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1 Preliminaries

1.1 Inequalities

µ will always denote a positive measure - think of Lebesgue measure LN , possibly with a positive

density function.

Conjugate exponents. p, q ∈ [1,∞] with
1

p
+

1

q
= 1 or p = 1 and q = ∞, or p = ∞ and

q = 1, are called conjugate exponents.

Young’s inequality. If 1 < p, q <∞ with
1

p
+

1

q
= 1 then

xy ≤ 1

p
xp +

1

q
yq (1)

for all x ≥ 0 and y ≥ 0.

Proof. Write (1) as xy − 1

p
xp ≤ 1

q
yq. Then maximise LHS over x for fixed y.

Hölder’s Inequality. Let p, q ∈ [1,∞] be conjugate exponents, f ∈ Lp(X, µ), g ∈ Lq(X, µ).

Then ∫

X

|fg|dµ ≤ ‖f‖p‖g‖q.

Proof. Put x =
|f(z)|
‖f‖p

, y =
|g(z)|
‖g‖q

in Young’s inequality and integrate. p = 1, q = ∞ is

trivial.
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Minkowski’s Inequality. For 1 ≤ p ≤ ∞, f, g ∈ Lp(X, µ),

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. Firstly consider the case p = 1. We have |f + g| ≤ |f |+ |g| a.e., hence
∫

X

|f + g|dµ ≤
∫

X

|f |dµ+

∫

X

|g|dµ.

Secondly consider the case 1 < p <∞. For x ∈ X we have

|f(x) + g(x)|p ≤ (2max{|f(x)|, |g(x)|})p ≤ 2p(|f(x)|p + |g(x)|p),

hence ∫

X

|f + g|pdµ ≤ 2p
(∫

X

|f |pdµ+

∫

X

|g|pdµ
)
<∞.

Thus f + g ∈ Lp(X,Σ, µ). Let q be the conjugate exponent of p. Then

∫

X

|f + g|pdµ =

∫

X

|f + g| |f + g|p−1dµ

≤
∫

X

|f | |f + g|p−1dµ+

∫

X

|g| |f + g|p−1dµ

≤
((∫

X

|f |pdµ
)1/p

+

(∫

X

|g|pdµ
)1/p

)(∫

X

|f + g|(p−1)qdµ

)1/q

(by Hölder’s inequality)

= (||f ||p + ||g||p)
(∫

X

|f + g|pdµ
)1/q

.

If ||f + g||p > 0 we can divide by ||f + g||p/qp to obtain

||f + g||p ≤ ||f ||p + ||g||p,

whereas if ||f + g||p = 0 the result is trivial.

Finally consider the case p = ∞. For almost every x ∈ X we have

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ esssup|f |+ esssup|g| = ||f ||∞ + ||g||∞.

Thus f + g ∈ L∞(X,Σ, µ) and

||f + g||∞ ≤ ||f ||∞ + ||g||∞.
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Generalised Hölder’s Inequality. Suppose p1, . . . , pn ∈ (1,∞),
1

p1
+ . . . +

1

pn
= 1, ui ∈

Lpi(X, µ), i = 1, . . . , n. Then
∫

X

|u1u2 · · ·un|dµ ≤ ‖u1‖p1 · · · ‖un‖pn.

Proof. Exercise.

Interpolation Inequality. Suppose 1 ≤ p < q < r < ∞ and choose 0 < θ < 1 such that
1

q
=
θ

p
+

1− θ

r
. Suppose u ∈ Lp(X, µ) ∩ Lr(X, µ). Then

‖u‖q ≤ ‖u‖θp ‖u‖1−θ
r

Proof. Exercise.

Jensen’s Inequality for sums. Let I ⊂ R be an open interval, let Ψ : I → R be a convex

function, let x1, . . . , xn ∈ I and let λi ≥ 0 for 1 ≤ i ≤ n with λ1 + · · ·λn = 1. Then

Ψ

(
n∑

i=1

λixi

)
≤

n∑

i=1

λiΨ(xi).

Proof. By induction from the definition of convexity.

Jensen’s Inequality for functions. Let I ⊂ R be an open interval, let Ψ : I → R be a convex

function and let µ be a probability measure on X (µ ≥ 0, µ(X) = 1). Then for u ∈ L1(X, µ)

taking values in I we have

Ψ

(∫

X

u(x)dµ(x)

)
≤
∫

X

Ψ(u(x))dµ(x).

Proof. Recall that Ψ is everywhere subdifferentiable, that is, for every x ∈ I there is at least

one real α such that

Ψ(y) ≥ Ψ(x) + α(y − x) ∀y ∈ I,

and so Ψ is the pointwise supremum of all the affine functionals on R dominated by Ψ.

Suppose firstly that α, β ∈ R s.t.

ϕ(s) = αs+ β ≤ Ψ(s) ∀s ∈ R.

Then

ϕ

(∫
udµ

)
= α

∫

X

udµ+ β =

∫

X

(αu+ β)dµ ≤
∫

X

Ψ ◦ u dµ.

Taking the supremum over all such affine functionals ϕ dominated by Ψ, we obtain

Ψ

(∫

X

udµ

)
≤
∫

X

Ψ ◦ u dµ.
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The AM-GM inequality. (x1x2 · · ·xn)1/n ≤ (x1 + · · ·+ xn)/n for positive x1, . . . , xn follows

by applying Jensen’s inequality for sums to the convex function − log on (0,∞).

1.2 Partial Derivatives and Distributions

Integrals are with respect to LN .

Definition. The support of a real-valued function f , supp f = {x | f(x) 6= 0}.

Notation for partial derivatives on R
N .

For 1 ≤ i ≤ N write Di =
∂

∂xi
. Write N0 = N ∪ {0}. Any α = (α1, . . . , αN) ∈ N

N
0 is called a

multi-index of degree |α| = α1 + · · ·+ αN . Write α! = α1! · · ·αN ! and D
α = Dα1

1 · · ·DαN
N .

Note. 0 = (0, . . . , 0) ∈ N
N
0 , |0| = 0, and D0u = u.

If u has continuous partial derivatives of order m, we have equality of cross-derivatives for

orders up to m, so the order of differentiation in Dαu for |α| ≤ m is unimportant.

Leibniz’s Theorem. If u, v are m-times continuously differentiable functions of N real vari-

ables then, for 0 ≤ |α| ≤ m,

Dαuv =
∑

0≤β≤α

(
α

β

)
DβuDα−βv

where (
α

β

)
=

α!

β!(α− β)!

and β ≤ α signifies βi ≤ αi for i = 1, . . . , N .

For Ω ⊂ R
N open, C∞(Ω) denotes the set of real functions on Ω that have continuous

partial derivatives of all orders.

D(Ω) = C∞
c (Ω) denotes the set of all u ∈ C∞(Ω) such that supp u is a compact subset of

Ω. Elements of D(Ω) are called test functions.

Example.

J(x) =

{
ke

− 1
1−|x|2 |x| < 1

0 |x| ≥ 1,

k is chosen such that

∫

RN

J = 1.

Jε(x) = ε−NJ(ε−1x), x ∈ R
N and ε > 0.

Then Jε ∈ D(RN ) and is known as the standard mollifier.
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Convention. If ϕ ∈ D(Ω) then ϕ = 0 on R
N \ Ω.

Convergence of test functions.

We say that ϕn → ϕ0 in D(Ω) as n → ∞ if there exists a compact set K ⊂ Ω such that

suppϕn ⊂ K for all n ∈ N and Dαϕn → Dαϕ0 uniformly on K as n→ ∞, for every α ∈ N
N
0 .

Definition of Distributions.

Given Ω ⊂ R
N open, a distribution on Ω is a real linear functional on D(Ω) (sequentially)

continuous with respect to convergence of test functions. 〈u, ϕ〉 denotes the value taken by the

distribution u at the test function ϕ. The set of distributions on Ω is denoted D ′(Ω).

Remarks

1. See Walter Rudin’s Functional Analysis for an account of a topology on D(Ω) that gives rise

to this notion of convergence of test functions. Linear functionals are shown to be continuous

iff they are sequentially continuous.

2. If ϕ ∈ D(Ω) and α ∈ N
N
0 then Dαϕ is also a test function.

3. Dα : D(Ω) → D(Ω) is linear and sequentially continuous.

Examples

1. We call a measurable function u on Ω locally integrable (u ∈ L1
loc(Ω)) if

∫

K

|u| <∞ for every

K ⊂ Ω compact. A locally integrable u gives rise to a distribution by

〈u, ϕ〉 =
∫

Ω

uϕ ∀ϕ ∈ D(Ω).

This is well defined since ϕ has compact support and u is integrable on compact sets, and

linear. If ϕn → ϕ in D(Ω) choose a compact K ⊂ Ω containing the supports of all the ϕn.

Then

|〈u, ϕn〉 − 〈u, ϕ〉| ≤ ‖u‖L1(K)‖ϕn − ϕ‖∞ → 0

by uniform convergence on K. Later we’ll show that different u give rise to different distribu-

tions.

2. Fix z ∈ Ω and define

〈δz, ϕ〉 = ϕ(z) ∀ϕ ∈ D(Ω).

This is well-defined and linear. If ϕn → ϕ in D(Ω) then ϕn(z) → ϕ(z), hence δz is continuous

(Dirac δ-function).

3. Let Ω ⊂ R
1, z ∈ Ω,

〈δ′z, ϕ〉 = −ϕ′(z) ∀ϕ ∈ D(Ω)

defines a distribution, called a dipole.
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Lemma 1.1. Suppose Ω ⊂ R
N is open and u ∈ C1(Ω). Then

∫

Ω

(Diu)ϕ = −
∫

Ω

uDiϕ ∀ϕ ∈ D(Ω).

Proof. Assume u, ϕ are zero outside Ω. Then uϕ ∈ C1(RN) even if u is not in C1(RN). So

∫

Ω

(Diu)ϕ =

∫

RN

(Di(uϕ)− uDiϕ) =

∫

rB(0)

div (uϕei)− uDiϕ) = 0−
∫

RN

uDiϕ = −
∫

Ω

uDiϕ

where ei is the unit vector in the positive xi direction and we have applied the Divergence

Theorem on a large ball rB(0) whose interior contains the support of ϕ .

Note. If |α| = m and u ∈ Cm(Ω) then

∫

Ω

Dαuϕ = (−1)m
∫

Ω

uDαϕ ∀ϕ ∈ D(Ω).

Definition. Let u ∈ D ′(Ω) and α ∈ N
N
0 . Define Dαu by

〈Dαu, ϕ〉 = (−1)|α|〈u,Dαϕ〉 ∀ϕ ∈ D(Ω).

Lemma 1.2. (i) If u ∈ D ′(Ω) and α ∈ N
N
0 then Dαu ∈ D ′(Ω).

(ii) If α, β ∈ N
N
0 , u ∈ D ′(Ω) then

DαDβu = Dα+βu = DβDαu.

Proof. (i) Dαu is the composition of Dα : D(Ω) → D(Ω) which is linear and sequentially

continuous with u : D(Ω) → R which is linear and sequentially continuous. So Dαu ∈ D ′(Ω).

(ii) Consider ϕ ∈ D(Ω). Then

〈DαDβu, ϕ〉 = (−1)|α|〈Dβu,Dαϕ〉

= (−1)|α|+|β|〈u,DβDαϕ〉

= (−1)|α|+|β|〈u,Dβ+αϕ〉 by equality of cross-derivatives for smooth functions

= 〈Dβ+αu, ϕ〉.

So DαDβu = Dβ+αu = Dα+βu = DβDαu.
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Examples.

1. Let

u(x) = x+ =

{
0, x ≤ 0

x, x > 0
x ∈ R.

For ϕ ∈ D(R)

〈u′, ϕ〉 = −〈u, ϕ′〉

= −
∫ ∞

−∞

u(x)ϕ′(x)dx

= −
∫ ∞

0

xϕ′(x)dx

=
[
xϕ(x)

]∞
0
+

∫ ∞

0

1ϕ(x)dx (integrating by parts)

= 0 +

∫ ∞

0

1ϕ(x)dx (ϕ has compact support)

=

∫ ∞

−∞

H(x)ϕ(x)dx,

where

H(x) =

{
0 x ≤ 0

1 x > 0
(Heaviside Step function).

So u′ = H .

2. Differentiate H . For ϕ ∈ D(R)

〈H ′, ϕ〉 = −〈H,ϕ′〉

= −
∫ ∞

−∞

H(x)ϕ′(x)dx

= −
∫ ∞

0

1ϕ′(x)dx

=
[
ϕ(x)

]∞
0

= ϕ(0).

Thus 〈H ′, ϕ〉 = ϕ(0) = δ0(ϕ). So H
′ = δ0 (Dirac delta function).

3. Differentiate δ0. For ϕ ∈ D(R)

〈δ′0, ϕ〉 = −〈δ0, ϕ′〉 = −ϕ′(0) “Dipole”.

