
INTRODUCTION TO ABELIAN VARIETIESLet us begin with some general 
hat about what abelian varieties are and why they are interesting.Anything signi�
ant said before the start of se
tion 1 will be repeated later.I'm going to work over C . This doesn't in the least mean that you 
an't do anything without 
omplexanalysis. On the 
ontrary, abelian varieties, espe
ially ellipti
 
urves, over number �elds are the main obje
tsof study in large areas of number theory. But I am a 
omplex geometer and the study of abelian varietiesover this one very spe
ial �eld 
ontains quite enough to be getting on with, as well as being beautiful. Beforeall the number theorists lose interest, I should point out that 
omplex abelian varieties and number theoryare also inextri
ably linked and no-one 
an study either without some knowledge of the other.There are lots of books. The one that I have 
ome to regard as the standard handbook is:H. Lange & Ch. Birkenhake, Complex Abelian Varieties (Springer)but this 
overs a lot of material and assumes rather more knowledge of algebrai
 geometry than most re
entgraduates have. A surprisingly a

essible introdu
tion 
an be found in the �rst 80 pages or so ofD. Mumford, Abelian Varieties (OUP, Bombay).I should mention two other books by the same author, whi
h explore related topi
s; the �rst one 
ould serveas a text for some parts of the 
ourse, the se
ond is just an obje
t of beauty:D. Mumford, Curves and their Ja
obians (Ann Arbor, Mi
h)D. Mumford, Tata Le
ture Notes on Theta I (Birkh�auser)Another re
ent book on abelian varieties isG.R. Kempf, Complex Abelian Varieties and Theta Fun
tions (Springer)whi
h is not bad, though it is not error-free and the approa
h taken is not the one I propose to take. Thereare two older books:H.P.F. Swinnerton{Dyer, Analyti
 Theory of Abelian Varieties (CUP)and, inevitablyS. Lang, Abelian Varietiesof whi
h the �rst 
an be re
ommended. One or another of these books will have the answer to most questions.So what are abelian varieties and why are they interesting? The most basi
 example is a smooth 
ubi

urve in P2, for instan
e E = fy2z = 4x3 � g2xz2 � g3z3gfor general g2, g3 2 C . This is the simplest kind of non-rational variety you 
an have, so if we don'tunderstand it we are not going to get very far. And indeed it stopped you in your tra
ks in your s
hooldays,when you thought mathemati
s meant doing more diÆ
ult integrals, be
ause you 
ouldn't doZ �4x3 � g2x� g3��1=2 dxor indeed R y�1dx if y2 was given by any polynomial in x of degree � 3.Another basi
 thing that we are going to have to understand if we are to make any progress at all with
omplex manifolds is C =�, where � � C is a latti
e of rank 2: say � = Z+ �Z. After all, this obje
t has
omplex dimension 1, so it has real dimension 2, and we know what it is as a real manifold: it's a torus,next to the sphere the simplest kind of 
ompa
t surfa
e there is.In fa
t these are the same obje
ts. Given � we de�ne the Weiersrtra� }-fun
tion}(z) = 1z2 + X!2�nf0g � 1(z � !)2 � 1!2 �so that }0(z) = P!2��2(z � !)�3. Among the good properties of } is that it is a doubly periodi
 { thatis, �-invariant { meromorphi
 fun
tion on C and that ifg2 = 60 X!2�nf0g!�4; g3 = 140 X!2�nf0g!�6;1



then }0(z)2 = 4}(z)3 � g2}(z) � g3. So the map u: C =� ! P2 given by u(z + �) = �}(z) : }0(z) : 1� forz 62 � and u(0 + �) = �0 : 1 : 0� a
tually maps C =� onto E� = fy2z = 4x3 � g2xz2 � g3z3g � P2. Witha 
ertain amount of work (nothing too strenuous) you 
an show that u is a biholomorphi
 map; moreover,every smooth 
ubi
 
urve in P2 is proje
tively equivalent to E� for some Lb. So if we are only interested in
omplex analysis, plane 
ubi
 
urves and 1-dimensional 
omplex tori are the same things.But C =� has more stru
ture than that: it's an abelian group. That makes E� into a group, too, byP + Q = u�u�1(P ) + u�1(Q)�, and the identity element is (0 : 1 : 0). We should like to have a geometri
pi
ture of the addition: that is, we should like +:E� � E� ! E� to be a morphism of algebrai
 varieties,and one that we 
an des
ribe in terms of proje
tive geometry. The answer is well-known: P +Q+R = 0 ifP , Q and R are 
ollinear. Of 
ourse you 
ould just write that down and use it as the de�nition of addition,�rst 
hoosing some in
exion point to be 0. If you do, you have a rather messy job proving that what youhave de�ned is asso
iative. Histori
ally at least, it's better to do what we were doing and start with C =�,and then we need to understand u�1, so as to re
onstru
t � from E�.Consider � = u�(y�1dx), a meromorphi
 di�erential on C =�. Let �: C ! C =� be the proje
tion: then��� = (u�)�(y�1dx) = (}0)�1d} = dz, whi
h is holomorphi
. So y�1dx is a
tually a global holomorphi
di�erential form on E�. Moreover, elements of � are just the periods of this form: if 
 is a 
losed path inC =� and~
 is a path in C whi
h lifts 
 then R
 � = R~
 dz = 
(1)� 
(0) 2 �, and obviously every element of �
an be got in this way.From this it follows that u�1(P ) = R P(0:1:0) y�1dx +� 2 C =�, and the statement that P +Q+R = 0 ifand only if they are 
ollinear 
omes down to Abel's Theorem: if P , Q, R 2 E� thenZ P(0:1:0) y�1dx+ Z Q(0:1:0) y�1dx+ Z R(0:1:0) y�1dx � 0 mod �if and only if P , Q and R are 
ollinear. This is an addition formula for ellipti
 integrals (and that is of
ourse the form in whi
h Abel proved it). It is quite easy now that we know all about 
omplex analysis butit made Abel a Norwegian national hero. It is this 
onnexion that gave rise to the name \abelian variety".One other thing that we have learn-ed is that E� has a global holomorphi
 di�erential 1-form, whi
hhas no zeros either. This is pretty unusual and is something to 
elebrate: global forms are as 
ommonas mud but only a few privileged varieties are a

orded nowhere vanishing ones. It's only got one globalholomorphi
 form, though, up to a 
onstant: otherwise, we 
ould divide another form by this one and get aglobal non
onstant holomorphi
 fun
tion, whi
h is against the rules. This is the di�erential geometer's wayof saying that E� has genus 1.If we want to generalise we 
ould try several things:a) Curves of higher genusb) Quarti
s in P3 and quinti
s in P4
) C g=� for g > 1.All these things are sensible: we are going to do (
). Doing (a) leads you straight ba
k to (
) anyway,as I will explain in a moment. Doing (b) leads you to K3 surfa
es and Calabi-Yau manifolds, whi
h arefas
inating obje
ts but not quite of su
h universal o

urren
e as abelian varieties. Mind you, if you believesome physi
ists there is a Calabi-Yau in the room you are in, or perhaps the room you are in is in aCalabi-Yau.Why do 
urves lead you straight ba
k to things like C g =�? Be
ause if you have a 
urve of genus g thenit has g di�erentials and you integrate ea
h one of them against ea
h of the 2g loops, getting 2g points in C gwhi
h generate �. It turns out that the quotient C g =�, 
alled the Ja
obian, 
aptures all information aboutthe 
urve and is easier to study in some ways.But a
tually } is something of a mira
le. If you just write down 2g elements of C g generating a latti
e �then there will probably be no meromorphi
 fun
tions at all whose periods are exa
tly those 2g numbers,so if you 
onsider C g=� it won't have any meromorphi
 fun
tions and in parti
ular won't embed in anyproje
tive spa
e. If it will embed in proje
tive spa
e it is 
alled an abelian variety. The abelian varieties ofdimension g form a family of dimension g(g� 1)=2 and as this is bigger than the dimension of the family of
urves of genus g, whi
h is 3g�3 for g � 2, most abelian varieties 
annot be Ja
obians. It is a hard question(
alled the S
hottky problem) to determine whi
h ones are Ja
obians. But there are other ways as well in2



whi
h abelian varieties (and even things of the form C g =� that are not abelian varieties) arise in geometry,su
h as Albanese varieties and intermediate Ja
obians, so that abelian varieties whi
h are not Ja
obians arestill important.One warning is useful. The word \torus" is used to mean three di�erent things. It is used by topologiststo mean a topologi
al spa
e that is a produ
t of S1s. As a topologi
al spa
e, C g =� is a torus so it is often
alled a torus even when one is thinking about the 
omplex stru
ture. But the algebrai
 group (C � )n isalso referred to as a torus. Ideally, C g=� should always be referred to as a 
omplex torus and (C � )n as analgebrai
 torus, to avoid 
onfusion. Alas, this is not always done. Beware!
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1. Complex tori and line bundles.In giving a 
ourse on abelian varieties, it is best to say what an abelian variety is. There are severalpossible de�nitions, depending on one's point of view.De�nition: A 
omplex torus is a quotient V=� of a 
omplex ve
tor spa
e V by a latti
e � of rank 2g,where g = dimC V .De�nition: A 
omplex torus T is 
alled an abelian variety if there exists a holomorphi
 embedding of Tinto PNC for some positive integer N .Not every 
omplex torus has su
h an embedding. So we had better see how far we 
an get just thinkingabout 
omplex tori and then try to de
ide whi
h 
omplex tori are in fa
t abelian varieties. It is possible todo all this without mentioning line bundles (Swinnerton-Dyer's book does), but I think it is worth the extrae�ort be
ause modern books do use bundles and you will need them soon.Warning. The word \torus" is used to mean three things: topologi
al torus, algebrai
 torus and 
omplextorus. In books on algebrai
 geometry the word \torus" tends to mean \algebrai
 torus", be
ause 
omplextori are mostly only interesting if they are abelian varieties, and then we 
all them that.Let V �= C g have basis e1; : : : ; eg and suppose � =L2gi=1 �iZ (so �i 2 V ): write�i = gXj=1 �jiej :The matrix � = (�ji) 2 Mg�2g(C ) is 
alled the period matrix of the 
omplex torus T = V=�. Given amatrix � 2Mg�2g(C ) we 
an easily 
he
k whether it is the period matrix of a 
omplex torus or not.Lemma 1.1. � 2 Mg�2g(C ) is the period matrix of a 
omplex torus if and only if ����� 2 M2g�2g(C ) isnonsingular.Proof: To say that � is a period matrix is to say that its 
olumns span a latti
e � in V = C g . This meansthat � 
 R should be the whole of V as a set, i.e. that the 
olumns of � should be linearly independentover R. If they are not then �x = 0 for some non-zero x 2 R2g , so ��x = ���x = 0, and thus �����x = 0 so����� is singular. Conversely, if ����� is singular then for some x, y 2 R2g , not both zero, ����� (x+iy) = 0.So �x + i�y = 0 and ��(x + iy) = �x � i�y = 0. So �x = �y = 0 and the 
olumns of � are linearlydependent over R.Having des
ribed our obje
ts { 
omplex tori { in terms of linear algebra, whi
h is always a good thingto do, we should like to do the same for morphisms, i.e. for holomorphi
 maps between 
omplex tori. Herethe pi
ture is very ni
e. It's just like aÆne spa
e: an isometry of linear spa
es is got by moving the origin tothe right pla
e and then using a linear map, and the following result is similar. First we need a de�nition.De�nition: If y 2 T the translation ty:T ! T by y is just x 7! x + y. If T 0 is another 
omplex torus, ahomomorphism f :T ! T 0 is a holomorphi
 group homomorphism.Proposition 1.2. If h:T ! T 0 is a holomorphi
 map then there is a unique homomorphism f :T ! T 0 anda unique y 2 T 0 su
h that h = tyf . Furthermore there is a unique C -linear map F :V ! V 0 with F (�) � �0,indu
ing f .Proof: Obviously we want to take y = h(0) and f = t�1y h = t�yh. Look at f�:V ! T 0. By the universalproperty of the map �0:V 0 ! T 0 it lifts to a holomorphi
 map F :V ! V 0. F is not unique but it is uniquemodulo the a
tion of �0, so if we spe
ify that F (0) = 0 (we know that F (0) 2 �0) then we �x F . ButF (v+ �) � F (v) mod �0 if � 2 �, so �Fpartialvi (v+ �) = �Fpartialvi (v) for all � 2 �. So by Liouville's theoremall partial derivatives of F are 
onstant, so F is linear. So F is a homomorphism and therefore f is.We also want to know about kernels and images.
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Proposition 1.3. If f :T ! T 0 is a homomorphism then Im f is a subtorus of T 0 and Kerf is a 
losedsubgroup of T : the 
onne
ted 
omponent (Ker f)0 is a subtorus and is of �nite index in Ker f .Proof: With F as in the proof of (1.2), we have Im f = F (V )=�F (V ) \ �0�. Sin
e F (�) � �0, the dis
retesubgroup F (V ) \ �0 generates F (V ) as an R-ve
tor spa
e, so F (V ) \ �0 is a latti
e in F (V ), so Im f is atorus. The kernel, on the other hand, 
onsists of the image in T of fv 2 V j F (v) 2 �0g = F�1(�0). The
omponent F�1(�0)0 is a C -ve
tor spa
e be
ause F is linear, so (Ker f)0 = F�1(�0)0=�F�1(�0)0 \ ��. ButF�1(�0)0\� is a dis
rete subgroup of F�1(�0)0 and it must have maximal rank be
ause (Ker f)0 is 
ompa
t.Sin
e Ker f is 
ompa
t it 
an have only �nitely many 
omponents, so (Ker f)0 is of �nite indexA parti
ularly interesting and important 
ase is when Im f = T 0 and (Ker f)0 is trivial, i.e. #Ker f <1.Su
h an f is 
alled an isogeny. You get isogenies by taking the quotient of T by a �nite subgroup � � T :the only thing to be 
he
ked here is that T=� is a torus, but it is V=��1(�) and ��1(�) � � is dis
rete andtherefore a latti
e.What takes a bit of getting used to is that isogeny is an equivalen
e relation.Proposition 1.4. Suppose f :T ! T 0 is an isogeny and #Ker f = n (n is 
alled the exponent of theisogeny). Then there is a unique isogeny g:T 0 ! T su
h that gf = nT and fg = nT 0 , where nT :T ! T isthe map x 7! nx.Proof: Ker f � KernT , be
ause if x 2 Ker f then nx = 0 as #Kerf = n. So there is a unique mapg:T 0 ! T su
h that gf = nT . This is just group theory: you de�ne g by its kernel, whi
h is KernT =Kerf .Obviously g is an isogeny: we have �xed it so as to have �nite kernel and it must be surje
tive simply be
ausedimT 0 = dim T . Suppose y = x +Kerf 2 Kerg. Then ny = nx +Ker f = 0 + Ker f 2 T 0, so y 2 KernT 0 .So by the same as before there is an isogeny f 0:T ! T 0 su
h that f 0g = nT 0 . Now f 0nT = f 0gf = nT 0f , butnT 0f(x) = nf(x) = f(nx) = fnT (x), so this shows that f 0nT = fnT . Sin
e nT is surje
tive (we 
an divideby n in V and thus also in T ), we must have f = f 0.So it makes sense to talk about two 
omplex tori being isogenous, meaning there is an isogeny betweenthem, and this is an equivalen
e relation. It's nearly isomorphism for some purposes. Number theoristsusually �nd it just as good as isomorphism but it frequently wre
ks geometri
 stru
tures. This isn't all thatsurprising: we 
onstru
ted it by essentially group-theoreti
 methods and we are still at the level of 
omplextori where there isn't really any geometry. But it's not too bad an equivalen
e relation even for geometers{ a 
omplex torus isogenous to an abelian variety is again an abelian variety, for instan
e.We are now going to try to �nd an analogue of }, i.e. �nd some periodi
 fun
tions whose periods are �.It doesn't work to write down hopeful-looking in�nite sums: they all diverge. You have to do it, if at all,by getting at two fun
tions on V whi
h are not periodi
 but whi
h do have some regular behaviour relativeto �, and �x up periodi
 fun
tions by taking the quotient of one by the other. These not-quite-periodi
fun
tions are examples of theta fun
tions, though be
ause we are still looking at 
omplex tori one at a timewe see them only as in a glass, darkly.Another way to look at theta fun
tions is to think of them as se
tions in some line bundle on T . Thisis how I want to introdu
e them, but to do that I'm going to have to introdu
e (holomorphi
) line bundles.Some people may already be familiar with ve
tor bundles (of whi
h line bundles are a spe
ial 
ase) fromdi�erential geometry, but I won't assume that. Let's have a digression.De�nition: Suppose X is a 
omplex manifold. A holomorphi
 line bundle on X is a manifold L togetherwith a surje
tive holomorphi
 map �:L ! X su
h thati) ��1(x) �= C for any x 2 X ;ii) there is an open 
over �U���2A of X su
h that �:��1(U�) ! U� is the proje
tion of a produ
t, thatis, there is a biholomorphi
 map ��:��1(U�)! U� � C su
h that pr1�� = �j��1(U�)iii) the transition fun
tions are well-behaved: if U� \ U� 6= ; then��� = ����1� : (U� \ U�)� C ! (U� \ U�)� Cis biholomorphi
 and if U� \ U� \ U
 6= ; then �����
 = ��
 where these make sense.In parti
ular, if x 2 U� \ U� then ��� j��1(x): C ! C is an element of GL(C ) = C � . So the idea is thatL isn't ne
essarily trivial but is lo
ally trivial. 5



