
INTRODUCTION TO ABELIAN VARIETIESLet us begin with some general hat about what abelian varieties are and why they are interesting.Anything signi�ant said before the start of setion 1 will be repeated later.I'm going to work over C . This doesn't in the least mean that you an't do anything without omplexanalysis. On the ontrary, abelian varieties, espeially ellipti urves, over number �elds are the main objetsof study in large areas of number theory. But I am a omplex geometer and the study of abelian varietiesover this one very speial �eld ontains quite enough to be getting on with, as well as being beautiful. Beforeall the number theorists lose interest, I should point out that omplex abelian varieties and number theoryare also inextriably linked and no-one an study either without some knowledge of the other.There are lots of books. The one that I have ome to regard as the standard handbook is:H. Lange & Ch. Birkenhake, Complex Abelian Varieties (Springer)but this overs a lot of material and assumes rather more knowledge of algebrai geometry than most reentgraduates have. A surprisingly aessible introdution an be found in the �rst 80 pages or so ofD. Mumford, Abelian Varieties (OUP, Bombay).I should mention two other books by the same author, whih explore related topis; the �rst one ould serveas a text for some parts of the ourse, the seond is just an objet of beauty:D. Mumford, Curves and their Jaobians (Ann Arbor, Mih)D. Mumford, Tata Leture Notes on Theta I (Birkh�auser)Another reent book on abelian varieties isG.R. Kempf, Complex Abelian Varieties and Theta Funtions (Springer)whih is not bad, though it is not error-free and the approah taken is not the one I propose to take. Thereare two older books:H.P.F. Swinnerton{Dyer, Analyti Theory of Abelian Varieties (CUP)and, inevitablyS. Lang, Abelian Varietiesof whih the �rst an be reommended. One or another of these books will have the answer to most questions.So what are abelian varieties and why are they interesting? The most basi example is a smooth ubiurve in P2, for instane E = fy2z = 4x3 � g2xz2 � g3z3gfor general g2, g3 2 C . This is the simplest kind of non-rational variety you an have, so if we don'tunderstand it we are not going to get very far. And indeed it stopped you in your traks in your shooldays,when you thought mathematis meant doing more diÆult integrals, beause you ouldn't doZ �4x3 � g2x� g3��1=2 dxor indeed R y�1dx if y2 was given by any polynomial in x of degree � 3.Another basi thing that we are going to have to understand if we are to make any progress at all withomplex manifolds is C =�, where � � C is a lattie of rank 2: say � = Z+ �Z. After all, this objet hasomplex dimension 1, so it has real dimension 2, and we know what it is as a real manifold: it's a torus,next to the sphere the simplest kind of ompat surfae there is.In fat these are the same objets. Given � we de�ne the Weiersrtra� }-funtion}(z) = 1z2 + X!2�nf0g � 1(z � !)2 � 1!2 �so that }0(z) = P!2��2(z � !)�3. Among the good properties of } is that it is a doubly periodi { thatis, �-invariant { meromorphi funtion on C and that ifg2 = 60 X!2�nf0g!�4; g3 = 140 X!2�nf0g!�6;1



then }0(z)2 = 4}(z)3 � g2}(z) � g3. So the map u: C =� ! P2 given by u(z + �) = �}(z) : }0(z) : 1� forz 62 � and u(0 + �) = �0 : 1 : 0� atually maps C =� onto E� = fy2z = 4x3 � g2xz2 � g3z3g � P2. Witha ertain amount of work (nothing too strenuous) you an show that u is a biholomorphi map; moreover,every smooth ubi urve in P2 is projetively equivalent to E� for some Lb. So if we are only interested inomplex analysis, plane ubi urves and 1-dimensional omplex tori are the same things.But C =� has more struture than that: it's an abelian group. That makes E� into a group, too, byP + Q = u�u�1(P ) + u�1(Q)�, and the identity element is (0 : 1 : 0). We should like to have a geometripiture of the addition: that is, we should like +:E� � E� ! E� to be a morphism of algebrai varieties,and one that we an desribe in terms of projetive geometry. The answer is well-known: P +Q+R = 0 ifP , Q and R are ollinear. Of ourse you ould just write that down and use it as the de�nition of addition,�rst hoosing some inexion point to be 0. If you do, you have a rather messy job proving that what youhave de�ned is assoiative. Historially at least, it's better to do what we were doing and start with C =�,and then we need to understand u�1, so as to reonstrut � from E�.Consider � = u�(y�1dx), a meromorphi di�erential on C =�. Let �: C ! C =� be the projetion: then��� = (u�)�(y�1dx) = (}0)�1d} = dz, whih is holomorphi. So y�1dx is atually a global holomorphidi�erential form on E�. Moreover, elements of � are just the periods of this form: if  is a losed path inC =� and~ is a path in C whih lifts  then R � = R~ dz = (1)� (0) 2 �, and obviously every element of �an be got in this way.From this it follows that u�1(P ) = R P(0:1:0) y�1dx +� 2 C =�, and the statement that P +Q+R = 0 ifand only if they are ollinear omes down to Abel's Theorem: if P , Q, R 2 E� thenZ P(0:1:0) y�1dx+ Z Q(0:1:0) y�1dx+ Z R(0:1:0) y�1dx � 0 mod �if and only if P , Q and R are ollinear. This is an addition formula for ellipti integrals (and that is ofourse the form in whih Abel proved it). It is quite easy now that we know all about omplex analysis butit made Abel a Norwegian national hero. It is this onnexion that gave rise to the name \abelian variety".One other thing that we have learn-ed is that E� has a global holomorphi di�erential 1-form, whihhas no zeros either. This is pretty unusual and is something to elebrate: global forms are as ommonas mud but only a few privileged varieties are aorded nowhere vanishing ones. It's only got one globalholomorphi form, though, up to a onstant: otherwise, we ould divide another form by this one and get aglobal nononstant holomorphi funtion, whih is against the rules. This is the di�erential geometer's wayof saying that E� has genus 1.If we want to generalise we ould try several things:a) Curves of higher genusb) Quartis in P3 and quintis in P4) C g=� for g > 1.All these things are sensible: we are going to do (). Doing (a) leads you straight bak to () anyway,as I will explain in a moment. Doing (b) leads you to K3 surfaes and Calabi-Yau manifolds, whih arefasinating objets but not quite of suh universal ourrene as abelian varieties. Mind you, if you believesome physiists there is a Calabi-Yau in the room you are in, or perhaps the room you are in is in aCalabi-Yau.Why do urves lead you straight bak to things like C g =�? Beause if you have a urve of genus g thenit has g di�erentials and you integrate eah one of them against eah of the 2g loops, getting 2g points in C gwhih generate �. It turns out that the quotient C g =�, alled the Jaobian, aptures all information aboutthe urve and is easier to study in some ways.But atually } is something of a mirale. If you just write down 2g elements of C g generating a lattie �then there will probably be no meromorphi funtions at all whose periods are exatly those 2g numbers,so if you onsider C g=� it won't have any meromorphi funtions and in partiular won't embed in anyprojetive spae. If it will embed in projetive spae it is alled an abelian variety. The abelian varieties ofdimension g form a family of dimension g(g� 1)=2 and as this is bigger than the dimension of the family ofurves of genus g, whih is 3g�3 for g � 2, most abelian varieties annot be Jaobians. It is a hard question(alled the Shottky problem) to determine whih ones are Jaobians. But there are other ways as well in2



whih abelian varieties (and even things of the form C g =� that are not abelian varieties) arise in geometry,suh as Albanese varieties and intermediate Jaobians, so that abelian varieties whih are not Jaobians arestill important.One warning is useful. The word \torus" is used to mean three di�erent things. It is used by topologiststo mean a topologial spae that is a produt of S1s. As a topologial spae, C g =� is a torus so it is oftenalled a torus even when one is thinking about the omplex struture. But the algebrai group (C � )n isalso referred to as a torus. Ideally, C g=� should always be referred to as a omplex torus and (C � )n as analgebrai torus, to avoid onfusion. Alas, this is not always done. Beware!

3



1. Complex tori and line bundles.In giving a ourse on abelian varieties, it is best to say what an abelian variety is. There are severalpossible de�nitions, depending on one's point of view.De�nition: A omplex torus is a quotient V=� of a omplex vetor spae V by a lattie � of rank 2g,where g = dimC V .De�nition: A omplex torus T is alled an abelian variety if there exists a holomorphi embedding of Tinto PNC for some positive integer N .Not every omplex torus has suh an embedding. So we had better see how far we an get just thinkingabout omplex tori and then try to deide whih omplex tori are in fat abelian varieties. It is possible todo all this without mentioning line bundles (Swinnerton-Dyer's book does), but I think it is worth the extrae�ort beause modern books do use bundles and you will need them soon.Warning. The word \torus" is used to mean three things: topologial torus, algebrai torus and omplextorus. In books on algebrai geometry the word \torus" tends to mean \algebrai torus", beause omplextori are mostly only interesting if they are abelian varieties, and then we all them that.Let V �= C g have basis e1; : : : ; eg and suppose � =L2gi=1 �iZ (so �i 2 V ): write�i = gXj=1 �jiej :The matrix � = (�ji) 2 Mg�2g(C ) is alled the period matrix of the omplex torus T = V=�. Given amatrix � 2Mg�2g(C ) we an easily hek whether it is the period matrix of a omplex torus or not.Lemma 1.1. � 2 Mg�2g(C ) is the period matrix of a omplex torus if and only if ����� 2 M2g�2g(C ) isnonsingular.Proof: To say that � is a period matrix is to say that its olumns span a lattie � in V = C g . This meansthat � 
 R should be the whole of V as a set, i.e. that the olumns of � should be linearly independentover R. If they are not then �x = 0 for some non-zero x 2 R2g , so ��x = ���x = 0, and thus �����x = 0 so����� is singular. Conversely, if ����� is singular then for some x, y 2 R2g , not both zero, ����� (x+iy) = 0.So �x + i�y = 0 and ��(x + iy) = �x � i�y = 0. So �x = �y = 0 and the olumns of � are linearlydependent over R.Having desribed our objets { omplex tori { in terms of linear algebra, whih is always a good thingto do, we should like to do the same for morphisms, i.e. for holomorphi maps between omplex tori. Herethe piture is very nie. It's just like aÆne spae: an isometry of linear spaes is got by moving the origin tothe right plae and then using a linear map, and the following result is similar. First we need a de�nition.De�nition: If y 2 T the translation ty:T ! T by y is just x 7! x + y. If T 0 is another omplex torus, ahomomorphism f :T ! T 0 is a holomorphi group homomorphism.Proposition 1.2. If h:T ! T 0 is a holomorphi map then there is a unique homomorphism f :T ! T 0 anda unique y 2 T 0 suh that h = tyf . Furthermore there is a unique C -linear map F :V ! V 0 with F (�) � �0,induing f .Proof: Obviously we want to take y = h(0) and f = t�1y h = t�yh. Look at f�:V ! T 0. By the universalproperty of the map �0:V 0 ! T 0 it lifts to a holomorphi map F :V ! V 0. F is not unique but it is uniquemodulo the ation of �0, so if we speify that F (0) = 0 (we know that F (0) 2 �0) then we �x F . ButF (v+ �) � F (v) mod �0 if � 2 �, so �Fpartialvi (v+ �) = �Fpartialvi (v) for all � 2 �. So by Liouville's theoremall partial derivatives of F are onstant, so F is linear. So F is a homomorphism and therefore f is.We also want to know about kernels and images.
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Proposition 1.3. If f :T ! T 0 is a homomorphism then Im f is a subtorus of T 0 and Kerf is a losedsubgroup of T : the onneted omponent (Ker f)0 is a subtorus and is of �nite index in Ker f .Proof: With F as in the proof of (1.2), we have Im f = F (V )=�F (V ) \ �0�. Sine F (�) � �0, the disretesubgroup F (V ) \ �0 generates F (V ) as an R-vetor spae, so F (V ) \ �0 is a lattie in F (V ), so Im f is atorus. The kernel, on the other hand, onsists of the image in T of fv 2 V j F (v) 2 �0g = F�1(�0). Theomponent F�1(�0)0 is a C -vetor spae beause F is linear, so (Ker f)0 = F�1(�0)0=�F�1(�0)0 \ ��. ButF�1(�0)0\� is a disrete subgroup of F�1(�0)0 and it must have maximal rank beause (Ker f)0 is ompat.Sine Ker f is ompat it an have only �nitely many omponents, so (Ker f)0 is of �nite indexA partiularly interesting and important ase is when Im f = T 0 and (Ker f)0 is trivial, i.e. #Ker f <1.Suh an f is alled an isogeny. You get isogenies by taking the quotient of T by a �nite subgroup � � T :the only thing to be heked here is that T=� is a torus, but it is V=��1(�) and ��1(�) � � is disrete andtherefore a lattie.What takes a bit of getting used to is that isogeny is an equivalene relation.Proposition 1.4. Suppose f :T ! T 0 is an isogeny and #Ker f = n (n is alled the exponent of theisogeny). Then there is a unique isogeny g:T 0 ! T suh that gf = nT and fg = nT 0 , where nT :T ! T isthe map x 7! nx.Proof: Ker f � KernT , beause if x 2 Ker f then nx = 0 as #Kerf = n. So there is a unique mapg:T 0 ! T suh that gf = nT . This is just group theory: you de�ne g by its kernel, whih is KernT =Kerf .Obviously g is an isogeny: we have �xed it so as to have �nite kernel and it must be surjetive simply beausedimT 0 = dim T . Suppose y = x +Kerf 2 Kerg. Then ny = nx +Ker f = 0 + Ker f 2 T 0, so y 2 KernT 0 .So by the same as before there is an isogeny f 0:T ! T 0 suh that f 0g = nT 0 . Now f 0nT = f 0gf = nT 0f , butnT 0f(x) = nf(x) = f(nx) = fnT (x), so this shows that f 0nT = fnT . Sine nT is surjetive (we an divideby n in V and thus also in T ), we must have f = f 0.So it makes sense to talk about two omplex tori being isogenous, meaning there is an isogeny betweenthem, and this is an equivalene relation. It's nearly isomorphism for some purposes. Number theoristsusually �nd it just as good as isomorphism but it frequently wreks geometri strutures. This isn't all thatsurprising: we onstruted it by essentially group-theoreti methods and we are still at the level of omplextori where there isn't really any geometry. But it's not too bad an equivalene relation even for geometers{ a omplex torus isogenous to an abelian variety is again an abelian variety, for instane.We are now going to try to �nd an analogue of }, i.e. �nd some periodi funtions whose periods are �.It doesn't work to write down hopeful-looking in�nite sums: they all diverge. You have to do it, if at all,by getting at two funtions on V whih are not periodi but whih do have some regular behaviour relativeto �, and �x up periodi funtions by taking the quotient of one by the other. These not-quite-periodifuntions are examples of theta funtions, though beause we are still looking at omplex tori one at a timewe see them only as in a glass, darkly.Another way to look at theta funtions is to think of them as setions in some line bundle on T . Thisis how I want to introdue them, but to do that I'm going to have to introdue (holomorphi) line bundles.Some people may already be familiar with vetor bundles (of whih line bundles are a speial ase) fromdi�erential geometry, but I won't assume that. Let's have a digression.De�nition: Suppose X is a omplex manifold. A holomorphi line bundle on X is a manifold L togetherwith a surjetive holomorphi map �:L ! X suh thati) ��1(x) �= C for any x 2 X ;ii) there is an open over �U���2A of X suh that �:��1(U�) ! U� is the projetion of a produt, thatis, there is a biholomorphi map ��:��1(U�)! U� � C suh that pr1�� = �j��1(U�)iii) the transition funtions are well-behaved: if U� \ U� 6= ; then��� = ����1� : (U� \ U�)� C ! (U� \ U�)� Cis biholomorphi and if U� \ U� \ U 6= ; then ����� = �� where these make sense.In partiular, if x 2 U� \ U� then ��� j��1(x): C ! C is an element of GL(C ) = C � . So the idea is thatL isn't neessarily trivial but is loally trivial. 5



