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1 Preliminaries

1.1 Inequalities

o will always denote a positive measure - think of Lebesgue measure £V, possibly with a positive
density function.

Conjugate exponents. p,q € [1,00] with ! +—-—=1orp=1and ¢ =00, or p =00 and
q = 1, are called conjugate exponents. b

1 1
Young’s inequality. If 1 < p,q < oo with — + — =1 then

p g
1 1
ry < —af + —y? (1)
p q
for all x > 0 and y > 0.
) 1 1 o
Proof. Write ([Il) as zy — —a? < —y?. Then maximise LHS over z for fixed y. U
p q

Holder’s Inequality. Let p,q € [1,00] be conjugate exponents, f € LP(X,u), g € LY(X, ).
Then

/ Faldu < 17 Il
X

Proof. Put = = &)l l9(=)|

Y=
(Al gllq
trivial. O

in Young’s inequality and integrate. p = 1, ¢ = o0 is



Minkowski’s Inequality. For 1 <p < oo, f, g € LP(X, ),

1+ gllp < [1f 1o+ llgllp-

Proof. Firstly consider the case p = 1. We have |f + g| < |f| + |g| a.e., hence

/X|f+g|du§/xlf|du+/x|g|du.

Secondly consider the case 1 < p < oo. For z € X we have

[f () + g(2)[" < Zmax{[f(2)], [g(x)[})" < 2°([f(2)[" + |g()]"),

/ |+ glPdp < 29 (/ If\pdu+/ Ig\pdu) < 0.
X X X

Thus f+ g € LP(X, %, ). Let ¢ be the conjugate exponent of p. Then

hence

/|f+g|pdﬂ = /|f+g||f+g|”1dM

X X

/|f||f+g|p‘1dﬂ+/ 9| | f + g["du
X X

() (o)) (s

(by Hélder’s inequality)
1/q
= Uttt ([ 17 +gvae)

If || f + g]|, > 0 we can divide by || f +g||g/q to obtain

IN

IN

1F =+ gllp < 11 f1lo + [lgllp,

whereas if || f + g||, = 0 the result is trivial.

Finally consider the case p = co. For almost every x € X we have

£ (2) + g(@)] < [f(@)] + [g(x)] < esssup|f| + esssup|g| = [|f]]oc + [[9]]oc-

Thus f+ g € L2(X, %, 1) and

f + 9lloe < [ f]lo + [lgloo-



1 1
Generalised Holder’s Inequality. Suppose pi,...,p, € (1,00), — 4+ ...+ — =1, u; €

P1 DPn
LPi(X, ), i=1,...,n. Then
/mmwawswmmmwww
X

Proof. Exercise. O

Interpolation Inequality. Suppose 1 < p < ¢ < r < oo and choose 0 < 6 < 1 such that

1 0 1-—40
- =—+4+ ——. Suppose u € LP(X, )N L"(X, p). Then
q p r

lully < Tlully lullz~*

Proof. Exercise. O

Jensen’s Inequality for sums. Let I C R be an open interval, let ¥ : I — R be a convex

function, let z1,...,x, € I and let \; > 0 for 1 <i¢ <n with \; +--- A, = 1. Then

Proof. By induction from the definition of convexity. O

Jensen’s Inequality for functions. Let I C R be an open interval, let ¥ : I — R be a convex
function and let p be a probability measure on X (> 0, u(X) = 1). Then for u € L' (X, p)

taking values in I we have

v ([ woiuta)) < [ wu)auto)

Proof. Recall that U is everywhere subdifferentiable, that is, for every x € I there is at least
one real o such that

U(y) > ¥(r) +aly—r) Vyel,

and so W is the pointwise supremum of all the affine functionals on R dominated by W.

Suppose firstly that a, 8 € R s.t.

p(s)=as+ B <V¥(s) VseR

go(/ud,u):oz/Xud,u—l—ﬁz/X(ozu—i—ﬁ)d,ug/X\Ifoud,u.

Taking the supremum over all such affine functionals ¢ dominated by ¥, we obtain

\Il(/ udu)g/\lloudu.
X X

Then



The AM-GM inequality. (7125 --2,)"" < (21 +--- + x,)/n for positive 21, ..., x, follows

by applying Jensen’s inequality for sums to the convex function —log on (0, c0).

1.2 Partial Derivatives and Distributions

Integrals are with respect to £V.

Definition. The support of a real-valued function f, supp f = {x | f(x) # 0}.

Notation for partial derivatives on R”.
0
. Write Ng = NU {0}. Any a = (ay,...,ay) € N is called a
L
multi-indez of degree |a| = oy + -+ - + ay. Write al = aq!---ay! and D* = D' -- - DYY.

For 1 <i < N write D; =

Note. 0 = (0,...,0) € NY, |0] =0, and D°u = u.

If w has continuous partial derivatives of order m, we have equality of cross-derivatives for
orders up to m, so the order of differentiation in D*u for || < m is unimportant.
Leibniz’s Theorem. If u,v are m-times continuously differentiable functions of N real vari-
ables then, for 0 < |a| < m,

D%uv = Z (g) DPuD* Py

0<p<a

(3) = -

and < « signifies 5; < a; fori=1,...,N.

where

For © C RY open, C*(Q) denotes the set of real functions on € that have continuous
partial derivatives of all orders.

2(Q) = C°(£2) denotes the set of all u € C*°(£2) such that supp u is a compact subset of
Q2. Elements of Z(Q2) are called test functions.

Example.

E=E
J(z) = ke 1 lz] <1
0 |z| > 1,

k is chosen such that / J=1.

RN

J(z) = NJ(etr), zeRY ande > 0.

Then J. € 2(RY) and is known as the standard mollifier.



Convention. If ¢ € Z2(Q2) then ¢ =0 on RV \ Q.

Convergence of test functions.

We say that ¢, — ¢o in Z(§2) as n — oo if there exists a compact set K C € such that

supp ¢, C K for all n € N and D%p,, — D%py uniformly on K as n — oo, for every a € NI

Definition of Distributions.

Given 2 C RY open, a distribution on ) is a real linear functional on 2() (sequentially)

continuous with respect to convergence of test functions. (u, ) denotes the value taken by the

distribution w at the test function . The set of distributions on 2 is denoted Z'(12).

Remarks

1. See Walter Rudin’s Functional Analysis for an account of a topology on Z(£2) that gives rise

to this notion of convergence of test functions. Linear functionals are shown to be continuous

iff they are sequentially continuous.

2. If o € 2(Q2) and « € N)Y then D%p is also a test function.

3. DY: 2(Q) — 2(Q) is linear and sequentially continuous.

Examples

1. We call a measurable function u on Q locally integrable (u € Li,.(Q)) if/ |u| < oo for every
K

K C Q) compact. A locally integrable u gives rise to a distribution by

<u,s0>=/ﬂus0 Vo € 2(Q).

This is well defined since ¢ has compact support and w is integrable on compact sets, and
linear. If v, — ¢ in Z(£) choose a compact K C 2 containing the supports of all the ,,.
Then

[(u, on) = (u, )| < lull ) llon = @lloc =0

by uniform convergence on K. Later we’ll show that different u give rise to different distribu-
tions.

2. Fix z € Q and define
(0200 = 0(2) Vo e P(Q).
This is well-defined and linear. If ¢, — ¢ in Z(Q) then ¢,(z) — ¢(z), hence J, is continuous

(Dirac é-function).

3. Let Q C R, 2 € Q,
(0Lp) =—¢'(2) Vo€ 2(Q)

defines a distribution, called a dipole.



Lemma 1.1. Suppose 2 C RY is open and u € C*(Q). Then
/(Diu)go =— / uD;p Vo € 2(Q).
Q Q
Proof. Assume u, ¢ are zero outside 2. Then up € C*(RY) even if u is not in C*(RY). So

/(Diu)go = / (D;(uyp) — uD;p) = / div (u pe;) — uD;p) =0 — / uD;p = — / uD;p
Q RN rB(0) RN Q

where e; is the unit vector in the positive x; direction and we have applied the Divergence

Theorem on a large ball rB(0) whose interior contains the support of ¢ . O

Note. If |a| = m and u € C™(QY) then

/ D%up = (—1)m/uDO‘g0 Vo € 2(Q).

Q Q

Definition. Let u € 2'(Q) and o € NYY. Define D*u by

(Du,0) = (=1)Nu, D) Vp € 2(Q).
Lemma 1.2. (i) Ifu € 2'(Q) and o € N}Y then D*u € 2'(Q).

(ii) If o, B € NY, u € 2'(Q) then
D*DPu = D*"Pu = D°D*u.

Proof. (i) D“u is the composition of D% : Z(Q) — 2(Q) which is linear and sequentially
continuous with u : Z(§2) — R which is linear and sequentially continuous. So D*u € Z'(Q2).

(ii) Consider ¢ € 2(£2). Then

_1)\a|+\5|<u’ DPD%y)

(
(

= (—1)‘0‘”‘5 |<u, D5+ag0> by equality of cross-derivatives for smooth functions
(

So D*DPy = DFtoy = DBy = DB Dy, O



Examples.

1. Let
0, <0
=ry=9 eR.
wz) = {x, x>0x
For ¢ € Z(R)
<u,> §0> = _<uv 90,>
- [ @@
= —/ x¢' (x)dz
0
= [xgo(x)]go +/ lo(x)dz (integrating by parts)
0
=0+ / lo(x)dx (¢ has compact support)
0
- [ H@ela)ds,
where
<
H(x) = 0 =0 (Heaviside Step function).
1 >0
Sou = H.