A se
tion in a line bundle is a map �:X ! L su
h that �� = id. In other words, it's a twisted fun
tion.If L is, in fa
t, trivial, then � really is a global holomorphi
 fun
tion. There is always one se
tion, namelythe zero se
tion, but there need not be any more. The spa
e of se
tions (it's obviously a C -ve
tor spa
e) isdenoted �(L) or H0(L). In general it will be in�nite-dimensional but in many important 
ases it isn't. Inparti
ular if X is 
ompa
t then dimH0(L) <1 for any line bundle L.If �0 and �1 are non-zero se
tions of L then �0=�1 is a meromorphi
 fun
tion. More generally, if�0; : : : ; �N 2 H0(L) are linearly independent then we get a map X ! PN by x 7! ��0(x) : : : : : �N (x)�, aslong as the �i don't all vanish at on
e. So if we want to embed X in some proje
tive spa
e a good pla
e tostart looking is at line bundles.A line bundle on X is said to be trivial if it is biholomorphi
 to C �X . If  :Y ! X is a holomorphi
map of manifolds and L is a line bundle on X then there is a line bundle  �L on Y , given by a 
over~U� =  �1(U�) of Y .Proposition 1.5. Every line bundle on C g is trivial.Proof: (Optional: if you don't know what it means, ignore it for now.) The sequen
e0 �! Z�! Oe2�i( )�! O� �! 0gives a long exa
t sequen
e� � � �! H1(C g ;O) �! H1(C g ;O�) �! H2(C g ;Z)�! � � �and both H1(C g ;O) and H2(C g ;Z) are trivial.We 
an use this to des
ribe holomorphi
 line bundles on T = V=�. If we have a line bundle L on Tthen ��L is a line bundle on V = C g and thus trivial. So � a
ts, not just on V , but on V � C = ��L, insu
h a way that (V � C )=� = L. The a
tion is given by�: (v; �) 7! �v + �; �f(�;v)�and the fun
tion v 7! f(�;v) is a holomorphi
 nowhere vanishing fun
tion on V . The 
ondition for this tode�ne an a
tion of � is f(�+ �;v) = f(�;v + �)f(�;v) (�)and a thing satisfying this relation is 
alled a 1-
o
y
le (for �, with 
oeÆ
ients in the nowhere vanishingfun
tions on V ) or, in this parti
ular 
ase only, a fa
tor of automorphy. Thus every line bundle on T isdetermined by a fa
tor of automorphy. However, di�erent fa
tors of automorphy may determine the sameline bundle. The reason is that if we pi
k a di�erent isomorphism ��L ! V � C our fa
tor of automorphywill be twisted by an automorphism of V � C , i.e. by a nonvanishing holomorphi
 fun
tion h:V �! C � . Infa
t the 
hange to f(�;v) is that it is multiplied by a 
oboundary, namely h(�+ v)h(v)�1.Again we want to get ba
k to linear algebra. Sin
e I do not want to tea
h you group 
ohomology eitherI shall produ
e a map out of thin air: we 
an write f : �� V ! C � asf(�;v) = expf2�ig(�;v)gwhere g:�� V ! C is holomorphi
 in v, and we putÆf(�; �) = g(�;v + �) + g(�+ �;v)� g(�;v)for �, � 2 �, v 2 V . This makes sense (that is, Æf(�; �) does not depend on v) and in fa
t Æf : �2 ! Z,be
ause (�) gives g(�+ �;v) + g(�;v) � g(�;v + �) � 0 mod 1:Æf is an example of a 2-
o
y
le: a map F : �2 ! Z is 
alled a 2-
o
y
le if�F (�; �; �) = F (�; �)� F (�+ �; �) + F (�; �+ �)� F (�; �) = 0for all �, �, � 2 �. If F is a 
o
y
le we de�ne �F (�; �) = F (�; �)� F (�; �).6



Proposition 1.6. �F : �2 ! Z is an integer-valued alternating bilinear form.Proof: �F (�+ �; �)� �F (�; �) � �F (�; �) = �F (�; �; �)� �F (�; �; �)� �F (�; �; �)= 0:In parti
ular a fa
tor of automorphy gives rise to an integral alternating bilinear form E = �Æf on �,so a line bundle on T does likewise. This form is a
tually 
1(L), or to be pre
ise the image of 
1(L) underan isomorphism H2(T;Z) ��!Alt2(�;Z). There are lots of things that we ought to do, su
h as 
he
k thatdi�erent fa
tors of automorphy for the same L do give the same value of 
1(L).Note that E(�; �) = �Æf(�; �) is given byE(�; �) = g(�;v + �) + g(�;v) � g(�;v + �)� g(�;v):In fa
t this form, after being extended R-linearly to V , satis�es E(ix; iy) = E(x;y) (by a type argumentwhi
h I won't do) and is thus the imaginary part of a Hermitian form H .We summarise the above (whi
h we haven't really proved) as follows.Theorem 1.7. Every line bundle on T is determined by a fa
tor of automorphy f . There is a well-de�nedmap 
1 from Pi
T (the set of line bundles on T ) to Alt2(�;Z) given by
1(L)(�; �) = g(�; �) + g(�; 0)� g(�; �)� g(�; 0)where g = 12�i log fL: � � V ! C . The image of 
1, 
alled the N�eron-Severi group NS(T ), is the set ofimaginary parts of Hermitian forms whose imaginary part is integral on �.Pi
T is in fa
t a group, but we don't know that yet. But in fa
t it's easy to see: we just de�ne theprodu
t L1L2 to be the bundle given by the fa
tor of automorphy fL1fL2 , so that L�1 
orresponds to f�1L .It is not hard to see that it is equivalent to take L1L2 = L1 
 L2 (whi
h suggests how to make Pi
X agroup for general X , where the theory of fa
tors of automorphy fails). The existen
e of L�1 is the reasonwhy line bundles are sometimes 
alled invertible sheaves. Sin
e the group Pi
X is abelian it is sometimeswritten additively, but usually not if one is a
tually thinking of its elements as being line bundles (we shallsee another way of thinking of them later). Still, this does serve to remind us that O, the trivial line bundle,
orresponding to (untwisted) fun
tions, is the identity element.In order fully to des
ribe line bundles on T in terms of linear algebra we need to understand the kernelof 
1, whi
h is 
alled Pi
0(T ).De�nition: A semi
hara
ter for H 2 NS(T ) (think of H as a Hermitian form) is a map �: � ! U(1) (U(1)is the 
ir
le group) su
h that �(�+ �) = �(�)�(�) expfi� ImH(�; �)gso that if H = 0 then � is a 
hara
ter.Let P(�) be the set of all pairs (H;�) with H 2 NS(T ) and � a semi
hara
ter for H . P(�) be
omes agroup if we de�ne (H1; �1)(H2; �2) = (H1 +H2; �1�2), sin
e �1�2 is a semi
hara
ter for H1 +H2.The following theorem is one of the things that is 
alled the Appel-Humbert Theorem (Mumford usesthe term for a slightly di�erent result).Theorem 1.8. There are maps L giving a 
ommutative diagram with exa
t rows1 �! Hom ��; U(1)� ��! P(�) pr�! NS(T ) �! 0L # o L # o k0 �! Pi
0(T ) �! Pi
(T ) 
1�! NS(T ) �! 0Proof: The top row is exa
t by de�nition of � and pr: (H;�) 7! H . The bottom row is exa
t by the de�nitionsof NS and Pi
0. We need to de�ne L:P(�) ! Pi
(T ), show that the diagram 
ommutes and 
he
k thatL: Hom ��; U(1)�! Pi
0(T ) is iso. 7



If D = (H;�) 2 P(�), de�ne a fa
tor of automorphy byaD(�;v) = �(�) expf�H(v; �) + �2H(�; �)gso aD: �� V ! C � . Then aD is a 
o
y
le, sin
eaD(�+ �;v) = �(�+ �) exp��H(v; � + �) + �2H(�+ �; �+ �)	= �(�)�(�) exp ��H(v; �) + �H(v; �) + �2H(�; �) + �2H(�; �) + �2H(�; �) + �2H(�; �)	= �(�)�(�) exp ��H(v; �) + �2H(�; �) + �H(v; �) + �2H(�; �) + �ReH(�; �)	= �(�) exp��H(v + �; �) + �2H(�; �) � i� ImH(�; �)	�(�) exp��H(v; �) + �2H(�; �)	= �(�) exp��H(v + �; �) + �2H(�; �)	�(�) exp��H(v; �) + �2H(�; �)	= aD(v + �; �)aD(v; �):From this we get a line bundle L = L(D) = L(H;�) given by (V � C )=�, where � a
ts by�: (v; �) 7�! �v + �; aD(v; �)��:Obviously D 7! aD is a homomorphism.The right-hand square 
ommutes if 
1�L(D)� = pr(D), that is, if 
1�L(H;�)� = H . To 
he
k this, put�(�) = exp�2�i (�)	, so that aD = exp�2�igD(�;v)	where gD(�;v) =  (�)� i2H(v; �) � i4H(�; �):Then Im 
1�L(D)� = gD(�; �) + gD(�; 0)� gD(�; �)� g(�; 0)= 12i�H(�; �)�H(�; �)�= ImHand sin
e a Hermitian form is determined by its imaginary part it follows that 
1�L(D)� = H . This alsoimplies that L maps Hom ��; U(1)� into Pi
0(T ) and the left-hand square 
ommutes automati
ally.It remains to 
he
k that L: Hom ��; U(1)� ! Pi
0(T ) is an isomorphism. We need to re
all somethingmentioned brie
y earlier: two fa
tors of automorphy de�ne the same line bundle if they di�er by 
omingfrom di�erent trivialisations on V �C , i.e. by a nonvanishing fun
tion on V . More pre
isely, f1 and f2 de�nethe same bundle if there is a holomorphi
 fun
tion F :V ! C � su
h that f2(�;v) = f1(�;v)F (v)F (v+�)�1 .I want to show that L: Hom ��; U(1)� ! Pi
0(T ) is surje
tive, that is, that I 
an get any line bundlewhose Chern 
lass (
1) is zero from a homomorphism �! U(1). Suppose L 2 Pi
0(T ) and f is a fa
tor ofautomorphy de�ning L. Take g = 12�i log f as usual. I 
laim that f might as well be independent of v 2 V ,be
ause I 
an �nd f0:V ! C � su
h that f1(�;v)f0(v)f0(v+ �)�1 is independent of v. We have the 
o
y
le
ondition g(�+ �;v) = g(�;v + �) + g(�;v)and the 
ondition that 
1 = 0 g(�; �)� g(�;v)� g(�; �) + g(�; �) = 08