4. Le µ be a Radon measure on Ω (Borel measure that assigns finite measure to compact sets).

Define

〈µ, ϕ〉 =
∫

Ω

ϕdµ ∀ϕ ∈ D(Ω).
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Then µ gives rise to a distribution, for if fϕn → ϕ in then there is a compact K ⊂ Ω that

contains the supports of the ϕn and ϕ and ϕn → ϕ uniformly, so

∫

Ω

ϕndµ→
∫

Ω

ϕdµ

and the linearity follows from properties of the integral.

Connections with classical derivatives.

1. Let f ∈ L1
loc(a, b), x0 ∈ (a, b),

F (x) =

∫ x

x0

f(x)dx, a < x < b.

(a) Then F is continuous and F ′ = f in the sense of distributions (proved later Proposition

1.4).

(b) F ′ = f classically a.e. in (a, b) (tricky - see W. Rudin’s Real and Complex Analysis,

Ch. 8).

2. Let F be continuous on (a, b).

(a) If F ′ = f ∈ L1
loc(a, b) in the sense of distributions, then

F (x) =

∫ x

x0

f + c (x0 ∈ (a, b))

for some c ∈ R (to be proved later).

(b) If F ′ = f ∈ L1
loc(a, b) classically a.e., we cannot conclude F (x) =

∫ x

x0

f+c. See Cantor

Function (Devil’s Staircase) in Rudin’s Real and Complex Analysis, Ch. 8.

Lemma 1.3. Let Ω ∈ R
N be open. Then

(i) D(Ω) is dense in Lp(Ω) for 1 ≤ p <∞.

(ii) If u ∈ L1
loc(Ω) and ∫

Ω

uϕ = 0 ∀ϕ ∈ D(Ω)

then u = 0 a.e.

(Hence different locally integrable functions u give different distributions.)

Proof. Later.

Proposition 1.4. Let f ∈ L1
loc(a, b) and F (x) =

∫ x

x0

f , some x0 ∈ (a, b). Then F ′ = f in the

sense of distributions.
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Proof. If f is continuous then F is continuously differentiable with F ′ = f and the result follows

from Lemma 1.1.

Now consider the general case. Firstly, choose a sequence {fn}∞n=1 in D(a, b) converging to

f in L1([α, β]) for all [α, β] ⊂ (a, b) (by Lemma 1.3(i)). Define Fn(x) =

∫ x

x0

fn for some fixed

x0 ∈ (a, b). Then F ′
n = fn both classically and in the sense of distributions. For ϕ ∈ D(a, b)

〈F ′
n, ϕ〉 = 〈fn, ϕ〉 =

∫ b

a

fnϕ

→
∫ b

a

fϕ (by Hölder’s ineq. on compact set suppϕ)

= 〈f, ϕ〉.

Also,

〈F ′
n, ϕ〉 = −〈Fn, ϕ

′〉

= −
∫ b

a

Fnϕ
′

→ −
∫ b

a

Fϕ′ (since Fn → F uniformly on suppϕ)

= 〈F ′, ϕ〉.

Thus,

〈F ′, ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ D(a, b).

So F ′ = f as distributions.

2 Sobolev spaces

Definition. Let Ω ⊂ R
N be open, 1 ≤ p ≤ ∞, m ∈ N. Define the Sobolev space Wm,p(Ω) by

Wm,p(Ω) =
{
u | Dαu ∈ Lp(Ω) for all α ∈ N

N
0 s.t. 0 ≤ |α| ≤ m

}
.

With the obvious real vector space structure, define the norm on Wm,p(Ω) by

‖u‖m,p =


 ∑

0≤|α|≤m

∫

Ω

|Dαu|p



1
p

1 ≤ p <∞

‖u‖m,∞ = max
0≤|α|≤m

‖Dαu‖∞.

Theorem 2.1. Let Ω ⊂ R
N be open, 1 ≤ p ≤ ∞, m ∈ N. Then Wm,p(Ω) is a Banach space.
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Proof. Let {un}∞n=1 be a Cauchy sequence in Wm,p(Ω). For each α ∈ N
N
0 , 0 ≤ |α| ≤ m,

‖Dαun −Dαuk‖p ≤ ‖un − uk‖m,p.

Hence {Dαun}∞n=1 is a Cauchy sequence in Lp(Ω), and converges to some vα ∈ Lp(Ω).

Now un → v0, and for ϕ ∈ D(Ω)

〈un, Dαϕ〉 =
∫

Ω

unD
αϕ

Hölder−→
∫

Ω

v0D
αϕ = 〈v0, Dαϕ〉

and

〈Dαun, ϕ〉 =
∫

Ω

Dαunϕ
Hölder−→

∫

Ω

vαϕ.

Since

〈Dαun, ϕ〉 = (−1)|α|〈un, Dαϕ〉

we obtain

〈vα, ϕ〉 = (−1)|α|〈v0, Dαϕ〉 = 〈Dαv0, ϕ〉.

So, by uniqueness of function representing Dαv0 (Lemma 1.3(ii)),

Dαv0 = vα.

Thus Dαun → Dαv0 in ‖ ‖p for all 0 ≤ |α| ≤ m, that is, un → v0 in Wm,p(Ω).

Theorem 2.2. Let Ω ⊂ R
N be open, m ∈ N.

(i) If 1 ≤ p <∞ then Wm,p(Ω) is separable.

(ii) If 1 < p <∞ then Wm,p(Ω) is reflexive.

Proof. Write A = {α ∈ N
N
0 | 0 ≤ |α| ≤ m}, and write Y = Lp(Ω)A, that is the set of maps

from A to Lp(Ω), whose members we think of as vectors (vα)α∈A whose components belong to

Lp(Ω) and are indexed by elements of A. For v ∈ Y set

‖v‖Y =

( ∑

0≤|α|≤m

‖vα‖pp
) 1

p

(note the sum is over α ∈ A)

which makes Y into a Banach space. The map T : Wm,p(Ω) → Y

(Tu)α = Dαu α ∈ A, for u ∈ Wm,p(Ω),

is a linear isometry of Wm,p(Ω) to a linear subspace X of Y . Moreover, Wm,p(Ω) is complete,

so X is complete with ‖ ‖Y , so X is closed in Y .
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(i) If 1 ≤ p <∞ then Lp(Ω) is separable, so Y is separable, so X is separable, so Wm,p(Ω)

is separable.

(ii) Suppose 1 < p < ∞. Then Lp(Ω) is reflexive (Lp(Ω) is isometric under the natural

map onto Lp(Ω)∗∗; equivalently, the closed unit ball of Lp(Ω) is compact in the weak topology).

Hence Y is reflexive, hence X is reflexive (closed linear subspace of a reflexive space), hence

Wm,p is reflexive.

2.1 More spaces and boundary values

A proper theory of boundary values for Sobolev functions requires smoothness assumptions on

∂Ω; see “Trace Theorem” later on. A rough-and-ready definition of Wm,p(Ω) functions whose

derivatives of orders 0, 1, . . . , m− 1 vanish on the boundary, is as follows:

Definition. For Ω ⊂ R
N open, m ∈ N, define Wm,p

0 (Ω) to be the closure of D(Ω) in Wm,p(Ω).

This is frequently a convenient space for studying Dirichlet problems for PDE.

Definition. Hm(Ω) =Wm,2(Ω) is a Hilbert space with scalar product

〈u, v〉m =
∑

0≤|α|≤m

∫

Ω

DαuDαv u, v ∈ Hm(Ω).

Write Hm
0 (Ω) =Wm,2

0 (Ω).

Theorem 2.3. Let Ω ⊂ R
N be open, 1 ≤ p ≤ ∞. Then there is a constant c = c(p,N), such

that for u ∈ W 1,p(Ω),

c−1‖u‖1,p,Ω ≤ ‖u ◦ A‖1,p,A−1Ω ≤ c‖u‖1,p,Ω

for all A ∈ O(N).

Proof. Consider A =∈ O(N), u ∈ W 1,p(Ω) and v = u ◦AT = u ◦A−1 ∈ Lp(Ω). Let ϕ ∈ D(AΩ)
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and set and ψ = ϕ ◦A ∈ D(Ω). Let ei denote the unit vector in the positive xi direction. Then

〈Div, ϕ〉 = −
∫

AΩ

v(y)Diϕ(y)dy

= −
∫

AΩ

u(ATy)(Diϕ)(AA
Ty)dy

= −
∫

Ω

u(x)Diϕ(Ax)dx (Ax = y, | detA| = 1)

= −
∫

Ω

u(x)Di(ψ ◦ AT )(Ax)dx

= −
∫

Ω

u(x)D(ψ ◦ AT )(Ax)eidx (D = derivative)

= −
∫

Ω

u(x)D(ψ ◦ AT )(Ax)eidx

= −
∫

Ω

u(x)Dψ(x)DAT (Ax)eidx (Chain rule)

= −
∫

Ω

u(x)Dψ(x)AT eidx

= −
∫

Ω

u(x)eTi A∇ψ(x)dx (transposing real integrand)

=

∫

Ω

eTi A∇u(x)ψ(x)dx

=

∫

AΩ

eTi A∇u(ATy)ψ(ATy)dy

so

∇v = A(∇u) ◦ AT .

So ∇v ∈ Lp(AΩ) and

‖∇v‖p ≤ c‖∇u‖p,

where

c = sup
A∈O(N),|ξ|p=1

|Aξ|p

from which the result follows.

Remark. This shows we are free to rotate axes, at the cost of replacing the Sobolev norm by

an equivalent norm, bounded by a constant independent of the rotation. Recall - two norms

‖ ‖1 and ‖ ‖2 are equivalent if there is a constant c > 0 such that

c−1‖x‖1 ≤ ‖x‖2 ≤ c‖x‖1

for all x ∈ X . Two norms are equivalent if and only if they give rise to the same convergent

sequences.
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Theorem 2.4 (Poincaré’s Inequality). Let Ω ⊂ R
N be open, suppose Ω lies between two parallel

hyperplanes a distance l > 0 apart and let 1 ≤ p ≤ ∞, m ∈ N. Then there exists c =

c(l, p,m,N) > 0 such that

‖u‖m,p ≤ c

( ∑

|α|=m

‖Dαu‖pp
) 1

p

when 1 ≤ p <∞

and

‖u‖m,∞ ≤ c max
|α|=m

‖Dαu‖∞ when p = ∞

for all u ∈ Wm,p
0 (Ω).

Proof. Firstly suppose m = 1. Consider u ∈ D(Ω). Using Theorem 2.3 we can assume the axes

to be chosen in such a way that Ω ⊂ {(x1, . . . , xN) | 0 < xN < l}. Then for x ∈ Ω

u(x) =

∫ xN

0

DNu(x
′, ξN)dξN x = (x′, xN) ∈ R

N−1 × R,

so

|u(x)|
Hölder

≤ ‖1[0,xN ]‖q‖DNu(x
′, ·)‖p q conjugate to p.

Case 1 ≤ p <∞. Then

|u(x)| ≤ x
1− 1

p

N

(∫ l

0

|DNu(x
′, ξN)|pdξN

) 1
p

So

∫

Ω

|u(x)|pdx ≤
(∫ l

0

xp−1
N dxN

)(∫

RN−1

∫ l

0

|DNu(x
′, ξN)|pdξNdx′

)
(u = 0 outside Ω)

thus

‖u‖pp ≤
lp

p
‖DNu‖pp

so

‖u‖p ≤
l

p1/p
‖DNu‖p.

Case p = ∞. We have

|u(x)| ≤ xN‖DNu(x
′, ·)‖∞,

so taking sup over x ∈ Ω

‖u‖∞ ≤ l‖DNu‖∞.

In either case,

‖u‖p ≤ lc(p,N)‖∇u‖p.
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Applying repeatedly, we obtain

‖u‖1,p ≤ const · ‖∇u‖p
...

‖u‖m,p ≤ const ·
( ∑

|α|=m

‖Dαu‖pp
) 1

p

(1 ≤ p <∞)

‖u‖m,∞ ≤ const · max
|α|=m

‖Dαu‖∞,

for all u ∈ D(Ω). By density the inequality holds for all u ∈ Wm,p
0 (Ω), since both the LHS and

RHS are continuous in ‖ ‖m,p.

Remark. Poincaré’s inequality enables us to define an equivalent norm on Wm,p
0 (Ω) when Ω

has finite width (in particular when Ω is bounded).

‖u‖ =

( ∑

|α|=m

‖Dαu‖pp
) 1

p

(1 ≤ p <∞)

‖u‖ = max
|α|=m

‖Dαu‖∞ (p = ∞).

In particular

〈u, v〉 =
∑

|α|=m

∫

Ω

DαuDαv

defines an equivalent scalar product on Hm
0 (Ω).