2. Differentiate H. For p € 2(R)

Thus (H', ¢) = ¢(0) = dp(p). So H' = ¢y (Dirac delta function).

3. Differentiate dy. For ¢ € Z(R)

(80, 0) = — (00, ¢y = —£'(0)  “Dipole”.

4. Le u be a Radon measure on €2 (Borel measure that assigns finite measure to compact sets).

Define
<u,<p>=/Q<pdu Vo € ().



Then p gives rise to a distribution, for if fp,, — ¢ in then there is a compact K C €2 that

contains the supports of the ¢, and ¢ and ¢,, — ¢ uniformly, so

/ Pndp — / edp
Q Q

and the linearity follows from properties of the integral.

Connections with classical derivatives.

1. Let f € L} (a,b), o € (a,b),

loc

F(x)z/xf(x)dx, a<x<b.

(a) Then F'is continuous and F” = f in the sense of distributions (proved later Proposition

).

(b) F' = f classically a.e. in (a,b) (tricky - see W. Rudin’s Real and Complex Analysis,
Ch. 8).

2. Let F' be continuous on (a,b).

(a) If I = f € L, .(a,b) in the sense of distributions, then

F(:c):/forc (20 € (a, 1))

for some ¢ € R (to be proved later).

(b) If F' = f € L}, .(a,b) classically a.e., we cannot conclude F(x) = [ f+c. See Cantor

loc

Function (Devil’s Staircase) in Rudin’s Real and Complex Analysis, 60h. 8.
Lemma 1.3. Let Q € RY be open. Then
(i) 2(Q) is dense in LP(2) for 1 < p < co.

(it) Ifu € L (Q) and

loc

/ugsz Vo € 2(Q)
Q

then u =0 a.e.
(Hence different locally integrable functions u give different distributions.)
Proof. Later. O

Proposition 1.4. Let f € L} _(a,b) and F(x) = / f, some xq € (a,b). Then F' = f in the

loc
xo

sense of distributions.



Proof. 1f fis continuous then F is continuously differentiable with F’ = f and the result follows
from Lemma [[1]
Now consider the general case. Firstly, choose a sequence {f,}>°, in Z(a,b) converging to

fin L' ([, B]) for all [, 8] C (a,b) (by Lemma [[3[i)). Define F),( / fn for some fixed
xo € (a,b). Then F! = f, both classically and in the sense of distributions. For ¢ € %(a,b)

<F12790> = <fn790> - / Jnp

b
— / fo (by Hélder’s ineq. on compact set supp ¢)

) P
Also,
<Fr/w 90> = _<an 90,>
b
= —/ anp/
- — / Fy' (since F,, — F uniformly on supp ¢)
- ) (p
Thus,
(F'yo) = (fi0) Vo€ D(ab).
So F' = f as distributions. O

2 Sobolev spaces
Definition. Let Q C RY be open, 1 < p < oo, m € N. Define the Sobolev space W™P(Q) by
WmP(Q) = {u | D € LP(Q) for alla € N} s.t. 0 < |a] < m}.

With the obvious Teal vector space structure, define the norm on W™P(Q) by

1
P

flp = [ 0 / D*uf? 1<p<oo

0<|ar|<m

[ullmoo = max [|D%|.
0<|o|<m

Theorem 2.1. Let Q C RY be open, 1 < p < oo, m € N. Then W™P(Q) is a Banach space.



Proof. Let {u,}>2; be a Cauchy sequence in W™P(Q). For each o € N, 0 < |a| < m,
[1D%un = D%uglly < [lun = tg]lmp-

Hence {D%u,} -, is a Cauchy sequence in LP(€2), and converges to some v, € L?(€2).

Now u,, — v, and for ¢ € 2(Q)

Holder

(U, DY) :/unDo‘go — /UODQQOI (vg, D)
Q Q

and
(D%, ) :/Do‘ungo Hidef/va@.
Q Q
Since
(D%, ) = (—1)1N(u,,, D)
we obtain

(v #) = (1), D%) = (D, ).
So, by uniqueness of function representing Dvy (Lemma [[3[(ii)),
D%y = v,.
Thus D*u,, — D% in || ||, for all 0 < || < m, that is, u, — vo in W™P(Q). O
Theorem 2.2. Let Q C RY be open, m € N.
(i) If 1 < p < oo then W™P(Q) is separable.
(i) If 1 < p < oo then W™P(Q) is reflexive.

Proof. Write A = {a € N) | 0 < |a| < m}, and write Y = LP(Q)4, that is the set of maps
from A to LP(Q2), whose members we think of as vectors (v,)aca Whose components belong to

LP(Q2) and are indexed by elements of A. For v € Y set

P
[vlly = Z vallh (note the sum is over @ € A)

0<|a|<m

which makes Y into a Banach space. The map 7 : W™P?(Q2) — Y
(Tu)o = D*u a € A, for u e W™P(Q),

is a linear isometry of W™P(Q) to a linear subspace X of Y. Moreover, W™P(Q) is complete,

so X is complete with || ||y, so X is closed in Y.

10



(i) If 1 < p < 0o then LP(2) is separable, so Y is separable, so X is separable, so WP ()
is separable.

(ii) Suppose 1 < p < oo. Then LP(Q) is reflexive (LP(Q2) is isometric under the natural
map onto LP(§2)**; equivalently, the closed unit ball of LP(2) is compact in the weak topology).
Hence Y is reflexive, hence X is reflexive (closed linear subspace of a reflexive space), hence

Wm™mP is reflexive. O

2.1 More spaces and boundary values

A proper theory of boundary values for Sobolev functions requires smoothness assumptions on
0Q); see “Trace Theorem” later on. A rough-and-ready definition of WP(Q)) functions whose

derivatives of orders 0,1,...,m — 1 vanish on the boundary, is as follows:
Definition. For Q C RY open, m € N, define Wy"P(Q) to be the closure of 2(Q) in W™P(LQ).
This is frequently a convenient space for studying Dirichlet problems for PDE.

Definition. H™(Q) = W™2(Q) is a Hilbert space with scalar product

(U, V) = Z /Do‘uDO‘v u,v € H™(Q).
Q

0<|al<m

Write H* () = W7*(Q).

Theorem 2.3. Let Q C RY be open, 1 < p < oo. Then there is a constant ¢ = ¢(p, N), such
that for u € WhP(Q),

¢ Hullipa < fluo Allipa-a < cllullipe

for all A€ O(N).

Proof. Consider A =€ O(N),u € W'(Q) and v =uo AT =uoA~! € LP(Q). Let p € Z(AQ)

11



and set and ¢ = po A € Z(Q2). Let e; denote the unit vector in the positive z; direction. Then

(Div,p) =

v(y)Dip(y)dy

)

u(ATy)(Dip)(AATy)dy

2

u(z)Dip(Az)dz (Az =y, |det A] = 1)

u(z)D;(1p o AT)(Ax)dx

u(z)D (1) o AT)(Ax)e;dx (D = derivative)

u(z)D(¢ o AT)(Ax)e;dx

S — S —

u(z) D (x) DAY (Ax)e;dx (Chain rule)

u(z)Dip(x) AT eyda

u(z)el AV (x)dx (transposing real integrand)

Q
:/eiTAVu(x)w(x)dx
Q
- / e; AVu(ATy) (AT y)dy
AQ)

S0
Vv = A(Vu) o AT,
So Vv € LP(AQ) and
IVolly < cllVull,

where

c=  sup A,
A€O(N),[¢]p=1

from which the result follows. O

Remark. This shows we are free to rotate axes, at the cost of replacing the Sobolev norm by
an equivalent norm, bounded by a constant independent of the rotation. Recall - two norms

| ll1 and || ||2 are equivalent if there is a constant ¢ > 0 such that
c izl < [lzllz < cllzl

for all z € X. Two norms are equivalent if and only if they give rise to the same convergent

sequences.

12



Theorem 2.4 (Poincaré’s Inequality). Let @ C RY be open, suppose S lies between two parallel
hyperplanes a distance | > 0 apart and let 1 < p < oo, m € N. Then there exists ¢ =
c(l,p,m,N) > 0 such that

1
3
[w][mp < C( Z ||Dau||£) when 1 < p < oo
|al=m
and
6|00 < ¢ max |D%||s  when p = oo
o=

for all uw € W"P(Q).

Proof. Firstly suppose m = 1. Consider u € Z(€2). Using Theorem we can assume the axes

to be chosen in such a way that Q C {(z1,...,2y5) | 0 < xzy < 1}. Then for x € Q
TN
u(x) = / Dyu(2,éx)déy o= (2, 2y) € RV X R,
0

SO

Holder
(@) < [ paytloDyu(@, ) g conjugate to p.

Case 1 < p < oo. Then

1

_1 l P
ue)] < 2t ( / |DNu<x',sN>|pd5N)

S

0
I I
/Q|u(x)|pd:p < (/0 xﬁ’v_lde) (/}RN—I/O |DNu(x',§N)|pd§Ndx') (u = 0 outside Q)

thus
P
Jully < EHDNUHZ
SO

l

Hqu < Im

1D ullp-

Case p = co. We have

u(@)] < 2y [ Dyu(z’, ) oo,

so taking sup over z € €

[ulloe < U Dnullco-

In either case,

[ull, < le(p, N)|[Vullp.