both holding for all �, � and �. Take h(v) = �g(0;v). Theng(�;v) � h(�+ v) + h(v) = g(�;v) + g(0�+ v) � g(0;v)= g(�;v) � g(0;v) as g(0; �+ v) = 0 by 
o
y
le 
ondition= g(0; �)� g(�; 0) by 
1 = 0 
onditionand this is independent of v, so we 
an take F (v) = exp�2�ih(v)	.If f is independent of v then the 
o
y
le 
ondition says f : � ! C � is a homomorphism, so arg f : � !U(1) is a 
hara
ter. Moreover, arg f and f de�ne the same line bundle, be
ause, sin
e f is a homomorphism,log jf j: �! R is an additive homomorphism, i.e. an R-linear map. So if we extend it to a fun
tion `:V ! Rby RR-linearity, we 
an also de�ne ^̀:V ! C by ^̀(v) = `(iv) + i`(v) and then take F = expfi^̀g, making fand arg f 
ohomologous. This proves that L is surje
tive.Finally, we must show that L is inje
tive on Hom ��; U(1)�. Suppose � 2 Hom ��; U(1)� and L(0; �) istrivial, i.e. L(0; �) = L(0; 1). Then there is an F :V ! C � su
h that �(�) = F (v + �)F (v)�1 for all � 2 �,v 2 V . As j�(�)j = 1 this implies that jF (v + �)j = jF (v)j and hen
e that F is bounded. So F must be
onstant, and � = 1.Corollary 1.9. Any line bundle L = L(H;�) has a 
anoni
al fa
tor of automorphy aL, whi
h is the aDo

urring above.Summary. We have introdu
ed the following general obje
ts:� Line bundles� The Pi
ard group Pi
X = f line bundles on Xg with multipli
ation given by 
.and in the spe
ial 
ase of 
omplex tori we have also introdu
ed� The �rst Chern 
lass 
1(L) of a line bundle L� The N�eron-Severi group NS(X) = f
1(L) j L 2 Pi
Xg� Pi
0(X) = Ker 
1:I have not said, and we do not need to know, what these are in general. But they do exist in general.We have also introdu
ed� Fa
tors of automorphy� Semi
hara
ters and Hermitian forms integral on �as ways of des
ribing Pi
X . If X isn't a 
omplex torus then Pi
X doesn't have su
h a ni
e des
ription.Sin
e our de�nitions of 
1, NS and Pi
0 used these des
riptions we have de�ned them only for 
omplex tori.Twi
e I have asserted things without proof:� All line bundles on C g are trivial� The alternating form E is the imaginary part of some Hermitian form HOur original motivation for introdu
ing line bundles was to get embeddings of abelian varieties, i.e.
omplex tori in proje
tive spa
e. So we want to get at se
tion of line bundles: the idea is that these willserve as 
oordinate fun
tions on the 
omplex torus T . There is another reason why line bundles are good:on
e you've got varieties you 
an go from line bundles to divisors (formal sums of 
odimension 1 subvarieties)and ba
k, thus getting a mu
h more geometri
 des
ription of what is going on.If L is a line bundle on some 
ompa
t 
omplex manifold X and �0; : : : ; �N are a basis for H0(L) (whi
hwe assume to be �nite dimensional { a
tually it always is) then we 
an de�ne a map�L:X �! PNby �L(x) = ��0(x) : : : : : �N (x)�, as long as the �i don't all vanish at on
e. We say that L is very ample if�L is an embedding, that is �L(X) �= X . We say that L is ample if L
k is very ample for some k > 0. Youshould think of a very ample line bundle as spe
ifying what a hyperplane se
tion will be.We are going to identify the ample line bundles on T : in parti
ular we are going to �nd out whenthere are any, i.e. when T is an abelian variety. In the pro
ess we shall �nd out that H0(L) is always�nite-dimensional on a 
omplex torus, though in fa
t this is true for any 
ompa
t 
omplex spa
e. Re
allthat if L has a fa
tor of automorphy fL then L
k is given by the fa
tor of automorphy fkL: equivalently ifL = L(H;�) then L
k = L(kH; �k). 9



De�nition: If f is a fa
tor of automorphy, a theta fun
tion for f is a holomorphi
 fun
tion �:V ! C su
hthat �(v + �) = f(�;v)�(v)Clearly, if f de�nes L then � gives a se
tion of L and every se
tion of L 
omes from a theta fun
tion.A 
anoni
al theta fun
tion for L = L(H;�) is a theta fun
tion for the 
anoni
al fa
tor of automorphy for L,f(�;v) = �(�) exp��H(v; �) + �2H(�; �)	:Lemma 1.10. Suppose H is degenerate. Then L = L(H;�) is not ample.Proof: Put N = KerLH = �v 2 V j H(v;w) = 0 for all w 2 V 	. If E = ImH then H(v;w) =E(iv;w) + iE(v;w) so v 2 N if and only if E(v;w) = 0 for all w 2 V . So N is a 
omplex subspa
e of Vand N \ � is a latti
e in N , sin
e E is integral on �. If � is a 
anoni
al theta fun
tion then for any v 2 V�(v + �) = �(�)�(v) if � 2 N \ �:Thus j�(v +w)j is a periodi
 fun
tion of w 2 N and hen
e 
onstant: that is to say, �(v) depends only onthe 
oset v +N . (So �(v + �) = �(v) if � 2 N \ �, so �(�) = 1 if � 2 N \ �: this means that a
tually wemight as well work with a nondegenerate H on V=N and �=(N \�)). In parti
ular, L 
annot be very ampleas �i(x) = �i(x + y) if y 2 x+N=(N \ �), so the �i don't separate points. Sin
e N is the same for L
k asfor L it follows that L is not ample.Lemma 1.11. Suppose H(w;v) < 0 for some w. Then h0(L) = 0: in parti
ular L is not very ample oreven ample.Proof: We 
an write w = z+ � for some � with z 2 K, K 
ompa
t. Then


�(v +w)


 = 


�(v + z+ �)


= 


�(v + z)


 


�(�)


 


exp��H(v + z; �) + �2H(�; �)	


= 


�(v + z)


 exp��ReH(v + z; �) + �2H(�; �)	:ButReH(v + z; �) + 12H(�; �) = ReH(v + z;w � z) + 12H(w � z;w � z)= ReH(v + z;w) �ReH(v + z; z) + 12H(w;w) + 12H(z; z) �ReH(w; z)= ReH(v;w) + 12H(w;w) + a fun
tion of z and vso for �xed v we have a linear term in w + a negative quadrati
 term in w + something bounded, and thistends to �1 as w!1. So 

�(v +w)

! 0 as w!1, and so � � 0. Thus h0(L) = 0.Corollary 1.12. If L = L(H;�) is ample then H is positive de�nite.To get at the 
onverse to this (and more) we need a supply of se
tions.
10



Theorem 1.13. Suppose H is positive de�nite and write E as a matrix relative to a Z-basis of �. ThendimH0�L(H;�)� = pdetE:Proof: the idea is to use a slightly di�erent fa
tor of automorphy and hen
e slightly di�erent theta fun
tions{ 
lassi
al theta fun
tions { whi
h are a
tually periodi
 with respe
t to about half of �. This enables usto write down Fourier expansions for the theta fun
tions and then see how many 
oeÆ
ients we 
an 
hoosebefore the behaviour with respe
t to the rest of � �xes everything else.I 
an 
ertainly 
hoose a basis of � su
h that E has matrix � 0 D�D 0 �. Let �1 and �2 be the Z-spansof the �rst and se
ond g elements and let V1 and V2 be the R-spans. Thus Ej�2��2 = 0 and Vj \ � = �j .Certainly V2\ iV2 = 0 be
ause H = 0 there and H is nondegenerate, so �2
 C = V . The restri
tion of H toV2 is real symmetri
 (be
ause E = 0 there), so there is a unique 
omplex symmetri
 extension B of H jV2�V2to the whole of V .Put ��(v) = exp��2B(v;v)	�(v), so that��(v + �) = �(�) expn��H �B�(v; �) + �2 �H �B�(�; �)o��(v)= f�(�;v)��(v):Sin
e f�(�;v) = f(�;v) exp ��2B(v;v)	 exp��2B(v + �;v + �)	�1, we see that f� is also a fa
tor of au-tomorphy for L and �� is a theta fun
tion for it: these are the 
lassi
al fa
tor and theta fun
tions. Itisn't quite true that �� is periodi
 for �2, but very nearly: the map �: �2 ! U(1) is a homomorphism so�(�) = expf2�il(�)g with l: �2 ! R being Z-linear. Extend l to a C -linear map l:V ! C (re
all that�2 
 C = V ) and 
onsider ��(v) = expf�2�il(v)g��(v):Then ��(v + �) = ��(v) for all � 2 �2, be
ause �H �B�(�; �) = 0 for � 2 �2.By Fourier analysis, with ��2 = Hom(�2;Z)� Hom(V; C )��(v) = Xm2��2 am exp�2�im(v)	so ��(v) = Xm2��2 am exp�2�i�m(v) + l(v)�	:What 
onditions do the am satisfy? We need to look at ��(v + �) for � 2 �.��(v + �) = �(�) expn��H �B�(v; �) + �2 �H �B�(�; �)o��(v)= �(�) exp�2�i�̂(v) + �i�̂(�)	��(v)where �̂(�) = E(�; �) if � 2 �2 and �̂ is the C -linear extension of E(�; �) to �2 
 C = V . This is be
ause�H �B�(�; �) = H(�; �)�B(�; �) = �2i ImH(�; �) = 2iE(�; �) if � 2 � and � 2 �2.Comparing 
oeÆ
ients in the Fourier series givesam = �(�) exp��i�̂(�)� 2�i�m(�)� l(�)�	am��̂:So we only need to know am for one m in ea
h 
oset of the image in ��2 of �: 
all this image �̂. There is alittle well-de�nedness to be 
he
ked here, for instan
e that Ker(� 7! �̂) � �2, so that if �̂1 = �̂2 we get thesame equation for both am��̂1 and am��̂2 , but subje
t to that we have proved thath0(L) � k��2 : �̂k:In fa
t h0(L) = k��2 : �̂k. To show this is a matter of showing that the Fourier series 
onverges if theam satisfy the right equation. It is enough to do so for m 2 �̂ +m0 for ea
h m0, as that splits the seriesinto �nitely many 
onvergent bits. But kam��̂k � exp� Im ��̂(�)�	 and if � 2 �2 (whi
h it might as wellbe as we are only 
on
erned with �̂) then Im ��̂(�)� = �H(�; �), so �̂ 7! Im ��̂(�)� is a negative de�nitequadrati
 form on �̂.Finally, k��2 : �̂k is the index of the sublatti
e of �2 spanned by the rows of D, whi
h is detD, and thisis equal to the PfaÆan pdetE. 11



Theorem 1.14. (Lefs
hetz) Suppose H is positive de�nite. Then L(H;�) is ample: in fa
t L(H;�)
3 isvery ample.Proof: We need to show that L
3 de�nes an embedding. That means three things:i) It de�nes a map: for any x 2 T there is a � 2 H0(L
3) su
h that �(x) 6= 0.ii) The map �L
3 separates points: for all x, y 2 T we have �L
3(x) 6= �L
3(y).iii) The map �L
3 separates tangent dire
tions: d�L
3 is inje
tive at x.It is (ii) that is diÆ
ult: the idea is that if �L
3 fails to separate points then all the se
tions a
tually
ome from some quotient torus, but there aren't enough su
h se
tions.Suppose � is a 
anoni
al theta fun
tion for L = L(H;�). If a, b 2 V then we 
an get a theta fun
tionfor L(3H;�3) = L
3 = L3 by 
onsidering�̂(v) = �(v � a)�(v � b)�(v + a+ b)sin
e �̂(v + �) = �̂(v)�(�)3 exp��H(v � a; �) + �H(v � b; �) + �H(v + a+ b) + 3�2 H(�; �)	= �̂(v)�(�)3 exp�3�H(v; �) + 3�2 H(�; �)	:So if we 
hoose a nontrivial theta fun
tion � for L(H�), whi
h we 
an do if H > 0, and a point v0 2 V , thenwe 
an 
ertainly �nd a, b 2 V su
h that �(v0 � a), �(v0 � b) and �(v0 + a+ b) are all nonzero. Then �̂(v)is a theta fun
tion for L3 su
h that �(v0) 6= 0, and it gives a se
tion � 2 H0(L3) with �(� + v0) 6= 0. Thisproves (i).Now for (ii). Suppose �L3 :T ! PN , given by �L3(x) = ��0(x) : : : : : �N (x)� where �0; : : : ; �N is a basisfor H0(L3), is not inje
tive. Then there exist v1, v2 2 V su
h that u = v1 � v2 62 � and there is a 
onstant� 2 C � su
h that  (v2) = � (v1) for every theta fun
tion  for L3. In parti
ular this means that if a,b 2 V and � is a theta fun
tion for L then �̂(v2) = ��̂(v1), i.e.�(v1 � a)�(v1 � v)�(v1 + a+ b) = ��(v2 � a)�(v2 � v)�(v2 + a+ b):So, taking logarithmi
 di�erentials� ��a log �(v1 � a) + ��a log �(v1 + a+ b) = � ��a log �(v2 � a) + ��a log �(v1 + a+ b)and, writing ! for the meromorphi
 di�erential d�=�,�!(v1 � a) + !(v1 + a+ b) = �!(v2 � a) + !(v1 + a+ b)so that �(v) = !(v2 � v)� !(v1 � v) is independent of v.Therefore � = d`(v), where `:V ! C is linear. But� = d log �(v2 + v)�(v1 + v)so �(v2 + v) = �0e`(v)�(v1 + v), and so �(u + v) = �00e`(v)�(v). Using the fundamental equation for � weobtain e�H(u;�) = e`(�) for all � 2 �:So �H(u; �) � `(�) 2 2�iZ and in parti
ular it is imaginary. Therefore �H(�;u) � `(�) is imaginary (as�h(�;u)� �H(u�) 2 R) for all � 2 �. I 
laim that in fa
t �H(�;u)� `(�) = 0 for any � 2 �. Suppose not.Then � 6= 0 and we 
an �nd �0 2 � su
h that �0 = k� for some k 62 R. Then�H(�0;u)� `(�0) = �H(k�;u) � `(k�)= k��H(�;u) � `()�� 62 iR:12



