

For example, to find the length of a vector, use the length() function:

> length(x)
[11 8

1.4.4 Data Frames

A data frame is another type of object in R that is used to store a dataset. For example, if the dataset is all the
weights and heights of 10 people, the data frame in R will be a matrix with 10 rows, one for each person, and 2
columns, one for weight and one for height. Data frames also have row and column labels, making them ideal
for storing datasets. Data in a data frame is much like data in a spreadsheet. Usually, we have one column for
each variable, and one row for each observation.

For example, height and weight data might be stored in a data frame called hgtdata:

> hgtdata

height
169
167
166
172
162
185
165
171
170
163

O 00 ~NO ULk WN -

e
(]

weight
61
69
70
76
60
58
61
72
55
63

You can access just the heights using the column name with the $ operator:

> hgtdata$height
[1] 169 167 166 172 162 185 165 171 170 163

This returns the height column as a vector. You can then use the functions above, for example:

> mean(hgtdata$height)

[11 169

The names () function will give you the names of the columns:

> names (hgtdata)
[1] "height" "weight"

11

1.5 Input and Output

1.5.1 Entering Data

Often you will need to read in data from another source. If the data is stored in a text file you can read it into
R using read.table(). This function has a lot of optional arguments depending on how the data is written in
the file. The basic function is simple, however:

> data = read.table("h:/data.dat")

By default, each variable (column) will be labelled V1, V2, Often text files of data specify the column
names in the first line, you can get R to use these labels by specifying header==T:

> data = read.table("h:/data.dat", header=T)

Another useful option is to specify what character has been used to separate one variable from the next. Often,
a comma is used; to tell R this use

> data = read.table("h:/data.dat", header=T, sep=",")
If the data are tab-separated, use the special character combination ‘\t’:
> data = read.table("h:/data.dat", header=T, sep="\t")

Use the help command to find out about other options.

Suppose the data file looks like this:

height, weight
169, 61
167, 69

163, 63
The first line contains the names of the variables, and variables are separated on each row using a comma. So
we would read this into R using

> hgtdata = read.table("h:/hgtdata.dat", header=T, sep=",")

This creates the hgtdata data frame in Section 1.4.4. This is the format I will use for all data files in this course.
For convenience, you can also use the quicker function

> data = read.csv("h:/hgtdata.dat")

which is identical.

In this course, you can combine read.table() with the function url() which will download a file from the
internet. I will make data available on my website, which you can then read directly into R:

> hgtdata = read.csv(url("http://www.bath.ac.uk/ masres/MA35/hgtdata.dat"))

Note that this will only work if you are connected to the Internet. Once the data has been read into R, it is
saved as the object hgtdata and you do not need to be connected to use it.

12

1.5.2 Saving Data

If you have a data frame you want to save, use the function write.table(). Again, this has many options. To
save a data frame in the same format I use in this course, use

> write.table(hgtdata, file="h:/hgtdata.dat", col.names=T, sep=",")
Note that write.table() uses the option col.names instead of header to save the column names as the first

line of the file.
Check the help file for more details.

1.5.3 Using Scripts

It can often be useful to read in a list of commands from a separate file, for example, if you want to keep a
record of what you did or have a long or complicated piece of R code that you need to repeat. This is called a
script file.

Write your script file in Notepad and save it (Word is not suitable since a script file needs to be plain text).
From the R File menu choose ’Source R code’. This will read in and run all the commands in your script file.
You can also use the command:

> > source("h:/analysis.txt")

Both methods will run all the commands in the file in order, as if you had typed them directly into the command
window.

If you just want to run selected parts of your file, from the R File menu choose 'Display file’. This will open the
script file in a new window where you can copy and paste selected commands. You cannot edit the file in R.

1.5.4 Recording Output

Usually R output prints directly to the screen. You can change this so it prints to a file instead, by using the
sink () command:

> sink("h:/results.r") # create a new file in h: directory
> mean(x) # no output to screen

> sink() # close the file

> mean(x) # this output appears on screen

If the file h:/results.r already exists it will be overwritten without any warning, so take care you don’t
overwrite important results.

