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Abstract. The aim of this thesis is to extend the expanded degeneration
construction of Li and Wu to obtain good degenerations of Hilbert schemes of
points on semistable families of surfaces, as well as to discuss alternative stability
conditions and parallels to the GIT construction of Gulbrandsen, Halle and Hulek
and logarithmic Hilbert scheme constructions of Maulik and Ranganathan. We
construct some good degenerations of Hilbert schemes of points as proper Deligne-
Mumford stacks and show that these provide geometrically meaningful examples
of constructions arising from the work of Maulik and Ranganathan.
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1 Introduction

The study of moduli spaces is a central topic in algebraic geometry; among moduli
spaces, Hilbert schemes form an important class of examples. They have been
widely studied in geometric representation theory, enumerative and combinatorial
geometry and as the two main examples of hyperkähler manifolds, namely Hilbert
schemes of points on K3 surfaces and generalised Kummer varieties. A prominent
direction in this area is to understand the local moduli space of such objects and,
in particular, the ways in which a degeneration of smooth Hilbert schemes may
be given a modular compactification.

For example, we may consider the geometry of relative Hilbert schemes on a
degeneration whose central fibre has normal crossing singularities, i.e. singularities
which look locally like hyperplanes intersecting transversely. We may then ask
how the singularities of such a Hilbert scheme may be resolved while preserving
certain of its properties or how it may be expressed as a good moduli space. This
then becomes a compactification problem with respect to the boundary given
by the singular locus. Historically, an important method used in moduli and
compactification problems has been Geometric Invariant Theory (GIT). More
recently, the work of Maulik and Ranganthan [MR20] has explored how methods
of tropical and logarithmic geometry can be used to address such questions for
Hilbert schemes. This builds upon previous work of Li [Li13] and Li and Wu
[LW15] on expanded degenerations for Quot schemes and work of Ranganathan
[Ran22b] on logarithmic Gromov-Witten theory with expansions.
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Briefly stated, the aim of this thesis is to provide explicit examples of such
compactifications and explore the connections between these methods.

1.1 Basic setup

Let k be an algebraically closed field of characteristic zero. Let X ! C be a
projective family of surfaces over a curve C ∼= A1 such that the total space is
smooth and the central fibre X0 has simple normal crossing singularities. More
precisely, we ask that it be locally given by Spec k[x, y, z, t]/(xyz − t). In other
words, the general fibres are smooth and the central fibre X0 over 0 ∈ C looks
locally like three planes intersecting transversely in A3. These will be denoted
Y1, Y2 and Y3 throughout this work, where these are given in local coordinates
by x = 0, y = 0 and z = 0 respectively. Let X◦ := X \ X0, which lies over
C◦ := C \ {0}. Given such a family X ! C, we will explore how techniques of
expanded degenerations may be used to construct good compactifications of the
relative Hilbert scheme of m points Hilbm(X◦/C◦). There are two main aims we
may consider.

Firstly, one can aim to construct a compactification in which all limit sub-
schemes can be chosen to satisfy some transversality condition in some modifica-
tion of X0. In general, transversality will mean that the subschemes should be
normal to the codimension 1 strata of the central fibre. This forces any interest-
ing behaviour of the subschemes to occur on the smooth irreducible components
of the modifications of X0. In the case which interests us here, namely Hilbert
schemes of points, it will just mean that we would like our subschemes to have
support in the smooth loci of the fibres. We shall abuse terminology slightly and
refer to this condition throughout this work as the condition that the subschemes
have smooth support. The problem therefore is to construct expansions (birational
modifications of the central fibre of X in a 1-parameter family) in which all limits
needed to compactify Hilbm(X◦/C◦) can be chosen with smooth support. This
allows us to break down the problem of studying Hilbert schemes of points on
X0 into smaller parts, by studying the products of Hilbert schemes of points on
the irreducible components of the modifications of X. Moreover, this approach
will allow us to construct compactifications as stacks which have good properties
as moduli spaces. In particular, for all the compactifications constructed in this
way, the data of each family of length m zero-dimensional subschemes over C is
completely determined by its degenerate fibre, i.e. by its limit in the compact-
ification. As we will mention in the following section, the work of Li and Wu
only covers the case where the singular locus of X0 is smooth. We would like
to highlight that understanding how these problems work in general for simple
normal crossings is quite powerful, as we can always use semistable reduction to
reduce to this case.

Secondly, one can consider the more specific case where X is a type III good
degeneration of K3 surfaces and try to construct a family of Hilbert schemes of
points on X which will be minimal in the sense of the minimal model program,
and by this we mean a good or dlt minimal degeneration (see Section 2.3 for
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definitions of these terms). The singularities arising in such a degeneration X are
of the type described above, i.e. we can restrict ourselves to the local problem
where X0 is thought of as given by xyz = 0 in A3. Among other reasons, Hilbert
schemes of points on K3 surfaces are interesting to study because they form a
class of examples of hyperkähler varieties.

1.2 Previous work in this area

Expanded degenerations were first introduced by Li [Li13] and then used by Li
and Wu [LW15] to study Quot schemes on degenerations X ! C, in the case
where the singular locus of X0 is smooth. They construct a stack of expansions
C and a family X over it, which is a stack of modifications of X0 in an expanded
family, subject to some equivalence relations; among others a relation induced
by a natural torus action on the modified fibres. They then impose a stability
condition which cuts out families of subschemes of X which meet the boundary
of the special fibre in a transverse way. For each choice of Hilbert polynomial the
family thus obtained is a proper Deligne-Mumford stack.

Following on from [LW15], Gulbrandsen, Halle and Hulek [GHH19] present a
GIT version of the above construction in the case of Hilbert schemes of points.
They construct an explicit expanded degeneration, i.e. a modified family over
a larger base, whose fibres correspond to blow-ups of components of X0 in the
family. They present a linearised line bundle on this space for the natural torus
action and they are able to show that in this case the Hilbert-Mumford criterion
simplifies down to a purely combinatorial criterion. Using this, they impose a GIT
stability condition which recovers the transverse zero-dimensional subschemes of
Li and Wu and prove that the corresponding stack quotient is isomorphic to that
of Li and Wu. A motivation for this work was to construct type II degenerations
of Hilbert schemes of points on K3 surfaces. Indeed, type II good degenerations
of K3 surfaces present these types of singularities in the special fibre, which is a
chain of surfaces intersecting along smooth curves.

There is more recent work of Maulik and Ranganathan [MR20], building upon
earlier ideas of Ranganathan [Ran22b] and results of Tevelev [Tev07], in which
they use techniques of logarithmic and tropical geometry to construct appropriate
expansions of X ! C. This allows them to define moduli stacks of transverse
subschemes starting from the case where X0 is any simple normal crossing variety.
They show that the stacks thus constructed are proper and Deligne-Mumford. For
more details on this, see Section 2.5.

1.3 Main results

Let X ! C be a semistable degeneration of surfaces. In the following sections,
we propose explicit constructions of expanded degenerations and stacks of stable
lengthm zero-dimensional subschemes on these expanded families, which we show
to have good properties.
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We start by making a stack of expansions C and family X over it, which
contains all expansions of X which can be obtained using a specific sequence of
blow-ups. The type of expansion of X which can appear in X is therefore greatly
restricted, which in this case offers significant advantages, as we will see. We then
describe how Li-Wu stability (abbreviated LW stability) can be extended to this
setting and define an alternative notion of stability, called strict weak stability
with smooth support (abbreviated SWS stability), derived from GIT stability
conditions. We may then construct the stacks Mm

LW and Mm
SWS of LW and SWS

stable length m zero-dimensional subschemes on X. Our first main results are
the following.

Theorem 1.3.1. The stacks Mm
LW and Mm

SWS are Deligne-Mumford and proper.

Theorem 1.3.2. There is an isomorphism of stacks

Mm
LW

∼= Mm
SWS.

This construction has the benefit of being very straightforward compared to
the other possible constructions solving this problem, as we will discuss later. The
restrictive choices made in the construction of X mean that LW or SWS stability
are already sufficient conditions to make the stacks of stable objects proper. We
will see that if we allow for other choices of expansions to occur, this will no
longer be the case, and additional steps will need to be taken in order to produce
a proper stack.