If �H(�;u)� `(�) = 0 for all � 2 � then2�iZ3 �H(u; �) � `(�)= �H(�;u)� `(�) + �H(u; �) � �H(�;u)= 0 + 2�i ImH(u; �)= 2�iE(u; �)so E(u; �) 2 Z for all � 2 �. Consider �? = fv 2 V j E(v; �) 2 Z 8� 2 �g. It is a dis
rete subgroup of Vand it 
ontains � (ne
essarily as a subgroup of �nite index), so it is a latti
e in V . Put �0 = �+Zu� �?:
learly �0 is also a latti
e, and �0 �6 ��. However�(u+ v) = �00e`(v)�(v)= �000e�H(v;u)+�2H(u;u)�(v)where �000 = �00e��2 H(u;u), sin
e if �H(�;u) = `(�) then �H(v;u) = `(v), by R-linearity. Now if we put�0(u) = �000 then �0 2 Hom ��0; U(1)�, and we have shown that � is a
tually a theta fun
tion for L(H;�0) onthe torus T 0 = V=�0. But the dimension of the spa
e of su
h theta fun
tions is det�0 E, whi
h is stri
tly lessthat det�E whi
h is the dimension of the spa
e of all theta fun
tions: so this 
annot be true for all thetafun
tions, 
ontradi
ting our assumption.Finally, for (iii), suppose v0 2 V and that there is a non-trivial tangent ve
torgXi=1 �i ��zi jv0 2 TV;v0 = TT;�v0that is mapped to zero by �L. Then there is an �0 2 C su
h that for all theta fun
tions  for L(3H;�3) = L
3�0 (v0) = gXi=1 �i � �zi (v0);that is, � gXi=1 �i ��zi�(log )(v0) = 0(remember log :T ! L
3). Take a;b 2 V and � a theta fun
tion for L: put  = �̂ and t(v) =Pgi=1 �i ��zi (log �̂)(v). Then t(v0 � a) + t(v0 � b) + t(v0 + a+ b) = �0so t is linear in v. Thus �(v + 
u) = e
0u2+
t(u)�(v)for all 
 2 C and some u 2 V , 
0 2 C . So 
u 2 �? for all 
 2 C , but this is impossible be
ause �? isdis
rete.Let us take another look at the view. We started out with 
omplex tori and we have got as far asdetermining whi
h ones are in fa
t abelian varieties: we were able to embed T = V=� in PN if we 
ould �nda positive de�nite Hermitian form H on V su
h that the imaginary part E takes integer values on �. Thisis an arithmeti
 
ondition, and a highly nontrivial one: most latti
es will not satisfy it.We get the embedding by taking a line bundle 
onstru
ted out of H and some extra data � and lookingat se
tions. We des
ribe line bundles by means of fa
tors of automorphy, i.e. by spe
ifying an a
tion of �on V � C , and we des
ribe se
tions by means of theta fun
tions, i.e. �-invariant fun
tions on V .In two pla
es I have asserted things without proof:a) V � C is the only line bundle on V = C g , so we haven't missed anything;b) the form E = 
1(L) that you get from a line bundle L via a fa
tor of automorphy in in fa
t ImH .13



A
tually, I haven't really used (a) yet. All the 
onstru
tions { fa
tor of automorphy, 
1, theta fun
tions,ampleness { have been made for bundles 
oming from V � C , and it is 
on
eivable that there are morebundles on V and hen
e on T that I haven't told you about. But in fa
t that is not the 
ase. Moreover{ and this I haven't said, though it's not hard { there aren't any other ways of embedding T in PN apartfrom using a line bundle: given any smooth 
ompa
t 
omplex manifold X � PN I 
an �nd a line bundle
alled OX(1) whi
h determines the embedding. So the only tori that embed in PN are the ones for whi
h apositive de�nite H is available.This fa
t is a spe
ial 
ase of something mu
h more general whi
h I'm going to want anyway: the
orresponden
e between line bundles and divisors, mentioned in passing earlier. It provides an interpretationof line bundles (not just very ample ones) in geometri
 terms.A divisor D is a sum of 
odimension 1 subvarieties with multipli
ity. We 
an get a divisor D from a linebundle L by taking � to be a meromorphi
 se
tion of L and then taking D to be (�) =(zeros of �)�(polesof �). Suppose I have two di�erent meromorphi
 se
tions of L, �1 and �2: then f = �1=�2 is a globalmeromorphi
 fun
tion so (f) = (�1)� (�2). We say the two divisors (�1) and (�2) are linearly equivalent ifthis happens.To go from D ba
k to L, de�ne D lo
ally as being given by (f� = 0) on an open set U� and take astransition fun
tions f�=f� on U� \ U�. In parti
ular if D = (f) then L is trivial, as then f� � f� � f . Callthe bundle 
onstru
ted in this way O(D). If D > 0 then f� is holomorphi
.If X is a 
urve and D is a divisor on X then D = PaiPi, where Pi 2 X are points and the a1 arethe multipli
ities. The degree degD is de�ned to be P ai: note that degD = 0 is not at all the same assaying that D is trivial. For instan
e the divisor P � Q, where P and Q are distin
t points on an ellipti

urve, has degree zero but is not trivial as then f would give a one-to-one map from a torus to the sphere.The 
olle
tion of all degree zero divisors is 
alled Pi
 0(X): it turns out to be an abelian variety 
alled theJa
obian Ja
(X).2 Curves and Ja
obiansFrom now on we are going to be using abelian varieties and algebrai
 varieties in general, and the �rst thingwe do is give, rather more pre
isely than before, the 
orresponden
e between line bundles and divisors.Let X be a smooth (this is important) proje
tive variety. There is a general prin
iple, known asGAGA (\g�eom�etrie alg�ebrique et g�eom�etrie analytique") to the e�e
t that on proje
tive varieties over Cholomorphi
=algebrai
 and meromorphi
=rational, and I intend to be 
areless about the distin
tions.De�nition: A divisor on X is a �nite formal sum P aiDi of irredu
ible 
odimension 1 subvarieties withmultipli
ities ai 2 Z.The group DivX of all divisors is just the free abelian subgroup on the set of irredu
ible 
odimension 1subvarieties. A divisor D is said to be e�e
tive if ai � 0 for all i. Be
ause X is smooth a prime divisorD0 { that is, an irredu
ible subvariety of 
odimension 1 { is ne
essarily given lo
ally by the vanishing ofsome fun
tion, so if D is a divisor there are an open 
over fU�g of X and rational fun
tions f� on U� su
hthat ordDi f� = ai: thus DjU� = (f�). The line bundle 
orresponding to D is O(D) and is given by thetransition fun
tions ��� = f�=f�. Conversely if L is a line bundle with a rational se
tion � (and at least ifX is proje
tive any L has a rational se
tion), then L 7! (�) inverts this.De�nition: Two divisors D1 and D2 are linearly equivalent (denoted D1 � D2) if D1 �D2 = (f) for somerational fun
tion f on X .Lemma 2.1. There is a one-to-one 
orresponden
e between linear equivalen
e 
lasses of divisors and linebundles, on smooth proje
tive varieties.Proof: Two linearly equivalent divisors give the same bundle sin
e f�f=f�f = f�=f�. If �1, �2 are rationalse
tions then �1=�2 = f is a rational fun
tion so (�1)� (�2) = (f).
14



Lemma 2.2. Div(X)= � is an additive group and Pi
X ! Div(X)= � is an isomorphism.Proof: If D1, D2 � 0 then D1�D2 � 0 as it is the divisor of f1=f2, so [D1+D2℄ and [�D1℄ are well-de�nedand Div(X)= � is a group.If L1, L2 2 Pi
X have transition fun
tions �1�� , �2�� , then the bundle with transition fun
tions�1�� (�2��)�1 is L1L�12 , so DivX ! Pi
X is a group homomorphism. Conversely, if �i are rational se
-tions of Li, then �1��12 is a rational se
tion of L1L�12 , so Pi
X ! DivX is also a group homomorphism.ClearlyD is e�e
tive if and only if the f that de�nes it is a
tually a se
tion, not just a rational se
tion, inL. Two elements �1 and �2 of H0�O(D)� de�ne the same divisor if and only if �1 = k�2 for some 
onstant k.Hen
e if we denote by jDj the set of e�e
tive divisors linearly equivalent to D, we have jDj = PH0�O(D)�,so dim jDj = h0�O(d)� � 1.Now suppose that X = C is a 
urve, so that a prime divisor is just a point. We de�ne the degree of adivisor D by degX aiDi =X aiso degD 2 Z. Sin
e a rational fun
tion has as many zeros as poles, the degree is a
tually de�ned on Pi
C.We 
an introdu
e Pi
 0X = Kerdeg = fL j degL = 0g. This is of interest two us for two reasons, bothsurprising. It's an abelian variety, and it 
ontains all the information about the 
urve C.Let C be a 
urve. There are various ways of thinking of the genus g(C). You 
an think of it as beingthe number of handles that C has, or the number of independent di�erential forms. For now, I'm goingto assume that these are the same. So we have 2g paths 
1; : : : ; 
2g starting from some base point P0 andreturning there, whi
h generate the fundamental group of C, and g 1-forms !1; : : : ; !g. We put�ji = Z
i !jand look at the 
orresponding matrix � = (�ji). Note that Stokes' Theorem tells us that R
0i !j = R
i !j if
i and 
0i determine the same homotopy 
lass. Please believe, for the moment, that � =P�iZ, the integerspan of the 
olumns of �, is indeed a latti
e.De�nition: The quotient C g=� is 
alled the Ja
obian, J(C) or Ja
(C).In fa
t J(C) is an abelian variety and has a natural polarisation.Now let me beg a few questions. When talking about abelian varieties I feel a duty (not alwaysperformed) to justify my assertions, but when talking about 
urves I am willing to impose a 
ertain amountof dogma.Let C be an algebrai
 
urve of genus g � 1. There is a \very basi
 but nonelementary" (to quote astandard book on 
urves, the one by Arbarello, Cornalba, GriÆths and Harris) fa
t, that the number of1-forms (that is, H0(KC), where KC is the 
otangent bundle) is equal to the topologi
al genus g.I also need to be able to use De Rham 
ohomology. All I need of it is H1DR, though the fa
t above maybe interpreted as De Rham's theorem for H2. We de�neH1DR(X) = fClosed di�erential 1-formsg=fExa
t formsgBy a di�erential 1-form we mean something whi
h is lo
ally of the form� =X(fidxi + gidyi)with fi and gi 
omplex-valued C1 fun
tions. If I prefer, I 
an write it as� =X(�idzi +  id�zi)instead. The De Rham theorem says that H1DR(X) �= H1(X ; C ) or, to be more pre
ise, that H1DR(X ;R) �=H1(X ;R). A similar statement holds for di�erential q-forms and Hq for any q, but to prove the 
ase q = 1you need only the Poin
ar�e Lemma (every 
losed form on Rn is exa
t) and a belief in �Ce
h 
ohomology.The Hodge de
omposition says (for 
urves) that H1DR(C) = H0(KC) � H0(KC); that is, that I 
analways 
hoose � and  in � = �dz =  d�z to be holomorphi
 and antiholomorphi
 respe
tively, without
hanging the 
ohomology 
lass of �. This is a very spe
ial 
ase of something far more general.One other thing you will have to believe is that wedge produ
t of forms agrees with interse
tion: I willexplain this when I need it. 15



Theorem 2.3. The matrix � 2Mg�2g(C ) given by� = 0B�R
1 !1 : : : R
2g !1... . . . ...R
1 !g : : : R
2g !g1CAis the period matrix of a 
omplex torus.Proof: Note �rst of all that R
 ! is well-de�ned for 
 2 H1(C;Z) by Stokes' Theorem, so the assertion makessense. We need to show that the matrix ����� is nonsingular. Suppose that x����� = 0: thengXj=1 � Z
i(xj!j + yj �!j)� = 0(where x = (x1; : : : ; xg ; y1; : : : ; yg) 2 C 2g ), and thereforeZ
i � gXj=1(xj!j + yj �!j)� = 0for all i. The isomorphism H1DR(X) �! H1(X ; C ) = �H1(X ;Z)
 C ��is given by � 7�!(X 
i 
 
i 7�!X 
i Z
i �):It is 
lear that this is at least plausible in that if � is exa
t it returns zero, so we have given a well-de�nedmap from H1DR to H1. Moreover, if we believe De Rham's theorem, if R
i �Pgj=1(xj!j + yj �!j)� = 0 thenPgj=1(xj!j + yj �!j) = 0 also. But f!jg and f�!jg between them span H0(KC)�H0(KC) �= H1DR(C), so thisimplies x = 0.Now I want to 
he
k that J(C) is in fa
t an abelian variety, i.e. that there exists a positive de�niteHermitian form H on V = C g taking integer values on �.Let us now de
ide whi
h basis of H1(C;Z) we are talking about. We want the one shown in Figure ***,so that the interse
tion number 
i
j (stri
tly speaking, the dual of the 
up produ
t of the Poin
ar�e duals)is given by the matrix � 0 �11 0�.De�ne an alternating R-bilinear form E on H0(KC)� by 
hoosing as R-basis for V = H0(KC)� the setf�i = (! 7! R
i !)g and de
laring E to have matrix � 0 �11 0� with respe
t to this basis. Then de�ne H onH0(KC)� by H(u;v) = E(iu;v) + iE(u;v). Clearly this determines a (not obviously Hermitian) form thattakes integer values on �, be
ause (R
i !1; : : : ; R
i !g) is just �i expressed in terms of the basis !1; : : : !g forH0(KC).We need to 
he
k that H is hermitian and positive de�nite.Theorem 2.4. Suppose � 2Mg�2g(C ) is a period matrix for some 
omplex torus X . Then X is an abelianvariety if and only if the Riemann relations�A�1>� = 0; i�A�1>bar� > 0are satis�ed for some nondegenerate integral skew-symmetri
 matrix A.This follows at on
e from the two lemmas below. Take the basis �1; : : : �2g for � obtained from � (thatis, think of � as being spanned by the 
olumns of �) and let E be the alternating form whose matrix withrespe
t to f�ig is A. Put H(u;v) = E(iu;v) + iE(u;v).16



Lemma 2.5. H is hermitian if and only if �A�1>� = 0.Proof: H is hermitian if and only if E(iu; iv) = E(u;v) for all u;v 2 V . Put P = ����� and S =� i1 00 �i1�, and let I = P�1SP . Thus i� = �I and �i�� = ��I . The statement that the matrix of E withrespe
t to f�ig is A means that E(�x;�y) = >xAyfor all x;y 2 V , so if H is hermitian exa
tly when>xAy = E(�x;�y)= E(i�x; i�y)= E(�Ix;�Iy)= >x>IAIy;that is, when A = >x>IAIy. Hen
e A = >PS>(P�1)AP�1SPwhi
h simpli�es to (PA�1>P )�1 = S(PA�1>P )�1S:This says �����A�1>����� = � i1 00 �i1������A�1>������ i1 00 �i1�and hen
e �A�1>� = ��A�1>�as required.Lemma 2.6. H is positive de�nite if and only if i�A�1>�� is positive de�nite.Proof: In fa
t the matrix of H is 2i��A�1>�. To see this, put u = �x, v = �y and 
al
ulate E(iu;v) andE(u;v), thus: E(iu;v) = E(i�x;�y)= E(�Ix;�y)= >x>IAy=t op�u�u�>P�1>IAP�1�v�v�=t op�u�u�>P�1>P>S>P�1AP�1�v�v�=t op�u�u�S(PA�1>P )�1�v�v�=t op�u�u�� 0 i(��A�1>�)�1�i(�A�1>��) 0 ��v�v�=t opui(��A�1�)�1�v � >�ui(��A�1>��)vsin
e �A�1>� = 0; and similarly for E(u;v).Now we want to apply the Riemann relations to the Ja
obian, in order to show that the Ja
obian isindeed an abelian variety.
17