A setion in a line bundle is a map �:X ! L suh that �� = id. In other words, it's a twisted funtion.If L is, in fat, trivial, then � really is a global holomorphi funtion. There is always one setion, namelythe zero setion, but there need not be any more. The spae of setions (it's obviously a C -vetor spae) isdenoted �(L) or H0(L). In general it will be in�nite-dimensional but in many important ases it isn't. Inpartiular if X is ompat then dimH0(L) <1 for any line bundle L.If �0 and �1 are non-zero setions of L then �0=�1 is a meromorphi funtion. More generally, if�0; : : : ; �N 2 H0(L) are linearly independent then we get a map X ! PN by x 7! ��0(x) : : : : : �N (x)�, aslong as the �i don't all vanish at one. So if we want to embed X in some projetive spae a good plae tostart looking is at line bundles.A line bundle on X is said to be trivial if it is biholomorphi to C �X . If  :Y ! X is a holomorphimap of manifolds and L is a line bundle on X then there is a line bundle  �L on Y , given by a over~U� =  �1(U�) of Y .Proposition 1.5. Every line bundle on C g is trivial.Proof: (Optional: if you don't know what it means, ignore it for now.) The sequene0 �! Z�! Oe2�i( )�! O� �! 0gives a long exat sequene� � � �! H1(C g ;O) �! H1(C g ;O�) �! H2(C g ;Z)�! � � �and both H1(C g ;O) and H2(C g ;Z) are trivial.We an use this to desribe holomorphi line bundles on T = V=�. If we have a line bundle L on Tthen ��L is a line bundle on V = C g and thus trivial. So � ats, not just on V , but on V � C = ��L, insuh a way that (V � C )=� = L. The ation is given by�: (v; �) 7! �v + �; �f(�;v)�and the funtion v 7! f(�;v) is a holomorphi nowhere vanishing funtion on V . The ondition for this tode�ne an ation of � is f(�+ �;v) = f(�;v + �)f(�;v) (�)and a thing satisfying this relation is alled a 1-oyle (for �, with oeÆients in the nowhere vanishingfuntions on V ) or, in this partiular ase only, a fator of automorphy. Thus every line bundle on T isdetermined by a fator of automorphy. However, di�erent fators of automorphy may determine the sameline bundle. The reason is that if we pik a di�erent isomorphism ��L ! V � C our fator of automorphywill be twisted by an automorphism of V � C , i.e. by a nonvanishing holomorphi funtion h:V �! C � . Infat the hange to f(�;v) is that it is multiplied by a oboundary, namely h(�+ v)h(v)�1.Again we want to get bak to linear algebra. Sine I do not want to teah you group ohomology eitherI shall produe a map out of thin air: we an write f : �� V ! C � asf(�;v) = expf2�ig(�;v)gwhere g:�� V ! C is holomorphi in v, and we putÆf(�; �) = g(�;v + �) + g(�+ �;v)� g(�;v)for �, � 2 �, v 2 V . This makes sense (that is, Æf(�; �) does not depend on v) and in fat Æf : �2 ! Z,beause (�) gives g(�+ �;v) + g(�;v) � g(�;v + �) � 0 mod 1:Æf is an example of a 2-oyle: a map F : �2 ! Z is alled a 2-oyle if�F (�; �; �) = F (�; �)� F (�+ �; �) + F (�; �+ �)� F (�; �) = 0for all �, �, � 2 �. If F is a oyle we de�ne �F (�; �) = F (�; �)� F (�; �).6



Proposition 1.6. �F : �2 ! Z is an integer-valued alternating bilinear form.Proof: �F (�+ �; �)� �F (�; �) � �F (�; �) = �F (�; �; �)� �F (�; �; �)� �F (�; �; �)= 0:In partiular a fator of automorphy gives rise to an integral alternating bilinear form E = �Æf on �,so a line bundle on T does likewise. This form is atually 1(L), or to be preise the image of 1(L) underan isomorphism H2(T;Z) ��!Alt2(�;Z). There are lots of things that we ought to do, suh as hek thatdi�erent fators of automorphy for the same L do give the same value of 1(L).Note that E(�; �) = �Æf(�; �) is given byE(�; �) = g(�;v + �) + g(�;v) � g(�;v + �)� g(�;v):In fat this form, after being extended R-linearly to V , satis�es E(ix; iy) = E(x;y) (by a type argumentwhih I won't do) and is thus the imaginary part of a Hermitian form H .We summarise the above (whih we haven't really proved) as follows.Theorem 1.7. Every line bundle on T is determined by a fator of automorphy f . There is a well-de�nedmap 1 from PiT (the set of line bundles on T ) to Alt2(�;Z) given by1(L)(�; �) = g(�; �) + g(�; 0)� g(�; �)� g(�; 0)where g = 12�i log fL: � � V ! C . The image of 1, alled the N�eron-Severi group NS(T ), is the set ofimaginary parts of Hermitian forms whose imaginary part is integral on �.PiT is in fat a group, but we don't know that yet. But in fat it's easy to see: we just de�ne theprodut L1L2 to be the bundle given by the fator of automorphy fL1fL2 , so that L�1 orresponds to f�1L .It is not hard to see that it is equivalent to take L1L2 = L1 
 L2 (whih suggests how to make PiX agroup for general X , where the theory of fators of automorphy fails). The existene of L�1 is the reasonwhy line bundles are sometimes alled invertible sheaves. Sine the group PiX is abelian it is sometimeswritten additively, but usually not if one is atually thinking of its elements as being line bundles (we shallsee another way of thinking of them later). Still, this does serve to remind us that O, the trivial line bundle,orresponding to (untwisted) funtions, is the identity element.In order fully to desribe line bundles on T in terms of linear algebra we need to understand the kernelof 1, whih is alled Pi0(T ).De�nition: A semiharater for H 2 NS(T ) (think of H as a Hermitian form) is a map �: � ! U(1) (U(1)is the irle group) suh that �(�+ �) = �(�)�(�) expfi� ImH(�; �)gso that if H = 0 then � is a harater.Let P(�) be the set of all pairs (H;�) with H 2 NS(T ) and � a semiharater for H . P(�) beomes agroup if we de�ne (H1; �1)(H2; �2) = (H1 +H2; �1�2), sine �1�2 is a semiharater for H1 +H2.The following theorem is one of the things that is alled the Appel-Humbert Theorem (Mumford usesthe term for a slightly di�erent result).Theorem 1.8. There are maps L giving a ommutative diagram with exat rows1 �! Hom ��; U(1)� ��! P(�) pr�! NS(T ) �! 0L # o L # o k0 �! Pi0(T ) �! Pi(T ) 1�! NS(T ) �! 0Proof: The top row is exat by de�nition of � and pr: (H;�) 7! H . The bottom row is exat by the de�nitionsof NS and Pi0. We need to de�ne L:P(�) ! Pi(T ), show that the diagram ommutes and hek thatL: Hom ��; U(1)�! Pi0(T ) is iso. 7



If D = (H;�) 2 P(�), de�ne a fator of automorphy byaD(�;v) = �(�) expf�H(v; �) + �2H(�; �)gso aD: �� V ! C � . Then aD is a oyle, sineaD(�+ �;v) = �(�+ �) exp��H(v; � + �) + �2H(�+ �; �+ �)	= �(�)�(�) exp ��H(v; �) + �H(v; �) + �2H(�; �) + �2H(�; �) + �2H(�; �) + �2H(�; �)	= �(�)�(�) exp ��H(v; �) + �2H(�; �) + �H(v; �) + �2H(�; �) + �ReH(�; �)	= �(�) exp��H(v + �; �) + �2H(�; �) � i� ImH(�; �)	�(�) exp��H(v; �) + �2H(�; �)	= �(�) exp��H(v + �; �) + �2H(�; �)	�(�) exp��H(v; �) + �2H(�; �)	= aD(v + �; �)aD(v; �):From this we get a line bundle L = L(D) = L(H;�) given by (V � C )=�, where � ats by�: (v; �) 7�! �v + �; aD(v; �)��:Obviously D 7! aD is a homomorphism.The right-hand square ommutes if 1�L(D)� = pr(D), that is, if 1�L(H;�)� = H . To hek this, put�(�) = exp�2�i (�)	, so that aD = exp�2�igD(�;v)	where gD(�;v) =  (�)� i2H(v; �) � i4H(�; �):Then Im 1�L(D)� = gD(�; �) + gD(�; 0)� gD(�; �)� g(�; 0)= 12i�H(�; �)�H(�; �)�= ImHand sine a Hermitian form is determined by its imaginary part it follows that 1�L(D)� = H . This alsoimplies that L maps Hom ��; U(1)� into Pi0(T ) and the left-hand square ommutes automatially.It remains to hek that L: Hom ��; U(1)� ! Pi0(T ) is an isomorphism. We need to reall somethingmentioned briey earlier: two fators of automorphy de�ne the same line bundle if they di�er by omingfrom di�erent trivialisations on V �C , i.e. by a nonvanishing funtion on V . More preisely, f1 and f2 de�nethe same bundle if there is a holomorphi funtion F :V ! C � suh that f2(�;v) = f1(�;v)F (v)F (v+�)�1 .I want to show that L: Hom ��; U(1)� ! Pi0(T ) is surjetive, that is, that I an get any line bundlewhose Chern lass (1) is zero from a homomorphism �! U(1). Suppose L 2 Pi0(T ) and f is a fator ofautomorphy de�ning L. Take g = 12�i log f as usual. I laim that f might as well be independent of v 2 V ,beause I an �nd f0:V ! C � suh that f1(�;v)f0(v)f0(v+ �)�1 is independent of v. We have the oyleondition g(�+ �;v) = g(�;v + �) + g(�;v)and the ondition that 1 = 0 g(�; �)� g(�;v)� g(�; �) + g(�; �) = 08