There is no way to get the output written to the screen and to a file at the same time. This is an occasion when
it might be useful to use a script file:

> source("h:/analysis.txt") # print output to screen and check its 0K
> sink("h:/results.r")

> source("h:/analysis.txt") # print the same output to file

> sink()

1.6 Saving Graphics

Typically you will want to save a copy of any graphs produced by R, and perhaps include them in another
package, for example in a Word document.

Suppose you have produced a histogram of the heights in hgtdata.dat:

13

> hist(hgtdata$height)

We will explore the histogram function, hist() in more detail later, but for now note that it opens a new
window in R, called the Graphics Window, containing the graph. When this window is active, the menu options
also change.

1.6.1 Printing

To print the graph directly, use Print... from the File menu.

1.6.2 Saving to a file

You can save the file in several different formats from Save As (also in the File menu).

e Word can read any of Metafile, Bmp, Png, Jpeg.
e Postscript is suitable if you use A TEXto write documents.
e Jpeg is a good choice if you want to include it on a webpage.

The different formats can vary greatly in size. The following table compares the file size of the histogram graph
in each format:

Metafile 18
Postscript 4
PDF 4
Png)
Bmp 440

Jpeg 50% 18
Jpeg 100% 37

Metafile is probably the best option for including in a Word document.

1.6.3 Including a graph in Word

You can copy and paste the graph directly into Word, by clicking on the Graphics Window and using 'Ctrl +
C’ to copy the file. Then in Word you can paste the image using Ctrl + V’, or Paste from the Edit menu.

Alternatively you can save the graph as above, and then import it into Word. From the Insert menu choose
Picture — From File and select the saved image.

Both these methods will work. I prefer the second since you then have two copies of the graph, one on its own
and one as part of the Word document. If you delete the graph by mistake in Word when moving text and
graphics around it is simple to insert the saved file again, rather than having to go back and recreate the graph
in R.

Exercises 1

The times taken waiting for a bus to the university in minutes for ten days are as follows:

3116991610795

1. Create a vector of this data called wait.

2. Find the minimum, mean and maximum time.

14

10.

The fourth time was a mistake; it should have been 8. Correct this and find the new mean.

How often did I wait for more than ten minutes?
[Hint: sum(x>y) counts the number of times x>y is true.]

What percentage of the time did I wait less than 8 minutes?

On the same days, the time taken for the bus to reach the university was as follows:

141213 111310131111 13

Create a vector called bustime.
Find the minimum, mean and maximum bus time.

Create a new vector of the total time it takes to get into university, that is the waiting time plus the time
up the hill.

If T get to the bus stop at 8:55, how many times was I late for my 9:15 lecture?

On which days was I late?

15

Chapter 2

Exploratory Data Analysis in R

The examples in this section use data on brain data. Researchers collected a sample of 38 right-handed Anglo
introductory psychology students at a large southwestern US university. Subjects took an IQ test and the
researchers used Magnetic Resonance Imaging (MRI) to determine the brain size of the subjects. Two groups of
students were taken; the first with IQ of less than 103 and the second with IQ of greater than 130. Information
about sex, height and weight are also included.

This data can be downloaded from my website using:
> brain.data = read.csv(url("http://www.bath.ac.uk/ masres/MA35/brain.dat"))

On downloading a new dataset you should check that the data is as you expect - check the variables, number
of cases, values are in a reasonable range, no missing values etc. Use the names() function to check the names
of the variables (we are expecting 5: sex, height, weight, IQ and MRI count). We can use dim(brain.data) to
get the dimensions of the dataset - there should be 5 columns and 38 rows.

When using a data frame like this it can be tedious to always remember to refer to the columns as brain.data$sex
instead of just using sex. We can get R to automatically include the brain.data$ by using

> attach(brain.data)
Now we can refer to sex. We must remember to detach the prefix brain.data$ at the end of the session using

> detach(brain.data)

2.0.4 Summarising Data
2.0.4.1 Numerical Data

With numerical data we are interested in measures of location and dispersion, such as the mean and standard
deviation. In the brain data, all the variables except sex are numeric. Note that IQ can only be an integer; this
is an example of discrete data.