Theorem 2.7. Ja
(C) is an abelian variety with a prin
ipal polarisation de�ned by E.Proof: We need �� 0 �11 0�>� = 0and i�� 0 �11 0� �� > 0:The �rst of these is straightforward:2gXj;k=1�ijEjk�lk = 2gXj;k=1 Z
j !iEjk Z
k !l= gXj=1 Z
j !i Z
j+g !l + 2gXj=g+1� Z
j !i Z
j�g !l= 0:The other needs a fa
t. As beforep�1�ijEjk ��lk = p�1 2gXj;k=1 Z
j !i!�Z
k �!l�Ejk :Let �1; : : : ; �2g be the basis of H1DR(C) dual to nR
jo: that is, R
j �i = Æij . Then !i =P2gj=1 �R
j !i� �j (just
al
ulating the 
oordinates). Be
ause 
up produ
ts in H1DR(C) are given by ^ and agree with interse
tionnumbers ZC �i ^ �j = 
i � 
j = Eij ;so p�1�ijEjk ��lk = p�1 2gXj;k=1 Z
j !i!�Z
k �!l�ZC �j ^ �k= p�1ZC !i ^ �!land in parti
ular !p�1�E>���! = i RC ! ^ �!, whi
h is positive as it is the volume of C with respe
t to thepositive real 2-form i! ^ �!.Now we 
ome to something interesting and important: the Abel-Ja
obi map. This is one of the mostfundamental tools in the theory of 
urves (and it has important generalisations to higher-dimensional varietiesas well).Suppose D is a divisor of degree 0 on a 
urve C (we write D 2 Div0(C)): this means that D =P1 + � � � + Pk � Q1 � � � � � Qk, where Pi and Qk are (not ne
essarily distin
t) points of C. De�ne theAbel-Ja
obi map �: Div0(C) �! Ja
(C)by �:D �!  kXi=1 Z QiPi !1; : : : ; kXi=1 Z QiPi !g! :Lemma 2.8. The map � is well-de�ned: that is, it does not depend on the representation of D.Proof: The representation of D is non-unique in two ways: we 
ould add and subtra
t a point P (thus0 = P �P ) and we 
ould re-order the Pi and Qj . Also, R QiPi ! is not well-de�ned be
ause we have to spe
ify18



a path from Pi to Qi. Let us deal with the last diÆ
ulty �rst: if gammai and 
0i are two paths from Pi toQi then Xi Z
i !j �Xi Z
0i !j =Xi Z
i�
0i !j 2 �so the two integrals de�ne the same point of Ja
(C). Similarly, any path 
 from P to P simply gives anextra term R
 !j whi
h is in �, so adding and subtra
ting a point P makes no di�eren
e either. FinallyZ Q1P1 !j + Z Q2P2 !j � Z Q2P1 !j � Z Q1P2 !j = Z Q1P1 !j + Z P2Q1 !j + Z Q2P2 !j + Z P1Q2 !j= Z P1P1 !j 2 �and we are done.So that was easy. However, mu
h more is true. Abel's theorem states that the kernel of � is pre
isely theset of linearly trivial divisors, in other words, that � indu
es a map �: Pi
0(C)! Ja
(C), whi
h is inje
tive.And the Ja
obi inversion theorem says that this � is also surje
tive.Before proving either of these statements I'd like to think about what they mean. One way of lookingat it is to say that we have 
lassi�ed all line bundles of degree zero, and hen
e all line bundles, on C. Notethat there is also a map �(d): Pi
d(C) = fline bundles of degree dg ! Ja
(C), whi
h is also an isomorphism,though not so natural a one as it depends on the 
hoi
e of one divisor of degree d, say D0 = dP for somepoint P 2 C. It is given by �(d)(D) = �(D �D0):Another useful thing to look at is the symmetri
 produ
t SdC = fP1 + � � � + {d j Pi 2 Cg. This isa 
omplex manifold of dimension d, and there is a map  d:SdC ! Ja
(C) given by  d(P1 + � � � + Pd) =�(d)(P1+ � � �+Pd).  d is well-de�ned up to translation by an element of Ja
(C): we had to 
hoose an elementD0 Pi
d(C) to start with and if we 
hoose D00 instead we move  d by D0 � D00 2 Pi
0(C) = Ja
(C). The�bre  �1d (D), if D 2 Im d, is the linear system jD �D0j and this turns out to be a good way of thinkingabout linear systems. For example, if  d:SdC ! Wd = Im d is an isomorphism then every degree d linearsystem is trivial, but if some �bre has dimension at least 1 then there is a d-to-1 map C ! P1. In parti
ular, 1 = �:C ! Ja
(C) is an embedding.Theorem 2.9. (Abel's Theorem) If D 2 Div0(C) then �(D) = 0 if and only if D is linearly equivalent tozero.Proof: First we show that �: Pi
0(C) ! Ja
(C) is well de�ned, i.e. that if D � 0 then �(D) = 0. Suppose,then, that D = (f) for some rational fun
tion f on C. De�ne�:P1 �! Ja
(C)by �: (x0 : x1) 7! ��(x0f � x1)� (here we are thinking of f as a map from C to P1 and x0 and x1 ashomogeneous 
oordinates on P1). Then � must be 
onstant. There are various ways to see this. Oneargument is topologi
al: if � is non
onstant it must be open and therefore an inje
tive map from a 2-sphere to a torus, whi
h is impossible. A better argument, from our point of view, is that ��dzi must beidenti
ally zero as it is a global 1-form on P1, but then d� = 0 so � is 
onstant. Sin
e � is 
onstant, we have�(D) = �(1 : 0) = �(0 : 1) = ��(�1)� = 0.The 
onverse is mu
h harder. We start by translating the problem into one about di�erential formswith poles. Suppose that D =P(Pi �Qi) = (f). We 
an express this by saying that the di�erential� = 12�i dff = 12�id log fhas simple poles at Pi andQi and (assuming for the moment that the Pi andQi are all distin
t) it has residue 1at ea
h Pi and �1 at ea
h Qi. If the Pi and Qi are not distin
t we simply write D = P aiPi +P bjQj ,19



with the Pi and Qj all distin
t: then � has simple poles at Pi and Qj with residues ai at Pi and bj at Qj .Moreover we have �xed things so that Z
 � 2 Zfor any loop gamma � C n fPi; Qjg.Suppose we have an � with all these properties. Then 
hoose a base point O 2 C n fPi; Qjg and putf(P ) = expf2�i Z PO �g:Then f is a well-de�ned meromorphi
 fun
tion and (f) = D. So if we start with some divisor D and assumedegD = 0, that is, P ai +P bj = 0, and produ
e a di�erential form � with simple poles with the rightresidues and su
h that R
 � 2 Z for loops 
 missing Pi and Qj , then we 
an produ
e a fun
tion f su
h that(f) = D and we shall have proved Abel's Theorem.We �rst try to produ
e a di�erential with the spe
i�ed poles and residues, without worrying aboutR
 � 2 Z. If you know sheaf 
ohomology this 
an be done in two lines: the short exa
t sequen
e0 �! 
1C �! 
1C(XPi +XQj) �!MPi C Pi �MQj CQj �! 0indu
es � � � �! H0�
1C(XPi +XQj)� Æ�!C n �! H1(
1C) �! � � �and h1;1(C) = 1 so dim 
oker Æ � 1; but Im Æ � fPai +P bj = 0g. This, however, uses quite heavyma
hinery: I intend to give, essentially, this proof, but in an elementary way.Observe �rst that if � is a 1-form with (perhaps) poles at Pi and Qj and residues ai, bj there, then2�iXai + 2�iX bj =XZloops around Pi � +XZloops around Qj �= � Z
urve with holes d�= 0:This is just Stokes' Theorem. We 
al
ulate the residues at ea
h important point by taking a small dis
 
entredthere and integrating � around the boundary of that dis
, but we 
an equally 
onsider the boundaries of thedis
s as being the boundary of what is left of the 
urve after we remove those dis
s. What we want to knowis that this is the only 
ondition on the ai and bj .Choose, as above, a small dis
 �i around ea
h Pi and similarly �0j for ea
h Qj . Take a 1-form �i onDeltai with just a simple pole at Pi, having the right residue: if zi is a lo
al 
oordinate at Pi we 
an use�i aidzizi : do the same for Qj . In other words, �nd lo
al solutions to the problem. Use the Deltai and �0j aspart of an open 
over fU�g of C with a 1-form �� on ea
h U� , holomorphi
 ex
ept for the singularities wehave just des
ribed.Now take a C1 bump fun
tion �i whi
h is equal to 1 near Pi and is zero outside �i (and similarly forQj , �0j , Delta0j). Let  = 0 outside the �i and �0j and on �i put = ���z �i�i ^ d�z(and similarly on �0j). If there is a global C1 (1; 0)-form �, that is, something whi
h is everywhere lo
allyof the form � = gdz with g a lo
al C1 fun
tion, su
h that  = ���, then � = P�i�i +P�0j�0j � � hasthe right poles and it also has ��� = 0, so it is holomorphi
. (Re
all that ��� = �g��z (dz ^ d�z), and note thatd = � + �� so ��� = d�.) So we are all right as long as we 
an �nd an appropriate �.20



All C1 (1; 1)-forms are d-
losed (sin
e there are no nontrivial 3-forms on the 2-manifold C), so thestatement that  = ��� = d� amounts to the statement that  is 
ohomologi
ally trivial: to be pre
ise, that[ ℄ = 0 in H2DR(C) = f
losed2�formsg=fexa
t2�formsg. But H2DR(C) �= H2(C; C ) = �H2(C;Z)
 C�� by� 7�!�k 7�!k XP2C resP (�)�so  7! �k 7! k(P ai +P bi)� whi
h is zero. Consequently (assuming we believe De Rham's Theorem, asusual) su
h a � does exist.Next, we need to adjust the � we have found, without 
hanging the poles, so as to arrange for its periodsto be integral, that is, for R
i � 2 Z. We 
an 
ertainly arrange this for the �rst g loops: in fa
t, by addingon an appropriate holomorphi
 1-form (a sum of !i's) we 
an arrange for R
i � = 0 if 1 � i � g. Suppose wehave done this. We need to be able to tell what the other R
i � are so that we 
an adjust them. For now Iwill simply say what the answer is and prove it later as a separate, not espe
ially hard, lemma.Fa
t: If we 
hoose a base point O and a form � with R
i � = 0 for i � g (and 
i as usual) and withresidues 1=2�i at a point P and �1=2�i at a point Q, thenZ
i+g � = Z PO !i � Z QO !i = Z PQ !iwhere !1; : : : ; !g is a basis for the spa
e of 1-forms on C su
h that R
i !j = Æij (we 
an arrange this as weknow the 
orresponding quadrati
 form is positive de�nite), and the integrals R PO and R QO are taken alongsome paths not depending on i. So if we write our divisor D as P1 �Q1 + P2 �Q2 + � � �+ Pd �Qd we 
anassign an �k to ea
h Pk �Qk and then take � =P �k . With this notation (so the points Pk and Qk are notne
essarily distin
t, but we do not have to think about multipli
ity)Z
i+g � =Xk Z PkQk !i:In fa
t I might as well assume from now on that D = P �Q, sin
e I 
an add Ds by adding �s or multiplyingfs. By hypothesis �(D) = �Z QP !1; : : : ; Z QP !g� 2 �so �(D) = �Z
 !1; : : : ; Z
 !g�= � 2gXj=1mj Z
j !1; : : : ; 2gXj=1mj Z
j !g�where 
 =P2gj=1mj
j . Now take �0 = � �Pgj=1mj+g!j . Then for i � gZ
i �0 = Z
i � � gXj=1mj+g Z
i !j= mi+g 2 Z
21



sin
e R
i � = 0 and R
i !j = Æij . On the other handZ
i+g �0 = Z
i=g � � gXj=1mj+g Z
i+g !j= Z QP !i � gXj=1mj+g Z
i+g !j= 2gXj=1mj Z
j !i � gXj=1mj+g Z
i+g !j= mi + gXj=1mj+g Z
j+g !i � gXj=1mj+g Z
i+g !j= mi 2 Zusing the fa
t that R
j !i = Æij and, from the Riemann relations, R
j+g !i = R
i+g !j .We still have to �nd out about residues. We do this by 
utting the 
urve C open and integrating. Itwon't make any di�eren
e to the periods of � if we assume that all the loops 
i start from a 
ommon basepoint S 2 C.Lemma 2.10. If � is a 1-form having simple poles only at points Sk (not lying on any of the 
is) then forany holomorphi
 1-form !gXi=1 �Z
i ! Z
i+g � � Z
i+g ! Z
i �� = 2�iXk resSk(�)�Z SkS !�;where the path of the integral R SkS ! does not 
ross any of the 
is.Proof: Cut C open along all the 
is and 
all the resulting 
losed 4g-gon �. Then �� = Pi 
i + 
i+g +
�1i +
�1i+g , where 
�1 denotes 
 with the opposite orientation: we simply go round the edge of � identifyingalternate edges if we want to re
over C. On � we 
an integrate ! and de�ne a fun
tionh(P ) = Z PS !as � is simply-
onne
ted. Obviously if P and P 0 are points of � that are identi�ed in C then h(P ) and h(P 0)di�er by a period of !. In fa
t it is very easy to see that if P 2 
i and P 0 2 
�1i then h(P )�h(P 0) = � R
i+g !for i � g and R
i�g ! for i > g.Now we integrate h� around the edge of �:Z�� h� = 2�iXk resSk(h�)= 2�iXk resSk(�)h(Sk)= 2�iXk resSk(eta) Z SkS !:
22