both holding for all �, � and �. Take h(v) = �g(0;v). Theng(�;v) � h(�+ v) + h(v) = g(�;v) + g(0�+ v) � g(0;v)= g(�;v) � g(0;v) as g(0; �+ v) = 0 by oyle ondition= g(0; �)� g(�; 0) by 1 = 0 onditionand this is independent of v, so we an take F (v) = exp�2�ih(v)	.If f is independent of v then the oyle ondition says f : � ! C � is a homomorphism, so arg f : � !U(1) is a harater. Moreover, arg f and f de�ne the same line bundle, beause, sine f is a homomorphism,log jf j: �! R is an additive homomorphism, i.e. an R-linear map. So if we extend it to a funtion `:V ! Rby RR-linearity, we an also de�ne ^̀:V ! C by ^̀(v) = `(iv) + i`(v) and then take F = expfi^̀g, making fand arg f ohomologous. This proves that L is surjetive.Finally, we must show that L is injetive on Hom ��; U(1)�. Suppose � 2 Hom ��; U(1)� and L(0; �) istrivial, i.e. L(0; �) = L(0; 1). Then there is an F :V ! C � suh that �(�) = F (v + �)F (v)�1 for all � 2 �,v 2 V . As j�(�)j = 1 this implies that jF (v + �)j = jF (v)j and hene that F is bounded. So F must beonstant, and � = 1.Corollary 1.9. Any line bundle L = L(H;�) has a anonial fator of automorphy aL, whih is the aDourring above.Summary. We have introdued the following general objets:� Line bundles� The Piard group PiX = f line bundles on Xg with multipliation given by 
.and in the speial ase of omplex tori we have also introdued� The �rst Chern lass 1(L) of a line bundle L� The N�eron-Severi group NS(X) = f1(L) j L 2 PiXg� Pi0(X) = Ker 1:I have not said, and we do not need to know, what these are in general. But they do exist in general.We have also introdued� Fators of automorphy� Semiharaters and Hermitian forms integral on �as ways of desribing PiX . If X isn't a omplex torus then PiX doesn't have suh a nie desription.Sine our de�nitions of 1, NS and Pi0 used these desriptions we have de�ned them only for omplex tori.Twie I have asserted things without proof:� All line bundles on C g are trivial� The alternating form E is the imaginary part of some Hermitian form HOur original motivation for introduing line bundles was to get embeddings of abelian varieties, i.e.omplex tori in projetive spae. So we want to get at setion of line bundles: the idea is that these willserve as oordinate funtions on the omplex torus T . There is another reason why line bundles are good:one you've got varieties you an go from line bundles to divisors (formal sums of odimension 1 subvarieties)and bak, thus getting a muh more geometri desription of what is going on.If L is a line bundle on some ompat omplex manifold X and �0; : : : ; �N are a basis for H0(L) (whihwe assume to be �nite dimensional { atually it always is) then we an de�ne a map�L:X �! PNby �L(x) = ��0(x) : : : : : �N (x)�, as long as the �i don't all vanish at one. We say that L is very ample if�L is an embedding, that is �L(X) �= X . We say that L is ample if L
k is very ample for some k > 0. Youshould think of a very ample line bundle as speifying what a hyperplane setion will be.We are going to identify the ample line bundles on T : in partiular we are going to �nd out whenthere are any, i.e. when T is an abelian variety. In the proess we shall �nd out that H0(L) is always�nite-dimensional on a omplex torus, though in fat this is true for any ompat omplex spae. Reallthat if L has a fator of automorphy fL then L
k is given by the fator of automorphy fkL: equivalently ifL = L(H;�) then L
k = L(kH; �k). 9



De�nition: If f is a fator of automorphy, a theta funtion for f is a holomorphi funtion �:V ! C suhthat �(v + �) = f(�;v)�(v)Clearly, if f de�nes L then � gives a setion of L and every setion of L omes from a theta funtion.A anonial theta funtion for L = L(H;�) is a theta funtion for the anonial fator of automorphy for L,f(�;v) = �(�) exp��H(v; �) + �2H(�; �)	:Lemma 1.10. Suppose H is degenerate. Then L = L(H;�) is not ample.Proof: Put N = KerLH = �v 2 V j H(v;w) = 0 for all w 2 V 	. If E = ImH then H(v;w) =E(iv;w) + iE(v;w) so v 2 N if and only if E(v;w) = 0 for all w 2 V . So N is a omplex subspae of Vand N \ � is a lattie in N , sine E is integral on �. If � is a anonial theta funtion then for any v 2 V�(v + �) = �(�)�(v) if � 2 N \ �:Thus j�(v +w)j is a periodi funtion of w 2 N and hene onstant: that is to say, �(v) depends only onthe oset v +N . (So �(v + �) = �(v) if � 2 N \ �, so �(�) = 1 if � 2 N \ �: this means that atually wemight as well work with a nondegenerate H on V=N and �=(N \�)). In partiular, L annot be very ampleas �i(x) = �i(x + y) if y 2 x+N=(N \ �), so the �i don't separate points. Sine N is the same for L
k asfor L it follows that L is not ample.Lemma 1.11. Suppose H(w;v) < 0 for some w. Then h0(L) = 0: in partiular L is not very ample oreven ample.Proof: We an write w = z+ � for some � with z 2 K, K ompat. Then�(v +w) = �(v + z+ �)= �(v + z) �(�) exp��H(v + z; �) + �2H(�; �)	= �(v + z) exp��ReH(v + z; �) + �2H(�; �)	:ButReH(v + z; �) + 12H(�; �) = ReH(v + z;w � z) + 12H(w � z;w � z)= ReH(v + z;w) �ReH(v + z; z) + 12H(w;w) + 12H(z; z) �ReH(w; z)= ReH(v;w) + 12H(w;w) + a funtion of z and vso for �xed v we have a linear term in w + a negative quadrati term in w + something bounded, and thistends to �1 as w!1. So �(v +w)! 0 as w!1, and so � � 0. Thus h0(L) = 0.Corollary 1.12. If L = L(H;�) is ample then H is positive de�nite.To get at the onverse to this (and more) we need a supply of setions.
10



Theorem 1.13. Suppose H is positive de�nite and write E as a matrix relative to a Z-basis of �. ThendimH0�L(H;�)� = pdetE:Proof: the idea is to use a slightly di�erent fator of automorphy and hene slightly di�erent theta funtions{ lassial theta funtions { whih are atually periodi with respet to about half of �. This enables usto write down Fourier expansions for the theta funtions and then see how many oeÆients we an hoosebefore the behaviour with respet to the rest of � �xes everything else.I an ertainly hoose a basis of � suh that E has matrix � 0 D�D 0 �. Let �1 and �2 be the Z-spansof the �rst and seond g elements and let V1 and V2 be the R-spans. Thus Ej�2��2 = 0 and Vj \ � = �j .Certainly V2\ iV2 = 0 beause H = 0 there and H is nondegenerate, so �2
 C = V . The restrition of H toV2 is real symmetri (beause E = 0 there), so there is a unique omplex symmetri extension B of H jV2�V2to the whole of V .Put ��(v) = exp��2B(v;v)	�(v), so that��(v + �) = �(�) expn��H �B�(v; �) + �2 �H �B�(�; �)o��(v)= f�(�;v)��(v):Sine f�(�;v) = f(�;v) exp ��2B(v;v)	 exp��2B(v + �;v + �)	�1, we see that f� is also a fator of au-tomorphy for L and �� is a theta funtion for it: these are the lassial fator and theta funtions. Itisn't quite true that �� is periodi for �2, but very nearly: the map �: �2 ! U(1) is a homomorphism so�(�) = expf2�il(�)g with l: �2 ! R being Z-linear. Extend l to a C -linear map l:V ! C (reall that�2 
 C = V ) and onsider ��(v) = expf�2�il(v)g��(v):Then ��(v + �) = ��(v) for all � 2 �2, beause �H �B�(�; �) = 0 for � 2 �2.By Fourier analysis, with ��2 = Hom(�2;Z)� Hom(V; C )��(v) = Xm2��2 am exp�2�im(v)	so ��(v) = Xm2��2 am exp�2�i�m(v) + l(v)�	:What onditions do the am satisfy? We need to look at ��(v + �) for � 2 �.��(v + �) = �(�) expn��H �B�(v; �) + �2 �H �B�(�; �)o��(v)= �(�) exp�2�i�̂(v) + �i�̂(�)	��(v)where �̂(�) = E(�; �) if � 2 �2 and �̂ is the C -linear extension of E(�; �) to �2 
 C = V . This is beause�H �B�(�; �) = H(�; �)�B(�; �) = �2i ImH(�; �) = 2iE(�; �) if � 2 � and � 2 �2.Comparing oeÆients in the Fourier series givesam = �(�) exp��i�̂(�)� 2�i�m(�)� l(�)�	am��̂:So we only need to know am for one m in eah oset of the image in ��2 of �: all this image �̂. There is alittle well-de�nedness to be heked here, for instane that Ker(� 7! �̂) � �2, so that if �̂1 = �̂2 we get thesame equation for both am��̂1 and am��̂2 , but subjet to that we have proved thath0(L) � k��2 : �̂k:In fat h0(L) = k��2 : �̂k. To show this is a matter of showing that the Fourier series onverges if theam satisfy the right equation. It is enough to do so for m 2 �̂ +m0 for eah m0, as that splits the seriesinto �nitely many onvergent bits. But kam��̂k � exp� Im ��̂(�)�	 and if � 2 �2 (whih it might as wellbe as we are only onerned with �̂) then Im ��̂(�)� = �H(�; �), so �̂ 7! Im ��̂(�)� is a negative de�nitequadrati form on �̂.Finally, k��2 : �̂k is the index of the sublattie of �2 spanned by the rows of D, whih is detD, and thisis equal to the PfaÆan pdetE. 11



Theorem 1.14. (Lefshetz) Suppose H is positive de�nite. Then L(H;�) is ample: in fat L(H;�)
3 isvery ample.Proof: We need to show that L
3 de�nes an embedding. That means three things:i) It de�nes a map: for any x 2 T there is a � 2 H0(L
3) suh that �(x) 6= 0.ii) The map �L
3 separates points: for all x, y 2 T we have �L
3(x) 6= �L
3(y).iii) The map �L
3 separates tangent diretions: d�L
3 is injetive at x.It is (ii) that is diÆult: the idea is that if �L
3 fails to separate points then all the setions atuallyome from some quotient torus, but there aren't enough suh setions.Suppose � is a anonial theta funtion for L = L(H;�). If a, b 2 V then we an get a theta funtionfor L(3H;�3) = L
3 = L3 by onsidering�̂(v) = �(v � a)�(v � b)�(v + a+ b)sine �̂(v + �) = �̂(v)�(�)3 exp��H(v � a; �) + �H(v � b; �) + �H(v + a+ b) + 3�2 H(�; �)	= �̂(v)�(�)3 exp�3�H(v; �) + 3�2 H(�; �)	:So if we hoose a nontrivial theta funtion � for L(H�), whih we an do if H > 0, and a point v0 2 V , thenwe an ertainly �nd a, b 2 V suh that �(v0 � a), �(v0 � b) and �(v0 + a+ b) are all nonzero. Then �̂(v)is a theta funtion for L3 suh that �(v0) 6= 0, and it gives a setion � 2 H0(L3) with �(� + v0) 6= 0. Thisproves (i).Now for (ii). Suppose �L3 :T ! PN , given by �L3(x) = ��0(x) : : : : : �N (x)� where �0; : : : ; �N is a basisfor H0(L3), is not injetive. Then there exist v1, v2 2 V suh that u = v1 � v2 62 � and there is a onstant� 2 C � suh that  (v2) = � (v1) for every theta funtion  for L3. In partiular this means that if a,b 2 V and � is a theta funtion for L then �̂(v2) = ��̂(v1), i.e.�(v1 � a)�(v1 � v)�(v1 + a+ b) = ��(v2 � a)�(v2 � v)�(v2 + a+ b):So, taking logarithmi di�erentials� ��a log �(v1 � a) + ��a log �(v1 + a+ b) = � ��a log �(v2 � a) + ��a log �(v1 + a+ b)and, writing ! for the meromorphi di�erential d�=�,�!(v1 � a) + !(v1 + a+ b) = �!(v2 � a) + !(v1 + a+ b)so that �(v) = !(v2 � v)� !(v1 � v) is independent of v.Therefore � = d`(v), where `:V ! C is linear. But� = d log �(v2 + v)�(v1 + v)so �(v2 + v) = �0e`(v)�(v1 + v), and so �(u + v) = �00e`(v)�(v). Using the fundamental equation for � weobtain e�H(u;�) = e`(�) for all � 2 �:So �H(u; �) � `(�) 2 2�iZ and in partiular it is imaginary. Therefore �H(�;u) � `(�) is imaginary (as�h(�;u)� �H(u�) 2 R) for all � 2 �. I laim that in fat �H(�;u)� `(�) = 0 for any � 2 �. Suppose not.Then � 6= 0 and we an �nd �0 2 � suh that �0 = k� for some k 62 R. Then�H(�0;u)� `(�0) = �H(k�;u) � `(k�)= k��H(�;u) � `()�� 62 iR:12