This leads us to the second part of our work, where we present a stack of ex-
pansions C′ with a family X′ over it, which contains X as a substack, and explore
the different choices which can be made in order to construct a proper stack of
stable length m zero-dimensional subschemes on this wider range of expansions.
We start by extending the LW and SWS stability conditions defined for the first
construction to this setting and denote by Nm

LW and Nm
SWS the corresponding

stacks of LW and SWS stable length m zero-dimensional subschemes on X′. We
show that, though both of these stacks are universally closed, they are not sepa-
rated, as they contain several non-equivalent representatives for the same limit.
We consider two main approaches to solve this problem.

The first method to construct separated stacks is to identify all limits of a
given object in Nm

LW and Nm
SWS. We will call the resulting stacks Nm

LW and Nm
SWS.

These are no longer algebraic stacks but we may now prove the following theorem.

Theorem 1.3.3. The stacks Nm
LW and Nm

SWS have finite automorphisms and are
proper.

This approach parallels work of Kennedy-Hunt on logarithmic Quot schemes
[Ken23].

The second method we use is to define an additional stability condition, called
(α, β)-stability, which we use to cut out proper substacks of Nm

LW and Nm
SWS. The

(α, β)-stability must satisfy some subtle properties in order for the substack it
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cuts out to be proper; indeed it must be what we call a proper LW or SWS
stability condition (see Definition 7.5.8). A proper LW stability condition (α, β)
as defined here recovers one of the choices of stability condition arising from the
methods of Maulik and Ranganathan [MR20] in the case of Hilbert schemes of
points. We denote by Nm

MR,(α,β) and Nm
PSWS,(α,β) the stacks of stable length m

zero-dimensional subschemes for proper LW and SWS stability conditions (α, β).
We are then able to prove the following results.

Theorem 1.3.4. The stacks Nm
MR,(α,β) and Nm

PSWS,(α,β) are Deligne-Mumford and
proper.

Theorem 1.3.5. For a fixed (α, β) which defines a proper LW or SWS stability
condition, there is an isomorphism of stacks

Nm
MR,(α,β)

∼= Nm
PSWS,(α,β).

These choices of proper substack distinguish some geometrically meaningful
examples among all possible choices arising from the methods of Maulik and
Ranganathan. Our examples do not recover every possible choice, because the
geometric assumptions we make in the construction of X′ mean that it does
not contain all possible expansions of X. The reason for these assumptions is
discussed in Section 7.1. The stacks Mm

LW and Mm
SWS are special cases of N

m
MR,(α,β)

and Nm
PSWS,(α,β) stacks.

Finally, we are able to show that all proper algebraic stacks constructed here
provide good minimal models (see Section 2.3 for definitions of minimality).
Moreover, if X ! C is a good type III degeneration of K3 surfaces, the rela-
tive holomorphic symplectic 2-form on X induces a nowhere degenerate relative
logarithmic 2-form on each of the constructions presented above.

1.4 Organisation

We start, in Section 2, by giving some background on stacks and hyperkähler
varieties, the appropriate notion of a minimal degeneration for this context, some
relevant definitions in logarithmic and tropical geometry, and an overview of the
work of Maulik and Ranganathan from [MR20] which we will want to refer to in
later sections.

Then, in Section 3, we set out a first expanded construction on schemes and,
in Section 4, we discuss how various GIT stability conditions can be defined on
this construction. As this is simpler than our later construction, we take the
opportunity to explain in detail the blow-ups, torus action, linearisation and
stability conditions, which will facilitate our explanations of similar processes
in the second construction. In Section 6, we describe a corresponding stack
of expansions and family over it, building on the expanded degenerations we
constructed as schemes, and extend our stability conditions to this setting. We
are then able to show that the stacks of stable objects defined have the desired
Deligne-Mumford and properness properties.
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We then make a second, more general construction in Section 7, which we
describe also as a stack and adapt the stability conditions from the first part to
this context. We then describe two different methods of making proper stacks
and how some of our different stacks relate to each other.

Finally, we discuss how all these constructions relate to the minimal model
program in Section 8.

2 Background

2.1 Stacks

In this section, we give some background on stacks, as they will feature heavily
throughout this work. All information in this section is sourced from the Stacks
Project [Stacks]. For further reading see also [Ols16].

Fibred categories. Let C be a category and p : S ! C be a category over C. We
start by defining a notion of base change analogous to a fibre product. Indeed,
given an object x ∈ Ob(S) and p(x) = U ∈ Ob(C), we would like any morphism
of objects V ! U in C to lift to a morphism ϕ of objects ϕ : x ! y in S which
commutes with the existing maps, in the manner of a fibre product.

Remark 2.1.1. Note that it is not actually a fibre product as the horizontal arrows
f and ϕ of the corresponding cartesian diagram are morphisms V ! U and y ! x,
but the vertical arrows just represent y being sent to V and x to U by the map
p (we have defined no actual morphism y ! V or x! U).

We formalise this idea with the following definition.

Definition 2.1.2. Let C be a category and p : S ! C be a category over C. A
morphism ϕ : y ! x is strongly C-cartesian if for every z ∈ Ob(S), the map

MorS(z, y) −! MorS(z, x)×MorC(ϕ(z),ϕ(x)) MorC(p(z), p(y))

given by ψ 7! (ϕ ◦ ψ, p(ψ)) is bijective.

Remark 2.1.3. The condition that the map in Definition 2.1.2 be bijective mirrors
the universal property for fibre products. Here, as we do not define a morphism
z ! p(y), we would need to take instead p(z) ! p(y) in the statement of the
corresponding universal property. This will have a similar effect to the case of
fibre products, namely that, given x ∈ Ob(S) and f : V ! p(x), the pair (y, ϕ)
such that ϕ : y ! x is a strongly cartesian morphism and p(ϕ) = f is unique up
to unique isomorphism. Because of this, for convenience, we may refer to such a
strongly cartesian morphism as f ∗x! x since it is a lift of f .

We now see some properties of strongly cartesian morphisms.

Lemma 2.1.4. Let C and p : S ! C as above.

1. The composition of two strongly cartesian morphisms is strongly cartesian.
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2. Any isomorphism of S is strongly cartesian.

3. Any strongly cartesian morphism ϕ such that p(ϕ) is an isomorphism, is an
isomorphism.

We are now in a position to define a fibred category. In the following, given
p : S ! C as before, we will use the notation SU to denote the objects and
morphisms of S which lie over U ∈ Ob(C).

Definition 2.1.5. Let C and p : S ! C be as above. We say that S is a fibred
category over C if given any x ∈ Ob(S) lying over U ∈ Ob(C) and any morphism
f : V ! U of C, there exists a strongly cartesian morphism f ∗x ! x lying over
f .

If S ! C is a fibred category and all fibre categories (categories SU over objects
U of C) are groupoids, i.e. categories where every morphism is an isomorphism,
then we say that S ! C is a category fibred in groupoids.

A category fibred in sets is a category fibred in groupoids all of whose fibre
categories are discrete, i.e. their only morphisms are the identity morphisms.

Now if S is any fibred category over C, a choice of pullbacks for p : S ! C is
given by a choice of a strongly cartesian morphism f ∗x! x lying over f for any
morphism f : V ! U of C and any x ∈ Ob(SU).

Sites. As we will see, a stack consists of a category p : S ! C over C, which
satisfies certain properties. As our stack p : S ! C will be given by some fibration
over C, as well as requiring that p : S ! C be a fibred category, we would like C
to have good properties with respect to covering morphisms in C itself. This is
formalised by requiring that C be a site, which is defined as follows.

Definition 2.1.6. Let C be a category. A family of morphisms with fixed target
in C is given by an object U ∈ Ob(C), a (possibly empty) set I and for each i ∈ I
a morphism Ui ! U of C with target U . We use the notation {Ui ! U}i∈I to
indicate this.

Definition 2.1.7. A site is given by a category C and a set Cov(C) of families
of morphisms with fixed target {Ui ! U}i∈I , called coverings of C, satisfying the
following axioms.

1. If V ! U is an isomorphism, then {V ! U} ∈ Cov(C).

2. If {Ui ! U}i∈I ∈ Cov(C) and for each i we have {Vij ! Ui}j∈Ji ∈ Cov(C),
then {Vij ! U}i∈I,j∈Ji ∈ Cov(C).

3. If {Ui ! U}i∈I ∈ Cov(C) and V ! U is a morphism of C, then Ui ×U V
exists for all i and {Ui ×U V ! V }i∈I ∈ Cov(C).

Definition 2.1.8. A morphism f : x ! y of a category C is said to be repre-
sentable if for every morphism z ! y in C, the fibre product x×y z exists.