The following commands all produce exactly what you would expect:

e min(height)

e max(height)

e mean(height)

e median(height)
o var (height)

e sqrt(var(height)) (calculate standard deviation the long way)

16

e sd(height) (or the quick way)
We can also calculate these summaries directly:
e sum(height)/length(height) (using formula for the mean)

The quantile() function can calculate any quantile between 0 and 1. So, for example, the median is the point
at which half the sample lies below, so it is given by

quantile(height,0.5)

e Use the quantile function to find the lower and upper quantiles, and hence the interquartile range.

o Check your answer using the built-in function IQR().

Another useful function is summary (). Which statistics does it give you?

2.0.4.2 Categorical Data

Categorical data is data that records categories, for example, sex or age groups. Often there is no order to such
data (for example, male and female). Summary statistics such as the mean have no meaning for categorical
data, so we turn to other ways of summarising.

The categorical data in brain.data is sex.
The table() command allows us to summarise categorical data by table.

Try the following;:

e mean(sex) (this should produce an error because we are dealing with categorical data.)

e table(sex) (frequencies)

e table(sex)/length(sex) (proportions)

e table(weight) (this is why we wouldn’t use table() on continuous data, especially if we had a large

number of cases!)

Trying to find the mean of sex gives an error because R knows that sex is a categorical vector and stores
it differently. How does it know? Because when we read in the dataset it contained characters rather than
numbers. R stores categorical data using factors. The data is classified into different levels, or factors. In this
case the factors are Male and Female. If you type

> levels(sex)

this tells you the names of the levels.
You can also use the function summary() on categorical data. How does the result differ from using it with

height?

summary () is an example of a function that behaves differently depending on the type of object you have.
height is a numerical object, whereas sex is a factor object. How does summary () behave with a data frame?
Try summary(brain.data) to find out.

2.0.4.3 Making Numerical Data Categorical

Categorical data can be derived from numerical data by grouping values together. For example, there are two
groups of students; those with high 1Qs (greater than 130) and those with lower IQs (less than 103). We can
create a new variable that groups the subjects into these two groups.

We need to specify the cut-off points; since there are no students with IQ between 103 and 130, we’ll use 0, 116,
200. Note that we have added minimum and maximum values, so the first category is 0-116 and the second
category is 117-200. The default is to include the cut-off points in the lowest category.

17

> IQ.cats = cut(IQ, breaks=c(0, 116, 200))

The resulting vector, IQ.cats, is automatically created as a factor. The levels are
Levels: (0,116] (116,200]

We can change the labels directly:
> levels(IQ.cats) = c("low IQ","high IQ")

Now try summarising the variable I1Q.cats.

2.0.5 Graphs and Plots

Often the easiest way to spot patterns in data is to view them graphically. R allows you all the standard plots,
plus lots of flexibility over the appearance.

2.0.5.1 Univariate Data

Most graphs have many options that allow you control over what they plot and how they appear. Most of
these have default options, which make sensible choices. We will concentrate on the most useful options; read
the help files for further options. The best way to learn about the different options and how they affect the
resulting plot is to try them.

For categorical data, the most useful plot is a bar chart. The most basic bar chart is produces by barplot(x),
where x is a vector of heights of the bars, one for each bar in the plot. Try the following:

e barplot(c(20,18)) not very informative

barplot(table(sex)) same data but now it adds the factor names

barplot(table(sex)/length(sex)) with proportions

barplot(table(sex) ,col=c("blue","lightblue")) a change of colour scheme

barplot(table(sex) ,col="black",density=16) better for printing in black and white

Similar to the bar chart, but used for continuous data, is the histogram. Again the hist() only needs one
argument, which is a vector of data. Using the default options will attempt to make sensible choices about the
choices of categories. Try the following:

hist (IQ)

hist(IQ, breaks=15) more categories

hist(IQ, breaks=c(75,80,85,90,95,100,105,130,135,140,145)) specify the break points

hist(IQ, breaks=seq(75,145,5), freq=F) same break points, using seq(); plot on the density scale
instead of frequencies

R can also produce stem and leaf plots:

e stem(IQ) basic stem and leaf

e stem(IQ, scale=2) alter the scale so its longer

Boxplots are another useful way to summarise continuous data.