If �H(�;u)� `(�) = 0 for all � 2 � then2�iZ3 �H(u; �) � `(�)= �H(�;u)� `(�) + �H(u; �) � �H(�;u)= 0 + 2�i ImH(u; �)= 2�iE(u; �)so E(u; �) 2 Z for all � 2 �. Consider �? = fv 2 V j E(v; �) 2 Z 8� 2 �g. It is a disrete subgroup of Vand it ontains � (neessarily as a subgroup of �nite index), so it is a lattie in V . Put �0 = �+Zu� �?:learly �0 is also a lattie, and �0 �6 ��. However�(u+ v) = �00e`(v)�(v)= �000e�H(v;u)+�2H(u;u)�(v)where �000 = �00e��2 H(u;u), sine if �H(�;u) = `(�) then �H(v;u) = `(v), by R-linearity. Now if we put�0(u) = �000 then �0 2 Hom ��0; U(1)�, and we have shown that � is atually a theta funtion for L(H;�0) onthe torus T 0 = V=�0. But the dimension of the spae of suh theta funtions is det�0 E, whih is stritly lessthat det�E whih is the dimension of the spae of all theta funtions: so this annot be true for all thetafuntions, ontraditing our assumption.Finally, for (iii), suppose v0 2 V and that there is a non-trivial tangent vetorgXi=1 �i ��zi jv0 2 TV;v0 = TT;�v0that is mapped to zero by �L. Then there is an �0 2 C suh that for all theta funtions  for L(3H;�3) = L
3�0 (v0) = gXi=1 �i � �zi (v0);that is, � gXi=1 �i ��zi�(log )(v0) = 0(remember log :T ! L
3). Take a;b 2 V and � a theta funtion for L: put  = �̂ and t(v) =Pgi=1 �i ��zi (log �̂)(v). Then t(v0 � a) + t(v0 � b) + t(v0 + a+ b) = �0so t is linear in v. Thus �(v + u) = e0u2+t(u)�(v)for all  2 C and some u 2 V , 0 2 C . So u 2 �? for all  2 C , but this is impossible beause �? isdisrete.Let us take another look at the view. We started out with omplex tori and we have got as far asdetermining whih ones are in fat abelian varieties: we were able to embed T = V=� in PN if we ould �nda positive de�nite Hermitian form H on V suh that the imaginary part E takes integer values on �. Thisis an arithmeti ondition, and a highly nontrivial one: most latties will not satisfy it.We get the embedding by taking a line bundle onstruted out of H and some extra data � and lookingat setions. We desribe line bundles by means of fators of automorphy, i.e. by speifying an ation of �on V � C , and we desribe setions by means of theta funtions, i.e. �-invariant funtions on V .In two plaes I have asserted things without proof:a) V � C is the only line bundle on V = C g , so we haven't missed anything;b) the form E = 1(L) that you get from a line bundle L via a fator of automorphy in in fat ImH .13



Atually, I haven't really used (a) yet. All the onstrutions { fator of automorphy, 1, theta funtions,ampleness { have been made for bundles oming from V � C , and it is oneivable that there are morebundles on V and hene on T that I haven't told you about. But in fat that is not the ase. Moreover{ and this I haven't said, though it's not hard { there aren't any other ways of embedding T in PN apartfrom using a line bundle: given any smooth ompat omplex manifold X � PN I an �nd a line bundlealled OX(1) whih determines the embedding. So the only tori that embed in PN are the ones for whih apositive de�nite H is available.This fat is a speial ase of something muh more general whih I'm going to want anyway: theorrespondene between line bundles and divisors, mentioned in passing earlier. It provides an interpretationof line bundles (not just very ample ones) in geometri terms.A divisor D is a sum of odimension 1 subvarieties with multipliity. We an get a divisor D from a linebundle L by taking � to be a meromorphi setion of L and then taking D to be (�) =(zeros of �)�(polesof �). Suppose I have two di�erent meromorphi setions of L, �1 and �2: then f = �1=�2 is a globalmeromorphi funtion so (f) = (�1)� (�2). We say the two divisors (�1) and (�2) are linearly equivalent ifthis happens.To go from D bak to L, de�ne D loally as being given by (f� = 0) on an open set U� and take astransition funtions f�=f� on U� \ U�. In partiular if D = (f) then L is trivial, as then f� � f� � f . Callthe bundle onstruted in this way O(D). If D > 0 then f� is holomorphi.If X is a urve and D is a divisor on X then D = PaiPi, where Pi 2 X are points and the a1 arethe multipliities. The degree degD is de�ned to be P ai: note that degD = 0 is not at all the same assaying that D is trivial. For instane the divisor P � Q, where P and Q are distint points on an elliptiurve, has degree zero but is not trivial as then f would give a one-to-one map from a torus to the sphere.The olletion of all degree zero divisors is alled Pi 0(X): it turns out to be an abelian variety alled theJaobian Ja(X).2 Curves and JaobiansFrom now on we are going to be using abelian varieties and algebrai varieties in general, and the �rst thingwe do is give, rather more preisely than before, the orrespondene between line bundles and divisors.Let X be a smooth (this is important) projetive variety. There is a general priniple, known asGAGA (\g�eom�etrie alg�ebrique et g�eom�etrie analytique") to the e�et that on projetive varieties over Cholomorphi=algebrai and meromorphi=rational, and I intend to be areless about the distintions.De�nition: A divisor on X is a �nite formal sum P aiDi of irreduible odimension 1 subvarieties withmultipliities ai 2 Z.The group DivX of all divisors is just the free abelian subgroup on the set of irreduible odimension 1subvarieties. A divisor D is said to be e�etive if ai � 0 for all i. Beause X is smooth a prime divisorD0 { that is, an irreduible subvariety of odimension 1 { is neessarily given loally by the vanishing ofsome funtion, so if D is a divisor there are an open over fU�g of X and rational funtions f� on U� suhthat ordDi f� = ai: thus DjU� = (f�). The line bundle orresponding to D is O(D) and is given by thetransition funtions ��� = f�=f�. Conversely if L is a line bundle with a rational setion � (and at least ifX is projetive any L has a rational setion), then L 7! (�) inverts this.De�nition: Two divisors D1 and D2 are linearly equivalent (denoted D1 � D2) if D1 �D2 = (f) for somerational funtion f on X .Lemma 2.1. There is a one-to-one orrespondene between linear equivalene lasses of divisors and linebundles, on smooth projetive varieties.Proof: Two linearly equivalent divisors give the same bundle sine f�f=f�f = f�=f�. If �1, �2 are rationalsetions then �1=�2 = f is a rational funtion so (�1)� (�2) = (f).
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Lemma 2.2. Div(X)= � is an additive group and PiX ! Div(X)= � is an isomorphism.Proof: If D1, D2 � 0 then D1�D2 � 0 as it is the divisor of f1=f2, so [D1+D2℄ and [�D1℄ are well-de�nedand Div(X)= � is a group.If L1, L2 2 PiX have transition funtions �1�� , �2�� , then the bundle with transition funtions�1�� (�2��)�1 is L1L�12 , so DivX ! PiX is a group homomorphism. Conversely, if �i are rational se-tions of Li, then �1��12 is a rational setion of L1L�12 , so PiX ! DivX is also a group homomorphism.ClearlyD is e�etive if and only if the f that de�nes it is atually a setion, not just a rational setion, inL. Two elements �1 and �2 of H0�O(D)� de�ne the same divisor if and only if �1 = k�2 for some onstant k.Hene if we denote by jDj the set of e�etive divisors linearly equivalent to D, we have jDj = PH0�O(D)�,so dim jDj = h0�O(d)� � 1.Now suppose that X = C is a urve, so that a prime divisor is just a point. We de�ne the degree of adivisor D by degX aiDi =X aiso degD 2 Z. Sine a rational funtion has as many zeros as poles, the degree is atually de�ned on PiC.We an introdue Pi 0X = Kerdeg = fL j degL = 0g. This is of interest two us for two reasons, bothsurprising. It's an abelian variety, and it ontains all the information about the urve C.Let C be a urve. There are various ways of thinking of the genus g(C). You an think of it as beingthe number of handles that C has, or the number of independent di�erential forms. For now, I'm goingto assume that these are the same. So we have 2g paths 1; : : : ; 2g starting from some base point P0 andreturning there, whih generate the fundamental group of C, and g 1-forms !1; : : : ; !g. We put�ji = Zi !jand look at the orresponding matrix � = (�ji). Note that Stokes' Theorem tells us that R0i !j = Ri !j ifi and 0i determine the same homotopy lass. Please believe, for the moment, that � =P�iZ, the integerspan of the olumns of �, is indeed a lattie.De�nition: The quotient C g=� is alled the Jaobian, J(C) or Ja(C).In fat J(C) is an abelian variety and has a natural polarisation.Now let me beg a few questions. When talking about abelian varieties I feel a duty (not alwaysperformed) to justify my assertions, but when talking about urves I am willing to impose a ertain amountof dogma.Let C be an algebrai urve of genus g � 1. There is a \very basi but nonelementary" (to quote astandard book on urves, the one by Arbarello, Cornalba, GriÆths and Harris) fat, that the number of1-forms (that is, H0(KC), where KC is the otangent bundle) is equal to the topologial genus g.I also need to be able to use De Rham ohomology. All I need of it is H1DR, though the fat above maybe interpreted as De Rham's theorem for H2. We de�neH1DR(X) = fClosed di�erential 1-formsg=fExat formsgBy a di�erential 1-form we mean something whih is loally of the form� =X(fidxi + gidyi)with fi and gi omplex-valued C1 funtions. If I prefer, I an write it as� =X(�idzi +  id�zi)instead. The De Rham theorem says that H1DR(X) �= H1(X ; C ) or, to be more preise, that H1DR(X ;R) �=H1(X ;R). A similar statement holds for di�erential q-forms and Hq for any q, but to prove the ase q = 1you need only the Poinar�e Lemma (every losed form on Rn is exat) and a belief in �Ceh ohomology.The Hodge deomposition says (for urves) that H1DR(C) = H0(KC) � H0(KC); that is, that I analways hoose � and  in � = �dz =  d�z to be holomorphi and antiholomorphi respetively, withouthanging the ohomology lass of �. This is a very speial ase of something far more general.One other thing you will have to believe is that wedge produt of forms agrees with intersetion: I willexplain this when I need it. 15



Theorem 2.3. The matrix � 2Mg�2g(C ) given by� = 0B�R1 !1 : : : R2g !1... . . . ...R1 !g : : : R2g !g1CAis the period matrix of a omplex torus.Proof: Note �rst of all that R ! is well-de�ned for  2 H1(C;Z) by Stokes' Theorem, so the assertion makessense. We need to show that the matrix ����� is nonsingular. Suppose that x����� = 0: thengXj=1 � Zi(xj!j + yj �!j)� = 0(where x = (x1; : : : ; xg ; y1; : : : ; yg) 2 C 2g ), and thereforeZi � gXj=1(xj!j + yj �!j)� = 0for all i. The isomorphism H1DR(X) �! H1(X ; C ) = �H1(X ;Z)
 C ��is given by � 7�!(X i 
 i 7�!X i Zi �):It is lear that this is at least plausible in that if � is exat it returns zero, so we have given a well-de�nedmap from H1DR to H1. Moreover, if we believe De Rham's theorem, if Ri �Pgj=1(xj!j + yj �!j)� = 0 thenPgj=1(xj!j + yj �!j) = 0 also. But f!jg and f�!jg between them span H0(KC)�H0(KC) �= H1DR(C), so thisimplies x = 0.Now I want to hek that J(C) is in fat an abelian variety, i.e. that there exists a positive de�niteHermitian form H on V = C g taking integer values on �.Let us now deide whih basis of H1(C;Z) we are talking about. We want the one shown in Figure ***,so that the intersetion number ij (stritly speaking, the dual of the up produt of the Poinar�e duals)is given by the matrix � 0 �11 0�.De�ne an alternating R-bilinear form E on H0(KC)� by hoosing as R-basis for V = H0(KC)� the setf�i = (! 7! Ri !)g and delaring E to have matrix � 0 �11 0� with respet to this basis. Then de�ne H onH0(KC)� by H(u;v) = E(iu;v) + iE(u;v). Clearly this determines a (not obviously Hermitian) form thattakes integer values on �, beause (Ri !1; : : : ; Ri !g) is just �i expressed in terms of the basis !1; : : : !g forH0(KC).We need to hek that H is hermitian and positive de�nite.Theorem 2.4. Suppose � 2Mg�2g(C ) is a period matrix for some omplex torus X . Then X is an abelianvariety if and only if the Riemann relations�A�1>� = 0; i�A�1>bar� > 0are satis�ed for some nondegenerate integral skew-symmetri matrix A.This follows at one from the two lemmas below. Take the basis �1; : : : �2g for � obtained from � (thatis, think of � as being spanned by the olumns of �) and let E be the alternating form whose matrix withrespet to f�ig is A. Put H(u;v) = E(iu;v) + iE(u;v).16



Lemma 2.5. H is hermitian if and only if �A�1>� = 0.Proof: H is hermitian if and only if E(iu; iv) = E(u;v) for all u;v 2 V . Put P = ����� and S =� i1 00 �i1�, and let I = P�1SP . Thus i� = �I and �i�� = ��I . The statement that the matrix of E withrespet to f�ig is A means that E(�x;�y) = >xAyfor all x;y 2 V , so if H is hermitian exatly when>xAy = E(�x;�y)= E(i�x; i�y)= E(�Ix;�Iy)= >x>IAIy;that is, when A = >x>IAIy. Hene A = >PS>(P�1)AP�1SPwhih simpli�es to (PA�1>P )�1 = S(PA�1>P )�1S:This says �����A�1>����� = � i1 00 �i1������A�1>������ i1 00 �i1�and hene �A�1>� = ��A�1>�as required.Lemma 2.6. H is positive de�nite if and only if i�A�1>�� is positive de�nite.Proof: In fat the matrix of H is 2i��A�1>�. To see this, put u = �x, v = �y and alulate E(iu;v) andE(u;v), thus: E(iu;v) = E(i�x;�y)= E(�Ix;�y)= >x>IAy=t op�u�u�>P�1>IAP�1�v�v�=t op�u�u�>P�1>P>S>P�1AP�1�v�v�=t op�u�u�S(PA�1>P )�1�v�v�=t op�u�u�� 0 i(��A�1>�)�1�i(�A�1>��) 0 ��v�v�=t opui(��A�1�)�1�v � >�ui(��A�1>��)vsine �A�1>� = 0; and similarly for E(u;v).Now we want to apply the Riemann relations to the Jaobian, in order to show that the Jaobian isindeed an abelian variety.
17