Notice that the first half of the third axiom of Definition 2.1.7 can therefore
be rephrased as the requirement that Ui ! U be representable for all i ∈ I.
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Descent data. We will start by describing a descent datum abstractly and then
specify what it means more precisely in the context which interests us, following
the approach taken in the Stacks Project [Stacks].

Let C be a category and let p : S ! C be a fibred category along with a choice
of pullbacks. Let U = {fi : Ui ! U}i∈I be a family of morphisms of C and assume
that all fibre products Ui ×U Uj and Ui ×U Uj ×U Uk exist. Now, since p : S ! C
is a fibred category, given the projection morphism pr0 : Ui ×U Uj ! Ui in C
and given Xi ∈ Ob(S) such that p(Xi) = Ui, we must have a strongly cartesian
morphism pr∗0Xi ! Xi, where we are using the notation of the lift we defined
earlier. The object pr∗0Xi lies over Ui ×U Uj. Similarly, given the projection
morphism pr1 : Ui×U Uj ! Uj in C and Xj ∈ Ob(S) such that p(Xj) = Uj, there
exists a strongly cartesian morphism pr∗1Xj ! Xj, where pr∗1Xj ∈ Ob(SUi×UUj

).

Definition 2.1.9. A descent datum (Xi, ϕij) in S relative to the family {fi : Ui !
U}i∈I is given by an object Xi of SUi

for each i ∈ I and an isomorphism
ϕij : pr

∗
0Xi ! pr∗1Xj in SUi×UUj

for each pair (i, j) ∈ I2, as demonstrated in
the following commuting diagram.

Xi pr∗0Xi
∼= pr∗1Xj Xj

Ui Ui ×U Uj Uj

U

p p p

pr0

pr1

Moreover, we require that for every triple of indices (i, j, k) ∈ I3, the diagram

pr∗0Xi pr∗2Xk

pr∗1Xj

pr∗01 ϕij

pr∗02 ϕik

pr∗12 ϕjk

in the category SUi×UUj×UUk
commutes. A morphism ψ : (Xi, ϕij) ! (X ′

i, ϕ
′
ij) of

descent data is given by a family ψ = (ψi)i∈I of morphisms ψi : Xi ! X ′
i in SUi

such that all the diagrams

pr∗0Xi pr∗1Xj

pr∗0X
′
i pr∗1X

′
j

ϕij

pr∗0 ψi pr∗1 ψj

ϕ′ij

in the categories SUi×UUj
commute.
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Here, we will actually want to think of the category C in Definition 2.1.9 as
being a site, so the fibre products Ui ×U Uj and Ui ×U Uj ×U Uk will exist by
condition (3) of Definition 2.1.7.

For now, let C be a category, and let p : S ! C be a fibred category together
with a choice of pullbacks. Let U = {fi : Ui ! U}i∈I and V = {Vj ! V }j∈J
be families of morphisms of C with fixed target. Assume all the fibre products
Ui ×U Ui′ , Ui ×U Ui′ , Ui ×U Ui′ ×U Ui′′ , Vj ×V Vj′ and Vj ×V Vj′ ×V Vj′′ exist. Let
α : I ! J , h : U ! V and gi : Ui ! Vα(i) be a morphism of families of maps with
fixed target. Since p : S ! C is a fibred category, then, given such a morphism
gi and an object Yα(i) ∈ Ob(SVα(i)

), there exists an object g∗i Yα(i) over Ui and a
strongly cartesian morphism g∗i Yα(i) ! Yα(i). Now, again, given the projection
morphism Ui ×U Ui′ ! Ui and g∗i Yα(i) ∈ Ob(SUi

), we have a strongly cartesian
morphism pr∗0(g

∗
i Yα(i))! g∗i Yα(i).

Lemma 2.1.10. Let the data (C, p : S ! C,U ,V , α, h, gi) be as above. Let
(Yj), ϕjj′ be a descent datum relative to the family {Vj ! V }. The system

(g∗i Yα(i), (gi × gi′)
∗ϕα(i)α(i′))

is a descent datum relative to U .

The map (gi × gi′)
∗ϕα(i)α(i′) gives an isomorphism pr∗0 g

∗
i Yα(i)

∼= pr∗1 g
∗
i′Yα(i′).

This can be seen illustrated in the diagram below.

g∗i Yα(i) pr∗0 g
∗
i Yα(i)

∼= pr∗1 g
∗
i′Yα(i′) g∗i′Yα(i′)

Ui Ui ×U Ui′ Ui′

U

p p p

pr0

pr1

Definition 2.1.11. Let C be a category and p : S ! C a fibred category along
with a choice of pullback. Let U = {fi : Ui ! U}i∈I be a family of morphisms
with target U . Assume all the fibre products Ui×U Uj and Ui×U Uj ×U Uk exist.

1. Given an object X of SU , the trivial descent datum is the descent datum
(X, idX) with respect to the family {idU : U ! U}.

2. Given an object X of SU we have a canonical descent datum on the family
of objects f ∗

i X by pulling back the trivial descent datum (X, idX) via the
obvious map {fi : Ui ! U} ! {idU : U ! U}. We denote this descent
datum (f ∗

i X, can).

3. A descent datum (Xi, ϕij) relative to {fi : Ui ! U} is called effective if there
exists an object X of SU such that (Xi, ϕij) is isomorphic to (f ∗

i X, can).
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Presheaves of morphisms and stacks.

Definition 2.1.12. Given a category C and an object U ∈ Ob(C), we define
the category of objects over U , denoted C/U , as follows. The objects of C/U are
morphisms V ! U for some V ∈ Ob(C). Morphisms between objects V ! U and
V ′ ! U are morphisms V ! V ′ in C that make the following diagram commute.

V V ′

U

Now, let p : S ! C be a fibred category and let x, y ∈ Ob(SU). We will define
a functor

Mor(x, y) : (C/U)op −! Sets,

where (C/U)op denotes the opposite category of C/U in which all objects are
the same but the morphisms are reversed. We make a choice of pullbacks for
p : S ! C. Then for f : V ! U , we set

Mor(x, y)(f : V ! U) = MorSV
(f ∗x, f ∗y),

where the right hand side denotes the set of V -morphisms in S from f ∗x to f ∗y
(note that f ∗x, f ∗y ∈ Ob(SV ) as both x, y ∈ Ob(SU)).

Let f ′ : V ′ ! U be a second object of C/U . We must now describe what the
functor Mor(x, y) does to morphisms of C/U . Recall from Definition 2.1.12 that
a morphism from the object f ′ : V ′ ! U to the object f : V ! U in C/U is given
by a morphism g : V ′ ! V such that f ′ = f ◦ g. This gets sent to the map of sets

MorSV
(f ∗x, f ∗y) −! MorS′

V
(f ′∗x, f ′∗y); ϕ 7! ϕ|V ′ ,

which can be thought of as g∗.

Lemma 2.1.13. The functor Mor(x, y) defined above is a presheaf.

We call Mor(x, y) the presheaf of morphisms from x to y. The subpresheaf
Isom(x, y) whose value over V is the set of isomorphisms f ∗x! f ∗y in the fibre
category SV is called the presheaf of isomorphisms from x to y.

Definition 2.1.14. Let C be a site. A stack over C is a category p : S ! C over
C which satisfies the following conditions:

1. p : S ! C is a fibred category,

2. for any U ∈ Ob(C) and any x, y ∈ SU , the presheaf Mor(x, y) is a sheaf on
the site C/U , and

3. for any covering U = {fi : Ui ! U}i∈I of the site C, any descent datum in
S relative to U is effective.
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Definition 2.1.15. A stack in groupoids over a site C is a category p : S ! C
over C such that

1. p : S ! C is fibred in groupoids over C,

2. for any U ∈ Ob(C) and any x, y ∈ SU , the presheaf Isom(x, y) is a sheaf on
the site C/U , and

3. for any covering U = {fi : Ui ! U}i∈I of C, any descent data in S relative
to U is effective.

The following lemma describes how this definition relates to Definition 2.1.14.

Lemma 2.1.16. Let C be a site. Let p : S ! C be a category over C. The
following are equivalent.

1. S is a stack in groupoids over C,

2. S is a stack over C and all fibre categories are groupoids, and

3. S is fibred in groupoids over C and is a stack over C.

Fppf topology. Before we can define the notion of an algebraic stack, we say
a few words about fppf topology. We start by recalling some terminology for
morphisms of schemes.