13



Applying repeatedly, we obtain

[l p < const - [|Vull,

1
P
lallmp < comst - ( 3 ||Dau||§) (1<p<o)

|al=m

¢[00 < const - max || Dul|o,
|a|=m

for all u € 2(Q). By density the inequality holds for all v € W;"*(Q), since both the LHS and

RHS are continuous in || ||,,,- O

Remark. Poincaré’s inequality enables us to define an equivalent norm on W;""(Q) when Q

has finite width (in particular when (2 is bounded).

full = (3 10%ul)” a<p<oo)

|al=m

Jull = max [ D*ulle (p = 00).

In particular

(w,v) =Y /Q DuD%v

|al=m

defines an equivalent scalar product on H{'(12).

2.2 Linear Partial Differential Operators with Constant coefficients.

L= Y a"D",

0<|a|<m
where a® are constants, is a linear partial differential operator of order (at most) m with

constant coeflicients.
If fe2(Q) then u € 2'(Q) is a solution of Lu = f if
(w, Y (~)MaD%) = (f,¢)  forall p € 2(Q).
0<[al<m

The operator

L= > (-)rla"D"

0<lal<m

is the adjoint of L.

14



Example.
N
A=) "Dj.
i=1

For a distribution u and test function ¢

i=1

Application. Suppose 2 C R is a bounded open set, f € L*(€2). Show that the boundary

value problem

—Au=f
u € Hj () } (BVP)

has exactly one solution.

Write H = H} () and set
(u,v}H:/Vu~Vv u,v € H
0

which defines an equivalent scalar product on H.
For v € H,
—Au=f

if and only if
/Vu-ngJ:/ﬁp Vo € 2(Q)
Q Q

if and only if

/Vu-Vv:/fv Yve H
Q Q
by density of 2(£2) in H, since LHS is the scalar product of H, and the RHS defines a bounded

linear functional of v € H; to see this, put

A(U)Z/va Yve H

then
[A(v)] < /Q|f||v| < |[fll2llv]l2 < const - || fllo]|v][z

by Poincaré’s inequality. So A € H*, and the Riesz Representation Theorem for Hilbert spaces
shows

A(v) = (ug,v)y Yve H

for exactly one ug € H. Now wug is the unique solution of the BVP.

15



Remark. A is a second order partial differential operator, but uy € HJ () at first sight only
has first order derivatives. The question “Does ug have second order derivatives?” belongs
to Regularity Theory. In fact ug € H?.(Q2) in general, and uy € H?*(Q) if the boundary is
sufficiently smooth. This is typical of elliptic PDE. The situation is not so good for hyperbolic
PDE (e.g. the wave equation).

2.3 Sobolev embeddings

Theorem 2.5. Let —o0 < a < b < oo, 1 <p<oo. Then every element of Wol’p(a, b) has a
continuous representative, and the following embeddings are well-defined bounded linear maps:
Wy (a,b) = C([a, b))
Wy (a,b) = C%([a,b]) (Lipschitz continuous functions)
1
Wy (a,b) = C%([a, b]) (Holder continuous functions), a« =1 — -1 < p < 0.
p

Proof. Case p=1.
For ¢ € Z(a,b)

p@l=| [ ¢|<Iel @<a<d
0 [¢llup < lellr
Case p = o0.
For ¢ € Z(a,b)
Y
o) - oWl = | [ | <1y = sl

SO

lp(x) — o(y)]
lollcor = HQOHsup + sup —————————

< elloo + 19 lloo < 2/l 00-
a<z<y<b |$— |

Case 1 < p < o0.

For o € 2(Q), a <z <y <b,

older

Y H 1
o) — el < [ 11" e -yl
o)l < 0= ¥l

1
sowitha=-=1-— -
q p

lp(r) — 9(y)]
H‘PHCQG = HQOHsup + sup —————

<a<y<h T —yl® < const- ¢l
a<x<y

16



We have proved inequalities of the form

lellx <clelhy, ¢ € Z(a,b)
with

X = C([a,b]) when p =1

X = C"Y([a, b]) when p = 0o

1
X = C"([a, b]) when 1 <p<oocand a=1-——.
p

For general u € W,"(), choose a sequence {p,} in 2(Q) converging to u in ||||1,. Then
lon — ul|l, = 0, so passing to a subsequence ¢, — u a.e. Also {p,} is Cauchy in || |1,
and by above inequalities Cauchy in || ||x. Then by completeness {¢,}22; converges in X to
v say. Then v € X, so v is (uniformly) continuous, and ¢, — v uniformly, so v = u a.e.
Thus v is a continuous representative for u, hence W, " (a,b) € X. Finally, || || x and | |1, are
continuous functions in || || x and || ||, respectively and ¢,, — u in both norms, so the inequality

Ix < ¢|l |l holds on the whole of W, (a, b). ]

e In the results proved above for N = 1 the restrictions to bounded intervals and Wi™* can

be avoided.

In higher dimensions we don’t generally get continuous functions;

The embeddings are bounded linear operators, which for certain domains, and for certain

values of p, are compact.

Some results in higher dimensions require regularity assumptions on the boundary.

Some results require boundedness of the domain.

We now consider the higher-dimensional cases.

17



Theorem 2.6 (Sobolev’s Inequality). Let m > 1, N > 2, p > 1, mp < N, p* =
Then

N —mp’

[ u

- < ( 3 ||Dau||§)

laf=m

for all u € C™(RN) (D 2(RY)).

Proof of the inequality. We consider the following cases:

e Case m=1,p=1,p" = N/(N —1). Forue C{{RY), r € RV,

u(gj‘) = / j DjU(SL’l, e 7§j7 . ,.I‘N)dfj

SO

o)l < [ " |Dyule)|dz,

o0

SO

@) < I ( | |Dju<x>|dxj)Nll-

1<j<N W oo

The first term of the product is independent of x; and the remaining terms are each functions

of N — 1 variables including x;. So
1 1
0 N 0 N—-1 8} o) N—-1
/ u(z)| ¥ day < (/ \Dlu(az)\dazl) / 11 (/ \Dju(x)\dxj) dr;.
—00 —00 =00 41 —00
On the RHS the second term is the integral of a product of N — 1 functions. Applying the

generalised Holder inequality

/m cruno1 < HleN—l to HUN—l”Nfl

we obtain

/_Z Ju(e)[FTday < </_Z \Dlu(fﬁ)\dﬂfl)m ]1;[1 </_Z /_Z ‘Dju(x)‘dxjdxl)m 7

thus we have taken the product outside the integral. We repeat this process over all values of
J; at each step one factor in the RHS is independent of x;, and we apply the generalised Holder
inequality to the integral of the product of the remaining N — 1 factors. We end up with

~ v
<)
R i1 /R

so taking the (N — 1)/N-th power yields

P Sﬁ </RN |Dju|)

18
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Now by the AM-GM inequality

L&
full <+ 3" 1Dyl
=1
This proves the case m =1, p = 1.
eCase m=1,1<p<N, p'= NL_ZJP Let u € CHRY). Let v = |u|®* where s > 1 is to be

chosen later; note that v € C}(RY). Applying the above inequality to v,

N-1 )

S T E

(/ \u\—N]—VI) gc./ |w|1:c./ | Vuly < ¢ Vul, (/ |u|<sl>q)
RN RN RN RN

1 1 N
where — + — = 1. We choose s so that i (s — 1)g, which yields

q p N —
_(N=Dp
N—p
Thus Nl
s N q
([ ) " " <,
RN
Then
sN Np . 4 N—-1 1 N-p 1
N—-1 N-p b N q Np Dk
SO
[ullps < || Vullp.

This completes the case m =1, 1 <p < N.
e General case. Induction on m. The initial case m = 1 is done. Assume true for m — 1.

Consider a € NY, |a] =m — 1, u € C%(RY). Then by the initial case
D%l xp < ¢l VD],
N-p
Thus by the inductive hypothesis

lull  wwvpv—n <e Y |ID%f e <Y | Dull,
N—(m—1)Np/(N—p) N—p
|o|=m—1 |B|l=m

that is

ol so <3 D%l
|8]=m

as required, since all norms on a Euclidean space are equivalent. This completes the inductive

step and we are done. O

N
Corollary 2.7. Let N > 2, m > 1, mp < N, p* = Nip, @ # Q C RY open. Then

WP (Q) is embedded in LP" () and the embedding is a bounded linear map.
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Proof. Let ¢ be the constant in the Sobolev inequality for the given N, m, p. Thus

P

lells <c [ D 1IP0I | <clelmp Vo€ 2(9).

o=
Consider u € Wi""(€2); so w is the limit in || ||, of a sequence {¢,} of test functions. We can
also assume ¢, — u a.e. Now {¢,} is Cauchy in || ||,,, and therefore Cauchy in || ||,, so {¢}
converges in LF", and the limit must equal u a.e. Thus u € LP". Continuity of || ||,- on LF" and
| [|mp on W™P now ensure

[l < ellwlimp- -

Definitions. Let @ # Q C RY be open, m € N, 0 < A < 1.

[
—
(@)
S
S
&
3
I
w)
I~
V)
=
S
(@)
<
e}
3
V)
w)
3
Q)
—

Then
Cm”\(Q) C Cm(ﬁ) C CH(Q) Cc C™(Q),

functions u € C™(Q) have D%, 0 < |a| < m, continuously extendable to 2, Hélder continuous

in case C™*. Note C(RN) # C(RY). Then C%(Q) and C™(Q) are Banach spaces with

lullogior = max 10"l
C™*(Q) is a Banach space with
D%*u(x) — D*u
|ul|cmr@) = max || D%l[sp + max  sup | (z) 5 )]
0<|a|<m 0<|a|<m 4 ye,zty |z — y

Theorem 2.8 (Morrey’s Inequality). Suppose N > 2, N < p < oo. Then there is a constant
¢ = ¢(N,p) such that

lullcon <cllull, — Yu€ CHRY) NWH(RY),
N

where A\ =1 — —.
p
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Proof. Step 1. We show that

[Vu(y)|
u(y) —u(x dygc/ ——dy
][l;(x,r)| ( ) ( )| B(z,r) |y_'r‘N71

where ][ denotes the mean.