Theorem 2.7. Ja(C) is an abelian variety with a prinipal polarisation de�ned by E.Proof: We need �� 0 �11 0�>� = 0and i�� 0 �11 0� �� > 0:The �rst of these is straightforward:2gXj;k=1�ijEjk�lk = 2gXj;k=1 Zj !iEjk Zk !l= gXj=1 Zj !i Zj+g !l + 2gXj=g+1� Zj !i Zj�g !l= 0:The other needs a fat. As beforep�1�ijEjk ��lk = p�1 2gXj;k=1 Zj !i!�Zk �!l�Ejk :Let �1; : : : ; �2g be the basis of H1DR(C) dual to nRjo: that is, Rj �i = Æij . Then !i =P2gj=1 �Rj !i� �j (justalulating the oordinates). Beause up produts in H1DR(C) are given by ^ and agree with intersetionnumbers ZC �i ^ �j = i � j = Eij ;so p�1�ijEjk ��lk = p�1 2gXj;k=1 Zj !i!�Zk �!l�ZC �j ^ �k= p�1ZC !i ^ �!land in partiular !p�1�E>���! = i RC ! ^ �!, whih is positive as it is the volume of C with respet to thepositive real 2-form i! ^ �!.Now we ome to something interesting and important: the Abel-Jaobi map. This is one of the mostfundamental tools in the theory of urves (and it has important generalisations to higher-dimensional varietiesas well).Suppose D is a divisor of degree 0 on a urve C (we write D 2 Div0(C)): this means that D =P1 + � � � + Pk � Q1 � � � � � Qk, where Pi and Qk are (not neessarily distint) points of C. De�ne theAbel-Jaobi map �: Div0(C) �! Ja(C)by �:D �!  kXi=1 Z QiPi !1; : : : ; kXi=1 Z QiPi !g! :Lemma 2.8. The map � is well-de�ned: that is, it does not depend on the representation of D.Proof: The representation of D is non-unique in two ways: we ould add and subtrat a point P (thus0 = P �P ) and we ould re-order the Pi and Qj . Also, R QiPi ! is not well-de�ned beause we have to speify18



a path from Pi to Qi. Let us deal with the last diÆulty �rst: if gammai and 0i are two paths from Pi toQi then Xi Zi !j �Xi Z0i !j =Xi Zi�0i !j 2 �so the two integrals de�ne the same point of Ja(C). Similarly, any path  from P to P simply gives anextra term R !j whih is in �, so adding and subtrating a point P makes no di�erene either. FinallyZ Q1P1 !j + Z Q2P2 !j � Z Q2P1 !j � Z Q1P2 !j = Z Q1P1 !j + Z P2Q1 !j + Z Q2P2 !j + Z P1Q2 !j= Z P1P1 !j 2 �and we are done.So that was easy. However, muh more is true. Abel's theorem states that the kernel of � is preisely theset of linearly trivial divisors, in other words, that � indues a map �: Pi0(C)! Ja(C), whih is injetive.And the Jaobi inversion theorem says that this � is also surjetive.Before proving either of these statements I'd like to think about what they mean. One way of lookingat it is to say that we have lassi�ed all line bundles of degree zero, and hene all line bundles, on C. Notethat there is also a map �(d): Pid(C) = fline bundles of degree dg ! Ja(C), whih is also an isomorphism,though not so natural a one as it depends on the hoie of one divisor of degree d, say D0 = dP for somepoint P 2 C. It is given by �(d)(D) = �(D �D0):Another useful thing to look at is the symmetri produt SdC = fP1 + � � � + {d j Pi 2 Cg. This isa omplex manifold of dimension d, and there is a map  d:SdC ! Ja(C) given by  d(P1 + � � � + Pd) =�(d)(P1+ � � �+Pd).  d is well-de�ned up to translation by an element of Ja(C): we had to hoose an elementD0 Pid(C) to start with and if we hoose D00 instead we move  d by D0 � D00 2 Pi0(C) = Ja(C). The�bre  �1d (D), if D 2 Im d, is the linear system jD �D0j and this turns out to be a good way of thinkingabout linear systems. For example, if  d:SdC ! Wd = Im d is an isomorphism then every degree d linearsystem is trivial, but if some �bre has dimension at least 1 then there is a d-to-1 map C ! P1. In partiular, 1 = �:C ! Ja(C) is an embedding.Theorem 2.9. (Abel's Theorem) If D 2 Div0(C) then �(D) = 0 if and only if D is linearly equivalent tozero.Proof: First we show that �: Pi0(C) ! Ja(C) is well de�ned, i.e. that if D � 0 then �(D) = 0. Suppose,then, that D = (f) for some rational funtion f on C. De�ne�:P1 �! Ja(C)by �: (x0 : x1) 7! ��(x0f � x1)� (here we are thinking of f as a map from C to P1 and x0 and x1 ashomogeneous oordinates on P1). Then � must be onstant. There are various ways to see this. Oneargument is topologial: if � is nononstant it must be open and therefore an injetive map from a 2-sphere to a torus, whih is impossible. A better argument, from our point of view, is that ��dzi must beidentially zero as it is a global 1-form on P1, but then d� = 0 so � is onstant. Sine � is onstant, we have�(D) = �(1 : 0) = �(0 : 1) = ��(�1)� = 0.The onverse is muh harder. We start by translating the problem into one about di�erential formswith poles. Suppose that D =P(Pi �Qi) = (f). We an express this by saying that the di�erential� = 12�i dff = 12�id log fhas simple poles at Pi andQi and (assuming for the moment that the Pi andQi are all distint) it has residue 1at eah Pi and �1 at eah Qi. If the Pi and Qi are not distint we simply write D = P aiPi +P bjQj ,19



with the Pi and Qj all distint: then � has simple poles at Pi and Qj with residues ai at Pi and bj at Qj .Moreover we have �xed things so that Z � 2 Zfor any loop gamma � C n fPi; Qjg.Suppose we have an � with all these properties. Then hoose a base point O 2 C n fPi; Qjg and putf(P ) = expf2�i Z PO �g:Then f is a well-de�ned meromorphi funtion and (f) = D. So if we start with some divisor D and assumedegD = 0, that is, P ai +P bj = 0, and produe a di�erential form � with simple poles with the rightresidues and suh that R � 2 Z for loops  missing Pi and Qj , then we an produe a funtion f suh that(f) = D and we shall have proved Abel's Theorem.We �rst try to produe a di�erential with the spei�ed poles and residues, without worrying aboutR � 2 Z. If you know sheaf ohomology this an be done in two lines: the short exat sequene0 �! 
1C �! 
1C(XPi +XQj) �!MPi C Pi �MQj CQj �! 0indues � � � �! H0�
1C(XPi +XQj)� Æ�!C n �! H1(
1C) �! � � �and h1;1(C) = 1 so dim oker Æ � 1; but Im Æ � fPai +P bj = 0g. This, however, uses quite heavymahinery: I intend to give, essentially, this proof, but in an elementary way.Observe �rst that if � is a 1-form with (perhaps) poles at Pi and Qj and residues ai, bj there, then2�iXai + 2�iX bj =XZloops around Pi � +XZloops around Qj �= � Zurve with holes d�= 0:This is just Stokes' Theorem. We alulate the residues at eah important point by taking a small dis entredthere and integrating � around the boundary of that dis, but we an equally onsider the boundaries of thediss as being the boundary of what is left of the urve after we remove those diss. What we want to knowis that this is the only ondition on the ai and bj .Choose, as above, a small dis �i around eah Pi and similarly �0j for eah Qj . Take a 1-form �i onDeltai with just a simple pole at Pi, having the right residue: if zi is a loal oordinate at Pi we an use�i aidzizi : do the same for Qj . In other words, �nd loal solutions to the problem. Use the Deltai and �0j aspart of an open over fU�g of C with a 1-form �� on eah U� , holomorphi exept for the singularities wehave just desribed.Now take a C1 bump funtion �i whih is equal to 1 near Pi and is zero outside �i (and similarly forQj , �0j , Delta0j). Let  = 0 outside the �i and �0j and on �i put = ���z �i�i ^ d�z(and similarly on �0j). If there is a global C1 (1; 0)-form �, that is, something whih is everywhere loallyof the form � = gdz with g a loal C1 funtion, suh that  = ���, then � = P�i�i +P�0j�0j � � hasthe right poles and it also has ��� = 0, so it is holomorphi. (Reall that ��� = �g��z (dz ^ d�z), and note thatd = � + �� so ��� = d�.) So we are all right as long as we an �nd an appropriate �.20



All C1 (1; 1)-forms are d-losed (sine there are no nontrivial 3-forms on the 2-manifold C), so thestatement that  = ��� = d� amounts to the statement that  is ohomologially trivial: to be preise, that[ ℄ = 0 in H2DR(C) = flosed2�formsg=fexat2�formsg. But H2DR(C) �= H2(C; C ) = �H2(C;Z)
 C�� by� 7�!�k 7�!k XP2C resP (�)�so  7! �k 7! k(P ai +P bi)� whih is zero. Consequently (assuming we believe De Rham's Theorem, asusual) suh a � does exist.Next, we need to adjust the � we have found, without hanging the poles, so as to arrange for its periodsto be integral, that is, for Ri � 2 Z. We an ertainly arrange this for the �rst g loops: in fat, by addingon an appropriate holomorphi 1-form (a sum of !i's) we an arrange for Ri � = 0 if 1 � i � g. Suppose wehave done this. We need to be able to tell what the other Ri � are so that we an adjust them. For now Iwill simply say what the answer is and prove it later as a separate, not espeially hard, lemma.Fat: If we hoose a base point O and a form � with Ri � = 0 for i � g (and i as usual) and withresidues 1=2�i at a point P and �1=2�i at a point Q, thenZi+g � = Z PO !i � Z QO !i = Z PQ !iwhere !1; : : : ; !g is a basis for the spae of 1-forms on C suh that Ri !j = Æij (we an arrange this as weknow the orresponding quadrati form is positive de�nite), and the integrals R PO and R QO are taken alongsome paths not depending on i. So if we write our divisor D as P1 �Q1 + P2 �Q2 + � � �+ Pd �Qd we anassign an �k to eah Pk �Qk and then take � =P �k . With this notation (so the points Pk and Qk are notneessarily distint, but we do not have to think about multipliity)Zi+g � =Xk Z PkQk !i:In fat I might as well assume from now on that D = P �Q, sine I an add Ds by adding �s or multiplyingfs. By hypothesis �(D) = �Z QP !1; : : : ; Z QP !g� 2 �so �(D) = �Z !1; : : : ; Z !g�= � 2gXj=1mj Zj !1; : : : ; 2gXj=1mj Zj !g�where  =P2gj=1mjj . Now take �0 = � �Pgj=1mj+g!j . Then for i � gZi �0 = Zi � � gXj=1mj+g Zi !j= mi+g 2 Z
21