Definition 2.1.17. A morphism of rings R ! A is of finite presentation if A is
isomorphic to R[x1, . . . , xn]/(f1, . . . , fm) as an R-algebra for some n,m and some
polynomials fj. Now, let f : X ! S be a morphism of schemes. Then we make
the following definitions.

1. The morphism f is of finite presentation at x ∈ X if there exists an affine
open neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) =
V ⊂ S with f(U) ⊂ V such that the induced ring map R ! A is of finite
presentation.

2. We say that f is locally of finite presentation if it is of finite presentation
at every point of X.

3. We say that f is of finite presentation if it is locally of finite presentation,
quasi-compact and quasi-separated (see Definitions 26.19.1 and 26.21.3 of
[Stacks]).

We may now define an fppf covering.

Definition 2.1.18. Let T be a scheme. An fppf covering of T is a family of
morphisms {fi : Ti ! T}i∈I of schemes such that each fi is flat, locally of finite
presentation and such that T =

⋃
fi(Ti).

The next lemma shows us that an fppf covering on a scheme T satisfies exactly
the properties of a site.
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Lemma 2.1.19. Let T be a scheme.

1. If T ′ ! T is an isomorphism then {T ′ ! T} is an fppf covering of T .

2. If {Ti ! T}i∈I is an fppf covering and for each i we have an fppf covering
{Tij ! Ti}j∈Ji, then {Tij ! T}i∈I,j∈Ji is an fppf covering.

3. If {Ti ! T}i∈I is an fppf covering and T ′ ! T is a morphism of schemes,
then {T ′ ×T Ti ! T}i∈I is an fppf covering.

Let Sch be some suitably chosen small category of schemes. For our purposes,
it is enough to consider the category of quasi-projective k-schemes. We will say
that some category Schfppf is a big fppf site if it is a site given by the underlying
category Sch and a set of fppf coverings of Sch.

Algebraic stacks. We may now define algebraic spaces and algebraic stacks.
As we will see in Lemma 2.1.25, it is possible to replace fppf by étale in the
following.

Definition 2.1.20. Let S be a scheme in Schfppf . An algebraic space over S is a
presheaf F : (Sch /S)opfppf ! Sets with the following properties.

1. The presheaf F is a sheaf.

2. The diagonal morphism F ! F × F is representable.

3. There exists a scheme U ∈ Ob((Sch /S)fppf) and a map U ! F which is
surjective and étale.

We now describe what it means for categories and morphisms of categories to
be representable.

Definition 2.1.21. Let C be a category. A category fibred in groupoids p : X ! C
is called representable if there exists an object X of C and an equivalence of stacks
j : X ! C/X.

If the category C in the above definition is actually the site (Sch /S)fppf for
some scheme S ∈ Ob(Schfppf), then we sometimes say that p : X ! (Sch /S)fppf
is representable by a scheme. We will now relax this condition slightly to allow
for the object X in the above definition to be an algebraic space. In order to do
so, we must first construct a category fibred in sets as follows.

Let S be a scheme contained in (Sch /S)fppf and let F : (Sch /S)opfppf ! Sets
define an algebraic space. For f : V ! U in (Sch /S)fppf let us fix the notation
F (f⊤) = f ∗ : F (U) ! F (V ), where f⊤ is the opposite morphism to f in the
category (Sch /S)opfppf . We construct a category SF fibred in sets over (Sch /S)fppf
as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob((Sch /S)fppf), x ∈ Ob(F (U))}.
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Then, for (U, x), (V, y) ∈ Ob(SF ) we define

MorSF
((V, y), (U, x)) = {f ∈ Mor(Sch /S)fppf (V, U) | f

∗x = y},

where composition is given by g∗◦f ∗ = (f◦g)∗ for a pair of composable morphisms
of (Sch /S)fppf . The category pF : SF ! (Sch /S)fppf is fibred in sets.

Definition 2.1.22. Let S be a scheme contained in Schfppf . A category fibred in
groupoids p : X ! (Sch /S)fppf is called representable by an algebraic space over
S if there exists an algebraic space F over S and an equivalence j : X ! SF of
categories over (Sch /S)fppf .

Now, a 1-morphism f : X ! Y of categories fibred in groupoids over (Sch /S)fppf
is called representable by algebraic spaces if for any U ∈ Ob((Sch /S)fppf) and any
y : (Sch /U)fppf ! Y the category fibred in groupoids (Sch /U)fppf ×y X is repre-
sentable by an algebraic space over U .

Definition 2.1.23. Let S be a base scheme contained in Schfppf . An algebraic
stack over S is a category p : X ! (Sch /S)fppf over (Sch /S)fppf satisfying the
following properties.

1. The category X is a stack in groupoids over (Sch /S)fppf .

2. The diagonal morphism X × X ! X is representable by algebraic spaces.

3. There exists a scheme U ∈ Ob((Sch /S)fppf) and a morphism (Sch /U)fppf !
X which is surjective and smooth.

Definition 2.1.24. Let S be a scheme contained in (Sch)fppf . Let X be an
algebraic stack over S. We say that X is a Deligne-Mumford stack if there exists
a scheme U and a surjective étale morphism (Sch /U)fppf ! X .

We shall use the following equivalent characterisation of Deligne-Mumford
stack in the following sections. An algebraic stack X over a scheme S is Deligne-
Mumford if for every algebraically closed field k and object X ∈ X (k), the auto-
morphism group of X is finite. See [Ols16] for details.

In the following, we will use the term Artin stack when we want to refer to
an algebraic stack which is not Deligne-Mumford. Finally, we note that defining
algebraic stacks over the fppf or étale topology comes to the same thing with the
following result.

Lemma 2.1.25. Let p : X ! (Sch /S)étale be a category over (Sch /S)étale defined
by replacing fppf by étale everywhere in Definition 2.1.23. Then this is also an
algebraic stack.

2.2 K3 surfaces and IHS or hyperkähler manifolds

In order to give an overview of irreducible holomorphic symplectic manifolds, we
make a brief detour from algebraic geometry to the category of complex analytic
manifolds. This is, in a sense, the natural perspective from which to first approach
these objects as we tend to classify them by deformation type.
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Definition 2.2.1. An irreducible holomorphic symplectic (IHS) or hyperkähler
manifold X is a simply-connected, compact Kähler manifold whose space of holo-
morphic 2-forms H0(X,Ω2

X) is spanned by an everywhere nondegenerate form ω.

It follows from the definition that such an X must have even complex dimen-
sion 2n. If n = 1, then X is a K3 surface. Moreover, taking an n-fold exterior
power of some section ofH0(X,Ω2

X) will yield an everywhere nonvanishing section
of the canonical bundle, hence all IHS manifolds have trivial canonical bundle.
There are broadly speaking four known types of hyperkähler manifold. The first
two were constructed by Beauville [Bea83]:

1. the Hilbert scheme of n points on a K3 surface S, denoted S[n] (a K3 surface
is a special case of this);

2. the generalised Kummer varietyKn+1(A) on a 2-dimensional abelian variety
A.

All known examples of hyperkähler manifolds have been shown to be a deforma-
tion of one of these two cases, except for two families of examples constructed by
O’Grady ([OGr03] and [OGr99]). Note also that, although the representatives of
these deformation classes given here happen to be algebraic, all elements of these
classes are not.

One of the main motivations for the study of IHS manifolds is the Beauville-
Bogomolov decomposition theorem [Bog74], which states that, up to taking a
finite étale cover, compact Kähler manifolds with trivial canonical bundle are
given as products of abelian varieties, strict Calabi-Yaus and IHS manifolds.

IHS manifolds are also referred to as hyperkähler manifolds (note that our
definition of hyperkähler is what is called irreducible hyperkähler in [Huy99])
because they can be alternatively described as compact connected 4n-dimensional
Riemannian manifolds (M, g) with holonomy Sp(n). For such a manifold, the
quaternions H give rise to endomorphisms on the tangent bundle ofM . Moreover,
for any imaginary λ ∈ H such that λ2 = −1, the corresponding endomorphism
defines an integrable almost complex structure on M with respect to which the
metric g is Kähler. There is therefore a sphere S2 of complex structures on M
satisfying these properties. Hyperkähler manifolds described in this way have
been shown to be equivalent to IHS manifolds, following Yau’s solution of the
Calabi conjecture. For further details, see [Huy99].