Preliminary calculation

/ |u(x + sw) —u(az)\dw:/
8B(0,1) dB(0,1)
< / / |Vu(z + tw) - w|dtdw
dB(0,1)
< / / |Vu(z + tw)|dtdw
8B(0,1)
/ / |Vu(z + tw)|dwdt
8B(0,1)

:// |Vu(r 4+ w) tN_l
o JaB(o,)

- / Nule +w)l
B(0,s)

¥

= / 7|Vu(%\2|_1dy.
B(x,s) |.T - y‘

*d
/0 Eu(aﬁLtw)dt‘dw

Now

uy) —u@ldy= [ [ Ju+w) — o) |duds
/B(a;,r) /o /aB(o,s)
_ / TN /6 o, 50) = ulo)lduds
<[ s
< ([ o) (/B )

|Vu(y)
——d
N/mr |y_x|N ! v

Vu(y
Fout -ty <e [ g,
B(z,r) B(z,r) |y - .§L’|

Step 2. Estimate ||u/|syp-

So dividing by r¥
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For x € RV

|u(x)\527[ |u(x)——u(yﬂdy—k][ lu(y)|dy
B(z,1) B(z,1)
= C/ Mdy +|B(z, 1>|%71Hqu (by Step 1 and Holder % + % =1)
B

(z,1) |.T - y‘Nil
N—1 % .
< |Vul, / o -y 9y )" fefull,  (since (N — 1)g < N)
B(z,1)

< o Vaull, + cffull,

< cllullyp.

Step 3. Holder estimate for |u(x) — u(y)|.

Consider z,y € RY, |z —y| =7 > 0. For any z € RY
u(z) = u(y)] < fu(z) —u2)] + |u(z) —uly)].
So averaging over a region W of finite positive measure

() — ufy)| < ]{V ju(z) — u(z)|dz + ]{V fu(z) — u(y)|dz.

Choose W, = B(z,r) N B(y,r) (c.f. Figure[).

Figure 1: W, = B(x,r) N B(y,r)
Notice that W, is similar to W; = B(0,1) N B(e, 1) where e is any unit vector. So
|Wr| = TN|W1|.

Now
(Wil Ju(z) — u(z)|d¢ < |B($7'f’)\][ u(z) — u(z)|dz.
W, B(z,r)

So
|er|

][r ) = w2z < 2

22
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thus

][ lu(z) —u(z)|dz < c][ lu(z) — u(z)|dz (since |B|I(;;"’)| is independent of r).
- B(z,r)

Now using Step 1,

u(z) — u(2)|dz < const - Mdzgc Yu 7 — |~ (N=Da g, !
N—1 P
r B(z,r) ‘.CL’ - Z‘ N B(z,r)

Now
/ |z — 2|~V = /T/ s W=D ds = c/r sVl (N=Dagg
B(z,r) 0 JOoB(z,s) 0
e (R RS =
since
p (—1) p—N
N —1)(1 — 1=(N—-1)(1-—*— 1=(N—-1)—Z y1=2"2
¥ -n-g 1= - (1o L) = v - 1220
So
w(x) —u(z)|dz < ¢||Vu r%%:c Vaull,r' "7,
p p
since
p—N }:p—N<1_}) _p=N_, N
p—1 ¢ p—-1 j% j% j%

Similarly

1)~ utwldz < el Tl
SO

_N

lu(z) — u(y)| < | Vulllz —y' 7.

That is,
L=l < ey,
Now
u(x) — uly
lulloos = el + s L =20 < . s

THyY |l‘ - y|)\
Theorem 2.9. Let N >2, me N, m < N, mp=N,1<q < oo. Then there exists a constant
c=c(N,m,q) such that
(i) lully < c|QY" Y " | Dull, for all w € C(RY), where Q = {x € RV | u(z) # 0};
|a|=m

(ii) |Jully < cl|u)lmp, for all u € C™(RN) N W™P(RN) and q > p.
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Proof. (i) Case NL_m < g < o0. Choose r, 1 <r < p, such that r* = N]f—:m = ¢. Then by the

Sobolev inequality, for u € CT(RY)

lully < ¢ D IDul.

|oo|=m

1/s
[ 1 < ol ( / |Dau|“)
RN RN

where rs =p, 1/s'+1/s=1,rs =pr/(p—7r) = (Nr/m)/(N/m —r) = (Nr)/(N —mr) = q
and Q = {z | u(z) # 0}. So

Now

1Dull, < [ | Dull, = |29 D%ull,.

Thus
lully < clQY0 > | Dull,.

|al=m

(i) Case 1 < ¢ < i~ =t. We have

/ ul? < I1allelllul*ll,  (where gs =t and 1/s' +1/s = 1)
RN

SO

lully < 1RV fulle = QY7 lull,.

Using the previous case to estimate ||ul|; we get

lully < clQMVIQMES Dl = QYYD ull,

laj=m |laj=m

(ii) Suppose u € C™(RN) N WmP(RY), ¢ > p. Construct a partition of unity as follows. Let
¢ € C°(R) satisty ®(§) > 0 for —1 <& <1 and ®(§) =0 for [{] > 1. For k = (ky,...,kn) €

ZN let
N

Op(z) = [[ (@i — k)

=1

which lives on

Qr=(—14+k,14+k) x--x(=14+kn, 14+ kyn).

Note almost every € RY belongs to 2"V of the cubes @}, and all points belong to at least one.

Define
78

S
ZZEZN P
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which are smooth functions adding up to the constant function 1, and all but finitely many

vanish outside any bounded set. Thus

U= Z PrU.

keZN

Now

= oNa

> 2 Vop(@u(z)| <2V 2 Ny (a)u(x)|?

by Jensen’s inequality, so
[l <2 [ S e
RN RN

Now

q/p

/ et < | / D7 (pyu)| (by (i)

laj=m

<c| Y /Qk<z \Dﬁu|>p

a/p

0<|a|<m 0<p<a
<c Z / | DPulP
0<|8|<m

where we have differentiated by Leibniz’s theorem and used the independence of ||D* Py |sup

from k for each «, 8, then applied Jensen’s inequality.

Then
q/p
[RCEES 31 (D oy MLETS BT Dol oy NESTQ [T
kczN \0<|B|<m keZN 0<|8|<m
= C 2N Z / |Dﬁu‘p ”u”q pRN - C”u”mpRN

0<|8|<m

since the family {Q}rezn forms a 2V-fold covering of RY except for a set of zero measure.
Thus

lullg < cllwlimp- -

Theorem 2.10. Let [ = (ay, b)) x -+ x (ay, by) be a rectangle in RY. Then there is a constant

¢, depending only on the edge-lengths of I, such that

(i) Nlullsup < cllullna for allw e CV(I) AWNA(T);
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(ii) ||ullsup < cljulln1 and u(z) = 0 as |z| = oo for all u € CN(RY) N WNHRN).

Proof. Case N = 1. For u € C*(ay,by) NWhi(ay,by), z,y € I = (ay,b;)
b1
ule) —u() < [ 1]
al
and, by continuity,there exists & € [ such that

(@) = (by — ay)~" / "

al

So

b1 b1 b1
()| < Ju(@)] + / ] < (by — ) / ] + / | < max{(by — a1)~", 1} [full1.

al

Inductive step. Assume true in dimension N — 1. Consider x,y € I and suppose initially

that = and y differ in one coordinate only, say the last. Write z = (2/, zy),y = (2/,yn) where
7 € RV and xn,yy € (an,by). Then

bn

by
ju(z) — uly)| < / Dyu(, €)]de < e(ts,... L) / | Dyt €)lly-r.1 d€

anN anN

< el )|l v

where the W ~1Lnorm is taken over an (N — 1)-dimensional rectangle and ¢; = b; — a;.

In the general case we can choose points x = 2°, 2!, ..., 2" = y such that 2’ — 2! is parallel

to the i-th coordinate axis, and apply the above calculation to obtain
N
[u(@) = u(y)| <D Ju(a’ —u(@ )] < e(br, .. bn)llul v
i=1

We can choose Z € I such that u(z) = |I|™ /u Then, for all y € I,
I

@) < @] + fuly) — @) < u@)] + e, .., ) [ullya
< (blye b)) / il + e(tr, . £l
I
< C(gl,.--,gN)”u”N,l-

This completes the inductive step.

The remaining parts of Theorem 2.10] are an exercise. O

Lemma 2.11. If Q C RY is open and 0 < a < B < 1, then the embedding C%P(2) — C%*()

is bounded. [Ezxercise]
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Theorem 2.12 (Sobolev Embedding Theorem for Wy (Q)). Suppose N > 2, Q C RY is open,

1 <p<oo, meN. Then the following embeddings are well-defined bounded linear maps:

Np
N —mp

(i) Wg™(Q) = LI(Q), mp <N, p< q<p*, p" =
(11) WgP(Q) — L1(Q), mp=N, 1 <p<q<oo;
(iii) W,'H(Q) = C(Q) and W, (Q) — LY(Q) for 1 < q < oo;
(iv) WP (Q) — COMNQ), mp > N> (m—1)p, 0 <A <m — %;

(v) WI™P(Q) < CONQ), (m—1)p=N, 0 < A< 1.