2.2 Linear Partial Differential Operators with Constant coefficients.

.

L =
∑

0≤|α|≤m

aαDα,

where aα are constants, is a linear partial differential operator of order (at most) m with

constant coefficients.

If f ∈ D ′(Ω) then u ∈ D ′(Ω) is a solution of Lu = f if

〈u,
∑

0≤|α|≤m

(−1)|α|aαDαϕ〉 = 〈f, ϕ〉 for all ϕ ∈ D(Ω).

The operator

L∗ =
∑

0≤|α|≤m

(−1)|α|aαDα

is the adjoint of L.
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Example.

∆ =

N∑

i=1

D2
i .

For a distribution u and test function ϕ

〈∆u, ϕ〉 = −
N∑

i=1

〈Diu,Diϕ〉 = 〈u,∆ϕ〉.

Application. Suppose Ω ⊂ R
N is a bounded open set, f ∈ L2(Ω). Show that the boundary

value problem

−∆u = f

u ∈ H1
0 (Ω)

}
(BVP)

has exactly one solution.

Write H = H1
0 (Ω) and set

〈u, v〉H =

∫

Ω

∇u · ∇v u, v ∈ H

which defines an equivalent scalar product on H .

For u ∈ H ,

−∆u = f

if and only if ∫

Ω

∇u · ∇ϕ =

∫

Ω

fϕ ∀ϕ ∈ D(Ω)

if and only if ∫

Ω

∇u · ∇v =
∫

Ω

fv ∀v ∈ H

by density of D(Ω) in H , since LHS is the scalar product of H , and the RHS defines a bounded

linear functional of v ∈ H ; to see this, put

Λ(v) =

∫

Ω

fv ∀v ∈ H

then

|Λ(v)| ≤
∫

Ω

|f ||v| ≤ ‖f‖2‖v‖2 ≤ const · ‖f‖2‖v‖H

by Poincaré’s inequality. So Λ ∈ H∗, and the Riesz Representation Theorem for Hilbert spaces

shows

Λ(v) = 〈u0, v〉H ∀v ∈ H

for exactly one u0 ∈ H . Now u0 is the unique solution of the BVP.
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Remark. ∆ is a second order partial differential operator, but u0 ∈ H1
0 (Ω) at first sight only

has first order derivatives. The question “Does u0 have second order derivatives?” belongs

to Regularity Theory. In fact u0 ∈ H2
loc(Ω) in general, and u0 ∈ H2(Ω) if the boundary is

sufficiently smooth. This is typical of elliptic PDE. The situation is not so good for hyperbolic

PDE (e.g. the wave equation).

2.3 Sobolev embeddings

Theorem 2.5. Let −∞ < a < b < ∞, 1 ≤ p ≤ ∞. Then every element of W 1,p
0 (a, b) has a

continuous representative, and the following embeddings are well-defined bounded linear maps:

W 1,1
0 (a, b) →֒ C([a, b])

W 1,∞
0 (a, b) →֒ C0,1([a, b]) (Lipschitz continuous functions)

W 1,p
0 (a, b) →֒ C0,α([a, b]) (Hölder continuous functions), α = 1− 1

p
, 1 < p <∞.

Proof. Case p = 1.

For ϕ ∈ D(a, b)

|ϕ(x)| =
∣∣∣∣
∫ x

a

ϕ′

∣∣∣∣ ≤ ‖ϕ′‖1 (a < x < b)

so ‖ϕ‖sup ≤ ‖ϕ‖1,1.
Case p = ∞.

For ϕ ∈ D(a, b)

|ϕ(x)− ϕ(y)| =
∣∣∣∣
∫ y

x

ϕ′

∣∣∣∣ ≤ |y − x|‖ϕ′‖∞

so

‖ϕ‖C0,1 = ‖ϕ‖sup + sup
a<x<y<b

|ϕ(x)− ϕ(y)|
|x− y| ≤ ‖ϕ‖∞ + ‖ϕ′‖∞ ≤ 2‖ϕ‖1,∞.

Case 1 < p <∞.

For ϕ ∈ D(Ω), a < x < y < b,

|ϕ(x)− ϕ(y)| ≤
∫ y

x

|ϕ′|
Hölder
≤ |x− y| 1q ‖ϕ′‖p

|ϕ(x)| ≤ (b− a)
1
q ‖ϕ′‖p

so with α =
1

q
= 1− 1

p

‖ϕ‖C0,α = ‖ϕ‖sup + sup
a<x<y<b

|ϕ(x)− ϕ(y)|
|x− y|α ≤ const · ‖ϕ‖1,p.
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We have proved inequalities of the form

‖ϕ‖X ≤ c‖ϕ‖1,p ϕ ∈ D(a, b)

with

X = C([a, b]) when p = 1

X = C0,1([a, b]) when p = ∞

X = C0,α([a, b]) when 1 < p <∞ and α = 1− 1

p
.

For general u ∈ W 1,p
0 (Ω), choose a sequence {ϕn} in D(Ω) converging to u in ‖ ‖1,p. Then

‖ϕn − u‖p → 0, so passing to a subsequence ϕn → u a.e. Also {ϕn} is Cauchy in ‖ ‖1,p,
and by above inequalities Cauchy in ‖ ‖X. Then by completeness {ϕn}∞n=1 converges in X to

v say. Then v ∈ X , so v is (uniformly) continuous, and ϕn → v uniformly, so v = u a.e.

Thus v is a continuous representative for u, hence W 1,p
0 (a, b) ⊂ X . Finally, ‖ ‖X and ‖ ‖1,p are

continuous functions in ‖ ‖X and ‖ ‖1,p respectively and ϕn → u in both norms, so the inequality

‖ ‖X ≤ c‖ ‖1,p holds on the whole of W 1,p
0 (a, b).

• In the results proved above for N = 1 the restrictions to bounded intervals and Wm,p
0 can

be avoided.

• In higher dimensions we don’t generally get continuous functions;

• The embeddings are bounded linear operators, which for certain domains, and for certain

values of p, are compact.

• Some results in higher dimensions require regularity assumptions on the boundary.

• Some results require boundedness of the domain.

We now consider the higher-dimensional cases.
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Theorem 2.6 (Sobolev’s Inequality). Let m ≥ 1, N ≥ 2, p ≥ 1, mp < N , p∗ =
Np

N −mp
.

Then

‖u‖p∗ ≤ c

( ∑

|α|=m

‖Dαu‖pp
) 1

p

for all u ∈ Cm
c (RN ) (⊃ D(RN )).

Proof of the inequality. We consider the following cases:

• Case m = 1, p = 1, p∗ = N/(N − 1). For u ∈ C1
c (R

N), x ∈ R
N ,

u(x) =

∫ xj

−∞

Dju(x1, . . . , ξj, . . . , xN )dξj

so

|u(x)| ≤
∫ ∞

−∞

|Dju(x)|dxj

so

|u(x)| N
N−1 ≤

∏

1≤j≤N

(∫ ∞

−∞

|Dju(x)|dxj
) 1

N−1

.

The first term of the product is independent of x1 and the remaining terms are each functions

of N − 1 variables including x1. So

∫ ∞

−∞

|u(x)| N
N−1dx1 ≤

(∫ ∞

−∞

|D1u(x)|dx1
) 1

N−1

·
∫ ∞

−∞

∏

j 6=1

(∫ ∞

−∞

|Dju(x)|dxj
) 1

N−1

dx1.

On the RHS the second term is the integral of a product of N − 1 functions. Applying the

generalised Hölder inequality

∫
v1 · · · vN−1 ≤ ‖v1‖N−1 · · · ‖vN−1‖N−1

we obtain

∫ ∞

−∞

|u(x)| N
N−1dx1 ≤

(∫ ∞

−∞

|D1u(x)|dx1
) 1

N−1

·
∏

j 6=1

(∫ ∞

−∞

∫ ∞

−∞

|Dju(x)|dxjdx1
) 1

N−1

,

thus we have taken the product outside the integral. We repeat this process over all values of

j; at each step one factor in the RHS is independent of xj , and we apply the generalised Hölder

inequality to the integral of the product of the remaining N − 1 factors. We end up with

∫

RN

|u| N
N−1 ≤

N∏

j=1

(∫

RN

|Dju|
) 1

N−1

so taking the (N − 1)/N -th power yields

‖u‖p∗ ≤
N∏

j=1

(∫

RN

|Dju|
) 1

N

.
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Now by the AM-GM inequality

‖u‖p∗ ≤
1

N

N∑

j=1

‖Dju‖1.

This proves the case m = 1, p = 1.

• Case m = 1, 1 < p < N , p∗ =
Np

N − p
. Let u ∈ C1

c (R
N). Let v = |u|s where s > 1 is to be

chosen later; note that v ∈ C1
c (R

N). Applying the above inequality to v,

(∫

RN

|u| sN
N−1

)N−1
N

≤ c.

∫

RN

|∇v|1 = c.

∫

RN

|u|s−1|∇u|1 ≤ c‖∇u‖p
(∫

RN

|u|(s−1)q

) 1
q

where
1

q
+

1

p
= 1. We choose s so that

sN

N − 1
= (s− 1)q, which yields

s =
(N − 1)p

N − p
.

Thus (∫

RN

|u| sN
N−1

)N−1
N

− 1
q

≤ c‖∇u‖p.

Then
sN

N − 1
=

Np

N − p
= p∗ and

N − 1

N
− 1

q
=
N − p

Np
=

1

p∗
so

‖u‖p∗ ≤ c‖∇u‖p.

This completes the case m = 1, 1 < p < N .

• General case. Induction on m. The initial case m = 1 is done. Assume true for m − 1.

Consider α ∈ N
N
0 , |α| = m− 1, u ∈ Cm

C (RN). Then by the initial case

‖Dαu‖ Np
N−p

≤ c‖∇Dαu‖p.

Thus by the inductive hypothesis

‖u‖ NNp/(N−p)
N−(m−1)Np/(N−p)

≤ c
∑

|α|=m−1

‖Dαu‖ Np
N−p

≤ c
∑

|β|=m

‖Dβu‖p

that is

‖u‖ Np
N−mp

≤ c
∑

|β|=m

‖Dβu‖p

as required, since all norms on a Euclidean space are equivalent. This completes the inductive

step and we are done.

Corollary 2.7. Let N ≥ 2, m ≥ 1, mp < N , p∗ =
Np

N −mp
, ∅ 6= Ω ⊂ R

N open. Then

Wm,p
0 (Ω) is embedded in Lp∗(Ω) and the embedding is a bounded linear map.
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Proof. Let c be the constant in the Sobolev inequality for the given N , m, p. Thus

‖ϕ‖p∗ ≤ c


∑

|α|=m

‖Dαϕ‖pp




1
p

≤ c‖ϕ‖m,p ∀ϕ ∈ D(Ω).

Consider u ∈ Wm,p
0 (Ω); so u is the limit in ‖ ‖m,p of a sequence {ϕn} of test functions. We can

also assume ϕn → u a.e. Now {ϕn} is Cauchy in ‖ ‖m,p and therefore Cauchy in ‖ ‖p∗, so {ϕn}
converges in Lp∗ , and the limit must equal u a.e. Thus u ∈ Lp∗ . Continuity of ‖ ‖p∗ on Lp∗ and

‖ ‖m,p on Wm,p now ensure

‖u‖p∗ ≤ c‖u‖m,p.

Definitions. Let ∅ 6= Ω ⊂ R
N be open, m ∈ N, 0 < λ ≤ 1.

C(Ω) = {continuous functions on Ω}

Cm(Ω) = {functions m-times continuously differentiable on Ω}

CB(Ω) = {bounded continuous functions on Ω}

Cm
B (Ω) = {u | Dαu ∈ CB(Ω), 0 ≤ |α| ≤ m}

C(Ω) = {bounded uniformly continuous functions on Ω}

Cm(Ω) = {u | Dαu ∈ C(Ω), 0 ≤ |α| ≤ m}

C0,λ(Ω) = {functions on Ω of Hölder class λ}

Cm,λ(Ω) = {u | Dαu ∈ C0,λ(Ω), 0 ≤ |α| ≤ m}

Then

Cm,λ(Ω) ⊂ Cm(Ω) ⊂ Cm
B (Ω) ⊂ Cm(Ω),

functions u ∈ Cm(Ω) have Dαu, 0 ≤ |α| ≤ m, continuously extendable to Ω, Hölder continuous

in case Cm,λ. Note C(RN) 6= C(RN). Then Cm
B (Ω) and Cm(Ω) are Banach spaces with

‖u‖Cm
B (Ω) = max

0≤|α|≤m
‖Dαu‖sup.

Cm,λ(Ω) is a Banach space with

‖u‖Cm,λ(Ω) = max
0≤|α|≤m

‖Dαu‖sup + max
0≤|α|≤m

sup
x,y∈Ω,x 6=y

|Dαu(x)−Dαu(y)|
|x− y|λ .