Moduli spaces of IHS manifolds. For K3 surfaces and higher dimensional
IHS manifolds, it is possible to give more or less good descriptions of their moduli
spaces in terms of Hodge theory. For any IHS manifold X, the integral part of the
degree two cohomology H2(X,Z) is a free Z-module of finite rank, which carries
a nondegenerate integral symmetric bilinear form endowing it with the structure
of a lattice L of signature (3, rk(L)− 3). Given such a lattice, we may define the
corresponding period domain

ΩL := {[x] ∈ P(L⊗ C) | (x, x) = 0, (x, x) > 0}.
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A marking of X is an isometry ϕ : H2(X,Z) ! L. The map ϕ extends by
linearity to H2(X,C) and it is easy to see that given such an isometry, we have
[ϕ(ω)] ∈ ΩL, where ω is the holomorphic symplectic 2-form defined above. The
following Torelli theorem holds for K3 surfaces.

Theorem 2.2.2. Two K3 surfaces S and S ′ are isomorphic if and only if there is
an isometry H2(S ′,Z)! H2(S,Z) whose C-linear extension preserves the Hodge
decomposition.

In fact, a slightly stronger result holds. See [GHS13] for more details. We
moreover have the next result, which was first shown by Todorov [Tod89].

Theorem 2.2.3. The set O(L)\ΩL is in 1:1 correspondence with the set of iso-
morphism classes of K3 surfaces.

Note, however, that the action of O(L) is not well behaved and for a good
notion of moduli space for K3 surfaces, we must consider instead polarised K3
surfaces. In the polarised case, we may define a subspace Ω of ΩL and a subgroup
Õ(L) of O(L) (see [GHS13] for precise details) and show the following.

Theorem 2.2.4. The variety Õ(L)\Ω is the moduli space of polarised K3 surfaces
of degree 2d.

For higher dimensional IHS manifolds, a global Torelli theorem like the one
for K3 surfaces no longer holds. A weaker version still exists, formulated by
Markman [Mar11], based on results of Verbitsky, see [Huy12] and [Ver13].

Theorem 2.2.5. Suppose that X and Y are IHS manifolds.

1. If f : H2(Y,Z)! H2(X,Z) is an isomorphism of integral Hodge structures
which is a parallel transport operator then X and Y are bimeromorphic.

2. If, moreover, f maps a Kähler class of Y to a Kähler class of X, then X
and Y are isomorphic.

In this situation again, after fixing certain invariants, we may start to describe
a moduli space of IHS manifolds, but unlike the K3 case, the degree is no longer
the only invariant of a polarisation. It is therefore necessary to fix the dimension
2n, a lattice L and the Fujiki invariant (which together form what is called the
numerical type N of the IHS manifold) and a polarisation type, i.e. an O(L)-
orbit of a primitive vector h ∈ L. See [GHS13] for details. A moduli space
Mn,N,h of IHS manifolds with this fixed data is known to exist by Viehweg’s
results [Vie95]. The associated period domain ΩLh

:= h⊥ ∩ ΩL corresponds to
the smaller lattice Lh of signature (2, rk(L)− 3). This implies that ΩLh

has two
connected components. Fix one and denote it by DLh

.

Theorem 2.2.6. For every component M′
n,N,h of the moduli space Mn,N,h, there

exists a finite to one dominant morphism

ψ : M′
n,N,h −! O+(L, h)\DLh

,

where O+(L, h) is the subgroup of real spinor norm 1 of the stabiliser of h in
O(L).
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Some further refinements of this result exist, especially for IHS manifolds of
the deformation type of Hilbert schemes of points on K3 surfaces. We refer the
reader to [GHS13] and [Huy99] for further details.

2.3 Minimal degenerations

There is a natural way to compactify moduli spaces of IHS manifolds called the
Baily-Borel compactification. Boundary components in the Baily-Borel compact-
ification correspond to orbits of totally isotropic subspaces E ⊂ Lh. Since Lh has
signature (2, n), the dimension of E is 1 or 2, corresponding to dimension 0 and
dimension 1 boundary components respectively. See [GHS13] for more details.
The different types of degenerations, see Definition 2.3.4, allow us to situate local
moduli problems within these compactified moduli spaces. Type I corresponds to
degenerations whose central fibre still has a component which is an IHS manifold.
Type II and type III correspond to degenerations whose central fibre lies over a
general point of a dimension 1 boundary component and a dimension 0 boundary
component respectively.

As mentioned in the introduction, there are two main goals we aimed to
achieve with our constructions. The first one was to find a good (i.e. proper
and Deligne-Mumford) compactification of the space Hilbm(X◦/C◦) such that all
limit subschemes in this compactification have smooth support. The second was
to study specifically the case where X ! C is a good type III degeneration of
K3 surfaces. In this context, the objective was to construct compactifications of
Hilbm(X◦/C◦) which give us type III degeneration of Hilbert schemes of points
on K3 surfaces satisfying some minimality condition in the sense of the minimal
model program. In this section, we will discuss what these types of degeneration
mean and what a good notion of minimality is in this setting.

An important notion in these definitions is that of the dual complex of a
fibre. Given a scheme Y =

⋃
Yi of dimension d, where the Yi are irreducible

and meet transversely, we define the dual intersection complex to be the regular
cell complex Σ defined as follows. Each irreducible component of Y of dimension
d corresponds to a vertex of Σ and, more generally, an irreducible component
W ⊆

⋂
i∈I Yi corresponds to an |I| − 1 dimensional cell of Σ, which we denote by

vW . For every irreducible component W ′ with W ⊆ W ′, the cell corresponding
to W ′ is contained in vW . See [FKX17] for further details. For example, for the
type of normal crossing singularity described above, the dual complex will look
like a triangle, whose vertices are given by Y1, Y2 and Y3. The dual complex
of a good type III degeneration of Hilbert schemes of points on K3 surfaces is
therefore expressed as a triangulated sphere.

The minimality condition first considered by Kulikov [Kul77] for K3 surfaces
and Enriques surfaces is that of a semistable degeneration being good. This
definition is used by Nagai [Nag08] when constructing good type II degenerations
of Hilbert schemes of n points on K3 surfaces by resolving the singularities of the
relative Hilbert scheme of n points on good type II degenerations of K3 surfaces.
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In a similar direction, there are some computations in the thesis of Hanke [Han15]
on type II and type III degenerations of Hilbert schemes of 2 points on K3 surfaces.
We define what good means in this context, as it is given in [Nag08]. Note that
the term good minimal model used in Section 8 is meant in the more general sense
of Definitions 2.3.7 and 2.3.8.

Definition 2.3.1. A good semistable degeneration of compact symplectic Kähler
manifolds is a degeneration π : X ! C of relative dimension 2n satisfying

1. π is semistable, i.e. the total space X is smooth and the special fibre X0 =
π−1(0) is a reduced simple normal crossing divisor as a scheme theoretic
fibre.

2. There exists a relative logarithmic 2-form ωπ ∈ H0(X,Ω2
X/C(logX)) such

that ∧nωπ ∈ H0(X,KX/C) is nowhere vanishing.

Kulikov requires this property when describing minimal degenerations of K3
surfaces in terms of the dual complexes of their special fibres. In fact, this condi-
tion is simply called good, as, in this case, semistable degenerations seem to be a
natural property to require. It is now accepted that this is slightly too strong a
property to demand in general and for higher dimensional problems, de Fernex,
Kollár and Xu [FKX17] define the appropriate generalisation of the semistable
condition, which is the following.

Definition 2.3.2. A pair (X,D) is log canonical (or lc) if the discrepancy
a(E,X,D) ≥ −1 for every divisor E ⊂ Y and every birational morphism f : Y !
X.

A log canonical pair (X,D) is divisorial log terminal (or dlt) if for every divisor
E over (X,D) with discrepancy −1, the pair (X,D) is simple normal crossing at
the generic point of centerX(E), where centerX(E) is the image of E in X.

See [FKX17] for more details.

Definition 2.3.3. We say that X ! C is a semistable minimal degeneration,
respectively a dlt minimal degeneration of hyperkähler manifolds ifKX/C is trivial,
and X ! C is semistable or respectively (X,X0) is a dlt pair.