But Z�� h� = gXi=1 �Z
i+
�1i + Z
i+g+
�1i+g �= gXi=1 �Z P 2 
i�h(P )� h(P 0))�(P ) + Z P 2 
i+g�h(P )� h(P 0))�(P )�= gXi=1 �� Z
i+g ! Z
i � + Z
i ! Z
i+g ��whi
h is what is 
laimed.When we used this we were in the spe
ial 
ase ! = !j and R
i � = 0, and we solved for R
i+g �.Mu
h of this a

ount follows GriÆths and Harris.Now we 
ome to the 
onverse result. We are going to see that the inje
tive map �: Pi
 0(C) ! Ja
(C)is in fa
t an isomorphism. In fa
t we 
an prove rather more than that.Theorem 2.11. (Ja
obi Inversion Theorem) Suppose Q 2 C and !1; : : : !g form a basis for H0(KC). Thenfor any point a 2 Ja
(C) there exist points P1; : : : ;{g 2 C, not ne
essarily distin
t, su
h that�� gXi=1(Pi �Q)� = a:In parti
ular �: Pi
 0(C)! Ja
(C) is an isomorphism.If we were interested only in proving the surje
tivity it would be enough to show the existen
e ofP1; : : : ; Pk for k � 0 having this property but in fa
t we 
an get this rather handy bound without any extrae�ort.Proof: Consider the gth symmetri
 power SgC. I mentioned this at the start of the se
tion. It is the setof unordered g-tuples of not ne
essarily distin
t points in C, and an element of SgC is normally written asP1 + � � �+ Pg . Sin
e we don't 
are what order the Pi mentioned in the theorem 
ome in it is 
lear that SgCrather than the Cartesian produ
t Cg is what we should be looking at. It is also 
lear that � and Q jointlyindu
e a map �(g):SgC �! Ja
(C)given by �(g):P1 + � � �+ Pg 7�!� gXi=1 Z PiQ !1; : : : gXi=1 Z PiQ !g�:The theorem asserts that �(g) is surje
tive. This is a
tually not very hard { not nearly as hard as Abel'sTheorem, anyway. The �rst thing to do is to noti
e that SgC is a 
ompa
t 
omplex manifold. A
tuallywe don't even need that mu
h. SgC is the quotient of Cg by a �nite group (the symmetri
 group on gelements) so it is 
ertainly 
ompa
t and near a point (P1; : : : ; Pg) 2 Cg with all the Pi distin
t { that is,on a dense open set { the quotient map is an isomorphism, so SgC is smooth there. That is enough, butwith very little more work one 
an see that SgC really is smooth everywhere, though we shan't need it. Ifthere are 
oin
iden
es among the Pi then there is a nontrivial lo
al isotropy group, whi
h is a produ
t ofsmaller symmetri
 groups. These are generated by transpositions, whi
h a
t as re
e
tions, so by a theoremof Chevalley the quotient is still smooth. You 
an see this dire
tly by writing down 
harts, using elementarysymmetri
 polynomials in the lo
al 
oordinates in Cg to get lo
al 
oordinates on SgC, or (what 
omes tothe same thing) think about the tangent spa
e to SgC.Let D = P1+ � � �+Pg be a point of SgC with the Pi distin
t, and take lo
al 
oordinates zi near Pi on C,so that the zi 
an also be thought of as lo
al 
oordinates on SgC. A point near D is thus D0 = z1+ � � �+ zgand ��zi �(g)(D0) = �Z ziQ !j�= !jdzi :23



(Here we are dividing one holomorphi
 1-form by another so as to get a fun
tion lo
ally: i.e. !j =Pi hijdziin a neighbourhood of D, be
ause every 1-form looks like that, and !j=dzi = hij by de�nition.) We 
an
onsider the Ja
obian matrix { the other kind of Ja
obian, but the same Ja
obi { ���(g)�zi �, whi
h is (!j=dzi)near D. I 
laim that it is generi
ally non-singular, that is, that for D in an open dense set it is of maximalrank g. Choose D su
h that !1 does not vanish at P1 (a nontrivial but harmless 
ondition). Sin
e we areon a 
urve, !i(Pj) is just a number (the 
otangent bundle is a line bundle) and for i > 1 we 
an repla
e !iby !1(P1)!i � !i(P1)!1. By doing this, we 
an assume that !i(P1) = 0 for i > 1. Next we assume that!2(P2) 6= 0 and repeat the pro
ess, ending up with an upper-triangular matrix with !i(Pi)=dzi along themain diagonal: this is still the Ja
obian matrix, though expressed in di�erent 
oordinates. It 
learly hasmaximal rank, so the Ja
obian matrix has maximal rank generi
ally.But this implies that �(g) is surje
tive, be
ause SgC and Ja
(C) have the same dimension and �(g)is proper (in the 
ontext of holomorphi
 maps, that means \
ompa
t �bres"). So by the Proper MappingTheorem �(g)(SgC) is an analyti
 subvariety, and it 
ontains an open set sin
e �(g) is an isomorphism atleast somewhere, so it must be the whole of Ja
(C).This is, admittedly, a little unsatisfa
tory, sin
e the Proper Mapping Theorem, though obvious, israther hard (it's a little easier if you know, as in this 
ase, that the varieties involved are smooth). Analternative way of �nishing is to say this. Let � be a volume form on Ja
(C), so RJa
(C) � > 0. ThenRSgC �(g)�� > 0, be
ause �(g) is surje
tive and lo
ally inje
tive almost everywhere. But we 
an �nd a realC1 (2g � 1)-form � on Ja
(C) n fxg, for any point x 2 Ja
(C), su
h that � = d�. We 
an do this be
auseH2gDR� Ja
(C) n fxg� �= H2g(pun
tured torus;R) = 0. If we 
ould do this for an x 62 �(g)(SgC) then weshould �nd 0 < ZSgC �(g)�� = Z�SgC d(�(g)��) = 0whi
h is absurd.Corollary 2.12. �(g) is generi
ally 1-to-1.This means that �(g) is birational.Proof: By Abel's Theorem, �(g)�1(a) = ja + gQj = jDj = PH0�O(D)�. But sin
e SgC and Ja
(C) havethe same dimension, this �bre is of dimension zero in general, and a zero-dimensional proje
tive spa
e is apoint.Corollary 2.13. Every divisor D on a 
urve C of genus g su
h that degD � g is linearly equivalent tosome e�e
tive divisor. If degD = g then for almost all D the e�e
tive divisor is unique.Corollary 2.14. If C is of genus 1 then C �= Ja
(C). In parti
ular, every 
urve of genus 1 is C =� for somelatti
e � (and therefore has the stru
ture of an abelian group).Just to establish that something 
an really be done with this I will use Ja
obians to prove Riemann-Ro
hfor 
urves, and I will say a lot more about what else 
an be done.Theorem 2.15. (Riemann-Ro
h) Let C be a smooth 
urve of genus g � 1. then for any line bundle O(D)on C h0�O(D)� � h0�O(K �D)� = deg(D)� g + 1:Proof: It will be enough to show R-R (as Riemann-Ro
h is frequently abbreviated) for the 
ase jDj 6= ;be
ause then we 
an argue as follows: it must be true for D = K be
ause K > 0 (there are global 1-forms,indeed g of them), so degK = 2g � 2. So either degD � g, or deg(K �D) � g, or deg(K �D) = degD =g � 1. If deg(K � D) = degD = g � 1 and neither D nor K � D is equivalent to an e�e
tive divisor, sojDj = jK �Dj = ;, then h0�O(D)� = h0�O(K �D)� = 0 = deg(D) � g + 1 anyway. Otherwise one of jDjand jK �Dj is nonempty, by assumption if degD = g � 1 and by Corollary 2.13 otherwise. Without loss ofgenerality we may assume it is D.So suppose jDj 6= ;. Then h0�O(D)� = dim jDj + 1 = r(D) + 1 say. We may as well assume thatD = P1 + � � � + Pd a
tually is e�e
tive (but the Pi may not be distin
t). Take lo
al 
oordinates t1; : : : ; trin jDj = PH0�O(D)� �= Pr near D. Thus D = D0 = P1 + � � � + Pd = P1(0) + � � � + Pd(0) and a nearbydivisor is Dt = P1(t) + � � � + Pd(t). Let zi be a lo
al 
oordinate at Pi on C, so that Pi(t) has 
oordinate24



zi�Pi(t)� = zi(t) (and zi(0) = 0). (Think of t as time: zi(t) is the amount that Pi, and hen
e that bit of D,strays in time t.) We 
an also write any form ! as ! = hi(zi)dzi near Pi, with hi holomorphi
.Consider the matrix ��zi�tj �. It must have rank r at any t be
ause for a suitable 
hoi
e of Æt =(Æt1; : : : ; Ætr) we have ��zi�tj� Æt = Æz = ÆDtand this moves in an r-dimensional spa
e (a time Æt later D 
ould have moved in any of the r dire
tionsin jDj).By Abel's theorem Xi Z Pi(t)Q ! = 
onstant mod �so Xi Z PiPi(t)! =Xi Z zi(t)0 hi(zi)dzi = 
onstant mod �and if we take r we get Xi hi�zi(t)��zi�tj (t) = 0:We 
an simply put t = 0 in this equation, as everything is 
ontinuous, so�hi�zi(0)��i = �!(Pi)�i 2 Ker��zi�tj �:But dimKer��zi�tj � = d � r (we 
al
ulated that the rank was r a little while ago), so the dimension of thespa
e of ve
tors �!(Pi)	 is at most d � r. But this is pre
isely the spa
e of all !s modulo the ones thatvanish at Pi, whi
h is H0(K)=H0(K �D). Sodim�H0(K)=H0(K �D)� � d� rand sin
e h0(K) = g this implies h0(K �D) � g � d+ r = g � d+ h0(D)� 1. Soh0(D)� h0(K �D) � deg(D)� g + 1:For D = K this says degK � 2g � 2. We need to know that in fa
t degK = 2g � 2. You 
an thinkof this as Gau�-Bonnet if you like. If we a

ept this we 
an get the equality for all divisors. Looking at�(d):SdC ! Ja
(C) we see thath0(D)� 1 = dim jDj = dim�(d)�1(D � dQ)= dimSdC � dim Ja
(C)= d� g(trivially if d < g), so if h0(K �D) = 0 we have h0(D) = d� g+ 1. If h0(K �D) 6= 0 we 
an use the aboveinequality for K �D to show thath0(K �D)� h0(D) � deg(K �D)� g + 1= 2g � 2� deg(D)� g + 1= g � 1� deg(D)when
e the result. 25



Time for another breather. I want to have a look at what we've done, dis
uss vaguely what we are goingto do, and mention one or two things that don't �t in elsewhere.We saw some examples of real-life abelian varieties, namely Ja
obians. The �rst step was to go ba
kand forth between divisors and line bundles: this is a basi
 pro
edure and the fa
t that it is possible is one ofthe reasons why line bundles are easier to understand than other ve
tor bundles and why divisors are betterbehaved than other algebrai
 
y
les.. We used this to get an isomorphism between an entirely algebrai
obje
t, Pi
 0(C), and a trans
endental obje
t, Ja
(C). This in itself is obviously nontrivial. To do it, wehad to spend a lot of time integrating forms with or without poles, and here I assumed two things: the DeRham theorem H iDR(X)� = 
losed i-forms = exa
t i-forms � �= H i(X ;R)and that there are g 1-forms on a 
urve of genus g. I also used the fa
t that wedge produ
t of forms agreeswith interse
tion or 
up produ
t, that is, that the De Rham isomorphism is a ring isomorphism. But this weused in only one pla
e, when we showed that the Ja
obian is a
tually an abelian variety. However, note theway we did this: we wrote down an expli
it and natural H , thereby equipping the Ja
obian with a spe
ialample line bundle (and even a spe
ial divisor, �, the divisor of zeros of the theta fun
tion, whi
h we didn'tneed for what we did but is important). One thing we must do is think about this situation, of polarisedabelian varieties, more generally.A polarised abelian variety is an abelian variety equipped with a member of the N�eron-Severi group,that is, with an H . H is determined by E and with a suitable 
hoi
e of basis for �, E has matrix � 0 T�T 0 �,where T = diag t1; t2; : : : ; tn. The ti are integers, determined by H , and tijti+1. The type of a polarisationis the n-tuple (t1; : : : ; tn): the most important 
ase, not least be
ause it is what naturally happens in the
ase of Ja
obians, is ti = 1 for all i. This is 
alled a prin
ipal polarisation, frequently abbreviated to p.p.;but other polarisations do arise in nature. Not every abelian variety has a prin
ipal polarisation but everyabelian variety is isogenous to one that does.It turns out that in pra
ti
e one has to work almost all the time with polarised abelian varieties. Inparti
ular, it is possible to write down a sensible parameter spa
e for polarised abelian varieties but youreally need the polarisation to a
hieve this. For instan
e, an ellipti
 
urve 
an always be thought of as aplane 
ubi
 (and this embedding 
orresponds to a polarisation { in dimension 1 we don't need to worryabout type) with equation Y 2Z = 4X3 � g2XZ2 � g3Z3. The only parameter we need then is the famousj-invariant j = 1728 g32g32 � 27g23whi
h tells you exa
tly whi
h 
urve you've got.It is important to be aware that the 
anoni
al divisor of an abelian variety (indeed, the 
anoni
albundle of any 
omplex torus) is trivial. This just means that there is a global non-vanishing n-form, namelydz1 ^ : : :^ dzn, where the zi are 
oordinates in C n { 
learly this is �-invariant and therefore des
ends to X .This is quite unlike proje
tive spa
e (where K is negative in the sense that O(�mK) has lots of se
tions ifm is big) or most other things (in general you expe
t O(mK) to have lots of se
tions { Mori theory is abouttrying to arrange for K to be ample). There are other varieties with K trivial, 
alled Calabi-Yau varieties(or K3 surfa
es, for obs
ure reasons, if they are of dimension 2), and they also hold endless fas
ination forgeometers.Another way to asso
iate an abelian variety with a given variety is to look at the Albanese torus Alb(X).This is a torus with a map �:X ! Alb(X) having the property that every map from X to a torus fa
torsthrough �. We shall not dis
uss this here but it is another useful tool, not perhaps quite as fundamental inits importan
e as the Ja
obian but nevertheless essential.The theta fun
tions asso
iated with a polarisation a
tually have a se
ond dimension, literally. Considerfor a moment the 
ase of plane 
ubi
 
urves E and their j-invariants. Pretend that you 
ould make a surfa
eby gluing all the 
urves together, so you had a surfa
e S and a map j:S ! C su
h that j�1(t) is the ellipti

urve Et whose j-invariant is t. A
tually you 
an't quite do this but you so nearly 
an that it doesn't reallymatter. The theta fun
tion on the �bre Et is then just the restri
tion of a mu
h better theta fun
tion whi
hreally is a fun
tion on S, in other words a fun
tion of two variables. This is what makes theta fun
tionsreally valuable. We shall dis
uss this in more detain in the next se
tion.26