Proof. First check for test functions wu.

(i) mp < N. We have |[u|,» < ¢|u||mp by the Sobolev inequality and ||ul[, < |||/, We

get LP" — L9 by interpolation: assume p < ¢ < p* and write

lzg—i—l:e for some 0 < 0 < 1;
qa P p
then
lully < Nulpllulp?
hence
lully < cllullplulliy < clullmy — for u e 2(5).

(ii) mp = N, 1 < p < ¢ < oo. Theorem 9 shows ||ul|, < ¢||t]|m, for u € 2(2) € C™(Q).

(iii)) m= N, p=1.
Theorem 2T0(ii) shows ||ul|sup < c||ul|n1 for uw € 2(Q) (€ WNHRY) N CN(RY)) (and hence

[ulloo < ellullx)-
If 1 < g < oo then [lullf < [Jufl1[Jul| &y < cllullf,-

sup

(iv) mp > N > (m — 1)p. We want to use the Morrey inequality

[v]lcoso < cllvflip,  for ve 2(Q)

where

Np N
Po = > N since mp > N and =1-——
== m-D)p ) =1

and the Sobolev inequality

[0l < cllvllm-, — (since (m —1)p < N). (2)
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So for test functions u

IVullpy < el Vullm-1p,  (from @)

< clfullmp

and
[ullpy < cllullmy — (from @)

SO

[l o < cllullmp.

Morrey now gives

[ullgoro < elluimp-

By Lemma 2171 for 0 < A < \g

[ullcor < ellulfmp-

Finally, note that

N N
)\0:1——:771——.
Po p

(v) N =(m —1)p. Then, for p < g < 0o

IVully < el Vull1,  (Theorem )

< clfullmp

[ully < cllullm-1p < cllullmp

SO

[ullg < cllullmp- (3)

For g > N
[ullcor < elluflrg  (Morrey) (4)

N
where A = 1 — —; by varying ¢ in the range N < ¢ < oo we can make \ take any value,
q

0 < A < 1. Thus from @) and () we have
|ul|con < el myp if0<A<landue 2(Q).
So in each of the above cases we have an inequality
ullx < ellw|lmp for all u € 2(02) (5)
where X is L4(Q), C(Q), or C%*(2) as appropriate.
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For general u € W;""(€) choose a sequence {u,} of test functions converging in || ||, to
u. Then {u,} is Cauchy in |||, and therefore Cauchy in || ||x, so {u,} converges in X to
u say. Passing to a subsequence, u,, — u a.e., and either u,, — w uniformly, or after passing
to a subsequence u, — W a.e. So u = u a.e. Each side of () is continuous on X or WP as

appropriate. So (B) also holds for u. O

3 Regularisation and approximation

Definition. The convolution of two measurable functions u,v on RY

wiole) = [ uly)els =y
]RN
when this exists.

Lemma 3.1. (i) Ifu,v € L*(RY) then ux*v is defined a.e. on RN and

[ux vlfy < Jull1f[ol]s-
(ii) If uw € L, (RY) and v € L'(RY) has compact support, then u*v and v * u ezist a.e. and

u*xv=uvx*u ae., and is locally L .

(iii) If u € L, (RY), v,w € LY (), v,w have compact support then

loc

(uxv)*xw=ux(v*xw) ae

(iv) Ifu e L (RY) and v € C.(RY) then ux* v is continuous.

loc

Proof. Not given, by Fubini. Part (iv) exercise. O

Lemma 3.2. Suppose u € L, .(RY) and ¢ € Z(RY). Then

loc

(i) D*(u* ) =ux* D% for all « € N} and is continuous, hence u x p € C°(RY).

(ii) If D*u € L}, .(RYN) then

loc

D (ux ) = (D) * .

Proof. (i) Consider first order partial derivatives; say e is the unit vector in the z; direction for

some i. If 0 < |h| < 1, then
(ux*p)(x + h;) —(uxp)(z) /RN u<y)<p(w+ he — @;l) — (T — y)dy
o(r+he —y) — p(x —y)
Z/UU(@/) . dy
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where U = B(z, 1) — supp ¢. The integrand converges pointwise to uD;p, and is dominated by
|u(2)]]| Dillsup Which is integrable on the compact set U so we can pass to the limit using the

Dominated Convergence Theorem to get
Di(ux*p)=ux*D;p.

Repeated applications give the result for D*.

D¢ is continuous and has compact support, hence u* D% is continuous for every a € N,
hence u * ¢ € C*(RY).
(ii) Assume D% € Li (RY), for some o € NYY. For ¢ € Z(RY)

loc

D%(ux p)(x) =

= D%u(y)p(x — y)dy (since D*u € L},.)

loc

Reminder.

1
1—|x|?
() = ke lz] <1 s eRY
0 lz] > 1

with & > 0 chosen so that / J =1. Take

RN

Jo(z) = e NJ(e ) (Standard mollifier)

SO / J. =1 and supp J. = B(0,¢).
RN
Definition. Ifu € L} (RY) we call J. * u the mollification or regularisation of u.

loc

Note.
(1) J.xu € C=(RY).

(2) % ulx) = / w(y) ez — y)dy = / u(y) el — y)dy.

RN B(z,e)
So J. x u(x) is a weighted mean of u over B(z,¢).
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(3) D*(J.xu) = (D*J.) xu
(4) If D*u € L} (RY) then D*(J. * u) = J. * D*u.
Theorem 3.3. Let 1 < p < o0.
(i) 1. 5 ully < [l for u € PR and |lJ. % ully < [l for u € Wmo(RY).

(ii) If 1 < p < oo then || J. *u — ull, = 0 as € = 0 for u € LP(RY) and || J. * u — ul[n, — 0

as € — 0 for u € WmP(RY).

(iii) if 1 < p < oo then Z(RYN) is dense in LP(RYN) and in W™P(RY) so WP (RY) =
WmP(RY),

Proof. (i) Case 1 < p < oc.

P

| Je x u(a)]” =

[ u) = vy

< / lu(y)[PJe(x — y)dy (Jensen’s Inequality).
RN

So

s u(z)Pde < (x — yax
Je )|Pd YIPJ(x — y)dyd
RN RN RN
/ / Y|P I (x — y)dxdy
RN JRN
:/ lu(y)|Pdy (since / J.=1)
RN RN

thus [|J  ull, < flullp.

Case p = o0.

| Je x ()] =

w(y) L — y)dy] <l [Ty =
]RN

In either case, the inequality ||J: * t||mp < ||¢|/myp follows by applying the above to each D®u.

(ii) Suppose 1 < p < oo.

Simple case. u = 1o where () is a rectangle. Then

J. % u(x) 1 for all small e > 0if z € Q°
u(x) = _
0 for all smalle > 0if z € RV \ Q

0 < J.xu(zx) <1 for all z, and J(z)=0if 2 € Q+ B(0,1),e < 1.
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So Joxu— wae and 0 < J. xu < 1gipo,). So the Dominated Convergence Theorem shows
/ |J€*u—u|p:/ |Jo % u— ulP (e<1)
RN Q+B(0,1)
—0 ase—0.

General case. Let u € LP(RY) and > 0. We can choose rectangles Q1, . .., @} and constants

c1, ..., ¢, such that ||u — wo||, < n where

k
Uy = Z Clek .
n=1

Now J. * ug — ug as € — 0 by the above case plus the triangle inequality; choose 9 > 0 such

that ||Jz * ug — uo||, < n for 0 < e <. Then

[ e % w—ully < flu—wuolly + lluo — Je x uollp + [[Je * uo — J * ullp
<0+ lluo = Jexuolly +1 (by (1))

< 31 provided € < g.

Thus ||.J: xu —ul[, = 0 as e — 0.
For u € W™P(RY) we obtain ||.J. * « — ul|,,, — 0 by applying the above to each D%u.
(iii) Let 1 < p < oo.
Density of 2(RY) in LP(RY) actually follows from the proof of (ii) since J. * uy € Z(RY).
Let n > 0. Using a result from the Problem Sheets (Sheet 4 Q2), given u € W™P we can
choose v € W™P with compact support such that ||u — v||,,, < 7. Now J. * v — v in WP by

(ii), and J. x v € 2(RY), so we can choose € with ||.J. % v — v|,n, <1, 80 ||u — J % 0|, < 27

Therefore WP (RY) = W™P(RY). O

Remark. In general W™?(Q) # W""(Q).

3.1 Localisation

We want analogues of the results of Theorem for a general domain €2. For a function

ue L (Q),

loc

wndo) = [ uly) e = )y

which requires values of u at points of B(z,e) which might be outside 2. If we set u = 0 outside
Q) then the resulting discontinuity of v will be reflected in large derivatives of J. % u near 0.

This necessitates restricting attention to subsets of €2, typically compact ones.
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Lemma 3.4. Let Q C RY be open and nonempty, 0y open, Qo a compact subset of Q. Let
0 < e < dist(Q,RY\ Q), then

(i) For 1 <p < oo we have ||J: * ul[pa, < ||ullpaotse0e if © € LP(2) and

12 % wllmpao < ullmporseoe if ue W),

(i1) For1 <p < oo we have ||J. xu—u|,q, — 0 ase — 0 if u € LP(2) and

| Je % u — ullmpa, = 0 as e — 0 if u € W™P(Q).