Note that every semistable degeneration is dlt. Moreover, the condition that
KX/C is trivial can be identified with the condition that there exists an every-
where nondegenerate relative holomorphic logarithmic 2-form, as in the second
point of Definition 2.3.1. Semistable and dlt minimal models are not unique and
it is possible to construct many such models with different types of singularities.
However, the topology of the dual complex is fixed for any dlt minimal degener-
ation. Let us now define what we mean exactly by the type of a degeneration (as
defined in [KLSV18]).

Definition 2.3.4. Let X ! C be a projective degeneration of hyperkähler man-
ifolds (including the K3 case). Let ν ∈ {1, 2, 3} be the nilpotency index for the
associated monodromy operator N on H2(Xt) (i.e. N = log Tu, where Tu is the
unipotent part of the monodromy T = TsTu). We say that the degeneration is of
type I, II, or III respectively if ν = 1, 2, 3 respectively.
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Moreover, the following theorem of Kollár, Laza, Saccà and Voisin [KLSV18]
tells us that given a dlt minimal degeneration, the type of the degeneration is
dictated by the dimension of the dual complex.

Theorem 2.3.5. Let X ! C be a minimal dlt degeneration of 2n-dimensional
hyperkähler manifolds. Let Σ denote the dual complex of the central fibre (and
|Σ| its topological realisation). Then

1. dim |Σ| is 0, n or 2n if and only if the type of the degeneration is I, II, or
III respectively, i.e. dim |Σ| = (ν − 1)n, where ν is as above.

2. If the degeneration is of type III, then |Σ| is a simply connected closed
pseudo-manifold (see [NX16] for details), which is a rational homology CPn.

We will now extend the previous notions of semistable and dlt to stacks.

Definition 2.3.6. Let Y be a Deligne-Mumford stack which is flat and locally
of finite type over C. For any C-scheme S with a (non-constant) étale mor-
phism ξ : S ! C and any Y ∈ Ob(YC) over C, we denote the composition map
f : ξ∗Y ! C. If every pair (ξ∗Y, f−1(0)) constructed in this way is dlt, we say
that Y ! C is dlt. We say that Y ! C is semistable if every such composition
map f is semistable.

We may generalise the notion of a semistable or dlt minimal degeneration
of hyperkähler manifolds to the stack setting in a similar way by adding the
requirement that the relative canonical bundle be trivial. We will see that working
with stacks enables us to better understand how hyperkähler varieties degenerate,
as it will allow us to construct a logarithmic 2-form which captures the data of
how the holomorphic symplectic 2-form degenerates. We also extend the notion
of a good minimal model to describe degenerations whose fibres are not necessarily
hyperkähler manifolds.

Definition 2.3.7. A semistable or dlt model Y ! C is a good minimal model if
Y is Q-factorial and the divisor KY + (Y0)red is semi-ample.

This generalises to the stack setting in the following way.

Definition 2.3.8. Let Y be a Deligne-Mumford stack which is flat and locally
of finite type over C. For any C-scheme S with a (non-constant) étale morphism
ξ : S ! C and any Y ∈ Ob(YC) over C, let W := ξ∗Y and denote by f : W ! C
the composition map. We say that Y ! C is a good minimal model if for every
such W and f , the divisor KW/C + f−1(0) is semi-ample.

2.4 Logarithmic and tropical geometry

Motivation. Logarithmic geometry arises as a natural solution in the study
of moduli spaces. Indeed, in our search to describe and classify varieties with
fixed invariants, it is essential that we understand the spaces parametrising such
varieties. Often, for example in the case of the moduli space of smooth curves
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of genus g, this is not compact. In order to compactify such a space, we must
allow for certain singular varieties to appear at the boundary of our moduli space.
Logarithmic geometry addresses this problem by extending the notion of smooth-
ness to allow for mild singularities, e.g. normal crossing singularities. Moreover,
a logarithmic scheme is endowed with additional structure which remembers the
smoothings of these boundary objects. For more details see the article [Log],
lecture notes [Ran22a], as well as the first section of [MR20].

Logarithmic structure. Let (X,OX) be a scheme and let MX be some sheaf
of monoids of X.

Definition 2.4.1. A pre-logarithmic structure on X is given by a homomorphism
of monoids

α : MX −! OX ,

where we consider OX as a sheaf of monoids with respect to its multiplicative
structure. This pre-logarithmic structure will be called a logarithmic structure if

α−1(O∗
X) −! O∗

X

is an isomorphism. This implies M∗
X

∼= O∗
X . A logarithmic scheme (X,MX) is

a scheme X together with a logarithmic structure MX .

We may construct examples of logarithmic structures in the following way.
Let D be a closed algebraic or analytic subset of X and denote by X∗ := X \D
its complement. Let j : X∗ ↪! X and i : D ↪! X be the inclusions. We then
define the sheaf of monoids on X

MX∗/X := {f ∈ OX | j∗(f) ∈ O∗
X∗} ⊆ OX .

We may then, for example, define the trivial logarithmic structure MX/X
∼= O∗

X

or the empty logarithmic structureM∅/X ∼= OX . The logarithmic structure which
will be of interest to us in this work is the following.

We let D be a simple normal crossing divisor in X. Then, for an open subset
U ⊆ X, we have

MX∗/X(U) := {f ∈ OX(U) | f |U\D ∈ O∗
X(U \D)}.

Definition 2.4.2. A morphism of logarithmic schemes (X,MX) ! (Y,MY ) is
a morphism of the underlying schemes X ! Y along with a morphism of sheaves
of monoids f ∗MY !MX compatible with the maps to OX .

Note that the morphism f ∗MY !MX is given by the composition

f−1MY −! f−1OY −! OX .

Definition 2.4.3. The characteristic sheaf is the quotient sheafMX := MX/O∗
X .
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Tropical geometry. We now see how the above ideas tie into toric and tropical
geometry. Let X be toric, with dense torus T ∼= Gn

m over an algebraically closed
field k of characteristic 0. Let

M = Hom(T,Gm) and

N = Hom(Gm, T )

be the character and cocharacter lattices.

Definition 2.4.4. A cone in NR := N ⊗ZR is given by the span of a finite set of
elements of N over R≥0. A face τ of this cone is the intersection of a supporting
hyperplane with the cone itself, spanned by a subset of this set over R≥0 such
that whenever u + v ∈ τ then we must have both u ∈ τ and v ∈ τ . A fan is a
collection of cones such that the intersection of any two cones is a face of each
cone, and each face of each cone in the fan is also a cone in the fan.

Toric geometry gives a correspondence between fans in NR and normal equiv-
ariant compactifications of T . Indeed, given a fan Σ in NR and a cone σ ∈ Σ, we
may write X(σ) := Spec k[σ∨ ∩M ]. If cones σ and σ′ intersect along a face τ we
may glue the varieties X(σ) and X(σ′) along the open immersions

X(σ) −↩ X(τ) ↪−! X(σ′).

Given a fan Σ, this produces a scheme X(Σ) and many properties of this scheme
can be easily read off the fan Σ. For example, X(Σ) is smooth if and only if every
cone σ ⊂ Σ has Z-independent primitive generators. For a general reference on
toric geometry, see [Ful93].

More generally, if (X,MX) is a logarithmic scheme, where MX gives the divi-
sorial logarithmic structure described before, then we may give the corresponding
notion of a fan Σ(X) in the following way. Recall that the characteristic sheaf
MX for the divisorial logarithmic structure is defined by

MX(U) = {f ∈ OX(U) | f |U\D ∈ O∗
X(U \D), f |D = 0},

i.e. it records the data of monomials which vanish at the divisor D. The idea
of Σ(X) will be to keep track of the corresponding degrees of vanishing. We let
Σ(X) := colimx∈X(MX,x)

∨. This will be contained in Rr
≥0, where r is the number

of components of D, since D is a simple normal crossing divisor. We call Σ(X)
the tropicalisation of X.

The Artin fan. In the following work, we will want to study possible birational
modifications of our scheme X around the divisor D. In the tropical language,
these are expressed as subdivisions.

Definition 2.4.5. Let Υ be a fan, let |Υ| =
⋃
Υ be its support and υ be a

continuous map
υ : |Υ| −! Σ(X)

23



such that the image of every cone in Υ is contained in a cone of Σ and that is
given by an integral linear map when restricted to each cone in Υ. We say that
υ is a subdivision if it is injective on the support of Υ and the integral points of
the image of each cone τ ∈ Υ are exactly the intersection of the integral points
of Σ(X) with τ .

Remark 2.4.6. This definition is based on Definition 1.3.1 of [MR20] but here, for
simplicity, we define subdivisions on fans as that is sufficient for our purposes.