3 Moduli and theta fun
tions.We begin with the 
ase of ellipti
 
urves, that is, 
urves whi
h are abelian varieties. By de�nition we haveX = C =� for some latti
e �. Let P 2 X be the origin. The we put, for z 2 C}(z) = z�2 + X�2�nf0g h(z � �)�2 � ��2iso that }0(z) =X�2��2(z � �)�3:1, } and }0 are all periodi
 and hen
e give meromorphi
 fun
tions on X . Moreover, they are all se
tionsof O(3P ), that is, they have at most triple poles at the origin and no others. On the other hand, O(P )
orresponds to E = � 0 1�1 0� and therefore h0�O(3P )� = ���� 0 3�3 0 ����1=2 = 3, by 1.13. So H0�O(3P )� =h1; }; }0i. By 1.14, 3P is very ample, and that proves the following.Proposition 3.1. Every ellipti
 
urve 
an be embedded in P2 in su
h a way that O = (0 : 1 : 0) is anin
exion point.In fa
t we 
an do better than that, and give an equation.Proposition 3.2. The Weierstra� }-fun
tion satis�es}0(z)2 = 4}(z)3 � g2}(z)� g3where g2 = 60P�2�nf0g ��4 and g3 = 140P�2�nf0g ��6.Proof: }(z)� z�2 is an even fun
tion, holomorphi
 near O and vanishing there. So by Taylor's theorem}(z) = z�2 + az2 + bz4 +O(z6)}0(z) = �2z�3 + 2az + 4bz3 +O(z5)so we may 
onsider q(z) = }0(z)2 � 4}(z)3 + 20a}(z) + 28b= 4z�6 � 8az�2 � 16b� 4z�6 � 12b+ 20az�2 + 28b+O(z)= O(z)whi
h is a holomorphi
 fun
tion near z = 0 and vanishes at z = 0. By periodi
ity q(�) = 0 for all � 2 � andis a bounded holomorphi
 fun
tion, so q(z) � 0. We 
an re
over g2 and g3 by noting that 2a and 24b arethe se
ond and fourth derivatives at z = 0 ofP�2�nf0g �(z��)�2���2� and this sum 
onverges absolutelyand uniformly so we 
an also 
al
ulate the derivatives by di�erentiating term by term.Corollary 3.3. Every ellipti
 
urve is isomorphi
 to the plane 
urveY 2Z = 4X3 � g2XZ2 � g3Z3for some g2, g3.On the other hand, every smooth plane 
ubi
 
urve has genus 1. You 
an either prove this dire
tly bymaking a proje
tive 
hange of 
oordinates that transforms a general plane 
ubi
 into this spe
ial-lookingone or use the adjun
tion formula to 
al
ulate the degree of K. Another argument is to observe that allthe smooth plane 
ubi
s form one 
ontinuous family (they 
an all be deformed into one another) and so thegenus must be the same for all of them. The upshot is that if we want to des
ribe all ellipti
 
urves we mayas well des
ribe all smooth plane 
ubi
s of this form.27



Theorem 3.4. C =� �= C =�0 if and only if j(C =�) = j(C =�0), wherej = 1728 g32g32 � 27g23 :Proof: Suppose �rst that �: C =� ! C =�0 is an isomorphism. Then ~�: C ! C =�0 is a holomorphi
 fun
tionwhi
h is periodi
 with respe
t to �. So d~�z. is a periodi
 holomorphi
 fun
tion from C to C and thus 
onstant:say d~�z. = a. Then �(z) � az mod �0. In parti
ular a� 2 �0 if � 2 �, that is, a� � �0. Similarly a�1�0 � �,so a� = �0. But then g02 = a4g2 and g03 = a6g3, so j0 = j.Conversely, if j = j0, then (g32 : g23) = (g023 : g032) so there exists b 2 C su
h that b�12g32 = g023 andb�12g23 = g032. Put X 0 = bX , Y 0 = Y and Z 0 = b3Z. Thenb�3Y 02Z 0 = 4b�3X3 � g2b�7X 0Z 02 � g3b�9Z 03so Y 02Z 0 = 4X 03 � g2b�4X 0Z 02 � g3b�6Z 03= 4X 03 � g02X 0Z 02 � g03Z 03so the two 
urves are proje
tively equivalent.The expression g32 � 27g23 is that it is what is non-zero if the 
urve is smooth.What we have found is a parameter spa
e, or moduli spa
e, for the set of all pairsfellipti
 
urve E; point 0 2 Eg:(Stri
tly speaking one ought to reserve the term \ellipti
 
urve" for su
h pairs and refer to a 
urve of genus 1as a 
urve of genus 1. People who work over C tend to be 
areless about this, but number theorists, whowork over �elds that are not algebrai
ally 
losed, 
an't a�ord to be be
ause a 
urve of genus 1 might nothave any points at all over the �eld in question.) What about abelian varieties of higher dimension? It won'tbe possible to work in the same way be
ause a good proje
tive des
ription won't be so easy to �nd. Whatwe 
an do, though, is to give some kind of moduli spa
e a priori, without thinking about spe
i�
 proje
tiveembeddings, essentially by looking at the period matrix. The idea is to 
hoose a basis for � in su
h a waythat E has a good simple form and then write the period matrix in terms of that basis. Spe
i�
ally, we 
analways 
hoose a basis �1; : : : ; �g ; �1; : : : ; �g of � su
h that E has matrix � 0 D�D 0 �, where D is a diagonalmatrix. If D = I we say that the abelian variety is prin
ipally polarised. There is no guarantee that we
an arrange for a given abelian variety to be prin
ipally polarised, but I will a

ept the loss of generality.Observe, in any 
ase, that if instead D = diag(t1; : : : ; tg) we 
an take �0 to be the latti
e generated by the�i and 1ti�i and then C g =�0 is isogenous to C =� and does have a prin
ipal polarisation.From now on we shall work with prin
ipally polarised abelian varieties.Lemma 3.5. With respe
t to the bases �1; : : : ; �g ; �1; : : : ; �g for � over Z and �1; : : : ; �g for C g = V , theperiod matrix is � = (Z; I)for some Z 2Mg�g(C ).Proof: Z is just the matrix whose j-th 
olumn 
onsists of the 
oordinates of �j with respe
t to f�ig.Lemma 3.6. Z = >Z and ImZ is positive de�nite.Proof: These are just the Riemann relations. Note that H has matrix 2i ��� 0 I�I 0��1 >�!�1 =� ImZ��1.The Siegel upper half-plane of degree g is de�ned to beH g = �Z 2Mg�g(C ) j Z = >Z; ImZ > 0	 :It is sometimes written H or S. It is a subset of Mg�g(C ) but we 
an also think of it as being an open (inthe usual topology) subset of C 12 g(g+1). 28



Proposition 3.7. Points of H g are in 1-to-1 
orresponden
e with the set of abelian varietiesX of dimension gwith a prin
ipal polarisation and a symple
ti
 basis for � = �X .By a symple
ti
 basis we mean a basis �1; : : : ; �g ; �1; : : : ; �g with respe
t to whi
h E has matrix� 0 I�I 0�.Proof: We have already shown how to produ
e a point of H g from su
h an X . Going the other way is justas easy: you let � be the latti
e generated by the 
olumns of (Z; I) and let H have matrix (ImZ)1 withrespe
t to the standard basis of C g = V (whi
h is �1; : : : ; �g). Then H is a positive de�nite Hermitian form.We want to show that ImH has matrix � 0 I�I 0� with respe
t to some basis for �, so as to justify ourassertion that the polarisation is prin
ipal. But with respe
t to the basis given by the 
olumns of (Z; I), thematrix of ImH isIm �>(Z; I)(ImZ)�1( �Z; I)� = Im�ZI � (ImZ)�1( �Z; I) (as Z = >Z)= Im�ReZ + i ImZI � (ImZ)�1(ReZ � i ImZ; I)= ��ReZ +ReZ ImZ ImZ�1� ImZ ImZ�1 0 �= � 0 I�I 0�as required.What we want to do is get rid of the 
hoi
e of symple
ti
 basis. On
e it's put like that, it be
omes 
learthat we are going to have an a
tion of Sp(2g;Z) on H g and the moduli spa
e of pp abelian varieties will beA = H g= Sp(2g;Z).To �x notation, we make the de�nition thatSp(2g;Z) = �R 2M2g�2g(Z) j R� 0 I�I 0�>R = � 0 I�I 0�� :This is not the only 
onvention in use, unfortunately: sometimes � 0 I�I 0� is repla
ed with another standardalternating form of determinant 1 su
h as � 0 �II 0 �, and sometimes what I have 
alled Sp(2g;Z) is referredto as Sp(g;Z) (the notation for dihedral groups is a�i
ted by the same ambiguity). Be 
areful! For us,Sp(2g;Z) is a subgroup of SL(2g;Z) and in parti
ular Sp(2;Z) = SL(2;Z).Theorem 3.8. Sp(2g;Z) a
ts on H g byR = �A BC D� :Z �! R(Z) = (AZ +B)(CZ +D)�1:Proof: In fa
t we 
an even take R 2 Sp(2g;R). Noti
e that if R 2 Sp(2g;R) then so is >R, sin
e� 0 �II 0 �>R� 0 I�I 0� = R�1:Also >AC and >BD are symmetri
 and >AC�>CB = I : this follows straight from the de�nition and in fa
tthese 
onditions are also suÆ
ient for R to be symple
ti
. Now I 
laim that CZ +D is invertible, whi
h isone of the things we have to prove. 29



Consider >(CZ +D)(AZ +B)� >(AZ +B)(CZ +D). Sin
e A, B, C and D are real we have>(CZ +D)(AZ +B)� >(AZ +B)(CZ +D) == >�Z(>CA� >AC)Z + >�Z(>CB � >AD) + (>DA� >BC) + >DB � >BD= Z � �Z= 2i ImZ:If (CZ +D)v = 0 for some v 2 V then this gives0 = 2i Im(>�v ImZ�v)so v = 0, be
ause ImZ > 0.Next, R(Z) = >R(Z), be
ause>(CZ +D)�R(Z)� >R(Z)�(CZ +D) = >(CZ +D)(AZ +B)� >(AZ +B)(CZ +D)= >Z(>CA� >AC)Z + (>DA� >BC)Z + >Z(>CB � >AD)+ >DB � >BD= z � >Z= 0:Finally, we must 
he
k that ImR(Z) is positive de�nite. But2i>(CZ +D) ImR(Z)(CZ +D) = >(CZ +D)�R(Z)�R(Z)�(CZ +D)= >(CZ +D)�R(Z)� >R(Z)�(CZ +D)= (CZ +D)(AZ +B)� (AZ +B)(CZ +D)= ImZso R(Z) 2 H g . It is 
lear that the map given des
ribes a group a
tion, that is, that R1�R2(Z)� = R1R2(Z).Obviously these are generalisations of M�obius transformations. We are going to work with Sp(2g;Z)but we 
ould instead work with any sensible dis
rete subgroup of Sp(2g;R). In the 
ase g = 1 this amountsto looking at the Poin
ar�e sphere but looking at other dis
rete subgroups of SL(2;Q) gives other modular
urves and these are beautiful and important obje
ts.Theorem 3.9. If Z;Z 0 2 H g then the prin
ipally polarised abelian varieties (XZ ; HZ) and (XZ0 ; HZ0) areisomorphi
 if and only if Z and Z 0 are equivalent under the a
tion of Sp(2g;Z).Proof: Suppose �rst (XZ ; HZ) �= (XZ0 ; HZ0). That means that there is a map f :XZ0 ! XZ whi
h is anisomorphism of 
omplex tori and satis�es f�HZ = HZ0 (noti
e whi
h way the maps go). We have longknown how to express f by an isomorphism F :V ! V su
h that F (�0) = �. Let T 2 Mg�g be the matrixof F with respe
t to the basis �1; : : : ; �g of V and let R 2M2g�2g(Z) be the matrix of F with respe
t to thebases �1; : : : ; �g ; �1; : : : ; �g for � and �01; : : : ; �0g ; �1; : : : ; �g for �0 (so �i is the i-th 
olumn of Z, et
.). T andR are 
alled the matri
es of the analyti
 and rational representations of f respe
tively. Sin
e F (�0) � � wehave T (Z 0; I) = (Z; I)R: (z)You just have to think about this: it is one of those elementary but 
onfusing things (well, it 
onfuses me).The left-hand side is �F (�01); : : : ; F (�0g); F (�1); : : : ; F (�g)� expressed in terms of �1; : : : ; �g . The right-handside is the same thing expressed in terms of �1; : : : ; �g ; �1; : : : ; �g.Put >R = �A BC D� with A;B;C;D 2Mg�g(Z). Then (z) saysTZ 0 = Z>A+ >B and T = Z>C + >D:30