Proof. (i) For 0 < e < & < dist(Qy, RN \ Q) we can choose ¢ € 2(Q) with 0 < ¢ < 1
everywhere, 1) = 1 on Qg + B°(0,¢) and ¢ = 0 outside Qy + B°(0,¢’). Then by Theorem

1 % llpy < 12 % ()l < ol < lutllposmeoey = lullparsee as & — &

The remaining parts use similar arguments, applied to the partial derivatives where necessary.

O

Remark. If u € Wy"P(Q2) then u € W™P(RY) (take u = 0 outside 2). So J. x u makes sense

and we have ||J. * ul|,0 < |lull,ry = u|lpotBeo,e) ete.

Theorem 3.5 (Fundamental Theorem of Calculus). Suppose Q C RY is a nonempty, connected
open set, u € Wl’l(Q), and Diu =0 a.e. in$2 fori=1,...,N. Then u is essentially constant

loc
on €.

Proof. Consider a ball B such that B C €. Then, for all small ¢ > 0,
D;(J. xu)(z) = J. * Dyu(xz) =0 for all x € B,

fori =1,...,N. Hence J. x u is constant in B. As e — 0, J. *xu — u in L'(B), so u = const.
a.e. in B.

Take S(c) to be the union of all the open balls B such that B C Q and u = c a.e. on B, for
c € R. Then Q = |J g S(c), and the S(c) are open and disjoint, so by connectedness 2 = S(c)

for one particular value of c. O
We are now in a position to prove Lemma

Lemma 3.6. Let Q C RY be open.

(i) Let 1 <p < oo. Then 2(R) is dense in LP(2).

(11) Let u € L}, .(Q) with / up =0 for all p € 2(Q). Then u =10 a.e. in Q.
Q

loc
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Proof. (i) We addressed the case = R" in Theorem B3l For general €2, choose bounded open
Q) such that Qy C Q, and such that ||1q,u — ul|, < & (v € LP(Q), € > 0, having been given).
Then, for n > 0 small enough, J,, * (1g,u) is a test function on 2 and ||J,, * (1g,u) — lo,ull, < €.
So |lu — J, * (Log,u)ll, < 2e.

(ii) Consider bounded open € with Qy C Q and take 0 < & < dist(Q, RV \ Q). Then

Joxu(x) = / u(y)Je(z —y)dy=0 Vo el
RN

since y — J.(z — y) is a test function on . Letting ¢ — 0 we get J. * u — u in L'(), so

u =0 a.e. in €)y. Hence u = 0 a.e. in (). O

Remark. This shows that different locally integrable functions represent different distributions

1

loes then the function representing D®u is unique.

and in particular, if D% € L

Lemma 3.7. Let Q C RY be open, u € C(Q). Then J. * u — u uniformly on compact subsets
of Q. [Exercise]
Lemma 3.8. Let @ # Q C RY be open. Then there is a sequence {@,} in 2(2) such that:
(i) 0 <, <1 for every n, and i on =1 on Q (“partition of unity”);
n=1
(ii) every point of Q has a neighbourhood on which all except finitely many @, vanish identi-

cally (“local finiteness”);

(iii) local finiteness has the consequence that any compact subset of €1 intersects the supports

of only finitely many p,,.

Proof. For n € N define
Q,={zeq ’ 2| < n and dist(z, RV \ Q) >2/n}.

Then €, is open and bounded, Q, C Q, Q, C Q,4; and U

n > 2 with S; = Q, and write

O, =Q. Set S, =Q,, \ Q,_; for

neN

wn = Jl/n * 1Sn7

so that 1, € 2(Q) and supp(¢,) = S, + B(0,1/n).

Consider x € Q, so B°(x,r) C €, for somen € Nand r > 0. If k > n then B°(z,r)NS, = &
so B°(x,7/2)N (S, + B(0,7/2)) = @. Hence B°(z,7/2) Nsupp(¢y) = @ if k > max{n,2/r}. It
follows by covering that if K C (2 is compact then K meets the supports of only finitely many
Y.
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Let x € Q; we claim ¢, (x) > 0 for some n € N. We have = € 2, for some m € N and
then Q,, C S1U---US,,. We can choose r, 0 < r < 1/m, such that B°(z,r) C Q,, and then

S, N B°(x,r) has positive measure for some n € {1,...,m} so

Un(z) = / Jim(x —y)dy > / Jim(x —y)dy > 0.
n SnNBe(x,r)

Set
_ U
ZkeN ?/ch

Then every point of {2 has a neighbourhood on which the above sum involves only finitely many

Pn

functions, hence ,, is smooth and Z wn = 1.

neN
If K C € is compact, then K intersects the supports of only finitely many v,. For, each

point of K is the centre of an open ball that intersects only finitely many supp v,, and K can

be covered by finitely many such balls. O

Theorem 3.9 (Meyers-Serrin “H = W’ Theorem). Let @ # Q C RY be open, m € N,
1 <p<oo. Then C=(Q2) N W™P(Q) is dense in W™P(Q).

o0

Proof. Choose a locally finite, countable partition of unity into test functions on €, {¢,}5°,

as provided by Lemma 3.8 Consider 6 > 0, u € W™P(Q).

For each n € N choose 0 < &, < 1/n such that e, < dist(supp p,, RY \ Q) so v, =
Je, * (pnu) € 2(Q2), and such that ||v, — @uul[m, < 6277

Consider = € Q. Then r > 0 can be chosen such that B°(z,r) N supp p, = & for all except
finitely many n, so B°(z, ) N (supp on + B(0, %7’)) = & except for finitely many n, hence
B°(z, 3r) Nsupp v, = & for all sufficiently large n. Thus the family {v,}22, is locally finite.

Take v = Z v € C(Q) by local finiteness.
k=1
Choose {€,}%°, to be an increasing family of bounded open sets with Q, C €, and

U, Q, = Q.
By local finiteness, each €2, intersects the supports of only finitely many ¢, and v;, and

since u = ), pru we have

||U_u||m,p,ﬂn = )

Z(Uk — PruU
k=1

the above sum involves only finitely many functions so there are no convergence problems.

m,p,Qn
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Therefore

P

/ W — D%lP =
Q

n o<|a\<m

Z UV — SOku
k= mJLQn
p
< (Xl = petlna. )
k=1
S p
< <Z 52k> = P
k=1

and we can let n — oo and apply the Monotone Convergence Theorem to LHS to get

/ Z D% — D%u|P < §7

0<|a|<m

1.e.

lv = ullmpo < 0.

Now v =u+ (v —u) € W™P(Q) so v € C(2) N W™P(Q).

0

Remarks. This result says nothing about the behaviour of the approximating smooth functions

near the boundary, so it cannot be used to define boundary values of Sobolev functions.

Note that p < oo cannot be avoided.

Theorem 3.10. Let ©,Q be nonempty, bounded, open sets in RY and suppose F : © — Q is

a bijection satisfying F € C1(©) and F~' € CY(Q). Then, for 1 < p < oo, the map v — vo F

is an invertible bounded linear operator from W'P(Q) onto WhP(O).

p

Proof. First consider u =vo F, v € C1(Q) N WP(Q). Then
ZDW )D;Fy(z)| da

/|Du |pd:p—/ dx—/
O |k=1
N
Sconst-/Z‘Dkv(F(x))‘pdx
© k=1

N
= const - / Z | Do) [ 1T F~ (y)|dy (JF~! Jacobian)

G—%U(F(x

< const - / Dyo(y)|Pdy
S0t

k=1

hence

[ull1p.e < const - [[v][1,0.

A similar inequality holds in the reverse direction, and by density (Meyers-Serrin) these in-

equalities hold throughout W1?(Q).
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Lemma 3.11. Let B = B°(0,r) CRY, B* = {(«/,2n) € B| *ay > 0}, u € WH(BT). Then
() [ (Duo== [ u(Dig) for allp e 2(B), 125 <N -1,
B+ B+

(i1) (Dyu)p = —/ u(Dyp) for all ¢ € P(B) such that p(z',0) =0 if ' € By_1;
B+ B+

(iii) defining u(z', xn) = w(@',|xn|) we have uw € WHH(B) with Dju(x’,xy) = D;(2, |zn]) for

1<j<N-—1and Dyu(z',zn) = sgn(xy)Dyu(, |zn]|) a.e.

|

0 Y21

Figure 2: 1) < ¢ < 1[%700)

Proof. For (i) and (ii) choose increasing ¢ € C*°(R) such that 1jj ) <9 < 11 ) (c.f. Fig-
ure ), e.g. ¢ = Jyja* Lis o)- Define ¢.(s) = 9 (Z) for s € R. Thus 9. (zn)p(2', zxn) defines
an element of Z(B™).
(i) For 1<j <N -1

/]%(Dju)(fb’)i/fs(iUN)SO(x/)dx = - /B+ U(x)Dj(¢s($N)¢($))d$
_ / ulaelan) Do),

For xy > 0 we have 0 < ¢.(z) < 1 and ). — 1 as € — 0, so we can apply the Dominated

Convergence Theorem to deduce (i).

(ii) For j = N,

[ (Du@)iutex)ple)s == [ utw) (70 () pla) + velox) Dypla) de

Now on BT we have |p(z)| < cizy where ¢; = ||Dy¢||sup, since p(x) = 0 when xy = 0, hence
() e < () v ()
£ £ £
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which is bounded above by ¢;co when 0 < 2y < € and vanishes for 2y > €, where ¢o = ||¢'||sup-
Therefore e~ 1)/ (m?N) (2, zy) is uniformly bounded and tends to 0 pointwise as ¢ — 0. We
now deduce (ii) using the Dominated Convergence Theorem.