A subdivision of the tropicalisation defines a birational modification of X in
the following way. The subdivision

Υ ↪−! Σ(X) ↪−! Rr
≥0

has an associated toric variety AΥ, which comes with a Gr
m-equivariant birational

map AΥ ! Ar. Then we have an induced morphism of quotient stacks

[AΥ/Gr
m] −! [Ar/Gr

m]

and we may define the induced birational modification of X to be

XΥ := X ×[Ar/Gr
m] [AΥ/Gr

m].

We shall call such a birational modification an expansion of X.

In order to study these subdivisions, or corresponding expansions, we define
the Artin fan

A(X) := colimx∈X Spec k[MX,x/T ],

where T is the dense torus of X. This is an Artin stack which encodes the
same data as the tropicalisation but there is now a tautological map X ! A(X).
The logarithmic structure on X is pulled back from A(X) and the logarithmic
properties of X are given by the properties of the map X ! A(X). For example,
X is logarithmically smooth if the mapX ! A(X) is smooth; X is logarithmically
flat if X ! A(X) is flat; etc. Moreover, the Artin fan parametrises expansions
of X.

2.5 Maulik-Ranganathan construction

In this subsection, we briefly recall the relevant aspects of the Maulik-Ranganathan
construction for logarithmic Hilbert schemes from [MR20] so as to give some con-
text and so that we may refer to them later.

Motivations and setup. Let X be a smooth threefold with simple normal
crossing divisor D. We shall refer to D as the boundary divisor. The aim is to
study the moduli space of ideal sheaves of fixed numerical type which meet the
boundary divisor transversely. Some key motivations for the study of such an
object come from enumerative geometry. For example, a common method used
to address problems of curve counting in a given smooth variety is to degenerate
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dz

Figure 1: Tropicalisation of X.

this variety to a singular union of simpler irreducible components. The property
of transversality is then crucial to ensure that all interesting behaviour of the
ideal sheaves on the degenerate object occurs with support in the interior of the
simpler irreducible components, which allows us to study it with more ease. One
of the main difficulties with this approach is that often, as in this setting, the
space of transverse ideal sheaves with respect to D is non-compact. In [MR20],
Maulik and Ranganathan formulate the Donaldson-Thomas theory of the pair
(X,D), starting by constructing compactifications of the space of ideal sheaves
in X transverse to D.

Key ideas. We will discuss the methods of Maulik and Ranganathan specifically
with respect to the case which interest us here, namely where X ! C is locally
given by Spec k[x, y, z, t]/(xyz− t) and we seek to study the moduli space of ideal
sheaves with fixed constant Hilbert polynomial m, for some m ∈ N with respect
to the boundary divisor D := X0.

The key idea is to construct the tropicalisation of X, denoted ΣX , and a
corresponding tropicalisation map, which we will use to understand how to obtain
the desired transversality properties in our compactifications. Recall from Section
2.4 that, given a divisorial logarithmic structure on X, the tropicalisation is a
fan or cone complex which for each defining function of the divisor records the
degree of vanishing of this function in X. Here we are considering X with the
divisorial logarithmic structure corresponding to D. The functions vanishing at
D will be x, y and z, therefore we may represent ΣX as a fan in R3

≥0, in this case
the positive orthant and its faces, as can be seen in Figure 1.

The tropicalisation ofD can be visualised by taking a hyperplane slice through
the cone in Figure 1; this yields a triangle with vertices corresponding to Y1, Y2
and Y3 in X0, edges between these vertices corresponding to the lines Yi ∩ Yj,
and 2-dimensional interior corresponding to the point Y1 ∩Y2 ∩Y3, as pictured in
Figure 2. This is the dual complex of X0 as defined in Section 2.3. We shall refer
to the tropicalisation of X0 as trop(X0). Placing the triangle at different heights
within the cone R3

≥0 can be thought of as making a finite base change on X.

We may construct a tropicalisation map which takes points of X◦ to ΣX , as
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Figure 2: Tropicalisation of X0.

in Section 1.4 of [MR20]. We recall the details of this map here. We assume that
K is a valued field extending k. First, we take a point of X◦(K), given by some
morphism SpecK ! X◦. By the properness of X, this extends to a morphism
SpecR! X for some valuation ring R. Now, let P ∈ X denote the image of the
closed point by the second morphism. The stalk of the characteristic sheaf at P
is given by Nr, where r is the number of linearly independent vanishing equations
of D at the point P . For example, in our context, if P ∈ Y1 ⊂ X0, then r = 1 and
N is generated by the function x; if P ∈ Y1 ∩ Y2, then r = 2 with N2 generated
by the functions x and y; etc.

Each element of Nr corresponds to a function f on X in the neighbourhood
of P up to multiplication by a unit and we may then evaluate f with respect to
the valuation map associated to K. This determines an element of

[Nr ! R≥0] ∈ Hom(Nr,R≥0) ↪−! ΣX .

This gives rise to a morphism

trop: X◦ −! ΣX

called the tropicalisation map. Now let the valuation map K ! R be surjective
and let Z◦ ⊂ X◦ be an open subscheme. We denote by trop(Z◦) the image of the
map trop restricted to Z◦(K). Maulik and Ranganathan are then able to show,
based on previous work of Tevelev [Tev07] for the toric case, that given such an
open subscheme Z◦ ⊂ X◦, the subset trop(Z◦) gives rise to an expansion X ′ of
X in which the closure Z of Z◦ has the required transversality properties. This
gives us a convenient dictionary to move back and forth between the geometric
and combinatorial points of view.

The possible tropicalisations of such subschemes, corresponding to expansions
on the geometric side, are captured on the combinatorial side by the notion of
1-complexes embedding into ΣX . See [MR20] for precises definitions.

Stability conditions. Let us now make precise what the correct notion of
transversality and stability are in this context.
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Definition 2.5.1. Let Z◦ ⊂ X◦
0 ×C◦ be a flat family of subschemes over C◦. Let

Y ! X0 ×C be an expansion over C such that the closure Z of Z◦ in Y has the
following properties:

1. The scheme Z is proper and flat over C,

2. The scheme Z has nonempty intersection with each stratum of Y ,

3. The scheme Z intersects all the strata of Y in the expected dimension.

Then we say that the family Z is dimensionally transverse.

Maulik and Ranganathan actually need a slightly stronger condition, resem-
bling the admissibility of Li and Wu.

Definition 2.5.2. In the situation of Definition 2.5.1, we say that Z is strongly
transverse if it is dimensionally transverse and for every divisor stratum S ⊂ Y
the induced map

IZ ⊗OY OS ! OS

is injective.

Note that in the specific case of Hilbert schemes of points the definition of
dimensional transversality happens to be equivalent to the condition that for
every divisor stratum S ⊂ Y the map

IZ ⊗OY OS ! OS

be injective paired with the requirement for finite automorphisms, i.e. it is equiva-
lent to Li-Wu stability (see Section 5.2 for a definition of this stability condition).
In general for higher dimensional subschemes this will not be the case, however.

As mentioned above, for an open subscheme Z◦ ⊂ X◦, we may consider its
image trop(Z◦) under the tropicalisation map. Now recall from Section 2.4 that
a subdivision of the tropicalisation ΣX defines an expansion of X. The expan-
sion defined by trop(Z◦) will in general not correspond to a blow-up but to some
birational modification given by a series a blow-ups and contractions. We note
here that while contracting components of a fibre over a 1-parameter family will
in general be flat, this is no longer the case when this operation is made over a
larger base. It will therefore be necessary, for each possible trop(Z◦), to make a
choice of subdivision corresponding to an actual blow-up on X. Maulik and Ran-
ganathan prove that, given Z◦, an expansion can be constructed from trop(Z◦)
which has the required stability condition and good existence and uniqueness
properties. Indeed we recall the statement of Proposition 2.5.2 of [MR20] here
for convenience.

Proposition 2.5.3. Let Z◦
η be a flat family of subschemes of X◦ over SpecK

whose closure in X is strongly transverse. Then there exists a canonical triple
(R′,Y ′, Z ′) consisting of a ramified base change R ⊂ R′ with fraction field K′ and
expansion of X

Y ′ ! SpecR′
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such that the closure Z ′ of Z◦
η ⊗K K′ in Y is strongly transverse, satisfying the

following uniqueness property:
For any other choice (R′′,Y ′′, Z ′′) satisying these requirements there exists a

unique toroidal birational morphism

Y ′′ ! Y ′′
1

over SpecR′′ with subscheme Z ′′
1 , and a ramified covering SpecR′′ ! SpecR,

such that Z ′′
1 ⊂ Y ′′

1 is obtained from Z ′ ⊂ Y ′ by base change.