18

e boxplot(MRI.Count) basic boxplot.
The centre line in the median, and the box is the interquartile range. The whiskers extend to cover most
of the data (but not extreme points)

e summary(MRI.Count) compare with actual values

e boxplot(MRI.Count,range=1) control how far the whiskers extend - this effectively defines what you
class as extreme values. This sets the whiskers to 1 interquartile range away from the median. The default
is 1.5.

2.0.5.2 Bivariate Data

Often we are interested in the relationship between two variables.

Two Categorical Variables

The table() function extends to count the numbers in two or more categories. For example,

e table(sex,IQ.cats)
e prop.table(table(sex,IQ.cats),1) row proportions
e prop.table(table(sex,IQ.cats),2) column proportions

e prop.table(table(sex,IQ.cats)) cell proportions
We can also plot bar charts of one category within another:

e barplot(table(IQ.cats,sex)) 1Q groups within sex
e barplot(table(IQ.cats,sex), beside=T) plot bars side by side

e barplot(table(IQ.cats,sex), beside=T, legend.text=T) add legend

Continuous and Categorical Variable

In this case we are interested in how the levels of the continuous variable depend on which category an individual
is in. So, for example, we might wish to see how the heights and weights in our dataset differ between males
and females.

To get summary statistics for each group, use
e summary(height[sex=="Male"]) extract the elements of height which have sex equal to "Male”, and
summarise the resulting vector

o summary(height [sex=="Female"])
Boxplots are a good way to compare the heights in this way:

e boxplot(height8ex)
The Symbol is a special character used in R to indicate a formula. We will see more of it later. Here,
the variable to the left of the is the continuous variable, and we wish to see how it depends upon the
categorical variable to the right.

e All the boxplot () options from before can be used here.

Try comparing the MRI count between the two IQ categories. Does it look like weight of the brain (measured
by MRI count) is related to 1Q?

An alternative plot for small amounts of data is a dot chart. The horizontal axis is the continuous variable, and
a dot is plotted for each data point, grouped within categories:

19

> dotchart (height, groups=sex)

Produce a dot chart to compare the MRI count between the two IQ categories.

The advantage of using a boxplot is that it can summarise large amounts of data, and the key features of several
groups can be easily compared. The main advantage of using a dot chart is that you can see the actual values;
sometimes this can be useful to spot patterns. For example, try the following to compare some hypothetical
data on reaction times for 5 patients before (B) and after (A) a drug:

> drug.data=data.frame(time=c(12,14,17,13,14,17,19,22,18,19), when=c("B","B","B","B","B","A" ,"A
boxplot(drug.data$time ~“drug.data$when)
dotchart (drug.data$time, groups=drug.data$when)

The boxplot clearly shows that the after times are longer than the before times. However, the dot chart also
shows that each person’s time has been shifted by the same amount.

Two Continuous Variables

To study the relationship between two continuous variables, a scatterplot is a good choice.

e plot(MRI.Count, IQ) basic scatterplot

e plot(MRI.Count, IQ, type="1") joints the points with straight lines. This is not very useful for this
data.

e However, we can do things like this:

> x=seq(0,3,length=100)
> plot(x, exp(x), type="1")

A plot of the exponential function.

2.0.5.3 Miscellaneous Graphics Commands

Multiple Plots
Plots are shown in a separate graphics window. The default is one plot at a time; however, you can show several
plots on the same window using the command:

> par(mfrow=c(2,3))

This is one of the less obvious commands in R. The function par () deals with many options to do with plotting.
This splits the graphics window into 2 rows and 3 columns; plots are drawn across the rows first. When the
last area is filled, the next plot will clear the screen and start again in the top left. To set back to one plot at
a time, use par (mfrow=c(2,3)).