(iii) If 1 <j < N —1and ¢ € Z(B) then

/B7V_L(37)D]»<p(:c)d:c:/B+ u(a:’,xN)Dj@(x',:cN)dx—l—/u(az’,—xN)ngo(a:’,xN)da:
— |l ) Do’ an) + Dyl —awlde (o () with )
_ /B (Dyu(a', |ox)) o(a!, 2y )da.

For j = N we have

/Ba(a:)DN@(SL’)d:c:/B+ u(x',:cN)DNgo(a:’,xN)dx+/ w(x', —xn)Dnp(x, zy)dx
= /B+ u(@', zy) {Dw(x’,xzv) -

- /B+ (Dyu(@)) [o(a, 2n) — (2, —2y)] da

Fr. (o', —:cN)] dx

(by (ii) since, if zy = 0 then p(z’, zy5) — o(2', —xN) = 0)
—— [ sen(en) (Dyuta o) ole)ds m

Terminology. Let @ # Q C RV, N > 2. A C! chart for 99 is an open set U = rBy_; X
(—a, a) (with respect to some local Cartesian coordinates in RY) and f € C*'(rBy_1) such that

| fllsup < @ and such that
QNU ={(2/,2n) €U | ay < f(a')}.

We say 01 is of class C* if there is a C'! chart for 9 in a neighbourhood of every point.

graph of f
’F'_#_'_,__..--"""

Figure 3: C! chart
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Theorem 3.12 (Extension Theorem). Let @ # Q C RN (N > 2) be bounded with C'* boundary,

and 1 < p < co. Then there exists a bounded open set V O Q and a bounded linear operator
E: WY (Q) — WyP(V)

such that Eu = u almost everywhere in Q for all u € W¥P(Q) and Eu € C(V) for all u €
C(Q) NP (Q).

Proof. Consider a chart (U, f) where U = rBy_; X (—a,a). Define
F<$/7xN) = (SL’/,LIZ‘N - f(x/))a

(c.f. Figure @) which is a bijection from U to an open set W such that FF € C'(U) and
F~1 € CY(W) given by

F7'y' yv) = (v v + fY)).

u —w

N
N,

0 -
Figure 4: F € CY(U)

Choose a ball B with B C W, centre O (which lies on F((9Q) NU) and set
B* ={(y,yn) € B| £yn > 0}.

Then Lemma B.I1] provides an extension operator 7' : W'P(BT) to W'*(B). Note that if
u € WH(B*) N C(BT) then by construction Tu € W'?(B) N C(B).

Now, assuming p < oo, the operator
L: WY (D) - W (B), defined by Lu = uo F!,
where D = F~Y(B), D* = F~}(B%), is bounded and has a bounded inverse. Define
K:WY(D™) - WY(D) by Ku=L"'TLu, u&W"“(D").
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Then K is bounded and is an extension operator of the desired form for D~.

Now cover 0f2 with finitely many bounded open sets Dy, ..., D,, each having an extension
operator K; : W'?(D;NQ) — WP(D;). Choose an open set Dy, Dy C €, such that Dy, ..., D,
cover €.

Choose ¢; € 2(D;) such that Z ©; =1 on a set whose interior contains 2. Define
i=0

Z% Ki(ulp,)(z) + pou(z).

Then E(z) = Y. oi(@)u(z) = u(z) for 2 € Q, and Eu € Wy *(V) where V = JI, D;.
Moreover if u € C(Q) N WHP(Q) then Eu € C.(V). O

Remark. For smoother boundaries, extension operators for W"™P can be defined.

Theorem 3.13 (Trace Theorem). Let @ # Q C RY be a bounded domain with C* boundary.
Let 1 < p < oco. Then there is a bounded linear operator Tr : WP(Q) — LP(0Q) such that if

u € C(Q)NWLP(Q) and T denotes the uniformly continuous extension of u to Q then
Tru(x) = u(z) for all x € 0N,

Proof. Consider u € WHP(Q)NCL(Q). Consider a chart for 99, say (U, f) where U = rBy_; X
(—a,a). Consider ¢ € C*(R) such that

Wea) =0 and () =1 for s> L (~a— | ).

Then

/Umagz [ul” = Uﬁ(,mw(xN)‘U(l’ﬂpdS(x)
[ @l )P VP

By-1
/ / a:N)\u(x’,:cN)\p)(1+\Vf(:c’)\Q)%d:cNd:c’ ifp>1(%
<c / |9 ()| [u(@)P + plo () |[u() [P~ Dyu(z) |de
UnQ
< C/Urm [ul? + |uP~| Dyuldx

< c/ |u|? + | Dyu|Pdx
uN
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where we have used Young’s inequality in the last line to obtain

|u|(p71)q N |DNu|p

q p

[ulP | Dyul| <

with 1/p+1/g =1, s0 (p — 1)g = p, hence

[t < lllwsseno
Unos2

The case p = 1 is similar, using at (*) the inequality

f!

)
e F)ule, F(o)] < / Dy ($(a', e )u(e x))day.

—a

Now, covering 0 with finitely many charts {(Uy, fx)},_, then

n n
lullroey < D lullirwinny < Y cullullwiswynn) < clullwiag)-
k=1 k=1

To deal with the case of general u € W1P(), it must be shown that u can be approximated
in || ||, by such functions. First extend u to Eu € W,*(V), then use density to approximate
Eu in || |l1, by a sequence {u,} in Z(V). The restrictions of the u, to © form the desired
approximating sequence. If now {u,} is any sequence in C1(Q) N W1P(Q) converging in || |1,
to u, then their boundary traces form a Cauchy sequence in LP(0f2) converging to a limit,
denoted Tr(u), which is independent of the choice of approximating sequence (any two such
sequences can be interlaced to give another one, whose boundary traces must also converge).

Finally, let u € C(Q) N WHP(Q); we have to check that the above definition agrees with
T|pq. Note that Fulg is a uniformly continuous extension of u to 2, so % = Eulg and therefore
U|pn = Eulon. Now, as ¢ — 0, we have J. * Eu — Eu on V both uniformly and in || ||1,, so
J. % Eulsq converges uniformly to Eulsg and converges in LP(0f2) to some limit which must

therefore be Tru. Hence Tr(u) = Eulgn = Ulsq as required. O

4 Embeddings on Smooth Bounded Domains

Theorem 4.1 (Sobolev Embedding Theorem for smooth bounded domains). Let N > 2,
@ £ Q C RY be open and bounded with C* boundary, m € N and 1 < p < oo. Then the

following embeddings are bounded:

N
() Wo(9) < L9(9) for p < g < 9 = 5= if mp < N,

(i) W™P(Q2) — L1(Q) forp < qg<ooifm <N, mp=N;
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(iti) WNL(Q) = C(Q);
(iv) W™P(Q) — COMNQ) for 0 < X <m — % if mp> N > (m—1)p;
(v) WmP(Q) < COMNQ) for0 <A< 1if (m—1)p=N.

Proof. When m = 1 cases (i), (ii), (iv), (v) follow by using Theorem B.12 to choose an extension
operator E : W'?(Q) — W, ?(V) for some bounded open V > Q, and applying the embedding
theorem for W, (€2) (Theorem ZIZ). We leave case (iii) to the end, and proceed to describe

the inductive step in the other cases.

(i) Suppose the result holds for some m > 1 and all p with mp < N. Let p satisfy (m+1)p < N.

Np Np Np,
Let pj = ———— and po = = . F WmLe(Q h
et py N _—mp and py N (m+ Dp N or u € (©2) we now have

Vu € W™P(Q) and thence

IVullp, < ellVullmp < ellullmiip
[l < cllwllmp < llwllmirp,
o ullip < elluflmirp,
o ullp, < cllullmirp

from the initial case WPt < LP2. The case ¢ < p* follows by interpolation, completing the

inductive step.

(ii) Suppose the result holds for some m > 1 with m < N. Suppose m +1 < N and let
p = N/(m + 1); then mp < N and Np/(N — mp) = N. For u € W™TP(Q) we have
Vu € W™P(Q) hence using (i)

Vully < el Vullmp < cllullmiip,
Jullv < lullmp < cllullmrrp
lully < cllulliy < cllullmsrp,
where the first inequality of the last line comes from the initial case of (ii). This completes the
inductive step of (ii).

(iv) Suppose m > 2 and mp > N > (m — 1)p. Consider u € W™P(Q2). Then from (i) we have,

N
b > N,

WIS o = N Ty

IVullpe < ellVullm-1p < cllulfmp,

A\

[ullpe < clltllmrp < cllullmp,

o ullipe < cllullmp
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Now apply the initial case of (iv) together with the above inequality to obtain, writing Ay =
N N

1——=m-— —,
Po p
[ullcono < cllullip, < clfullm,p.

When 0 < A < \g we can apply the embedding C%*(Q) — C%*(Q) (Lemma ETII]) to obtain
[ullcor < cflullmp

establishing the higher-order cases of (iv).

(v) Suppose N = (m — 1)p with m > 2, let ¢ > p and let v € W™P(Q). Then (ii) yields

Vully < el Vullm-1p < cllullmp,

lully < cllullm-1p < cllullmp,
o lulhy < dlfullmp

N

When g > N (so ¢ > p) and A(¢) =1 — p

, the preliminary case of (v) yields
[ullcon@ < cflull1g,

N
and for 0 < A < 1 we can apply this inequality with ¢ > T together with the embedding
COMND(Q) < COMNQ) to deduce

[ullcor < elluflcora < elfullmp,

establishing the higher-order cases of (v).