sine Ri � = 0 and Ri !j = Æij . On the other handZi+g �0 = Zi=g � � gXj=1mj+g Zi+g !j= Z QP !i � gXj=1mj+g Zi+g !j= 2gXj=1mj Zj !i � gXj=1mj+g Zi+g !j= mi + gXj=1mj+g Zj+g !i � gXj=1mj+g Zi+g !j= mi 2 Zusing the fat that Rj !i = Æij and, from the Riemann relations, Rj+g !i = Ri+g !j .We still have to �nd out about residues. We do this by utting the urve C open and integrating. Itwon't make any di�erene to the periods of � if we assume that all the loops i start from a ommon basepoint S 2 C.Lemma 2.10. If � is a 1-form having simple poles only at points Sk (not lying on any of the is) then forany holomorphi 1-form !gXi=1 �Zi ! Zi+g � � Zi+g ! Zi �� = 2�iXk resSk(�)�Z SkS !�;where the path of the integral R SkS ! does not ross any of the is.Proof: Cut C open along all the is and all the resulting losed 4g-gon �. Then �� = Pi i + i+g +�1i +�1i+g , where �1 denotes  with the opposite orientation: we simply go round the edge of � identifyingalternate edges if we want to reover C. On � we an integrate ! and de�ne a funtionh(P ) = Z PS !as � is simply-onneted. Obviously if P and P 0 are points of � that are identi�ed in C then h(P ) and h(P 0)di�er by a period of !. In fat it is very easy to see that if P 2 i and P 0 2 �1i then h(P )�h(P 0) = � Ri+g !for i � g and Ri�g ! for i > g.Now we integrate h� around the edge of �:Z�� h� = 2�iXk resSk(h�)= 2�iXk resSk(�)h(Sk)= 2�iXk resSk(eta) Z SkS !:
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But Z�� h� = gXi=1 �Zi+�1i + Zi+g+�1i+g �= gXi=1 �Z P 2 i�h(P )� h(P 0))�(P ) + Z P 2 i+g�h(P )� h(P 0))�(P )�= gXi=1 �� Zi+g ! Zi � + Zi ! Zi+g ��whih is what is laimed.When we used this we were in the speial ase ! = !j and Ri � = 0, and we solved for Ri+g �.Muh of this aount follows GriÆths and Harris.Now we ome to the onverse result. We are going to see that the injetive map �: Pi 0(C) ! Ja(C)is in fat an isomorphism. In fat we an prove rather more than that.Theorem 2.11. (Jaobi Inversion Theorem) Suppose Q 2 C and !1; : : : !g form a basis for H0(KC). Thenfor any point a 2 Ja(C) there exist points P1; : : : ;{g 2 C, not neessarily distint, suh that�� gXi=1(Pi �Q)� = a:In partiular �: Pi 0(C)! Ja(C) is an isomorphism.If we were interested only in proving the surjetivity it would be enough to show the existene ofP1; : : : ; Pk for k � 0 having this property but in fat we an get this rather handy bound without any extrae�ort.Proof: Consider the gth symmetri power SgC. I mentioned this at the start of the setion. It is the setof unordered g-tuples of not neessarily distint points in C, and an element of SgC is normally written asP1 + � � �+ Pg . Sine we don't are what order the Pi mentioned in the theorem ome in it is lear that SgCrather than the Cartesian produt Cg is what we should be looking at. It is also lear that � and Q jointlyindue a map �(g):SgC �! Ja(C)given by �(g):P1 + � � �+ Pg 7�!� gXi=1 Z PiQ !1; : : : gXi=1 Z PiQ !g�:The theorem asserts that �(g) is surjetive. This is atually not very hard { not nearly as hard as Abel'sTheorem, anyway. The �rst thing to do is to notie that SgC is a ompat omplex manifold. Atuallywe don't even need that muh. SgC is the quotient of Cg by a �nite group (the symmetri group on gelements) so it is ertainly ompat and near a point (P1; : : : ; Pg) 2 Cg with all the Pi distint { that is,on a dense open set { the quotient map is an isomorphism, so SgC is smooth there. That is enough, butwith very little more work one an see that SgC really is smooth everywhere, though we shan't need it. Ifthere are oinidenes among the Pi then there is a nontrivial loal isotropy group, whih is a produt ofsmaller symmetri groups. These are generated by transpositions, whih at as reetions, so by a theoremof Chevalley the quotient is still smooth. You an see this diretly by writing down harts, using elementarysymmetri polynomials in the loal oordinates in Cg to get loal oordinates on SgC, or (what omes tothe same thing) think about the tangent spae to SgC.Let D = P1+ � � �+Pg be a point of SgC with the Pi distint, and take loal oordinates zi near Pi on C,so that the zi an also be thought of as loal oordinates on SgC. A point near D is thus D0 = z1+ � � �+ zgand ��zi �(g)(D0) = �Z ziQ !j�= !jdzi :23



(Here we are dividing one holomorphi 1-form by another so as to get a funtion loally: i.e. !j =Pi hijdziin a neighbourhood of D, beause every 1-form looks like that, and !j=dzi = hij by de�nition.) We anonsider the Jaobian matrix { the other kind of Jaobian, but the same Jaobi { ���(g)�zi �, whih is (!j=dzi)near D. I laim that it is generially non-singular, that is, that for D in an open dense set it is of maximalrank g. Choose D suh that !1 does not vanish at P1 (a nontrivial but harmless ondition). Sine we areon a urve, !i(Pj) is just a number (the otangent bundle is a line bundle) and for i > 1 we an replae !iby !1(P1)!i � !i(P1)!1. By doing this, we an assume that !i(P1) = 0 for i > 1. Next we assume that!2(P2) 6= 0 and repeat the proess, ending up with an upper-triangular matrix with !i(Pi)=dzi along themain diagonal: this is still the Jaobian matrix, though expressed in di�erent oordinates. It learly hasmaximal rank, so the Jaobian matrix has maximal rank generially.But this implies that �(g) is surjetive, beause SgC and Ja(C) have the same dimension and �(g)is proper (in the ontext of holomorphi maps, that means \ompat �bres"). So by the Proper MappingTheorem �(g)(SgC) is an analyti subvariety, and it ontains an open set sine �(g) is an isomorphism atleast somewhere, so it must be the whole of Ja(C).This is, admittedly, a little unsatisfatory, sine the Proper Mapping Theorem, though obvious, israther hard (it's a little easier if you know, as in this ase, that the varieties involved are smooth). Analternative way of �nishing is to say this. Let � be a volume form on Ja(C), so RJa(C) � > 0. ThenRSgC �(g)�� > 0, beause �(g) is surjetive and loally injetive almost everywhere. But we an �nd a realC1 (2g � 1)-form � on Ja(C) n fxg, for any point x 2 Ja(C), suh that � = d�. We an do this beauseH2gDR� Ja(C) n fxg� �= H2g(puntured torus;R) = 0. If we ould do this for an x 62 �(g)(SgC) then weshould �nd 0 < ZSgC �(g)�� = Z�SgC d(�(g)��) = 0whih is absurd.Corollary 2.12. �(g) is generially 1-to-1.This means that �(g) is birational.Proof: By Abel's Theorem, �(g)�1(a) = ja + gQj = jDj = PH0�O(D)�. But sine SgC and Ja(C) havethe same dimension, this �bre is of dimension zero in general, and a zero-dimensional projetive spae is apoint.Corollary 2.13. Every divisor D on a urve C of genus g suh that degD � g is linearly equivalent tosome e�etive divisor. If degD = g then for almost all D the e�etive divisor is unique.Corollary 2.14. If C is of genus 1 then C �= Ja(C). In partiular, every urve of genus 1 is C =� for somelattie � (and therefore has the struture of an abelian group).Just to establish that something an really be done with this I will use Jaobians to prove Riemann-Rohfor urves, and I will say a lot more about what else an be done.Theorem 2.15. (Riemann-Roh) Let C be a smooth urve of genus g � 1. then for any line bundle O(D)on C h0�O(D)� � h0�O(K �D)� = deg(D)� g + 1:Proof: It will be enough to show R-R (as Riemann-Roh is frequently abbreviated) for the ase jDj 6= ;beause then we an argue as follows: it must be true for D = K beause K > 0 (there are global 1-forms,indeed g of them), so degK = 2g � 2. So either degD � g, or deg(K �D) � g, or deg(K �D) = degD =g � 1. If deg(K � D) = degD = g � 1 and neither D nor K � D is equivalent to an e�etive divisor, sojDj = jK �Dj = ;, then h0�O(D)� = h0�O(K �D)� = 0 = deg(D) � g + 1 anyway. Otherwise one of jDjand jK �Dj is nonempty, by assumption if degD = g � 1 and by Corollary 2.13 otherwise. Without loss ofgenerality we may assume it is D.So suppose jDj 6= ;. Then h0�O(D)� = dim jDj + 1 = r(D) + 1 say. We may as well assume thatD = P1 + � � � + Pd atually is e�etive (but the Pi may not be distint). Take loal oordinates t1; : : : ; trin jDj = PH0�O(D)� �= Pr near D. Thus D = D0 = P1 + � � � + Pd = P1(0) + � � � + Pd(0) and a nearbydivisor is Dt = P1(t) + � � � + Pd(t). Let zi be a loal oordinate at Pi on C, so that Pi(t) has oordinate24



zi�Pi(t)� = zi(t) (and zi(0) = 0). (Think of t as time: zi(t) is the amount that Pi, and hene that bit of D,strays in time t.) We an also write any form ! as ! = hi(zi)dzi near Pi, with hi holomorphi.Consider the matrix ��zi�tj �. It must have rank r at any t beause for a suitable hoie of Æt =(Æt1; : : : ; Ætr) we have ��zi�tj� Æt = Æz = ÆDtand this moves in an r-dimensional spae (a time Æt later D ould have moved in any of the r diretionsin jDj).By Abel's theorem Xi Z Pi(t)Q ! = onstant mod �so Xi Z PiPi(t)! =Xi Z zi(t)0 hi(zi)dzi = onstant mod �and if we take r we get Xi hi�zi(t)��zi�tj (t) = 0:We an simply put t = 0 in this equation, as everything is ontinuous, so�hi�zi(0)��i = �!(Pi)�i 2 Ker��zi�tj �:But dimKer��zi�tj � = d � r (we alulated that the rank was r a little while ago), so the dimension of thespae of vetors �!(Pi)	 is at most d � r. But this is preisely the spae of all !s modulo the ones thatvanish at Pi, whih is H0(K)=H0(K �D). Sodim�H0(K)=H0(K �D)� � d� rand sine h0(K) = g this implies h0(K �D) � g � d+ r = g � d+ h0(D)� 1. Soh0(D)� h0(K �D) � deg(D)� g + 1:For D = K this says degK � 2g � 2. We need to know that in fat degK = 2g � 2. You an thinkof this as Gau�-Bonnet if you like. If we aept this we an get the equality for all divisors. Looking at�(d):SdC ! Ja(C) we see thath0(D)� 1 = dim jDj = dim�(d)�1(D � dQ)= dimSdC � dim Ja(C)= d� g(trivially if d < g), so if h0(K �D) = 0 we have h0(D) = d� g+ 1. If h0(K �D) 6= 0 we an use the aboveinequality for K �D to show thath0(K �D)� h0(D) � deg(K �D)� g + 1= 2g � 2� deg(D)� g + 1= g � 1� deg(D)whene the result. 25



Time for another breather. I want to have a look at what we've done, disuss vaguely what we are goingto do, and mention one or two things that don't �t in elsewhere.We saw some examples of real-life abelian varieties, namely Jaobians. The �rst step was to go bakand forth between divisors and line bundles: this is a basi proedure and the fat that it is possible is one ofthe reasons why line bundles are easier to understand than other vetor bundles and why divisors are betterbehaved than other algebrai yles.. We used this to get an isomorphism between an entirely algebraiobjet, Pi 0(C), and a transendental objet, Ja(C). This in itself is obviously nontrivial. To do it, wehad to spend a lot of time integrating forms with or without poles, and here I assumed two things: the DeRham theorem H iDR(X)� = losed i-forms = exat i-forms � �= H i(X ;R)and that there are g 1-forms on a urve of genus g. I also used the fat that wedge produt of forms agreeswith intersetion or up produt, that is, that the De Rham isomorphism is a ring isomorphism. But this weused in only one plae, when we showed that the Jaobian is atually an abelian variety. However, note theway we did this: we wrote down an expliit and natural H , thereby equipping the Jaobian with a speialample line bundle (and even a speial divisor, �, the divisor of zeros of the theta funtion, whih we didn'tneed for what we did but is important). One thing we must do is think about this situation, of polarisedabelian varieties, more generally.A polarised abelian variety is an abelian variety equipped with a member of the N�eron-Severi group,that is, with an H . H is determined by E and with a suitable hoie of basis for �, E has matrix � 0 T�T 0 �,where T = diag t1; t2; : : : ; tn. The ti are integers, determined by H , and tijti+1. The type of a polarisationis the n-tuple (t1; : : : ; tn): the most important ase, not least beause it is what naturally happens in thease of Jaobians, is ti = 1 for all i. This is alled a prinipal polarisation, frequently abbreviated to p.p.;but other polarisations do arise in nature. Not every abelian variety has a prinipal polarisation but everyabelian variety is isogenous to one that does.It turns out that in pratie one has to work almost all the time with polarised abelian varieties. Inpartiular, it is possible to write down a sensible parameter spae for polarised abelian varieties but youreally need the polarisation to ahieve this. For instane, an ellipti urve an always be thought of as aplane ubi (and this embedding orresponds to a polarisation { in dimension 1 we don't need to worryabout type) with equation Y 2Z = 4X3 � g2XZ2 � g3Z3. The only parameter we need then is the famousj-invariant j = 1728 g32g32 � 27g23whih tells you exatly whih urve you've got.It is important to be aware that the anonial divisor of an abelian variety (indeed, the anonialbundle of any omplex torus) is trivial. This just means that there is a global non-vanishing n-form, namelydz1 ^ : : :^ dzn, where the zi are oordinates in C n { learly this is �-invariant and therefore desends to X .This is quite unlike projetive spae (where K is negative in the sense that O(�mK) has lots of setions ifm is big) or most other things (in general you expet O(mK) to have lots of setions { Mori theory is abouttrying to arrange for K to be ample). There are other varieties with K trivial, alled Calabi-Yau varieties(or K3 surfaes, for obsure reasons, if they are of dimension 2), and they also hold endless fasination forgeometers.Another way to assoiate an abelian variety with a given variety is to look at the Albanese torus Alb(X).This is a torus with a map �:X ! Alb(X) having the property that every map from X to a torus fatorsthrough �. We shall not disuss this here but it is another useful tool, not perhaps quite as fundamental inits importane as the Jaobian but nevertheless essential.The theta funtions assoiated with a polarisation atually have a seond dimension, literally. Considerfor a moment the ase of plane ubi urves E and their j-invariants. Pretend that you ould make a surfaeby gluing all the urves together, so you had a surfae S and a map j:S ! C suh that j�1(t) is the elliptiurve Et whose j-invariant is t. Atually you an't quite do this but you so nearly an that it doesn't reallymatter. The theta funtion on the �bre Et is then just the restrition of a muh better theta funtion whihreally is a funtion on S, in other words a funtion of two variables. This is what makes theta funtionsreally valuable. We shall disuss this in more detain in the next setion.26