Titles

Most plots will produce default titles. However, these may not always be what you want. You can change the
axes and main title by using the following options in the plotting command:

e xlab="X axis label"
e ylab="Y axis label"

e main="Main Title of Plot"

20

So, for example,

> hist(height) # default options

hist(height, main="Histogram of heights, in inches") # new title

Adding to Plots

The plot commands above all create a new plot. There are also functions that allow you to add lines and points
to the current plot.

e points(x,y) This adds the point (z, y) to the current plot. z and y can be vectors to plot a series of
points. You can change the character used to plot the point via the option pch. For example, points(x,y,
pch=3) produces a ‘+’. To see a full list of these, type example (points).

e lines(x,y) This connects the points (z, y) with straight lines. The option 1ty alters the line type. For
example, lines(x,y, 1lty=2) produces a dashed line.

e abline(a,b) This draws the line y = a + bz on the plot. Again, you can use the 1ty option to control
the style of the line.

For example,

> plot(height, weight, pch=4) #You can use pch with plot() as well

> abline(-130, 4) # plot the regression line y=-130+4x

> which(height==min(height)) # find the smallest...

[1] 21

> which(height==max (height)) # ...and largest

[1] 26

> lines(height[c(21,26)], weight[c(21,26)], 1lty=2) # join these two observations

with a dotted line

Exercises 2

Download the data file http://www.bath.ac.uk/"“masres/MA35/pollution.dat. This contains data on 60
US cities; annual rainfall, mortality, the proportion of the population that is nonwhite (in four categories) and
the nitrogen oxide level.

Using descriptive summaries and plots, explore the data. In particular, we are interested in whether there seems
to be a relationship between mortality and the other variables.

21

Chapter 3

Time series analysis in R

3.1 Introduction

The first thing to do is to type
library (ts)

at the time series parts of the package are not at your disposal until you have loaded them. We already know
how to load built-in datasets, but to load our own we have to use one of R’s functions, such as scan or read.table;
consult the help pages for details, but I will now suppose that I have read in a file of data called ”recife” to be
found in the course directory (or downloaded from the webpage) using the command

recdat _ scan (‘‘recife’’)

Note that this assumes the R session was started in the course directory - you should make your own working
directory and copy the data files across in order for this to work.

Now take a look at the data using the command
plot(recdat, type=’’1’’)

What happens if you just type plot(recdat)? Notice the regular annual pattern of this temperature data. Once
we have discussed the basic theory of time series, we will find that many of the standard analyses and estimators
of the subject are available in R, but the exercises for this lecture go no further than practising loading datasets
into R and taking a look at them, always the first step of any statistical procedure!

22

Exercises

1. On physical grounds, it seems a reasonable guess that the volume of a tree should be related to the girth
and height by
Volume o Height x (Girth)?;

indeed, if the tree(-trunk) were a perfect cylinder, we would have
Volume = ¢ x Height x (Girth)?,

where 4mc = 1. To check this out, perform a fit using the following sequence of commands:

data(trees)

1t _ log(trees); attach(lt);

fit _ Im(Volume \sim Girth + Height)
summary (fit)

Observe that the conjectured relation is supported by the results of the analysis; the slope of the log-linear
regression on Height is not significantly different from 1, and the slope of the regression on Girth is not
significantly different from 2. What is the estimated value of the intercept? What would be the value of
the intercept if the cylinder model was correct? What explanation can you propose for the difference?

2. We shall later look in more detail at some of the built-in datasets including: air-miles, co2, discoveries,
nhtemp, sunspots, BJsales, EuStockMarkets, LakeHuron, UKDriverDeaths, USAccDeaths, lh, lynx, not-
tem, presidents, treering. Load each of these datasets into R, and view them using the plot command (or
the plot.ts command). In each case, answer the questions: (a) does there appear to be any trend in the
data (that is, a tendency for the values to rise, or to fall)? (b) does there appear to any periodic behaviour
of the data? (c) does there appear to be any change of regime in the data? (d) do there appear to be any
anomalous values in the data? Comment on any interesting features you observe.