Theorem 2.8 (Morrey’s Inequality). Suppose N ≥ 2, N < p < ∞. Then there is a constant

c = c(N, p) such that

‖u‖C0,λ ≤ c‖u‖1,p ∀u ∈ C1(RN) ∩W 1,p(RN),

where λ = 1− N

p
.
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Proof. Step 1. We show that

−
∫

B(x,r)

|u(y)− u(x)|dy ≤ c

∫

B(x,r)

|∇u(y)|
|y − x|N−1

dy

where −
∫

denotes the mean.

Preliminary calculation

∫

∂B(0,1)

|u(x+ sw)− u(x)|dw =

∫

∂B(0,1)

∣∣∣∣
∫ s

0

d

dt
u(x+ tw)dt

∣∣∣∣ dw

≤
∫

∂B(0,1)

∫ s

0

|∇u(x+ tw) · w|dtdw

≤
∫

∂B(0,1)

∫ s

0

|∇u(x+ tw)|dtdw

=

∫ s

0

∫

∂B(0,1)

|∇u(x+ tw)|dwdt

=

∫ s

0

∫

∂B(0,t)

|∇u(x+ w)| 1

tN−1
dwdt

=

∫

B(0,s)

|∇u(x+ w)|
|w|N−1

dt

=

∫

B(x,s)

|∇u(y)|
|x− y|N−1

dy.

Now

∫

B(x,r)

|u(y)− u(x)|dy =
∫ r

0

∫

∂B(0,s)

|u(x+ w)− u(x)|dwds

=

∫ r

0

sN−1

∫

∂B(0,1)

|u(x+ sw)− u(x)|dwds

≤
∫ r

0

sN−1

∫

B(x,s)

|∇u(y)|
|y − x|N−1

dyds

≤
(∫ r

0

sN−1ds

)(∫

B(x,r)

|∇u(y)|
|y − x|N−1

dy

)

=
rN

N

∫

B(x,r)

|∇u(y)|
|y − x|N−1

dy.

So dividing by rN

−
∫

B(x,r)

|u(y)− u(x)|dy ≤ c

∫

B(x,r)

|∇u(y)|
|y − x|N−1

dy.

Step 2. Estimate ‖u‖sup.
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For x ∈ R
N

|u(x)| ≤ −
∫

B(x,1)

|u(x)− u(y)|dy +−
∫

B(x,1)

|u(y)|dy

≤ c

∫

B(x,1)

|∇u(y)|
|x− y|N−1

dy + |B(x, 1)| 1q−1‖u‖p (by Step 1 and Hölder 1
q
+ 1

p
= 1)

≤ ‖∇u‖p
(∫

B(x,1)

|x− y|−(N−1)qdy

)1
q

+ c‖u‖p (since (N − 1)q < N)

≤ c‖∇u‖p + c‖u‖p

≤ c‖u‖1,p.

Step 3. Hölder estimate for |u(x)− u(y)|.
Consider x, y ∈ R

N , |x− y| = r > 0. For any z ∈ R
N

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|.

So averaging over a region W of finite positive measure

|u(x)− u(y)| ≤ −
∫

W

|u(x)− u(z)|dz +−
∫

W

|u(z)− u(y)|dz.

Choose Wr = B(x, r) ∩B(y, r) (c.f. Figure 1).

Figure 1: Wr = B(x, r) ∩ B(y, r)

Notice that Wr is similar to W1 = B(0, 1) ∩B(e, 1) where e is any unit vector. So

|Wr| = rN |W1|.

Now

|Wr|−
∫

Wr

|u(x)− u(z)|dζ ≤ |B(x, r)|−
∫

B(x,r)

|u(x)− u(z)|dz.

So

−
∫

Wr

|u(x)− u(z)|dz ≤ |B(x, r)|
|Wr|

−
∫

B(x,r)

|u(x)− u(z)|dz
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thus

−
∫

Wr

|u(x)− u(z)|dz ≤ c−
∫

B(x,r)

|u(x)− u(z)|dz (since |B(x,r)|
|Wr|

is independent of r).

Now using Step 1,

−
∫

Wr

|u(x)− u(z)|dz ≤ const ·
∫

B(x,r)

|∇u(z)|
|x− z|N−1

dz ≤ c‖∇u‖p
(∫

B(x,r)

|x− z|−(N−1)qdz

) 1
q

.

Now

∫

B(x,r)

|x− z|−(N−1)qdz =

∫ r

0

∫

∂B(x,s)

s−(N−1)qdzds = c

∫ r

0

sN−1s−(N−1)qds

= cr(N−1)(1−q)+1 = cr
p−N
p−1 ,

since

(N − 1)(1− q) + 1 = (N − 1)

(
1− p

p− 1

)
+ 1 = (N − 1)

(−1)

p− 1
+ 1 =

p−N

p− 1
.

So

−
∫

Wr

|u(x)− u(z)|dz ≤ c‖∇u‖p r
p−N
p−1

· 1
q = c‖∇u‖p r1−

N
p ,

since
p−N

p− 1
· 1
q
=
p−N

p− 1

(
1− 1

p

)
=
p−N

p
= 1− N

p
.

Similarly

−
∫

Wr

|u(z)− u(y)|dz ≤ c‖∇u‖p r1−
N
p

so

|u(x)− u(y)| ≤ c‖∇u‖p|x− y|1−N
p .

That is,
|u(x)− u(y)|

|x− y|λ ≤ c‖∇u‖p.

Now

‖u‖C0,λ = ‖u‖sup + sup
x 6=y

|u(x)− u(y)|
|x− y|λ ≤ c‖u‖W 1,p(RN ).

Theorem 2.9. Let N ≥ 2, m ∈ N, m < N , mp = N , 1 ≤ q <∞. Then there exists a constant

c = c(N,m, q) such that

(i) ‖u‖q ≤ c|Ω|1/q
∑

|α|=m

‖Dαu‖p for all u ∈ Cm
c (RN), where Ω = {x ∈ R

N | u(x) 6= 0};

(ii) ‖u‖q ≤ c‖u‖m,p, for all u ∈ Cm(RN) ∩Wm,p(RN) and q > p.
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Proof. (i) Case N
N−m

≤ q <∞. Choose r, 1 ≤ r < p, such that r∗ = Nr
N−mr

= q. Then by the

Sobolev inequality, for u ∈ Cm
c (RN)

‖u‖q ≤ c
∑

|α|=m

‖Dαu‖r.

Now ∫

RN

|Dαu|r ≤ ‖1Ω‖s′
(∫

RN

|Dαu|rs
)1/s

where rs = p, 1/s′ + 1/s = 1, rs′ = pr/(p− r) = (Nr/m)/(N/m − r) = (Nr)/(N −mr) = q

and Ω = {x | u(x) 6= 0}. So

‖Dαu‖r ≤ |Ω|1/rs′‖Dαu‖p = |Ω|1/q‖Dαu‖p.

Thus

‖u‖q ≤ c|Ω|1/q
∑

|α|=m

‖Dαu‖p.

(i) Case 1 ≤ q < N
N−m

= t. We have

∫

RN

|u|q ≤ ‖1Ω‖s′‖|u|q‖s (where qs = t and 1/s′ + 1/s = 1)

so

‖u‖q ≤ |Ω|1/s′q‖u‖t = |Ω|1/q−1/t‖u‖t.

Using the previous case to estimate ‖u‖t we get

‖u‖q ≤ c|Ω|1/q−1/t|Ω|1/t
∑

|α|=m

‖Dαu‖p = c|Ω|1/q
∑

|α|=m

‖Dαu‖p.

(ii) Suppose u ∈ Cm(RN) ∩Wm,p(RN), q > p. Construct a partition of unity as follows. Let

Φ ∈ C∞(R) satisfy Φ(ξ) > 0 for −1 < ξ < 1 and Φ(ξ) = 0 for |ξ| ≥ 1. For k = (k1, . . . , kN) ∈
Z
N let

Φk(x) =
N∏

i=1

Φ(xi − ki)

which lives on

Qk = (−1 + k1, 1 + k1)× · · · × (−1 + kN , 1 + kN).

Note almost every x ∈ R
N belongs to 2N of the cubes Qk, and all points belong to at least one.

Define

ϕk =
Φk∑

l∈ZN Φl
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which are smooth functions adding up to the constant function 1, and all but finitely many

vanish outside any bounded set. Thus

u =
∑

k∈ZN

ϕku.

Now

|u(x)|q =
∣∣∣∣
∑

k

ϕk(x)u(x)

∣∣∣∣
q

= 2Nq

∣∣∣∣
∑

k

2−Nϕk(x)u(x)

∣∣∣∣
q

≤ 2Nq
∑

k

2−N |ϕk(x)u(x)|q

by Jensen’s inequality, so ∫

RN

|u|q ≤ 2N(q−1)

∫

RN

∑

k

|ϕku|q.

Now

∫

Qk

|ϕku|q ≤ c


∑

|α|=m

∫

Qk

|Dα(ϕku)|p



q/p

(by (i))

≤ c


 ∑

0≤|α|≤m

∫

Qk

(
∑

0≤β≤α

|Dβu|
)p



q/p

≤ c


 ∑

0≤|β|≤m

∫

Qk

|Dβu|p



q/p

where we have differentiated by Leibniz’s theorem and used the independence of ‖Dα−βϕk‖sup
from k for each α, β, then applied Jensen’s inequality.

Then

∫

RN

|u|q ≤ c
∑

k∈ZN


 ∑

0≤|β|≤m

∫

Qk

|Dβu|p



q/p

≤ c


∑

k∈ZN

∑

0≤|β|≤m

∫

Qk

|Dβu|p

 ‖u‖q−p

m,p,RN

= c


2N

∑

0≤|β|≤m

∫

RN

|Dβu|p

 ‖u‖q−p

m,p,RN = c‖u‖q
m,p,RN

since the family {Qk}k∈ZN forms a 2N -fold covering of RN except for a set of zero measure.

Thus

‖u‖q ≤ c‖u‖m,p.

Theorem 2.10. Let I = (a1, b1)×· · ·× (aN , bN ) be a rectangle in R
N . Then there is a constant

c, depending only on the edge-lengths of I, such that

(i) ‖u‖sup ≤ c‖u‖N,1 for all u ∈ CN (I) ∩WN,1(I);
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(ii) ‖u‖sup ≤ c‖u‖N,1 and u(x) → 0 as |x| → ∞ for all u ∈ CN(RN) ∩WN,1(RN).

Proof. Case N = 1. For u ∈ C1(a1, b1) ∩W 1,1(a1, b1), x, y ∈ I = (a1, b1)

|u(x)− u(y)| ≤
∫ b1

a1

|u′|

and, by continuity,there exists x̄ ∈ I such that

u(x̄) = (b1 − a1)
−1

∫ b1

a1

u.

So

|u(y)| ≤ |u(x̄)|+
∫ b1

a1

|u′| ≤ (b1 − a1)
−1

∫ b1

a1

|u|+
∫ b1

a1

|u′| ≤ max{(b1 − a1)
−1, 1}‖u‖1,1.

Inductive step. Assume true in dimension N − 1. Consider x, y ∈ I and suppose initially

that x and y differ in one coordinate only, say the last. Write x = (x′, xN), y = (x′, yN) where

x′ ∈ R
N−1 and xN , yN ∈ (aN , bN). Then

|u(x)− u(y)| ≤
∫ bN

aN

|DNu(x
′, ξ)|dξ ≤ c(ℓ1, . . . , ℓN−1)

∫ bN

aN

‖DNu(·, ξ)‖N−1,1 dξ

≤ c(ℓ1, . . . , ℓN−1)‖u‖N,1

where the WN−1,1-norm is taken over an (N − 1)-dimensional rectangle and ℓj = bj − aj .

In the general case we can choose points x = x0, x1, . . . , xN = y such that xi−xi−1 is parallel

to the i-th coordinate axis, and apply the above calculation to obtain

|u(x)− u(y)| ≤
N∑

i=1

|u(xi − u(xi−1)| ≤ c(ℓ1, . . . , ℓN)‖u‖N,1.

We can choose x̄ ∈ I such that u(x̄) = |I|−1

∫

I

u. Then, for all y ∈ I,

|u(y)| ≤ |u(x̄)|+ |u(y)− u(x̄)| ≤ |u(x̄)|+ c(ℓ1, . . . , ℓN)‖u‖N,1

≤ (ℓ1ℓ2 · · · ℓN)−1

∫

I

|u|+ c(ℓ1, . . . , ℓN)‖u‖N,1

≤ c(ℓ1, . . . , ℓN)‖u‖N,1.

This completes the inductive step.

The remaining parts of Theorem 2.10 are an exercise.