3 Moduli and theta funtions.We begin with the ase of ellipti urves, that is, urves whih are abelian varieties. By de�nition we haveX = C =� for some lattie �. Let P 2 X be the origin. The we put, for z 2 C}(z) = z�2 + X�2�nf0g h(z � �)�2 � ��2iso that }0(z) =X�2��2(z � �)�3:1, } and }0 are all periodi and hene give meromorphi funtions on X . Moreover, they are all setionsof O(3P ), that is, they have at most triple poles at the origin and no others. On the other hand, O(P )orresponds to E = � 0 1�1 0� and therefore h0�O(3P )� = ���� 0 3�3 0 ����1=2 = 3, by 1.13. So H0�O(3P )� =h1; }; }0i. By 1.14, 3P is very ample, and that proves the following.Proposition 3.1. Every ellipti urve an be embedded in P2 in suh a way that O = (0 : 1 : 0) is aninexion point.In fat we an do better than that, and give an equation.Proposition 3.2. The Weierstra� }-funtion satis�es}0(z)2 = 4}(z)3 � g2}(z)� g3where g2 = 60P�2�nf0g ��4 and g3 = 140P�2�nf0g ��6.Proof: }(z)� z�2 is an even funtion, holomorphi near O and vanishing there. So by Taylor's theorem}(z) = z�2 + az2 + bz4 +O(z6)}0(z) = �2z�3 + 2az + 4bz3 +O(z5)so we may onsider q(z) = }0(z)2 � 4}(z)3 + 20a}(z) + 28b= 4z�6 � 8az�2 � 16b� 4z�6 � 12b+ 20az�2 + 28b+O(z)= O(z)whih is a holomorphi funtion near z = 0 and vanishes at z = 0. By periodiity q(�) = 0 for all � 2 � andis a bounded holomorphi funtion, so q(z) � 0. We an reover g2 and g3 by noting that 2a and 24b arethe seond and fourth derivatives at z = 0 ofP�2�nf0g �(z��)�2���2� and this sum onverges absolutelyand uniformly so we an also alulate the derivatives by di�erentiating term by term.Corollary 3.3. Every ellipti urve is isomorphi to the plane urveY 2Z = 4X3 � g2XZ2 � g3Z3for some g2, g3.On the other hand, every smooth plane ubi urve has genus 1. You an either prove this diretly bymaking a projetive hange of oordinates that transforms a general plane ubi into this speial-lookingone or use the adjuntion formula to alulate the degree of K. Another argument is to observe that allthe smooth plane ubis form one ontinuous family (they an all be deformed into one another) and so thegenus must be the same for all of them. The upshot is that if we want to desribe all ellipti urves we mayas well desribe all smooth plane ubis of this form.27



Theorem 3.4. C =� �= C =�0 if and only if j(C =�) = j(C =�0), wherej = 1728 g32g32 � 27g23 :Proof: Suppose �rst that �: C =� ! C =�0 is an isomorphism. Then ~�: C ! C =�0 is a holomorphi funtionwhih is periodi with respet to �. So d~�z. is a periodi holomorphi funtion from C to C and thus onstant:say d~�z. = a. Then �(z) � az mod �0. In partiular a� 2 �0 if � 2 �, that is, a� � �0. Similarly a�1�0 � �,so a� = �0. But then g02 = a4g2 and g03 = a6g3, so j0 = j.Conversely, if j = j0, then (g32 : g23) = (g023 : g032) so there exists b 2 C suh that b�12g32 = g023 andb�12g23 = g032. Put X 0 = bX , Y 0 = Y and Z 0 = b3Z. Thenb�3Y 02Z 0 = 4b�3X3 � g2b�7X 0Z 02 � g3b�9Z 03so Y 02Z 0 = 4X 03 � g2b�4X 0Z 02 � g3b�6Z 03= 4X 03 � g02X 0Z 02 � g03Z 03so the two urves are projetively equivalent.The expression g32 � 27g23 is that it is what is non-zero if the urve is smooth.What we have found is a parameter spae, or moduli spae, for the set of all pairsfellipti urve E; point 0 2 Eg:(Stritly speaking one ought to reserve the term \ellipti urve" for suh pairs and refer to a urve of genus 1as a urve of genus 1. People who work over C tend to be areless about this, but number theorists, whowork over �elds that are not algebraially losed, an't a�ord to be beause a urve of genus 1 might nothave any points at all over the �eld in question.) What about abelian varieties of higher dimension? It won'tbe possible to work in the same way beause a good projetive desription won't be so easy to �nd. Whatwe an do, though, is to give some kind of moduli spae a priori, without thinking about spei� projetiveembeddings, essentially by looking at the period matrix. The idea is to hoose a basis for � in suh a waythat E has a good simple form and then write the period matrix in terms of that basis. Spei�ally, we analways hoose a basis �1; : : : ; �g ; �1; : : : ; �g of � suh that E has matrix � 0 D�D 0 �, where D is a diagonalmatrix. If D = I we say that the abelian variety is prinipally polarised. There is no guarantee that wean arrange for a given abelian variety to be prinipally polarised, but I will aept the loss of generality.Observe, in any ase, that if instead D = diag(t1; : : : ; tg) we an take �0 to be the lattie generated by the�i and 1ti�i and then C g =�0 is isogenous to C =� and does have a prinipal polarisation.From now on we shall work with prinipally polarised abelian varieties.Lemma 3.5. With respet to the bases �1; : : : ; �g ; �1; : : : ; �g for � over Z and �1; : : : ; �g for C g = V , theperiod matrix is � = (Z; I)for some Z 2Mg�g(C ).Proof: Z is just the matrix whose j-th olumn onsists of the oordinates of �j with respet to f�ig.Lemma 3.6. Z = >Z and ImZ is positive de�nite.Proof: These are just the Riemann relations. Note that H has matrix 2i ��� 0 I�I 0��1 >�!�1 =� ImZ��1.The Siegel upper half-plane of degree g is de�ned to beH g = �Z 2Mg�g(C ) j Z = >Z; ImZ > 0	 :It is sometimes written H or S. It is a subset of Mg�g(C ) but we an also think of it as being an open (inthe usual topology) subset of C 12 g(g+1). 28



Proposition 3.7. Points of H g are in 1-to-1 orrespondene with the set of abelian varietiesX of dimension gwith a prinipal polarisation and a sympleti basis for � = �X .By a sympleti basis we mean a basis �1; : : : ; �g ; �1; : : : ; �g with respet to whih E has matrix� 0 I�I 0�.Proof: We have already shown how to produe a point of H g from suh an X . Going the other way is justas easy: you let � be the lattie generated by the olumns of (Z; I) and let H have matrix (ImZ)1 withrespet to the standard basis of C g = V (whih is �1; : : : ; �g). Then H is a positive de�nite Hermitian form.We want to show that ImH has matrix � 0 I�I 0� with respet to some basis for �, so as to justify ourassertion that the polarisation is prinipal. But with respet to the basis given by the olumns of (Z; I), thematrix of ImH isIm �>(Z; I)(ImZ)�1( �Z; I)� = Im�ZI � (ImZ)�1( �Z; I) (as Z = >Z)= Im�ReZ + i ImZI � (ImZ)�1(ReZ � i ImZ; I)= ��ReZ +ReZ ImZ ImZ�1� ImZ ImZ�1 0 �= � 0 I�I 0�as required.What we want to do is get rid of the hoie of sympleti basis. One it's put like that, it beomes learthat we are going to have an ation of Sp(2g;Z) on H g and the moduli spae of pp abelian varieties will beA = H g= Sp(2g;Z).To �x notation, we make the de�nition thatSp(2g;Z) = �R 2M2g�2g(Z) j R� 0 I�I 0�>R = � 0 I�I 0�� :This is not the only onvention in use, unfortunately: sometimes � 0 I�I 0� is replaed with another standardalternating form of determinant 1 suh as � 0 �II 0 �, and sometimes what I have alled Sp(2g;Z) is referredto as Sp(g;Z) (the notation for dihedral groups is a�ited by the same ambiguity). Be areful! For us,Sp(2g;Z) is a subgroup of SL(2g;Z) and in partiular Sp(2;Z) = SL(2;Z).Theorem 3.8. Sp(2g;Z) ats on H g byR = �A BC D� :Z �! R(Z) = (AZ +B)(CZ +D)�1:Proof: In fat we an even take R 2 Sp(2g;R). Notie that if R 2 Sp(2g;R) then so is >R, sine� 0 �II 0 �>R� 0 I�I 0� = R�1:Also >AC and >BD are symmetri and >AC�>CB = I : this follows straight from the de�nition and in fatthese onditions are also suÆient for R to be sympleti. Now I laim that CZ +D is invertible, whih isone of the things we have to prove. 29



Consider >(CZ +D)(AZ +B)� >(AZ +B)(CZ +D). Sine A, B, C and D are real we have>(CZ +D)(AZ +B)� >(AZ +B)(CZ +D) == >�Z(>CA� >AC)Z + >�Z(>CB � >AD) + (>DA� >BC) + >DB � >BD= Z � �Z= 2i ImZ:If (CZ +D)v = 0 for some v 2 V then this gives0 = 2i Im(>�v ImZ�v)so v = 0, beause ImZ > 0.Next, R(Z) = >R(Z), beause>(CZ +D)�R(Z)� >R(Z)�(CZ +D) = >(CZ +D)(AZ +B)� >(AZ +B)(CZ +D)= >Z(>CA� >AC)Z + (>DA� >BC)Z + >Z(>CB � >AD)+ >DB � >BD= z � >Z= 0:Finally, we must hek that ImR(Z) is positive de�nite. But2i>(CZ +D) ImR(Z)(CZ +D) = >(CZ +D)�R(Z)�R(Z)�(CZ +D)= >(CZ +D)�R(Z)� >R(Z)�(CZ +D)= (CZ +D)(AZ +B)� (AZ +B)(CZ +D)= ImZso R(Z) 2 H g . It is lear that the map given desribes a group ation, that is, that R1�R2(Z)� = R1R2(Z).Obviously these are generalisations of M�obius transformations. We are going to work with Sp(2g;Z)but we ould instead work with any sensible disrete subgroup of Sp(2g;R). In the ase g = 1 this amountsto looking at the Poinar�e sphere but looking at other disrete subgroups of SL(2;Q) gives other modularurves and these are beautiful and important objets.Theorem 3.9. If Z;Z 0 2 H g then the prinipally polarised abelian varieties (XZ ; HZ) and (XZ0 ; HZ0) areisomorphi if and only if Z and Z 0 are equivalent under the ation of Sp(2g;Z).Proof: Suppose �rst (XZ ; HZ) �= (XZ0 ; HZ0). That means that there is a map f :XZ0 ! XZ whih is anisomorphism of omplex tori and satis�es f�HZ = HZ0 (notie whih way the maps go). We have longknown how to express f by an isomorphism F :V ! V suh that F (�0) = �. Let T 2 Mg�g be the matrixof F with respet to the basis �1; : : : ; �g of V and let R 2M2g�2g(Z) be the matrix of F with respet to thebases �1; : : : ; �g ; �1; : : : ; �g for � and �01; : : : ; �0g ; �1; : : : ; �g for �0 (so �i is the i-th olumn of Z, et.). T andR are alled the matries of the analyti and rational representations of f respetively. Sine F (�0) � � wehave T (Z 0; I) = (Z; I)R: (z)You just have to think about this: it is one of those elementary but onfusing things (well, it onfuses me).The left-hand side is �F (�01); : : : ; F (�0g); F (�1); : : : ; F (�g)� expressed in terms of �1; : : : ; �g . The right-handside is the same thing expressed in terms of �1; : : : ; �g ; �1; : : : ; �g.Put >R = �A BC D� with A;B;C;D 2Mg�g(Z). Then (z) saysTZ 0 = Z>A+ >B and T = Z>C + >D:30