On the following pages, some of the datasets are plotted out for you to see. How did R produce these
plots? The commands used to produce the third set of pictures were the following;:

postscript(file=s3.ps,horizontal=F,paper=’’a4’’)
par (mfrow=c(3,2))

plot(presidents)

plot(clarks)

plot(garch)

plot(recife)

dev.off ()

V V V V V V VvV

This created a PostScript file ts3.ps which was embedded into the LaTeX document you are now reading.
Note that in order to make the various datasets available for plotting, we first have to load them, and the
commands for this were (for example)

> data(presidents)
> recife_as.ts(scan(’’recife’’))

Note the use of the function as.ts, which converts the vector of data produced by the scan command into a
time series. This is largely a point of style, but if we had not used this, then the plot of the recife dataset
would have been as a sequence of circles at the datapoints, rather that the joined up line trace we see here.

23

3.2 Removing a trend

3.2.1 Using the CO dataset

In the lecture, we saw a large number of datasets, displayed using R. This course is about stationary processes,
which we shall shortly define, but a stationary process is informally a random process which looks the same if we
were to make a constant shift of the time axis. So for example, the dataset co2 does not look stationary, because
it has a strong up ward trend; the same is true of clarks. The dataset recife is presumably not stationary, since
shifting the data be six months would move highs to lows. However, as we shall later see, it is possible for
a stationary process to have a very regular periodic structure provided the phase of the periodic structure is
suitably random, so we could (and shall) attempt to model data such as recife, or USAccDeaths, using time
series building blocks.

When faced with a time series, the first thing to do is to look as it; you have seen how to use R to do this.
The next thing to do is to remove any obvious non-stationarities, and we shall see some examples shortly. Once
this is done, we may try to fit the residual data by some autoregressive or moving-average model, and later on,
when we have defined these things, we will see how to do that. But the objective for today is to take some of
our datasets, and try to reduce them to something which looks nearer to stationarity. Here are a few worked
examples.

This data looks like it is trending upward, so we first remove that trend by fitting a linear regression; the
commands used to do this were

> t_1l:length(co2)
> ft _ 1m(co2™t)

The first command sets up the vector of times at which the observations were taken (the independent or ex-
planatory variable), and the second fits the linear regression. To see what happened, type

> summary (ft)

to see the estimates of the regression coefficients and t-values for their significance. The R object ft is an object
of class Im, and is a list of various things. To extract the coefficients of the fit, for example, type

> ft$coefficients

See the help page for Im for a full description of what has been produced by the command Im. Of interest to
us here is the vector of residuals, obtained and displayed by

> v_ft$residuals
> plot.ts(v)

Describe what you now see. Has the trend been removed?

3.3 Removing a periodic effect

3.3.1 Using the nottem dataset

How would we remove the clear periodic effect in the dataset nottem? We could fit the monthly factor as follows:

24

fac_gl(12,1,length=240,labels=c(‘‘jan’’,’’feb’’,’ ’mar’’,’’apr’’,’’may’’, + ‘‘jun’’,’’jul’’,’’aug’’
ft_1lm(nottem™fac)

summary (ft)

plot (ft$residuals)

vV V V VvV

It is not necessary to supply the vector of factor levels, but I have done this for clarity. Does there appear to
be any trend or periodicity in the residuals?

What would you expect to see if you plotted out the fitted values from this fit?
Try it ans see!

3.4 Taking account of a regime shift

3.4.1 Using the UKDriverDeaths dataset

. In this dataset, monthly figures over a 16 year period, the final 24 months were figures from after the intro-
duction of seatbelts laws. We can now try to estimate the effect of this legislation as follows:

safe_array (0, dim=c(length(UKDriverDeaths),1))
safe[169:192] _ 1

ft _ 1m(UKDriverDeaths™safe)

summary (ft)

plot (ft$residuals)

vV V. V Vv VvV

Read the help page on array and be sure you understand the syntax of the first line. Do the residuals show any
trend, regime shift, or periodicity? What effect did the introduction of seatbelt legislation have on the number
of drivers killed per month on UK roads?