Lemma 2.11. If Ω ⊂ R
N is open and 0 < α < β ≤ 1, then the embedding C0,β(Ω) →֒ C0,α(Ω)

is bounded. [Exercise]
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Theorem 2.12 (Sobolev Embedding Theorem forWm,p
0 (Ω)). Suppose N ≥ 2, Ω ⊂ R

N is open,

1 ≤ p <∞, m ∈ N. Then the following embeddings are well-defined bounded linear maps:

(i) Wm,p
0 (Ω) →֒ Lq(Ω), mp < N , p ≤ q ≤ p∗, p∗ =

Np

N −mp
;

(ii) Wm,p
0 (Ω) →֒ Lq(Ω), mp = N , 1 < p ≤ q <∞;

(iii) WN,1
0 (Ω) →֒ C(Ω) and WN,1

0 (Ω) →֒ Lq(Ω) for 1 ≤ q ≤ ∞;

(iv) Wm,p
0 (Ω) →֒ C0,λ(Ω), mp > N > (m− 1)p, 0 < λ ≤ m− N

p
;

(v) Wm,p
0 (Ω) →֒ C0,λ(Ω), (m− 1)p = N , 0 < λ < 1.

Proof. First check for test functions u.

(i) mp < N . We have ‖u‖p∗ ≤ c‖u‖m,p by the Sobolev inequality and ‖u‖p ≤ ‖u‖m,p. We

get Lp∗ →֒ Lq by interpolation: assume p < q < p∗ and write

1

q
=
θ

p
+

1− θ

p∗
for some 0 < θ < 1;

then

‖u‖q ≤ ‖u‖θp‖u‖1−θ
p∗

hence

‖u‖q ≤ c‖u‖θp‖u‖1−θ
m,p ≤ c‖u‖m,p for u ∈ D(Ω).

(ii) mp = N , 1 < p < q <∞. Theorem 2.9 shows ‖u‖q ≤ c‖u‖m,p for u ∈ D(Ω) ⊂ Cm(Ω).

(iii) m = N , p = 1.

Theorem 2.10(ii) shows ‖u‖sup ≤ c‖u‖N,1 for u ∈ D(Ω) (⊂ WN,1(RN) ∩ CN(RN)) (and hence

‖u‖∞ ≤ c‖u‖N,1).

If 1 < q <∞ then ‖u‖qq ≤ ‖u‖1‖u‖q−1
sup ≤ c‖u‖qN,1.

(iv) mp > N > (m− 1)p. We want to use the Morrey inequality

‖v‖C0,λ0 ≤ c‖v‖1,p0 for v ∈ D(Ω)

where

p0 =
Np

(N − (m− 1))p
(> N since mp > N) and λ0 = 1− N

p0

and the Sobolev inequality

‖v‖p0 ≤ c‖v‖m−1,p (since (m− 1)p < N). (2)
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So for test functions u

‖∇u‖p0 ≤ c‖∇u‖m−1,p (from (2))

≤ c‖u‖m,p

and

‖u‖p0 ≤ c‖u‖m,p (from (2))

so

‖u‖1,p0 ≤ c‖u‖m,p.

Morrey now gives

‖u‖C0,λ0 ≤ c‖u‖m,p.

By Lemma 2.11, for 0 < λ ≤ λ0

‖u‖C0,λ ≤ c‖u‖m,p.

Finally, note that

λ0 = 1− N

p0
= m− N

p
.

(v) N = (m− 1)p. Then, for p ≤ q <∞

‖∇u‖q ≤ c‖∇u‖m−1,p (Theorem 2.9)

≤ c‖u‖m,p

‖u‖q ≤ c‖u‖m−1,p ≤ c‖u‖m,p

so

‖u‖1,q ≤ c‖u‖m,p. (3)

For q > N

‖u‖C0,λ ≤ c‖u‖1,q (Morrey) (4)

where λ = 1 − N

q
; by varying q in the range N < q < ∞ we can make λ take any value,

0 < λ < 1. Thus from (3) and (4) we have

‖u‖C0,λ ≤ c‖u‖m,p if 0 < λ < 1 and u ∈ D(Ω).

So in each of the above cases we have an inequality

‖u‖X ≤ c‖u‖m,p for all u ∈ D(Ω) (5)

where X is Lq(Ω), C(Ω), or C0,λ(Ω) as appropriate.
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For general u ∈ Wm,p
0 (Ω) choose a sequence {un} of test functions converging in ‖ ‖m,p to

u. Then {un} is Cauchy in ‖ ‖m,p, and therefore Cauchy in ‖ ‖X, so {un} converges in X to

u say. Passing to a subsequence, un → u a.e., and either un → u uniformly, or after passing

to a subsequence un → u a.e. So u = u a.e. Each side of (5) is continuous on X or Wm,p as

appropriate. So (5) also holds for u.

3 Regularisation and approximation

Definition. The convolution of two measurable functions u, v on R
N

u ∗ v(x) =
∫

RN

u(y)v(x− y)dy

when this exists.

Lemma 3.1. (i) If u, v ∈ L1(RN) then u ∗ v is defined a.e. on R
N and

‖u ∗ v‖1 ≤ ‖u‖1‖v‖1.

(ii) If u ∈ L1
loc(R

N) and v ∈ L1(RN ) has compact support, then u ∗ v and v ∗ u exist a.e. and

u ∗ v = v ∗ u a.e., and is locally L1.

(iii) If u ∈ L1
loc(R

N), v, w ∈ L1(Ω), v, w have compact support then

(u ∗ v) ∗ w = u ∗ (v ∗ w) a.e.

(iv) If u ∈ L1
loc(R

N) and v ∈ Cc(R
N) then u ∗ v is continuous.

Proof. Not given, by Fubini. Part (iv) exercise.

Lemma 3.2. Suppose u ∈ L1
loc(R

N) and ϕ ∈ D(RN). Then

(i) Dα(u ∗ ϕ) = u ∗Dαϕ for all α ∈ N
N
0 and is continuous, hence u ∗ ϕ ∈ C∞(RN).

(ii) If Dαu ∈ L1
loc(R

N) then

Dα(u ∗ ϕ) = (Dαu) ∗ ϕ.

Proof. (i) Consider first order partial derivatives; say e is the unit vector in the xi direction for

some i. If 0 < |h| < 1, then

(u ∗ ϕ)(x+ he)− (u ∗ ϕ)(x)
h

=

∫

RN

u(y)
ϕ(x+ he− y)− ϕ(x− y)

h
dy

=

∫

U

u(y)
ϕ(x+ he− y)− ϕ(x− y)

h
dy
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where U = B(x, 1)− suppϕ. The integrand converges pointwise to uDiϕ, and is dominated by

|u(x)|‖Diϕ‖sup which is integrable on the compact set U so we can pass to the limit using the

Dominated Convergence Theorem to get

Di(u ∗ ϕ) = u ∗Diϕ.

Repeated applications give the result for Dα.

Dαϕ is continuous and has compact support, hence u∗Dαϕ is continuous for every α ∈ N
N
0 ,

hence u ∗ ϕ ∈ C∞(RN).

(ii) Assume Dαu ∈ L1
loc(R

N), for some α ∈ N
N
0 . For ϕ ∈ D(RN)

Dα(u ∗ ϕ)(x) =
∫

RN

u(y)(Dαϕ)(x− y)dy (by (i))

=

∫

RN

u(y)(−1)|α|Dαϕx(y)dy (ϕx(y) = ϕ(x− y))

= (−1)|α|〈u,Dαϕx〉

= 〈Dαu, ϕx〉

=

∫

RN

Dαu(y)ϕ(x− y)dy (since Dαu ∈ L1
loc)

= (Dαu) ∗ ϕ (6)

Reminder.

J(x) =

{
ke

− 1
1−|x|2 |x| < 1

0 |x| ≥ 1
x ∈ R

N

with k > 0 chosen so that

∫

RN

J = 1. Take

Jε(x) = ε−NJ(ε−1x) (Standard mollifier)

so

∫

RN

Jε = 1 and supp Jε = B(0, ε).

Definition. If u ∈ L1
loc(R

N ) we call Jε ∗ u the mollification or regularisation of u.

Note.

(1) Jε ∗ u ∈ C∞(RN).

(2) Jε ∗ u(x) =
∫

RN

u(y)Jε(x− y)dy =

∫

B(x,ε)

u(y)Jε(x− y)dy.

So Jε ∗ u(x) is a weighted mean of u over B(x, ε).
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(3) Dα(Jε ∗ u) = (DαJε) ∗ u.

(4) If Dαu ∈ L1
loc(R

N) then Dα(Jε ∗ u) = Jε ∗Dαu.

Theorem 3.3. Let 1 ≤ p ≤ ∞.

(i) ‖Jε ∗ u‖p ≤ ‖u‖p for u ∈ Lp(RN ) and ‖Jε ∗ u‖m,p ≤ ‖u‖m,p for u ∈ Wm,p(RN).

(ii) If 1 ≤ p < ∞ then ‖Jε ∗ u − u‖p → 0 as ε → 0 for u ∈ Lp(RN) and ‖Jε ∗ u− u‖m,p → 0

as ε→ 0 for u ∈ Wm,p(RN ).

(iii) if 1 ≤ p < ∞ then D(RN) is dense in Lp(RN) and in Wm,p(RN ) so Wm,p
0 (RN) =

Wm,p(RN).

Proof. (i) Case 1 ≤ p <∞.

|Jε ∗ u(x)|p =
∣∣∣∣
∫

RN

u(y)Jε(x− y)dy

∣∣∣∣
p

≤
∫

RN

|u(y)|pJε(x− y)dy (Jensen’s Inequality).

So

∫

RN

|Jε ∗ u(x)|pdx ≤
∫

RN

∫

RN

|u(y)|pJε(x− y)dydx

=

∫

RN

∫

RN

|u(y)|pJε(x− y)dxdy

=

∫

RN

|u(y)|pdy (since

∫

RN

Jε = 1)

thus ‖Jε ∗ u‖p ≤ ‖u‖p.
Case p = ∞.

|Jε ∗ u(x)| =
∣∣∣∣
∫

RN

u(y)Jε(x− y)dy

∣∣∣∣ ≤ ‖u‖∞
∫

RN

Jε(x− y)dy = ‖u‖∞.

In either case, the inequality ‖Jε ∗ u‖m,p ≤ ‖u‖m,p follows by applying the above to each Dαu.

(ii) Suppose 1 ≤ p <∞.

Simple case. u = 1Q where Q is a rectangle. Then

Jε ∗ u(x) =
{

1 for all small ε > 0 if x ∈ Q◦

0 for all small ε > 0 if x ∈ R
N \Q

0 ≤ Jε ∗ u(x) ≤ 1 for all x, and Jε(x) = 0 if x 6∈ Q+B(0, 1), ε < 1.
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So Jε ∗ u → u a.e. and 0 ≤ Jε ∗ u ≤ 1Q+B(0,1). So the Dominated Convergence Theorem shows

∫

RN

|Jε ∗ u− u|p =
∫

Q+B(0,1)

|Jε ∗ u− u|p (ε < 1)

→ 0 as ε → 0.

General case. Let u ∈ Lp(RN ) and η > 0. We can choose rectangles Q1, . . . , Qk and constants

c1, . . . , ck such that ‖u− u0‖p < η where

u0 =

k∑

n=1

ck1Qk
.

Now Jε ∗ u0 → u0 as ε → 0 by the above case plus the triangle inequality; choose ε0 > 0 such

that ‖Jε ∗ u0 − u0‖p < η for 0 < ε < ε0. Then

‖Jε ∗ u− u‖p ≤ ‖u− u0‖p + ‖u0 − Jε ∗ u0‖p + ‖Jε ∗ u0 − Jε ∗ u‖p

≤ η + ‖u0 − Jε ∗ u0‖p + η (by (i))

< 3η provided ε < ε0.

Thus ‖Jε ∗ u− u‖p → 0 as ε → 0.

For u ∈ Wm,p(RN) we obtain ‖Jε ∗ u− u‖m,p → 0 by applying the above to each Dαu.

(iii) Let 1 ≤ p <∞.

Density of D(RN ) in Lp(RN) actually follows from the proof of (ii) since Jε ∗ u0 ∈ D(RN).

Let η > 0. Using a result from the Problem Sheets (Sheet 4 Q2), given u ∈ Wm,p we can

choose v ∈ Wm,p with compact support such that ‖u− v‖m,p < η. Now Jε ∗ v → v in Wm,p by

(ii), and Jε ∗ v ∈ D(RN), so we can choose ε with ‖Jε ∗ v − v‖m,p < η, so ‖u− Jε ∗ v‖m,p < 2η.

Therefore Wm,p
0 (RN) =Wm,p(RN ).

Remark. In general Wm,p(Ω) 6=Wm,p
0 (Ω).