Moreover, sin
e Z is symmetri
, >T = CZ +D whi
h is invertible be
ause f is an isomorphism, soZ 0 = >Z 0 = (AZ +B)>T�1 = (AZ +B)(CZ +D)�1 = R(Z):We need to 
he
k also that R 2 Sp(2g;Z), but this is true simply be
ause R preserves H , that is,>R� 0 I�I 0�R = � 0 I�I 0�.Conversely, if Z 0 = R(Z) for some R 2 Sp(2g;Z) then R determines F :V ! V and hen
e f :XZ ! XZ0 ,preserving H be
ause R is symple
ti
, and F is an isomorphism be
ause R is invertible.Corollary 3.10. There is a 1-to-1 
orresponden
e between the set Ag of isomorphism 
lasses of prin
ipallypolarised abelian varieties and points of the orbit spa
e H g= Sp(2g;Z).There is a diÆ
ulty with this, though. If it is going to be any use to us we need Ag to be somethingwe 
an handle, su
h as a 
omplex manifold. A
tually it isn't a 
omplex manifold. The reason why notis that Sp(2g;Z) has torsion and the torsion elements ne
essarily have �xed points (by the Brauer �xed-point theorem, for instan
e): that is to say, it 
an happen that Z = R(Z) for some R 6= I . This will, ingeneral, 
ause Ag to have some singularities, but they are pretty harmless ones. They 
orrespond to abelianvarieties having extra automorphisms, so that they 
an be looked at in more than one way. (I'm 
heatingslightly, be
ause in fa
t this always happens: �I 2 Sp(2g;Z) a
ts trivially on H g and this 
orresponds to theautomorphism�1 of (X;H). In other words, Sp(2g;Z) a
ts through the quotient PSp(2g;Z) = Sp(2g;Z)=�I .This doesn't really 
hange anything, but it is what prevents there being a universal family of ellipti
 
urves.You 
an get round it by 
hoosing a 3-torsion point, be
ause that won't be preserved by �1.)In a
tual fa
t Ag is a quasi-proje
tive variety. All I will prove here is that it is Hausdor� (and I shan'teven do all the details of that), by showing that the a
tion of Sp(2g;Z) is properly dis
ontinuous. Sin
e ita
ts on H g by biholomorphi
 maps this makes Ag into a 
omplex analyti
 spa
e, whi
h is a big step in theright dire
tion.Theorem 3.11. Ag is Hausdor�.Proof: We need to show that if K1;K2 � H g are 
ompa
t then R(K1)\K2 = ; ex
ept for �nitely many R 2Sp(2g;Z): if we 
an do this then we 
an separate x1; x2 2 Ag by taking Ki to be a 
ompa
t neighbourhoodof some preimage ~xi 2 H g and then using K1 nSR R(K2) and K2 nSR R(K1).Consider the map h: Sp(2g;R) ! H g given by h(R) = R(iI), whi
h is 
ontinuous. The �bre h1(iI) isStab(iI) = �R = �A BC D� j (iA+B)(iC +D)�1 = iI; R 2 Sp(2g;R)�= �R 2 Sp(2g;R) j R = � A B�B A��= Sp(2g;R) \O(2g;R)sin
e R>R = � A>A+B>B A>B �B>A�B>A+A>B A>A+B>B�= � I 00 I �by the symple
ti
ity 
onditions. As O(2g;R) is 
ompa
t this �bre is 
ompa
t. Furthermore, Sp(2g;R) a
tstransitively on H g be
ause if X + iY 2 H g then Y = A>A for some A and R = �A X>A�10 >A�1 � satis�esR(iI) = X + iY . So all the �bres are 
onjugate and hen
e 
ompa
t, and h is surje
tive. With a bit moresimilar work one 
an show that it is proper.Now if R(K1) \K2 6= ; then R�h�1(K2)� � h�1(K2) � Sp(2g;R), so R 2 h�1(K2)�h�1(K1)��1. Sin
eSp(2g;Z) is dis
rete, a 
ompa
t subset of Sp(2g;R) 
ontains only �nitely many elements of Sp(2g;Z). But31



H�1(Ki) are 
ompa
t and h�1(K2)�h�1(K1)��1 � Sp(2g;R) is the image of the 
ompa
t set h�1(K1) �h�1(K2) � Sp(2g;R)2 under the 
ontinuous map (R1; R2) 7! R1R�12 .All this works for any sensible subgroup of Sp(2g;Q) or even Sp(2g;Q ). By \sensible" in this 
ontextI mean that one should repla
e Sp(2g;Z) by an arithmeti
 group �: an arithmeti
 group is one for whi
h�\ Sp(2g;Z) has �nite index in both � and Sp(2g;Z). Su
h a � will arise from looking at more 
ompli
atedstru
tures asso
iated with abelian varieties, for instan
e the 
hoi
e of an l-torsion point for some integer l.Sin
e we are dealing with prin
ipal polarisations there is a unique (up to a 
onstant) se
tion of the linebundle 
orresponding to the polarisation (well, there are many su
h line bundles, but pi
k one). So for ea
hpoint of Ag there is a 
anoni
al 
anoni
al theta fun
tion and a 
anoni
al 
lassi
al theta fun
tion. Let usreturn to the 
ase g = 1, so Ag = C , to see how these theta fun
tions �t together.The (Riemann) theta fun
tion is a fun
tion#: C � H �! Cgiven by the series #(z; �) =Xn 2 Zexpf�in2� + 2�inzg(whi
h 
onverges, very fast).Proposition 3.12. The Riemann theta fun
tion satis�es#(z + 1; �) = #(z; �)#(z + �; �) = expf��i� � 2�izg#(z�)Proof: The �rst part is obvious. And#(z + �; �) =Xn2Zexp�(�in2 + 2�in)� + 2�inz	=Xn2Zexp��i(n+ 1)2� � �i� + 2�i(n+ 1)z � 2�iz	= exp f��i� � 2�izg#(z; �)as stated.If we think of � as a 
onstant we 
an use this to determine a fa
tor of automorphy. In fa
t this is exa
tlywhat we had when we looked at 
lassi
al theta fun
tions: re
all that we had � = �1 ��2 and a fun
tion �1whi
h was �1-periodi
. If we put g(�; z) = � 12 (� + 2z) and g(1; z) = 1 we 
an re
over E = ImH using theformula ImH(�; �) = g(�; �) + g(�;0)� g(�; �)� g(�;0);thus ImH(1; 1) = 0, ImH(1; �) = � 12 (� +2)+ 1� 1+ 12� = �1, ImH(�; 1) = 1 by a similar 
al
ulation andImH(�; �) = 0. So E = � 0 1�1 0�, so # does indeed give a se
tion { essentially the only se
tion { of theline bundle L(1; H) 
orresponding to the prin
ipal polarisation H and the trivial 
hara
ter on C =Z+ �Z. Inparti
ular # is the only holomorphi
 fun
tion satisfying the relations above.I want to des
ribe two more properties of #. One of them relates to the a
tion of Sp, or in this 
aseSL(2;Z) sin
e g = 1. We want to have some fun
tional equation relating the values of # for given � to thosefor a�+b
�+d , whi
h after all 
orresponds to the same ellipti
 
urve. We 
an't a
tually do this for every elementof SL(2;Z) and in any 
ase I shall not give all the details of the proof.
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Theorem 3.13. Suppose � a b
 d� 2 SL(2;Z) and that ab and 
d are even. Then#� z
� + d ; a� + b
� + d� = �(
� + d) 12 exp� i�
z2
� + d�#(z; �)where � is an eighth root of unity.Proof: (Sket
h) If we look at #�(
� + d)z; �� we get a fun
tion whi
h is nearly periodi
 with respe
t toz 7! z + 1. We 
an get real periodi
ity by inserting a fudge fa
tor. Set�(z; �) = exp�i�
(
� + d)z2	 #�(
� + d)z; ��:Then �(z +1; �) = �(z; �) by a simple but messy 
al
ulation (it matters that 2j
d be
ause you get a fa
torof ei�
d) and ��z + a� + b
� + d ; �� = exp��i� a� + b
� + d � 2 � �z��(z�);by another messy 
al
ulation using 2jab and ad� b
 = 1. The details are on page 29 of Tata Le
ture Noteson Theta I, where what I have 
alled � is 
alled 	. But this implies that�(z; �)�(�)#�z; a� + b
� + d�be
ause of the uniqueness of # whi
h we proved above. The statement of the theorem is now that �(�) =�(
� + d) 12 . We have �xed the zeroth term in the Fourier series for # to be 1, so R 10 #(z; �)dz = 1. Hen
e�(�) = Z 10 �(z; �)dz= Z 10 exp�i�
(
� + d)y2	#�(
� + d)z��dz=Xn2Zexpf�i�n2d=
g Z 10 exp�i�(
z + n)2(� + d=
)	 dz= 
Xn=1 expf�i�n2d=
g Z 1�1 exp�i�
2z2(� + d=
)	 dzbe
ause expf�i�d(n + 
)2=
g = expf�i�nd=
g, sin
e 2j
d. But we know the value of R 11e�t2dt and sothis simpli�es to �(�) = 
Xn=1 expf�i�n2d=
g
�1�(� + d=
)=i� 12 :The mysterious fa
tor of �
 12 whi
h makes everything work 
omes from the Gauss sumP
n=1 expf�i�n2d=
g,and we aren't going to use its a
tual value so for the present we 
an just believe that it is what it is.A
tually we aren't going to use anything else now. What I will do is explain where the funny-looking
ondition that ab and 
d should be even 
omes from. The trouble is that if z = 12 (� + 1) then#(z; �) =Xn2Zexp��in2� + �in� + �in	= Xn even exp��in2� + �in�	 � exp��i(n� 1)2� + �i(n� 1)�	= Xn even exp��in2� + �in�	 � exp��in2� � �in�	= Xn even expf�in2�g� expf�in�g � expf��in�g�= 0 33



as the n term 
an
els with the �n term, leaving only the n = 0 term whi
h vanishes.Now in general � a b
 d� does not send 12 (� + 1) to 12 (a�+b
�+d + 1) modulo �� 0 = Z+Za�+b
�+d , but to someother 2-torsion point of C =�� 0 . There are three nontrivial 2-torsion points, 12� , 12 and 12� + 12 , and SL(2;Z)permutes them. We are interested in the stabiliser of 12� + 12 . In fa
t SL(2;Z) a
ts on the set of 2-torsionpoints via the quotients indu
ed by redu
tion mod 2SL(2;Z)�! SL(2;Z=2)�= S3:This is 
lear, be
ause there is a subset of SL(2;Z) whi
h is just SL(2;Z), namely�� 1 00 1� ;� 0 11 0� ;� 1 10 1� ;� 1 11 0� ;� 1 01 1� ;� 0 11 1��and these elements do the right things to 12� , 12 and 12�+ 12 . So one interesting subgroup is the kernel of redu
-tion mod 2, 
alled the prin
ipal 
ongruen
e subgroup of level 2; another, and the one we need, is the preimageof �� 1 00 1� ;� 0 11 0��. This is 
alled �1;2 and it is pre
isely given by ab � 
d � 0 (mod 2). Of 
ourse it'snot normal (a re
e
tion doesn't generate a normal subgroup of the symmetry group of a triangle { this isthe �rst example of a non-normal subgroup). The 
onjugates are the preimages of �� 1 00 1� ;� 1 10 1��,given by 
 � 0 (mod 2), and similarly b � 0 (mod 2).In
identally, we have almost shown that # is a modular form for �1;2. This is be
ause if � a b
 d� 2 �1;2#�0; a� + b
� + d� = �(
� + d) 12#(0; �)whi
h, but for the �, says that # is a modular form of weight 12 . Of 
ourse we 
an get rid of this by taking#4 instead: it is a modular form for �1;2 of weight 2.The prin
ipal 
ongruen
e subgroup �(N) of level N in SL(2;Z) is the kernel of redu
tion mod N . Amodular form of weight k and level N is a holomorphi
 fun
tion f(�) on H su
h that for all � 2 H and all� a b
 d� 2 �(N) f �a� + b
� + d� = (
� + d)kf(�)and f is bounded near the 
usps in some sense. There is an analogous de�nition for Sp(2g;Z) for g > 1, andin that 
ase the boundedness 
ondition 
an be dropped as it is automati
ally satis�ed.Note that this de�nition only makes sense be
ause if for R = � a b
 d� we put eR(�) = (
� + d)k theneR1R2(�) = eR1(R2�)eR2(�);in other words that e is a 1-
o
y
le. So modular forms of weight k and level N are pre
isely the se
tions ofsome line bundle on Ag(N). It turns out that even for level 1 this bundle is ample, and that is why Ag is aproje
tive variety.Here, to round things o�, are two more obje
ts in mathemati
s that relate to abelian varieties. Noteverything does, and I have really just been showing some { quite hard { geometry in a
tion. But manysurprising things do.Let us have a last look at # and think about what happens if we take real parameters, repla
ing z 2 Cby x 2 R and � 2 H by it 2 R+ . Then #(x+ 1; it) = #(x; it)34



and #(x; it) =Xn2Zexp(��nt) exp(2�inx)= 1 + 2Xn2N exp(��n2t) 
os(2�nx);whi
h is real. Furthermore ��t#(x; it) = 2Xn2N��n2 exp(�n2t) 
os(2�nx)and �2�x2 #(x; it) = 2Xn2N�4�2n2 exp(�n2t) 
os(2�nx)so # satis�es the PDE ��t#(x; it) = 14� �2�x2 #(x; it):This equation is well known, though possibly not to the average geometer: it is the heat equation in onevariable, with 
ertain boundary 
onditions. To explain what the boundary 
onditions are we need to takelimt!0 #(x; it), whi
h doesn't exist. But as a distribution it does exist: that is, limt!0 R 10 f(x)#(x; it)dxexists if f is measurable. If we take f to be a fun
tion on the 
ir
le we 
an write f(x) =Pm am exp(2�imx),and then Z 10 f(x)#(x; it)dx = Z 10 Xn;mam exp(��n2t) exp�2�i(n+m)x	dx=Xn;mam exp(��n2t) Z 10 exp�2�i(n+m)x	dx=Xn a�n exp(��n2t)so limt!0 Z 10 f(x)#(x; it)dx =Xn an= f(0)= Z 10 f(x)Æ(x)dx :So if I take a 
ir
ular pie
e of wire of length 1 and at time t = 0 apply a lighter to it at the origin, thetemperature at time t at the point x will be #(x; it).Finally: what do higher-dimensional abelian varieties look like as proje
tive varieties? An ellipti
 
urveis a plane 
ubi
, but what about surfa
es. We 
an 
ertainly get some embeddings, by taking, say, the thirdpower of a prin
ipal polarisation, but that is very wasteful, embedding X in P8. Maybe we 
an do betterby taking a polarisation but not using all the se
tions (i.e. not using a 
omplete linear system to embed X)or by using a non-prin
ipal polarisation (this turns out to be more useful). How mu
h better? We 
an'tembed an abelian surfa
e in P3 be
ause a smooth hypersurfa
e in P3 has to be simply-
onne
ted, so whatabout P4? There are indeed abelian surfa
es embedded in P4. They were �rst dis
overed by Commesattiin 1915 when, of 
ourse, nobody was paying any attention, and then forgotten for �fty-seven years. Butthere is an amazing rank 2 ve
tor bundle on P4, 
alled the Horro
ks-Mumford bundle, and it has se
tions (afour-dimensional family of them) whose zeros are, in general, an abelian surfa
e.
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