3.4.2 Using the sunspots dataset

Let’s now examine the sunspot data: this data appears to show cycels of sunspot activity, so we could for
example try to remove the month-of-the-year effect as for nottem. Do this: what do you see? Discuss.

There does appear to be some periodic behaviour in the data, and we need some systematic way of investigating
this - see later.

Exercises
1. Find the largest value in the dataset garch and replace it with “NA” using the commands

> summary (garch)

> which.max(garch)

> garch[which.max(garch)]_’’NA’’
> plot(garch, type=’’177)

Does this time series now appear to have any trend, periodicity, outliers, or regime change?

25

2. Extract the ftse dataset from EuStockMarkets with the command
ff _ EuStockMarketsl[,4]

take logs, and remove any trend. Print out a plot of the residuals; does it appear to have any trend,
periodicity, outliers, or regime change?

3. After transforming the clarks data appropiately, first identify and remove any trend, then identify and
remove any seasonal effect. Printo out the plots of the resulting time series, and the commands you used
to obtain them.

4. There is obvious periodicity in the sunspot data, but it is not on an annual cycle. By inspection of the
data, try to guess the period, and remove that seasonal trend. Print out a plot of the residuals after the
easonal effect has been removed.

5. (Optional, for those who like programming). Build a function which will remove trend from a given time
series. Its input and output should both be time series.

1. Using R, compute the annual moving average of the recife dataset, using the following script:

> dat_as.ts(scan(’’recife’’))
> v_array(1/12, dim=c(12,1))
> y_filter(dat, v, sides=1)
>plot(dat)

> lines(y,col=’’blue’’)

What is the object v created by this script? What is the object y created by this script? Explain what

each of the three arguments to the filter command are doing. Comment on what the plot shows

3.5 Fitting ARIMA models

3.5.1 AR models
We are now going to load up some of the datasets and try to fit ARIMA models to them

Exercise 1. Load up the dataset beavers from R, and then analyse the temperature data in the dataframe
beaverl: plot it, then inspect the ACF, then try fitting AR models using the ar command in its various forms;
ar.yw, ar.burg, ar.mle. Using the first 80 observations, predict ahead the remaining 34: I had stored the
temperatures in a time-series object y, so I did

> new _ y[1:80]

> pr _ predict.ar(F2,new,n.ahead=34)
> plot(y)

s > lines(pr$pred,col=’’red’’)

Comment on what you have found.

Exercise 2. Load up the dataset austres, and plot it. What do you see?

Take differences, and inspect the ACF. Try fitting various AR models. Ifda is the difference sequence, try the
following commands:

26

var (da)

F1 _ ar.yw(da)

Fi$ar

Fi$var.pred

F2 _ar.burg(da)

F2$ar

F2$var.pred

acf (F2%resid,na.action=na.omit,lag.max=30)
acf(F1$resid,na.action=na.omit,lag.max=30)
F3 _ ar.burg(da, aic=F, order.max=4)

F3$ar

F3$var.pred

acf (F3$resid,na.action=na.omit,lag.max=30)

VVVVVVVVVVYVVYV

There are three models fitted here; which would you prefer to use and why?

Exercise 3. Load up the dataset treering, and plot it. Does it appear that the data should be transformed? Do
there appear to be outlying values? Inspect the ACF. Does this suggest a possible model for the data?

Try some of the following.

>var (treering)

F1 _ ar.yw(treering);F2 _ ar.burg(treering)
Fi$ar; F2$ar

Fi$var.pred; F2$var.pred

F3 _ ar.burg(treering, aic=F, order.max=3)
F3$ar

F3$var.pred

V V V V V V

Exercise 4. Following the lines of the earlier examples, find an apporpriate model for the data in the R dataset
lh. If you choose something other than an AR(1) model, compare your choice with an AR(1) and explain why
you think your choice is to be preferred.

Exercise 5. See what you make of the lynx data.

Exercise 6. And lastly, find some model to fit the sunspot.month data.

27