3.1 Localisation

We want analogues of the results of Theorem 3.3 for a general domain Ω. For a function

u ∈ L1
loc(Ω),

u ∗ Jε(x) =
∫

RN

u(y)Jε(x− y)dy

which requires values of u at points of B(x, ε) which might be outside Ω. If we set u = 0 outside

Ω then the resulting discontinuity of u will be reflected in large derivatives of Jε ∗ u near ∂Ω.

This necessitates restricting attention to subsets of Ω, typically compact ones.
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Lemma 3.4. Let Ω ⊂ R
N be open and nonempty, Ω0 open, Ω0 a compact subset of Ω. Let

0 < ε < dist(Ω0,R
N \ Ω), then

(i) For 1 ≤ p ≤ ∞ we have ‖Jε ∗ u‖p,Ω0 ≤ ‖u‖p,Ω0+B◦(0,ε) if u ∈ Lp(Ω) and

‖Jε ∗ u‖m,p,Ω0 ≤ ‖u‖m,p,Ω0+B◦(0,ε) if u ∈ Wm,p(Ω).

(ii) For 1 ≤ p <∞ we have ‖Jε ∗ u− u‖p,Ω0 → 0 as ε → 0 if u ∈ Lp(Ω) and

‖Jε ∗ u− u‖m,p,Ω0 → 0 as ε→ 0 if u ∈ Wm,p(Ω).

Proof. (i) For 0 < ε < ε′ < dist(Ω0,R
N \ Ω) we can choose ψ ∈ D(Ω) with 0 ≤ ψ ≤ 1

everywhere, ψ = 1 on Ω0 +B◦(0, ε) and ψ = 0 outside Ω0 +B◦(0, ε′). Then by Theorem 3.3

‖Jε ∗ u‖p,Ω0 ≤ ‖Jε ∗ (ψu)‖p,RN ≤ ‖ψu‖p,RN ≤ ‖u‖p,Ω+B◦(0,ε′) → ‖u‖p,Ω+B◦(0,ε) as ε
′ → ε.

The remaining parts use similar arguments, applied to the partial derivatives where necessary.

Remark. If u ∈ Wm,p
0 (Ω) then u ∈ Wm,p(RN) (take u = 0 outside Ω). So Jε ∗ u makes sense

and we have ‖Jε ∗ u‖p,Ω ≤ ‖u‖p,RN = u‖p,Ω+B◦(0,ε) etc.

Theorem 3.5 (Fundamental Theorem of Calculus). Suppose Ω ⊂ R
N is a nonempty, connected

open set, u ∈ W 1,1
loc (Ω), and Diu = 0 a.e. in Ω for i = 1, . . . , N . Then u is essentially constant

on Ω.

Proof. Consider a ball B such that B ⊂ Ω. Then, for all small ε > 0,

Di(Jε ∗ u)(x) = Jε ∗Diu(x) = 0 for all x ∈ B,

for i = 1, . . . , N . Hence Jε ∗ u is constant in B. As ε → 0, Jε ∗ u → u in L1(B), so u = const.

a.e. in B.

Take S(c) to be the union of all the open balls B such that B ⊂ Ω and u = c a.e. on B, for

c ∈ R. Then Ω =
⋃

c∈R S(c), and the S(c) are open and disjoint, so by connectedness Ω = S(c)

for one particular value of c.

We are now in a position to prove Lemma 1.3:

Lemma 3.6. Let Ω ⊂ R
N be open.

(i) Let 1 ≤ p <∞. Then D(Ω) is dense in Lp(Ω).

(ii) Let u ∈ L1
loc(Ω) with

∫

Ω

uϕ = 0 for all ϕ ∈ D(Ω). Then u = 0 a.e. in Ω.
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Proof. (i) We addressed the case Ω = R
N in Theorem 3.3. For general Ω, choose bounded open

Ω0 such that Ω0 ⊂ Ω, and such that ‖1Ω0u − u‖p < ε (u ∈ Lp(Ω), ε > 0, having been given).

Then, for η > 0 small enough, Jη ∗ (1Ω0u) is a test function on Ω and ‖Jη ∗ (1Ω0u)−1Ω0u‖p < ε.

So ‖u− Jη ∗ (1Ω0u)‖p < 2ε.

(ii) Consider bounded open Ω0 with Ω0 ⊂ Ω and take 0 < ε < dist(Ω0,R
N \ Ω). Then

Jε ∗ u(x) =
∫

RN

u(y)Jε(x− y)dy = 0 ∀x ∈ Ω0

since y 7→ Jε(x − y) is a test function on Ω. Letting ε → 0 we get Jε ∗ u → u in L1(Ω0), so

u = 0 a.e. in Ω0. Hence u = 0 a.e. in Ω.

Remark. This shows that different locally integrable functions represent different distributions

and in particular, if Dαu ∈ L1
loc, then the function representing Dαu is unique.

Lemma 3.7. Let Ω ⊂ R
N be open, u ∈ C(Ω). Then Jε ∗ u → u uniformly on compact subsets

of Ω. [Exercise]

Lemma 3.8. Let ∅ 6= Ω ⊂ R
N be open. Then there is a sequence {ϕn} in D(Ω) such that:

(i) 0 ≤ ϕn ≤ 1 for every n, and
∞∑

n=1

ϕn = 1 on Ω (“partition of unity”);

(ii) every point of Ω has a neighbourhood on which all except finitely many ϕn vanish identi-

cally (“local finiteness”);

(iii) local finiteness has the consequence that any compact subset of Ω intersects the supports

of only finitely many ϕn.

Proof. For n ∈ N define

Ωn =
{
x ∈ Ω

∣∣ |x| < n and dist(x,RN \ Ω) > 2/n
}
.

Then Ωn is open and bounded, Ωn ⊂ Ω, Ωn ⊂ Ωn+1 and
⋃

n∈N Ωn = Ω. Set Sn = Ωn \ Ωn−1 for

n ≥ 2 with S1 = Ω1, and write

ψn = J1/n ∗ 1Sn ,

so that ψn ∈ D(Ω) and supp(ψn) = Sn +B(0, 1/n).

Consider x ∈ Ω, so B◦(x, r) ⊂ Ωn for some n ∈ N and r > 0. If k > n then B◦(x, r)∩Sk = ∅

so B◦(x, r/2)∩ (Sk +B(0, r/2)) = ∅. Hence B◦(x, r/2)∩ supp(ψk) = ∅ if k > max{n, 2/r}. It
follows by covering that if K ⊂ Ω is compact then K meets the supports of only finitely many

ψn.
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Let x ∈ Ω; we claim ψn(x) > 0 for some n ∈ N. We have x ∈ Ωm for some m ∈ N and

then Ωm ⊂ S1 ∪ · · · ∪ Sm. We can choose r, 0 < r < 1/m, such that B◦(x, r) ⊂ Ωm and then

Sn ∩B◦(x, r) has positive measure for some n ∈ {1, . . . , m} so

ψn(x) =

∫

Sn

J1/n(x− y)dy ≥
∫

Sn∩B◦(x,r)

J1/n(x− y)dy > 0.

Set

ϕn =
ψn∑
k∈N ψk

.

Then every point of Ω has a neighbourhood on which the above sum involves only finitely many

functions, hence ϕn is smooth and
∑

n∈N

ϕn = 1.

If K ⊂ Ω is compact, then K intersects the supports of only finitely many vn. For, each

point of K is the centre of an open ball that intersects only finitely many supp vn, and K can

be covered by finitely many such balls.

Theorem 3.9 (Meyers-Serrin “H = W” Theorem). Let ∅ 6= Ω ⊂ R
N be open, m ∈ N,

1 ≤ p <∞. Then C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

Proof. Choose a locally finite, countable partition of unity into test functions on Ω, {ϕn}∞n=1,

as provided by Lemma 3.8. Consider δ > 0, u ∈ Wm,p(Ω).

For each n ∈ N choose 0 < εn < 1/n such that εn < dist(suppϕn,R
N \ Ω) so vn =

Jεn ∗ (ϕnu) ∈ D(Ω), and such that ‖vn − ϕnu‖m,p < δ2−n.

Consider x ∈ Ω. Then r > 0 can be chosen such that B◦(x, r) ∩ suppϕn = ∅ for all except

finitely many n, so B◦(x, 1
2
r) ∩

(
suppϕn + B(0, 1

2
r)
)
= ∅ except for finitely many n, hence

B◦(x, 1
2
r) ∩ supp vn = ∅ for all sufficiently large n. Thus the family {vn}∞n=1 is locally finite.

Take v =
∞∑

k=1

vk ∈ C∞(Ω) by local finiteness.

Choose {Ωn}∞n=1 to be an increasing family of bounded open sets with Ωn ⊂ Ω, and
⋃∞

n=1Ωn = Ω.

By local finiteness, each Ωn intersects the supports of only finitely many ϕk and vk and

since u =
∑

k ϕku we have

‖v − u‖m,p,Ωn =

∥∥∥∥∥

∞∑

k=1

(vk − ϕku

∥∥∥∥∥
m,p,Ωn

;

the above sum involves only finitely many functions so there are no convergence problems.
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Therefore

∫

Ωn

∑

0≤|α|≤m

|Dαv −Dαu|p =
∥∥∥∥

∞∑

k=1

(vk − ϕku)

∥∥∥∥
p

m,p,Ωn

≤
( ∞∑

k=1

‖vk − ϕku‖m,p,Ωn

)p

<

( ∞∑

k=1

δ2−k

)p

= δp

and we can let n→ ∞ and apply the Monotone Convergence Theorem to LHS to get

∫

Ω

∑

0≤|α|≤m

|Dαv −Dαu|p ≤ δp

i.e.

‖v − u‖m,p,Ω ≤ δ.

Now v = u+ (v − u) ∈ Wm,p(Ω) so v ∈ C∞(Ω) ∩Wm,p(Ω).

Remarks. This result says nothing about the behaviour of the approximating smooth functions

near the boundary, so it cannot be used to define boundary values of Sobolev functions.

Note that p <∞ cannot be avoided.

Theorem 3.10. Let Θ,Ω be nonempty, bounded, open sets in R
N and suppose F : Θ → Ω is

a bijection satisfying F ∈ C1(Θ) and F−1 ∈ C1(Ω). Then, for 1 ≤ p <∞, the map v 7→ v ◦ F
is an invertible bounded linear operator from W 1,p(Ω) onto W 1,p(Θ).

Proof. First consider u = v ◦ F , v ∈ C1(Ω) ∩W 1,p(Ω). Then

∫

Θ

|Dju(x)|pdx =

∫

Θ

∣∣∣∣
∂

∂xj
v(F (x))

∣∣∣∣
p

dx =

∫

Θ

∣∣∣∣∣

N∑

k=1

Dkv(F (x))DjFk(x)

∣∣∣∣∣

p

dx

≤ const ·
∫

Θ

N∑

k=1

∣∣Dkv(F (x))
∣∣pdx

= const ·
∫

Ω

N∑

k=1

∣∣Dkv(y)
∣∣p|JF−1(y)|dy (JF−1 Jacobian)

≤ const ·
∫

Ω

N∑

k=1

|Dkv(y)|pdy

hence

‖u‖1,p,Θ ≤ const · ‖v‖1,p,Ω.

A similar inequality holds in the reverse direction, and by density (Meyers-Serrin) these in-

equalities hold throughout W 1,p(Ω).
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Lemma 3.11. Let B = B◦(0, r) ⊂ R
N , B± = {(x′, xN ) ∈ B | ±xN > 0}, u ∈ W 1,1(B+). Then

(i)

∫

B+

(Dju)ϕ = −
∫

B+

u(Djϕ) for all ϕ ∈ D(B), 1 ≤ j ≤ N − 1;

(ii)

∫

B+

(DNu)ϕ = −
∫

B+

u(DNϕ) for all ϕ ∈ D(B) such that ϕ(x′, 0) = 0 if x′ ∈ BN−1;

(iii) defining ū(x′, xN ) = u(x′, |xN |) we have ū ∈ W 1,1(B) with Djū(x
′, xN ) = Dj(x

′, |xN |) for
1 ≤ j ≤ N − 1 and DN ū(x

′, xN ) = sgn(xN )DNu(x
′, |xN |) a.e.

Figure 2: 1[1,∞) ≤ ψ ≤ 1[ 1
2
,∞)

Proof. For (i) and (ii) choose increasing ψ ∈ C∞(R) such that 1[1,∞) ≤ ψ ≤ 1[ 1
2
,∞) (c.f. Fig-

ure 2), e.g. ψ = J1/4 ∗ 1[ 3
4
,∞). Define ψε(s) = ψ

(s
ε

)
for s ∈ R. Thus ψε(xN)ϕ(x

′, xN) defines

an element of D(B+).

(i) For 1 ≤ j ≤ N − 1

∫

B+

(Dju)(x)ψε(xN)ϕ(x
′)dx = −

∫

B+

u(x)Dj(ψε(xN )ϕ(x))dx

= −
∫

B+

u(x)ψε(xN)Djϕ(x)dx.