(iii) Recall the estimate

[ullsup < clluflny Yu € WHHQ)

where the constant ¢ depends on the dimensions of the rectangle ) but not on its position or
orientation; this holds for v € CN(Q) N W™1(Q) by Theorems and 2.3 and follows for
general u € WN1(Q) by Meyers-Serrin.

Consider a chart (U, f) for 9, where U = rBy_; x (—a,a) and f € C*(rBy_1). Let
n = ||n||n = (Vf(0), —1) which is the inward normal to 92 at (0, f(0)). Let

9(&) = Vf(0)§ —al¢]  for £ e RV,

where o > 0 is to be chosen later. Let v; = (v},v;n) .4 = 1,..., N be the vertices adjacent

to 0 of a (unit) cube @ with diagonal [0,v/N7]. Then the vertices (0, f(0)) 4 v; lie below the
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tangent hyperplane to 092 at (0, f(0)), so Vf(0)v; > v; . We choose r and « small enough
that g(v)) > v; y and Vf(2')¢ > g(€) for all 2’ € rBy_; and 0 # £ € RV 1,
If 2 # 2’ + £ both belong to rBy_1 then for 0 < ¢t < 1 the forward directional derivative

satisfies

S (J +16) — (1)) = VI +16) — g(6) > 0

and it follows that
f@ +&) > f(@') + (&)

It now follows that
(0, f()N)+Q)NU cQ  forall 2’ € rBy_;.

Hence z + 6Q C § for all z € 9 within distance § > 0 of (0, f(0)) provided that 4 is chosen
sufficiently small. Then every point of  sufficiently close to (0, £(0)) lies in a cube of edge &
contained in Q.

A compactness argument now shows that, for some ¢ > 0, every point z € € lies in a

(closed) cube Q, of side € contained in €, and so

[u()] < [Jullsup.@. < cllullnige < cllullyie- [
Remarks.

1) Boundedness of 2 can be avoided, at the expense of a more complicated proof and carefully

chosen regularity assumptions on 0f2.

2) The smoothness of 02 can be weakened somewhat. See Adams’s book.

Theorem 4.2. Let @ # Q C RY be open, 1 < p < 0o, and K C LP(Q). Then K is relatively
compact in LP(Q) if and only if K is bounded in LP(Q)) and¥n > 030 > 0 and 3G C Q compact
such that

(i) / |ulP < n? for all uw € K, and
oG
(i1) / |u(z + h) — u(z)Pde < n* (taking u = 0 outside ) for all u € K and all h € RY,
Q
satisfying |h| < 0.

Proof. (< only will be proved.) It is enough to suppose = RY extending u = 0 outside Q.
Claim 1. If ¢ > 0 and G C RY then K(G,¢) := {1gJ. *u | u € K} is relatively compact in
C(G), and therefore in LP(G).
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For, writing B = B(0,1) and taking ¢ to be conjugate to p,

||J€ *UHC(G) < ||J6||sup||u||L1(G+eB) < ||J6||sup||u||p||1G+eB||qv

so K(G,¢) is uniformly bounded on G. Further, if € G and |h| < 1 then

|4*u@+hw—k*u@ns/"Lux+h—w—nux—yMMwuy

RN

< [PV Lllswpllullzr@ra+erm)

whence K(g) is equicontinuous. Relative compactness in C'(G) follows by Arzela-Ascoli, and

relative compactness in LP(G) follows from this.

Claim 2. ||J. *u — ul[, = 0 as ¢ = 0 uniformly over v € K. For

H%*u—wbz/

<

/R L)l — ) — u(z))dh| dz

/ J(h)|(u(z — h) — u(az))‘pdhdx (Jensen’s inequality)
R

N

RN
RN

_ /RN /RN Jo(B)|(u(z — B) — u(x))|"dudh

< sup / |(u(z — h) — u(:p))}pdx — 0 as ¢ — 0, uniformly over v € K by (ii).
RN

|h|<e

Claim 3. V¥ > 0 3G € RY compact and Je > 0 such that Vu € K |lu — 1gJ. * ull, <.

For, let n > 0 and let G’ be the compact set provided by (i). Then, for G = G +eB, u € K,

lu— 1o xullp < flu—Lallp + [[ler(u — Je s u)llp + |(1e — Lar) Je * ull,
< flu—=Jxul, +0ll(le = 1e)ll, (0 <e<1)

< 3n

for ¢ > 0 small enough, independent of u € K.

Claim 4. K is totally bounded.

For, let > 0 and choose £ > 0 and compact G C RY such that
|lu—1gJe *ull, <n for all u € K.

By Claim 1,
K(G,e) ={lgJ.xu|ue K}

is relatively compact in LP; let Si,...,S, be sets of diameter less than 1 covering K(G,¢).

Then {S;, + B(0,7)}?_, is a finite collection of sets of diameter less than 27 covering K.
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Lemma 4.3. Let @ # Q C RY be bounded and open and let 0 < o < B < 1. Then the
embedding C%P(Q) — C%%(Q) is compact.

Proof. Exercise on Sheet 5. ]

Theorem 4.4 (Rellich-Kondrachov Compact Embedding Theorem). Let N > 2, @ # Q C RY

be open and bounded, m € N and 1 < p < co. Then the following embeddings are compact:

) 5 Np .
(i) Wo™" () = LP(Q) forp < q <p":= N if mp < N;
(1) WP (Q) — L) forp < q< oo, ifm <N, mp=N;
N
(iii) Wg"P(Q)) = COMQ) for0 < X <m — P if mp> N > (m—1)p;
(iv) WP (Q) — COMNQ) for0 < A< 1, if (m—1)p= N.

If 02 is of class C then W3™"(Q) can be replaced by W™P(L2).

Proof. We firstly assume 1 < p < N and show W, ?(Q) < L'(Q) is compact. Let S denote the

N
unit ball in Wol’p(Q). Fix qo, p < qo < I P

ifp<N,orp<qg <ooif p=N. Let ¢ > 0,
p
G C ) a measurable set; then

1

s () imer s
Q\G o\G

We can now choose compact G such that

/ lu| <e Yu e S,
oG

since S is bounded in L% ().
Consider u € 2(Q), h € RY. Then

/ﬂ\u(:c—l—h)—u(a:)\dxﬁ/ﬂ/ol

1
g// |Vu(z + th)||h|dtdx
0 Jo

1

:/ /|Vu(x+th)||h|dxdt
0 Q

< |h / 1Vl < il

d
au(:c + th)‘ dtdx

By density this inequality holds for all u € WO1 (). We can now choose § > 0 such that
/ lu(z +h) —u(z)lde <e  Yue S |hl <4
Q
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If 99 is C*, using the Extension Theorem we can prove the above for v € W'?(2). Using

Theorem FE2) it follows that S is relatively compact in L'().

1 A 1=
Case (i) Choose ¢q1, ¢ < ¢ < p*. Choose A, 0 < A < 1, such that — = ] + . Then
- q i

lullg < flullylullg™ (7)

for u € L2(Q) (C LY(Q)), and so for u € Wy"(Q2). Consider a bounded sequence {u,} in
WP(Q). Then {u,} is bounded in W,”(Q), and by above has a subsequence, also denoted
{u,}, converging in L'(€2). From (), together with boundedness of {u,} in L9 (Q), we deduce
that {u,} converges in L?(£2). Hence compactness of the embedding W;""(Q2) < L(Q).

Case (ii) Essentially the same; choose ¢; such that ¢ < ¢; < 0.

Case (iii) Consider A\, 0 < A <m — E, and choose p, A < u < m — E Then Wy""(Q) —
C%(Q) is bounded and C%*(Q) C'g?)‘(Q) is compact by Lemma hence Wy""(Q) —
C% () is compact. Case (iv) Similar: given 0 < A < 1, choose A < p < 1. When 0 is of

class C', identical arguments apply except at the stage indicated (compactness into L'). [

Remarks
1) The assumption that 2 is bounded is unavoidable. For example, consider uy € Wy (RY),
ug # 0. Set
Un () = ug(x + nh)

where £ is a fixed unit vector. Then {u,} is a bounded sequence in Wy"?(R"), and
/ |un,|? — 0 a.e. asm — oo
Q

for every bounded domain 2 € R, so no subsequence of {u,} can converge to a nonzero limit
in || |l But [Junll, = |Jull; so no subsequence of {u,} tends to 0 in L?. So Wg"*(RY) is not
compactly embedded in L¢(RY) for all q.

2) WNL(Q) < C() is not compact. For the case N = 1 see Problem Sheet 9 Q1.

3) WP (Q) — LF (Q), p* = N];np’ mp < N is not compact (Problem Sheet 4 Q3). For

N —
suppose B(0,1) C Q, choose 0 # ¢ € 2(B(0,1)) and let

_N-p X
w(x) =¢ P<p<g>, 0<e<l.

Then {¢.}. is bounded in Wy (Q), and ¢.(z) — 0 as e — 0 for all 2 # 0, but ||¢.[|,» - 0 as
€ — 0 through any subsequence.

4) In dimension 2, if p > 2 then a > 0, § > 0 can be chosen such that u(z,y) = z* and
Q={(z,y)|0<z<land 0<y<z’}
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satisfy u € WH2(Q) \ LP(R2), showing p* = 2 is best possible for this case of the embedding
theorem when the boundary is not assumed smooth (Problem Sheet 6 Q2).
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