Moreover, sine Z is symmetri, >T = CZ +D whih is invertible beause f is an isomorphism, soZ 0 = >Z 0 = (AZ +B)>T�1 = (AZ +B)(CZ +D)�1 = R(Z):We need to hek also that R 2 Sp(2g;Z), but this is true simply beause R preserves H , that is,>R� 0 I�I 0�R = � 0 I�I 0�.Conversely, if Z 0 = R(Z) for some R 2 Sp(2g;Z) then R determines F :V ! V and hene f :XZ ! XZ0 ,preserving H beause R is sympleti, and F is an isomorphism beause R is invertible.Corollary 3.10. There is a 1-to-1 orrespondene between the set Ag of isomorphism lasses of prinipallypolarised abelian varieties and points of the orbit spae H g= Sp(2g;Z).There is a diÆulty with this, though. If it is going to be any use to us we need Ag to be somethingwe an handle, suh as a omplex manifold. Atually it isn't a omplex manifold. The reason why notis that Sp(2g;Z) has torsion and the torsion elements neessarily have �xed points (by the Brauer �xed-point theorem, for instane): that is to say, it an happen that Z = R(Z) for some R 6= I . This will, ingeneral, ause Ag to have some singularities, but they are pretty harmless ones. They orrespond to abelianvarieties having extra automorphisms, so that they an be looked at in more than one way. (I'm heatingslightly, beause in fat this always happens: �I 2 Sp(2g;Z) ats trivially on H g and this orresponds to theautomorphism�1 of (X;H). In other words, Sp(2g;Z) ats through the quotient PSp(2g;Z) = Sp(2g;Z)=�I .This doesn't really hange anything, but it is what prevents there being a universal family of ellipti urves.You an get round it by hoosing a 3-torsion point, beause that won't be preserved by �1.)In atual fat Ag is a quasi-projetive variety. All I will prove here is that it is Hausdor� (and I shan'teven do all the details of that), by showing that the ation of Sp(2g;Z) is properly disontinuous. Sine itats on H g by biholomorphi maps this makes Ag into a omplex analyti spae, whih is a big step in theright diretion.Theorem 3.11. Ag is Hausdor�.Proof: We need to show that if K1;K2 � H g are ompat then R(K1)\K2 = ; exept for �nitely many R 2Sp(2g;Z): if we an do this then we an separate x1; x2 2 Ag by taking Ki to be a ompat neighbourhoodof some preimage ~xi 2 H g and then using K1 nSR R(K2) and K2 nSR R(K1).Consider the map h: Sp(2g;R) ! H g given by h(R) = R(iI), whih is ontinuous. The �bre h1(iI) isStab(iI) = �R = �A BC D� j (iA+B)(iC +D)�1 = iI; R 2 Sp(2g;R)�= �R 2 Sp(2g;R) j R = � A B�B A��= Sp(2g;R) \O(2g;R)sine R>R = � A>A+B>B A>B �B>A�B>A+A>B A>A+B>B�= � I 00 I �by the sympletiity onditions. As O(2g;R) is ompat this �bre is ompat. Furthermore, Sp(2g;R) atstransitively on H g beause if X + iY 2 H g then Y = A>A for some A and R = �A X>A�10 >A�1 � satis�esR(iI) = X + iY . So all the �bres are onjugate and hene ompat, and h is surjetive. With a bit moresimilar work one an show that it is proper.Now if R(K1) \K2 6= ; then R�h�1(K2)� � h�1(K2) � Sp(2g;R), so R 2 h�1(K2)�h�1(K1)��1. SineSp(2g;Z) is disrete, a ompat subset of Sp(2g;R) ontains only �nitely many elements of Sp(2g;Z). But31



H�1(Ki) are ompat and h�1(K2)�h�1(K1)��1 � Sp(2g;R) is the image of the ompat set h�1(K1) �h�1(K2) � Sp(2g;R)2 under the ontinuous map (R1; R2) 7! R1R�12 .All this works for any sensible subgroup of Sp(2g;Q) or even Sp(2g;Q ). By \sensible" in this ontextI mean that one should replae Sp(2g;Z) by an arithmeti group �: an arithmeti group is one for whih�\ Sp(2g;Z) has �nite index in both � and Sp(2g;Z). Suh a � will arise from looking at more ompliatedstrutures assoiated with abelian varieties, for instane the hoie of an l-torsion point for some integer l.Sine we are dealing with prinipal polarisations there is a unique (up to a onstant) setion of the linebundle orresponding to the polarisation (well, there are many suh line bundles, but pik one). So for eahpoint of Ag there is a anonial anonial theta funtion and a anonial lassial theta funtion. Let usreturn to the ase g = 1, so Ag = C , to see how these theta funtions �t together.The (Riemann) theta funtion is a funtion#: C � H �! Cgiven by the series #(z; �) =Xn 2 Zexpf�in2� + 2�inzg(whih onverges, very fast).Proposition 3.12. The Riemann theta funtion satis�es#(z + 1; �) = #(z; �)#(z + �; �) = expf��i� � 2�izg#(z�)Proof: The �rst part is obvious. And#(z + �; �) =Xn2Zexp�(�in2 + 2�in)� + 2�inz	=Xn2Zexp��i(n+ 1)2� � �i� + 2�i(n+ 1)z � 2�iz	= exp f��i� � 2�izg#(z; �)as stated.If we think of � as a onstant we an use this to determine a fator of automorphy. In fat this is exatlywhat we had when we looked at lassial theta funtions: reall that we had � = �1 ��2 and a funtion �1whih was �1-periodi. If we put g(�; z) = � 12 (� + 2z) and g(1; z) = 1 we an reover E = ImH using theformula ImH(�; �) = g(�; �) + g(�;0)� g(�; �)� g(�;0);thus ImH(1; 1) = 0, ImH(1; �) = � 12 (� +2)+ 1� 1+ 12� = �1, ImH(�; 1) = 1 by a similar alulation andImH(�; �) = 0. So E = � 0 1�1 0�, so # does indeed give a setion { essentially the only setion { of theline bundle L(1; H) orresponding to the prinipal polarisation H and the trivial harater on C =Z+ �Z. Inpartiular # is the only holomorphi funtion satisfying the relations above.I want to desribe two more properties of #. One of them relates to the ation of Sp, or in this aseSL(2;Z) sine g = 1. We want to have some funtional equation relating the values of # for given � to thosefor a�+b�+d , whih after all orresponds to the same ellipti urve. We an't atually do this for every elementof SL(2;Z) and in any ase I shall not give all the details of the proof.
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Theorem 3.13. Suppose � a b d� 2 SL(2;Z) and that ab and d are even. Then#� z� + d ; a� + b� + d� = �(� + d) 12 exp� i�z2� + d�#(z; �)where � is an eighth root of unity.Proof: (Sketh) If we look at #�(� + d)z; �� we get a funtion whih is nearly periodi with respet toz 7! z + 1. We an get real periodiity by inserting a fudge fator. Set�(z; �) = exp�i�(� + d)z2	 #�(� + d)z; ��:Then �(z +1; �) = �(z; �) by a simple but messy alulation (it matters that 2jd beause you get a fatorof ei�d) and ��z + a� + b� + d ; �� = exp��i� a� + b� + d � 2 � �z��(z�);by another messy alulation using 2jab and ad� b = 1. The details are on page 29 of Tata Leture Noteson Theta I, where what I have alled � is alled 	. But this implies that�(z; �)�(�)#�z; a� + b� + d�beause of the uniqueness of # whih we proved above. The statement of the theorem is now that �(�) =�(� + d) 12 . We have �xed the zeroth term in the Fourier series for # to be 1, so R 10 #(z; �)dz = 1. Hene�(�) = Z 10 �(z; �)dz= Z 10 exp�i�(� + d)y2	#�(� + d)z��dz=Xn2Zexpf�i�n2d=g Z 10 exp�i�(z + n)2(� + d=)	 dz= Xn=1 expf�i�n2d=g Z 1�1 exp�i�2z2(� + d=)	 dzbeause expf�i�d(n + )2=g = expf�i�nd=g, sine 2jd. But we know the value of R 11e�t2dt and sothis simpli�es to �(�) = Xn=1 expf�i�n2d=g�1�(� + d=)=i� 12 :The mysterious fator of � 12 whih makes everything work omes from the Gauss sumPn=1 expf�i�n2d=g,and we aren't going to use its atual value so for the present we an just believe that it is what it is.Atually we aren't going to use anything else now. What I will do is explain where the funny-lookingondition that ab and d should be even omes from. The trouble is that if z = 12 (� + 1) then#(z; �) =Xn2Zexp��in2� + �in� + �in	= Xn even exp��in2� + �in�	 � exp��i(n� 1)2� + �i(n� 1)�	= Xn even exp��in2� + �in�	 � exp��in2� � �in�	= Xn even expf�in2�g� expf�in�g � expf��in�g�= 0 33



as the n term anels with the �n term, leaving only the n = 0 term whih vanishes.Now in general � a b d� does not send 12 (� + 1) to 12 (a�+b�+d + 1) modulo �� 0 = Z+Za�+b�+d , but to someother 2-torsion point of C =�� 0 . There are three nontrivial 2-torsion points, 12� , 12 and 12� + 12 , and SL(2;Z)permutes them. We are interested in the stabiliser of 12� + 12 . In fat SL(2;Z) ats on the set of 2-torsionpoints via the quotients indued by redution mod 2SL(2;Z)�! SL(2;Z=2)�= S3:This is lear, beause there is a subset of SL(2;Z) whih is just SL(2;Z), namely�� 1 00 1� ;� 0 11 0� ;� 1 10 1� ;� 1 11 0� ;� 1 01 1� ;� 0 11 1��and these elements do the right things to 12� , 12 and 12�+ 12 . So one interesting subgroup is the kernel of redu-tion mod 2, alled the prinipal ongruene subgroup of level 2; another, and the one we need, is the preimageof �� 1 00 1� ;� 0 11 0��. This is alled �1;2 and it is preisely given by ab � d � 0 (mod 2). Of ourse it'snot normal (a reetion doesn't generate a normal subgroup of the symmetry group of a triangle { this isthe �rst example of a non-normal subgroup). The onjugates are the preimages of �� 1 00 1� ;� 1 10 1��,given by  � 0 (mod 2), and similarly b � 0 (mod 2).Inidentally, we have almost shown that # is a modular form for �1;2. This is beause if � a b d� 2 �1;2#�0; a� + b� + d� = �(� + d) 12#(0; �)whih, but for the �, says that # is a modular form of weight 12 . Of ourse we an get rid of this by taking#4 instead: it is a modular form for �1;2 of weight 2.The prinipal ongruene subgroup �(N) of level N in SL(2;Z) is the kernel of redution mod N . Amodular form of weight k and level N is a holomorphi funtion f(�) on H suh that for all � 2 H and all� a b d� 2 �(N) f �a� + b� + d� = (� + d)kf(�)and f is bounded near the usps in some sense. There is an analogous de�nition for Sp(2g;Z) for g > 1, andin that ase the boundedness ondition an be dropped as it is automatially satis�ed.Note that this de�nition only makes sense beause if for R = � a b d� we put eR(�) = (� + d)k theneR1R2(�) = eR1(R2�)eR2(�);in other words that e is a 1-oyle. So modular forms of weight k and level N are preisely the setions ofsome line bundle on Ag(N). It turns out that even for level 1 this bundle is ample, and that is why Ag is aprojetive variety.Here, to round things o�, are two more objets in mathematis that relate to abelian varieties. Noteverything does, and I have really just been showing some { quite hard { geometry in ation. But manysurprising things do.Let us have a last look at # and think about what happens if we take real parameters, replaing z 2 Cby x 2 R and � 2 H by it 2 R+ . Then #(x+ 1; it) = #(x; it)34



and #(x; it) =Xn2Zexp(��nt) exp(2�inx)= 1 + 2Xn2N exp(��n2t) os(2�nx);whih is real. Furthermore ��t#(x; it) = 2Xn2N��n2 exp(�n2t) os(2�nx)and �2�x2 #(x; it) = 2Xn2N�4�2n2 exp(�n2t) os(2�nx)so # satis�es the PDE ��t#(x; it) = 14� �2�x2 #(x; it):This equation is well known, though possibly not to the average geometer: it is the heat equation in onevariable, with ertain boundary onditions. To explain what the boundary onditions are we need to takelimt!0 #(x; it), whih doesn't exist. But as a distribution it does exist: that is, limt!0 R 10 f(x)#(x; it)dxexists if f is measurable. If we take f to be a funtion on the irle we an write f(x) =Pm am exp(2�imx),and then Z 10 f(x)#(x; it)dx = Z 10 Xn;mam exp(��n2t) exp�2�i(n+m)x	dx=Xn;mam exp(��n2t) Z 10 exp�2�i(n+m)x	dx=Xn a�n exp(��n2t)so limt!0 Z 10 f(x)#(x; it)dx =Xn an= f(0)= Z 10 f(x)Æ(x)dx :So if I take a irular piee of wire of length 1 and at time t = 0 apply a lighter to it at the origin, thetemperature at time t at the point x will be #(x; it).Finally: what do higher-dimensional abelian varieties look like as projetive varieties? An ellipti urveis a plane ubi, but what about surfaes. We an ertainly get some embeddings, by taking, say, the thirdpower of a prinipal polarisation, but that is very wasteful, embedding X in P8. Maybe we an do betterby taking a polarisation but not using all the setions (i.e. not using a omplete linear system to embed X)or by using a non-prinipal polarisation (this turns out to be more useful). How muh better? We an'tembed an abelian surfae in P3 beause a smooth hypersurfae in P3 has to be simply-onneted, so whatabout P4? There are indeed abelian surfaes embedded in P4. They were �rst disovered by Commesattiin 1915 when, of ourse, nobody was paying any attention, and then forgotten for �fty-seven years. Butthere is an amazing rank 2 vetor bundle on P4, alled the Horroks-Mumford bundle, and it has setions (afour-dimensional family of them) whose zeros are, in general, an abelian surfae.
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