For xN > 0 we have 0 ≤ ψε(x) ≤ 1 and ψε → 1 as ε → 0, so we can apply the Dominated

Convergence Theorem to deduce (i).

(ii) For j = N ,

∫

B+

(DNu(x))ψε(xN)ϕ(x)dx = −
∫

B+

u(x)
(
ε−1ψ′

(xN
ε

)
ϕ(x) + ψε(xN)DNϕ(x)

)
dx.

Now on B+ we have |ϕ(x)| ≤ c1xN where c1 = ‖DNϕ‖sup, since ϕ(x) = 0 when xN = 0, hence

∣∣∣ε−1ψ′
(xN
ε

)
ϕ(x′, xN )

∣∣∣ ≤ c1

(xN
ε

)
ψ′
(xN
ε

)
,
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which is bounded above by c1c2 when 0 < xN < ε and vanishes for xN ≥ ε, where c2 = ‖ψ′‖sup.
Therefore ε−1ψ′

(
xN

ε

)
ϕ(x′, xN) is uniformly bounded and tends to 0 pointwise as ε → 0. We

now deduce (ii) using the Dominated Convergence Theorem.

(iii) If 1 ≤ j ≤ N − 1 and ϕ ∈ D(B) then

∫

B

ū(x)Djϕ(x)dx =

∫

B+

u(x′, xN)Djϕ(x
′, xN)dx+

∫

B−

u(x′,−xN)Djϕ(x
′, xN )dx

=

∫

B+

u(x′, xN) [Djϕ(x
′, xN) +Djϕ(x

′,−xN )] dx (by (i) with ϕ̄)

= −
∫

B

(Dju(x
′, |xN |))ϕ(x′, xN )dx.

For j = N we have

∫

B

ū(x)DNϕ(x)dx =

∫

B+

u(x′, xN )DNϕ(x
′, xN )dx+

∫

B−

u(x′,−xN )DNϕ(x
′, xN)dx

=

∫

B+

u(x′, xN )

[
DNϕ(x

′, xN)−
∂

∂xN
ϕ(x′,−xN )

]
dx

= −
∫

B+

(DNu(x)) [ϕ(x
′, xN )− ϕ(x′,−xN )] dx

(by (ii) since, if xN = 0 then ϕ(x′, xN)− ϕ(x′,−xN ) = 0)

= −
∫

B

sgn(xN ) (DNu(x
′, |xN |))ϕ(x)dx

Terminology. Let ∅ 6= Ω ⊂ R
N , N ≥ 2. A C1 chart for ∂Ω is an open set U = rBN−1 ×

(−a, a) (with respect to some local Cartesian coordinates in R
N) and f ∈ C1(rBN−1) such that

‖f‖sup < a and such that

Ω ∩ U = {(x′, xN) ∈ U | xN < f(x′)} .

We say ∂Ω is of class C1 if there is a C1 chart for ∂Ω in a neighbourhood of every point.

Figure 3: C1 chart
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Theorem 3.12 (Extension Theorem). Let ∅ 6= Ω ⊂ R
N (N ≥ 2) be bounded with C1 boundary,

and 1 ≤ p <∞. Then there exists a bounded open set V ⊃ Ω and a bounded linear operator

E : W 1,p(Ω) →֒ W 1,p
0 (V )

such that Eu = u almost everywhere in Ω for all u ∈ W 1,p(Ω) and Eu ∈ C(V ) for all u ∈
C(Ω) ∩W 1,p(Ω).

Proof. Consider a chart (U, f) where U = rBN−1 × (−a, a). Define

F (x′, xN) = (x′, xN − f(x′)),

(c.f. Figure 4) which is a bijection from U to an open set W such that F ∈ C1(U) and

F−1 ∈ C1(W ) given by

F−1(y′, yN) = (y′, yN + f(y′)).

Figure 4: F ∈ C1(U)

Choose a ball B with B ⊂W , centre O (which lies on F ((∂Ω) ∩ U) and set

B± = {(y′, yN) ∈ B | ±yN > 0} .

Then Lemma 3.11 provides an extension operator T : W 1,p(B+) to W 1,p(B). Note that if

u ∈ W 1,p(B+) ∩ C(B+) then by construction Tu ∈ W 1,p(B) ∩ C(B).

Now, assuming p <∞, the operator

L : W 1,p(D) →W 1,p(B), defined by Lu = u ◦ F−1,

where D = F−1(B), D± = F−1(B±), is bounded and has a bounded inverse. Define

K : W 1,p(D−) →W 1,p(D) by Ku = L−1TLu, u ∈ W 1,p(D−).
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Then K is bounded and is an extension operator of the desired form for D−.

Now cover ∂Ω with finitely many bounded open sets D1, . . . , Dn, each having an extension

operator Ki :W
1,p(Di∩Ω) →W 1,p(Di). Choose an open set D0, D0 ⊂ Ω, such that D0, . . . , Dn

cover Ω.

Choose ϕi ∈ D(Di) such that
n∑

i=0

ϕi ≡ 1 on a set whose interior contains Ω. Define

Eu(x) =

n∑

i=1

ϕi(x)Ki(u|Di
)(x) + ϕ0u(x).

Then E(x) =
∑n

i=0 ϕi(x)u(x) = u(x) for x ∈ Ω, and Eu ∈ W 1,p
0 (V ) where V =

⋃n
i=0Di.

Moreover if u ∈ C(Ω) ∩W 1,p(Ω) then Eu ∈ Cc(V ).

Remark. For smoother boundaries, extension operators for Wm,p can be defined.

Theorem 3.13 (Trace Theorem). Let ∅ 6= Ω ⊂ R
N be a bounded domain with C1 boundary.

Let 1 ≤ p < ∞. Then there is a bounded linear operator Tr : W 1,p(Ω) → Lp(∂Ω) such that if

u ∈ C(Ω) ∩W 1,p(Ω) and u denotes the uniformly continuous extension of u to Ω then

Tr u(x) = u(x) for all x ∈ ∂Ω.

Proof. Consider u ∈ W 1,p(Ω)∩C1(Ω). Consider a chart for ∂Ω, say (U, f) where U = rBN−1×
(−a, a). Consider ψ ∈ C∞(R) such that

ψ(−a) = 0 and ψ(s) = 1 for s >
1

2
(−a− ‖f‖sup) .

Then

∫

U∩∂Ω

|u|p =
∫

U∩∂Ω

ψ(xN )|u(x)|pdS(x)

=

∫

BN−1

ψ(f(x′))|u(x′, f(x′))|p(1 + |∇f(x′)|2) 1
2dx′

=

∫

BN−1

∫ f(x′)

−a

DN

(
ψ(xN )|u(x′, xN)|p

)
(1 + |∇f(x′)|2) 1

2dxNdx
′ if p > 1 (*)

≤ c

∫

U∩Ω

|ψ′(xN )||u(x)|p + p|ψ(xN)||u(x)|p−1|DNu(x)|dx

≤ c

∫

U∩Ω

|u|p + |u|p−1|DNu|dx

≤ c

∫

u∩Ω

|u|p + |DNu|pdx
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where we have used Young’s inequality in the last line to obtain

|u|p−1|DNu| ≤
|u|(p−1)q

q
+

|DNu|p
p

with 1/p+ 1/q = 1, so (p− 1)q = p, hence

∫

U∩∂Ω

|u|p ≤ c‖u‖W 1,p(U∩Ω).

The case p = 1 is similar, using at (*) the inequality

|ψ(x′, f(x′))u(x′, f(x′))| ≤
∫ f(x′)

−a

|DN(ψ(x
′, ξN)u(x

′, ξN))|dxN .

Now, covering ∂Ω with finitely many charts {(Uk, fk)}nk=1 then

‖u‖Lp(∂Ω) ≤
n∑

k=1

‖u‖Lp(Uk∩Ω) ≤
n∑

k=1

ck‖u‖W 1,p(Uk∩Ω) ≤ c‖u‖W 1,p(Ω).

To deal with the case of general u ∈ W 1,p(Ω), it must be shown that u can be approximated

in ‖ ‖1,p by such functions. First extend u to Eu ∈ W 1,p
0 (V ), then use density to approximate

Eu in ‖ ‖1,p by a sequence {un} in D(V ). The restrictions of the un to Ω form the desired

approximating sequence. If now {un} is any sequence in C1(Ω) ∩W 1,p(Ω) converging in ‖ ‖1,p
to u, then their boundary traces form a Cauchy sequence in Lp(∂Ω) converging to a limit,

denoted Tr(u), which is independent of the choice of approximating sequence (any two such

sequences can be interlaced to give another one, whose boundary traces must also converge).

Finally, let u ∈ C(Ω) ∩ W 1,p(Ω); we have to check that the above definition agrees with

u|∂Ω. Note that Eu|Ω is a uniformly continuous extension of u to Ω, so u = Eu|Ω and therefore

u|∂Ω = Eu|∂Ω. Now, as ε → 0, we have Jε ∗ Eu → Eu on V both uniformly and in ‖ ‖1,p, so
Jε ∗ Eu|∂Ω converges uniformly to Eu|∂Ω and converges in Lp(∂Ω) to some limit which must

therefore be Tr u. Hence Tr(u) = Eu|∂Ω = u|∂Ω as required.

4 Embeddings on Smooth Bounded Domains

Theorem 4.1 (Sobolev Embedding Theorem for smooth bounded domains). Let N ≥ 2,

∅ 6= Ω ⊂ R
N be open and bounded with C1 boundary, m ∈ N and 1 ≤ p < ∞. Then the

following embeddings are bounded:

(i) Wm,p(Ω) →֒ Lq(Ω) for p ≤ q ≤ p∗ :=
Np

N −mp
if mp < N ;

(ii) Wm,p(Ω) →֒ Lq(Ω) for p ≤ q <∞ if m < N , mp = N ;
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(iii) WN,1(Ω) →֒ C(Ω);

(iv) Wm,p(Ω) →֒ C0,λ(Ω) for 0 < λ ≤ m− N

p
if mp > N > (m− 1)p;

(v) Wm,p(Ω) →֒ C0,λ(Ω) for 0 < λ < 1 if (m− 1)p = N .

Proof. When m = 1 cases (i), (ii), (iv), (v) follow by using Theorem 3.12 to choose an extension

operator E : W 1,p(Ω) →W 1,p
0 (V ) for some bounded open V ⊃ Ω, and applying the embedding

theorem for W 1,p
0 (Ω) (Theorem 2.12). We leave case (iii) to the end, and proceed to describe

the inductive step in the other cases.

(i) Suppose the result holds for some m ≥ 1 and all p with mp < N . Let p satisfy (m+1)p < N .

Let p1 =
Np

N −mp
and p2 =

Np

N − (m+ 1)p
=

Np1
N − p1

. For u ∈ Wm+1,p(Ω) we now have

∇u ∈ Wm,p(Ω) and thence

‖∇u‖p1 ≤ c‖∇u‖m,p ≤ c‖u‖m+1,p

‖u‖p1 ≤ c‖u‖m,p ≤ ‖u‖m+1,p,

so ‖u‖1,p1 ≤ c‖u‖m+1,p,

so ‖u‖p2 ≤ c‖u‖m+1,p

from the initial case W 1,p1 →֒ Lp2. The case q < p∗ follows by interpolation, completing the

inductive step.

(ii) Suppose the result holds for some m ≥ 1 with m < N . Suppose m + 1 < N and let

p = N/(m + 1); then mp < N and Np/(N − mp) = N . For u ∈ Wm+1,p(Ω) we have

∇u ∈ Wm,p(Ω) hence using (i)

‖∇u‖N ≤ c‖∇u‖m,p ≤ c‖u‖m+1,p,

‖u‖N ≤ ‖u‖m,p ≤ c‖u‖m+1,p,

‖u‖q ≤ c‖u‖1,N ≤ c‖u‖m+1,p,

where the first inequality of the last line comes from the initial case of (ii). This completes the

inductive step of (ii).

(iv) Suppose m ≥ 2 and mp > N > (m− 1)p. Consider u ∈ Wm,p(Ω). Then from (i) we have,

writing p0 =
Np

N − (m− 1)p
> N ,

‖∇u‖p0 ≤ c‖∇u‖m−1,p ≤ c‖u‖m,p,

‖u‖p0 ≤ c‖u‖m−1,p ≤ c‖u‖m,p,

so ‖u‖1,p0 ≤ c‖u‖m,p.
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Now apply the initial case of (iv) together with the above inequality to obtain, writing λ0 =

1− N

p0
= m− N

p
,

‖u‖C0,λ0 ≤ c‖u‖1,p0 ≤ c‖u‖m,p.

When 0 < λ < λ0 we can apply the embedding C0,λ0(Ω) →֒ C0,λ(Ω) (Lemma 2.11) to obtain

‖u‖C0,λ ≤ c‖u‖m,p

establishing the higher-order cases of (iv).

(v) Suppose N = (m− 1)p with m ≥ 2, let q > p and let u ∈ Wm,p(Ω). Then (ii) yields

‖∇u‖q ≤ c‖∇u‖m−1,p ≤ c‖u‖m,p,

‖u‖q ≤ c‖u‖m−1,p ≤ c‖u‖m,p,

so ‖u‖1,q ≤ c‖u‖m,p.

When q > N (so q > p) and λ(q) = 1− N

q
, the preliminary case of (v) yields

‖u‖C0,λ(q) ≤ c‖u‖1,q,

and for 0 < λ < 1 we can apply this inequality with q >
N

1− λ
together with the embedding

C0,λ(q)(Ω) →֒ C0,λ(Ω) to deduce

‖u‖C0,λ ≤ c‖u‖C0,λ(q) ≤ c‖u‖m,p,

establishing the higher-order cases of (v).

(iii) Recall the estimate

‖u‖sup ≤ c‖u‖N,1 ∀u ∈ WN,1(Q)

where the constant c depends on the dimensions of the rectangle Q but not on its position or

orientation; this holds for u ∈ CN (Q) ∩WN,1(Q) by Theorems 2.10 and 2.3, and follows for

general u ∈ WN,1(Q) by Meyers-Serrin.

Consider a chart (U, f) for ∂Ω, where U = rBN−1 × (−a, a) and f ∈ C1(rBN−1). Let

n = ‖n‖n̂ = (∇f(0),−1) which is the inward normal to ∂Ω at (0, f(0)). Let

g(ξ) = ∇f(0)ξ − α|ξ| for ξ ∈ R
N−1,

where α > 0 is to be chosen later. Let vi = (v′i, vi,N) , i = 1, . . . , N be the vertices adjacent

to 0 of a (unit) cube Q with diagonal [0,
√
Nn̂]. Then the vertices (0, f(0)) + vi lie below the
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tangent hyperplane to ∂Ω at (0, f(0)), so ∇f(0)v′i > vi,N . We choose r and α small enough

that g(v′i) > vi,N and ∇f(x′)ξ > g(ξ) for all x′ ∈ rBN−1 and 0 6= ξ ∈ R
N−1.

If x′ 6= x′ + ξ both belong to rBN−1 then for 0 < t < 1 the forward directional derivative

satisfies
d

dt+
(f(x′ + tξ)− g(tξ)) = ∇f(x′ + tξ)− g(ξ) > 0

and it follows that

f(x′ + ξ) > f(x′) + g(ξ).

It now follows that

((0, f(x′)) +Q) ∩ U ⊂ Ω for all x′ ∈ rBN−1.

Hence x + δQ ⊂ Ω for all x ∈ ∂Ω within distance δ > 0 of (0, f(0)) provided that δ is chosen

sufficiently small. Then every point of Ω sufficiently close to (0, f(0)) lies in a cube of edge δ

contained in Ω.

A compactness argument now shows that, for some ε > 0, every point x ∈ Ω lies in a

(closed) cube Qx of side ε contained in Ω, and so

|u(x)| ≤ ‖u‖sup,Qx ≤ c‖u‖N,1,Q◦
x
≤ c‖u‖N,1,Ω.

Remarks.

1) Boundedness of Ω can be avoided, at the expense of a more complicated proof and carefully

chosen regularity assumptions on ∂Ω.

2) The smoothness of ∂Ω can be weakened somewhat. See Adams’s book.

Theorem 4.2. Let ∅ 6= Ω ⊂ R
N be open, 1 ≤ p < ∞, and K ⊂ Lp(Ω). Then K is relatively

compact in Lp(Ω) if and only if K is bounded in Lp(Ω) and ∀η > 0 ∃δ > 0 and ∃G ⊂ Ω compact

such that

(i)

∫

Ω\G

|u|p < ηp for all u ∈ K, and

(ii)

∫

Ω

|u(x + h) − u(x)|pdx < ηp (taking u = 0 outside Ω) for all u ∈ K and all h ∈ R
N ,

satisfying |h| < δ.

Proof. (⇐ only will be proved.) It is enough to suppose Ω = R
N , extending u = 0 outside Ω.

Claim 1. If ε > 0 and G ⊂ R
N then K(G, ε) := {1GJε ∗ u | u ∈ K} is relatively compact in

C(G), and therefore in Lp(G).
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For, writing B = B(0, 1) and taking q to be conjugate to p,

‖Jε ∗ u‖C(G) ≤ ‖Jε‖sup‖u‖L1(G+εB) ≤ ‖Jε‖sup‖u‖p‖1G+εB‖q,

so K(G, ε) is uniformly bounded on G. Further, if x ∈ G and |h| < 1 then

|Jε ∗ u(x+ h)− Jε ∗ u(x)| ≤
∫

RN

∣∣Jε(x+ h− y)− Jε(x− y)
∣∣|u(y)|dy

≤ |h|‖∇Jε‖sup‖u‖L1(G+(1+ε)B),

whence K(ε) is equicontinuous. Relative compactness in C(G) follows by Arzelà-Ascoli, and

relative compactness in Lp(G) follows from this.

Claim 2. ‖Jε ∗ u− u‖p → 0 as ε → 0 uniformly over u ∈ K. For

‖Jε ∗ u− u‖p =
∫

RN

∣∣∣∣
∫

RN

Jε(h)(u(x− h)− u(x))dh

∣∣∣∣
p

dx

≤
∫

RN

∫

RN

Jε(h)
∣∣(u(x− h)− u(x))

∣∣pdhdx (Jensen’s inequality)

=

∫

RN

∫

RN

Jε(h)
∣∣(u(x− h)− u(x))

∣∣pdxdh

≤ sup
|h|<ε

∫

RN

∣∣(u(x− h)− u(x))
∣∣pdx→ 0 as ε→ 0, uniformly over u ∈ K by (ii).

Claim 3. ∀η > 0 ∃G ⊂ R
N compact and ∃ε > 0 such that ∀u ∈ K ‖u− 1GJε ∗ u‖p < η.

For, let η > 0 and let G′ be the compact set provided by (i). Then, for G = G′ + εB, u ∈ K,

‖u− 1GJε ∗ u‖p ≤ ‖u− 1G′‖p + ‖1G′(u− Jε ∗ u)‖p + ‖(1G − 1G′)Jε ∗ u‖p

< η + ‖u− Jε ∗ u‖p + η‖(1G − 1G′)‖p (if 0 < ε < 1)

< 3η

for ε > 0 small enough, independent of u ∈ K.

Claim 4. K is totally bounded.

For, let η > 0 and choose ε > 0 and compact G ⊂ R
N such that

‖u− 1GJε ∗ u‖p < η for all u ∈ K.

By Claim 1,

K(G, ε) := {1GJε ∗ u | u ∈ K}

is relatively compact in Lp; let S1, . . . , Sn be sets of diameter less than η covering K(G, ε).

Then {Sk +B(0, η)}nk=1 is a finite collection of sets of diameter less than 2η covering K.
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Lemma 4.3. Let ∅ 6= Ω ⊂ R
N be bounded and open and let 0 < α < β ≤ 1. Then the

embedding C0,β(Ω) →֒ C0,α(Ω) is compact.

Proof. Exercise on Sheet 5.

Theorem 4.4 (Rellich-Kondrachov Compact Embedding Theorem). Let N ≥ 2, ∅ 6= Ω ⊂ R
N

be open and bounded, m ∈ N and 1 ≤ p <∞. Then the following embeddings are compact:

(i) Wm,p
0 (Ω) →֒ Lp(Ω) for p ≤ q < p∗ :=

Np

N −mp
, if mp < N ;

(ii) Wm,p
0 (Ω) →֒ Lq(Ω) for p ≤ q <∞, if m < N , mp = N ;

(iii) Wm,p
0 (Ω) →֒ C0,λ(Ω) for 0 < λ < m− N

p
, if mp > N > (m− 1)p;

(iv) Wm,p
0 (Ω) →֒ C0,λ(Ω) for 0 < λ < 1, if (m− 1)p = N .

If ∂Ω is of class C1 then Wm,p
0 (Ω) can be replaced by Wm,p(Ω).

Proof. We firstly assume 1 ≤ p ≤ N and show W 1,p
0 (Ω) →֒ L1(Ω) is compact. Let S denote the

unit ball in W 1,p
0 (Ω). Fix q0, p < q0 <

Np

N − p
if p < N , or p < q0 < ∞ if p = N . Let ε > 0,

G ⊂ Ω a measurable set; then

∫

Ω\G

|u| ≤
(∫

Ω\G

|u|q0
) 1

q0 ∣∣Ω \G
∣∣1− 1

q0 .

We can now choose compact G such that

∫

Ω\G

|u| ≤ ε ∀u ∈ S,

since S is bounded in Lq0(Ω).

Consider u ∈ D(Ω), h ∈ R
N . Then

∫

Ω

|u(x+ h)− u(x)|dx ≤
∫

Ω

∫ 1

0

∣∣∣∣
d

dt
u(x+ th)

∣∣∣∣ dtdx

≤
∫

Ω

∫ 1

0

|∇u(x+ th)||h|dtdx

=

∫ 1

0

∫

Ω

|∇u(x+ th)||h|dxdt

≤ |h|
∫

Ω

|∇u| ≤ c|h|‖u‖1,p.

By density this inequality holds for all u ∈ W 1,p
0 (Ω). We can now choose δ > 0 such that

∫

Ω

|u(x+ h)− u(x)|dx < ε ∀u ∈ S, |h| < δ.
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If ∂Ω is C1, using the Extension Theorem we can prove the above for u ∈ W 1,p(Ω). Using

Theorem 4.2 it follows that S is relatively compact in L1(Ω).

Case (i) Choose q1, q < q1 < p∗. Choose λ, 0 < λ < 1, such that
1

q
=
λ

1
+

1− λ

q1
. Then

‖u‖q ≤ ‖u‖λ1‖u‖1−λ
q1

(7)

for u ∈ Lq1(Ω) (⊂ L1(Ω)), and so for u ∈ Wm,p
0 (Ω). Consider a bounded sequence {un} in

Wm,p
0 (Ω). Then {un} is bounded in W 1,p

0 (Ω), and by above has a subsequence, also denoted

{un}, converging in L1(Ω). From (7), together with boundedness of {un} in Lq1(Ω), we deduce

that {un} converges in Lq(Ω). Hence compactness of the embedding Wm,p
0 (Ω) →֒ Lq(Ω).

Case (ii) Essentially the same; choose q1 such that q < q1 <∞.

Case (iii) Consider λ, 0 < λ < m − N

p
, and choose µ, λ < µ < m − N

p
. Then Wm,p

0 (Ω) →֒
C0,µ(Ω) is bounded and C0,µ(Ω) →֒ C0,λ(Ω) is compact by Lemma 4.3, hence Wm,p

0 (Ω) →֒
C0,λ(Ω) is compact. Case (iv) Similar: given 0 < λ < 1, choose λ < µ < 1. When ∂Ω is of

class C1, identical arguments apply except at the stage indicated (compactness into L1).

Remarks

1) The assumption that Ω is bounded is unavoidable. For example, consider u0 ∈ Wm,p
0 (RN),

u0 6= 0. Set

un(x) = u0(x+ nh)

where h is a fixed unit vector. Then {un} is a bounded sequence in Wm,p
0 (RN), and

∫

Ω

|un|q → 0 a.e. as n→ ∞

for every bounded domain Ω ∈ R
N , so no subsequence of {un} can converge to a nonzero limit

in ‖ ‖q. But ‖un‖q = ‖u‖q so no subsequence of {un} tends to 0 in Lq. So Wm,p
0 (RN) is not

compactly embedded in Lq(RN) for all q.

2) WN,1(Ω) →֒ C(Ω) is not compact. For the case N = 1 see Problem Sheet 9 Q1.

3) Wm,p
0 (Ω) →֒ Lp∗(Ω), p∗ =

Np

N −mp
, mp < N is not compact (Problem Sheet 4 Q3). For

suppose B(0, 1) ⊂ Ω, choose 0 6= ϕ ∈ D(B(0, 1)) and let

ϕε(x) = ε−
N−p

p ϕ
(x
ε

)
, 0 < ε < 1.

Then {ϕε}ε is bounded in W 1,p
0 (Ω), and ϕε(x) → 0 as ε → 0 for all x 6= 0, but ‖ϕε‖p∗ 9 0 as

ε → 0 through any subsequence.

4) In dimension 2, if p > 2 then α > 0, β > 0 can be chosen such that u(x, y) = xα and

Ω =
{
(x, y) | 0 < x < 1 and 0 < y < xβ

}
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satisfy u ∈ W 1,2(Ω) \ Lp(Ω), showing p∗ = 2 is best possible for this case of the embedding

theorem when the boundary is not assumed smooth (Problem Sheet 6 Q2).
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