In fact, in our case, since we are only considering Hilbert schemes of points
and the stability conditions simplify as mentioned above, we may use Propositions
2.3.1 and 2.4.1 of [MR20] instead.

Construction of the stacks of expansions. Through these methods, one
can obtain existence and uniqueness properties for these flat limits. To build a
moduli space of such subschemes, Maulik and Ranganathan start by constructing
a moduli space of possible expansions arising from Tevelev’s procedure. Let us
denote the set of isomorphism classes of 1-complexes which embed into ΣX by
|T (ΣX)|. Some subtleties arise at this point, namely that in general the space
constructed will not be representable as a logarithmic algebraic stack. This can be
seen through the fact the category of logarithmic algebraic stacks is equivalent to
the category of cone stacks, but |T (ΣX)| cannot in general be given a proper cone
structure. In order to give it a cone structure, Maulik and Ranganathan study
the spaces of maps XG from the graphs G associated to 1-complexes in |T (ΣX)|
to ΣX , and identify maps which have the same image. By taking appropriate
subdivisions of the objects XG and identifying them in the right way, they obtain
a moduli space of tropical expansions T , which has the desired cone structure.

This operation results in non-uniqueness, as we are making a choice of poly-
hedral subdivision and there is in general no canonical choice.

Proper Deligne-Mumford stacks. In order to construct the universal family
Y ⊂ T ×Σ, some additional choices must be made. Indeed, as mentioned above,
trop(Z◦) does not in general define a blow-up, so, when fitting the expansions
we constructed together into one large family over a larger base, we must modify
these expansions to ensure flatness. Here this is resolved by adding distinguished
vertices to the relevant complexes. These added vertices will be 2-valent vertices
along edges of the 1-complexes parameterised by T and we call them tube vertices.
Geometrically, they look like P1-bundles over curves in X0 (where we took X to
be a family of surfaces). Again, this operation is not canonical and results in
non-uniqueness.

The addition of these tube vertices in the tropicalisation means that there
are more potential components in each expansion, which interferes with the pre-
viously set up uniqueness results. Indeed, recall that trop(Z◦) gave us exactly
the right number of vertices in the dual complex in order for each family of
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subschemes Z◦ ⊂ X◦ to have a unique limit representative. Therefore, to re-
flect this, Donaldson-Thomas stability asks for subschemes to be DT stable if
and only if they are tube schemes precisely along the tube components. We say
that a 1-dimensional subscheme is a tube if it is the schematic preimage of a
zero-dimensional subscheme in D. In the case of Hilbert schemes of points, this
condition will translate simply to a 0-dimensional subscheme Z being DT stable
if and only if no tube component contains a point of the support of Z and every
other irreducible component expanded out by our blow-ups contains at least one
point of the support of Z.

Maulik and Ranganathan define a subscheme to be stable if it is strongly
transverse and DT stable. For fixed numerical invariants the substack of stable
subschemes in the space of expansions forms a Deligne-Mumford, proper, sepa-
rated stack of finite type over C.

The space |T (ΣX)| for the case of Hilbert schemes of points can be thought of
as given by the n-tuples of points in the cone of X0. One can notice immediately
that this does not have the proper structure of a cone.

3 The expanded construction

In this section we construct explicit expanded degenerations X[n] out of a 1-
parameter family X ! C by expanding the base and making sequences of blow-
ups on the expanded family. We construct these spaces as schemes here, and later
on, in Section 5, we give a stack construction building upon these schemes. Note
that in the stack construction we will impose additional equivalence relations
which essentially set to be equivalent any two fibres which look identical. We will
touch more upon why this is necessary later.

Let X ! C be a family of surfaces over a curve isomorphic to A1, where the
family is given in étale local coordinates by SpecC[x, y, z, t]/(xyz−t). We denote
by X0 the special fibre and by Y1, Y2 and Y3 the irreducible components of this
special fibre given locally by x = 0, y = 0 and z = 0 respectively.

3.1 The blow-ups

In the following, we construct expanded degenerations by enlarging the base C
and making sequences of blow-ups in the family over this larger base. We start by
taking a copy of An+1, with elements labelled (t1, . . . , tn+1) ∈ An+1. Throughout
this work, we shall refer to the entries ti as basis directions. Now, let X ×A1 An+1

be the fibre product given by the map X ! C ∼= A1 and the product

(t1, . . . , tn+1) 7−! t1 · · · tn+1.

In this expanded degeneration construction, as well as in the second more general
construction of Section 7, we will be blowing up schemes along Weil divisors. An
unusual consequence of the way these blow-ups are defined is that the blow-up
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morphisms contract only components of codimension at least 2. We may therefore
refer to them as small blow-ups.

Blow-ups of the Y1 component. We start by blowing up Y1 ×A1 V (t1) inside
X ×A1 An+1, where V (ti) denotes the locus where ti = 0. We name the space
resulting from this blow-up X(1,0) to signify we have blown up component Y1
once and the component Y2 zero times. We can describe this blow-up locally in
the following way. The ideal of the blow-up is I1 = ⟨x, t1⟩. Globally this will
correspond to an ideal sheaf I1. Then there is a surjective map of graded rings

A[x
(1)
0 , x

(1)
1 ] −! S1 =

⊕
n≥0

In1

which maps
x
(1)
0 7−! x and x

(1)
1 7−! t1,

where A is the affine coordinate ring given by the quotient of k[x, y, z, t1, . . . , tn+1]
by the ideal generated by the equation xyz = t1 · · · tn+1. This induces an embed-
ding

Proj(S1) ↪−! ProjA[x
(1)
0 , x

(1)
1 ] = P1 × SpecA

and Proj(S1), i.e. our blow-up, is cut out in P1 × SpecA by the equations

x
(1)
0 t1 = xx

(1)
1

x
(1)
0 yz = x

(1)
1 t2 · · · tn+1.

Then the fibres above (t1, . . . , tn+1) where t1 is nonzero are still the same after
the blow-up and so are the fibres where t1 = 0 and all the other ti are nonzero
because the total space is still smooth at all points of these fibres. However, when
t1 = 0 and at least one of the other ti is zero, then we get singularities of the
total space appearing in the fibre of X ×A1 An+1 and the blow-up causes a new
component to appear around the Y1 component. We call this new component
∆

(1)
1 .
Let b(1,0) : X(1,0) ! X ×A1 An+1 be the map defined by the first blow-up given

above. We then proceed to blow-up b∗(1,0)(Y1×A1 V (t2)) inside X(1,0) and name the

resulting space X(2,0). We continue to blow up each b∗(k−1,0)(Y1 ×A1 V (tk)) inside
X(k−1,0) for each k ≤ n. The resulting space is denoted X(n,0). Finally, we denote
by

β1
(k,0) : X(k,0) −! X(k−1,0)

the morphisms corresponding to each individual blow-up. We therefore have the
equality

β1
(k,0) ◦ · · · ◦ β1

(1,0) = b(k,0)

We now fix the following terminology.

Definition 3.1.1. We say that a dimension 2 component of X(k,0) ! C×A1 An+1

is a ∆1-component if it is contracted by the morphism β1
(i,0) for some i ≤ k.

Moreover if a ∆1-component in a fibre is contracted by such a map then we say
it is expanded out in this fibre.
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We label by ∆
(k)
1 the ∆1-component resulting from the k-th blow-up. The fibre

where ti = 0 for all i ∈ {1, . . . , n + 1} has exactly n expanded ∆1-components.
The equations of the blow-ups in local coordinates are as follows:

x
(1)
0 t1 = xx

(1)
1 ,

x
(k−1)
1 x

(k)
0 tk = x

(k−1)
0 x

(k)
1 , for 2 ≤ k ≤ n,

x
(n)
0 yz = x

(n)
1 tn+1.

Remark 3.1.2. If we restrict X0 to only the components Y1 and Y2, i.e. restrict
the original degeneration to SpecC[x, y, z, t]/(xy − t), we get back exactly the
blow-ups of Gulbrandsen, Halle and Hulek [GHH19].

In fibres of the construction where ∆
(k)
1 , for some k, is not expanded out, i.e.

not contracted by some map β1
(i,0), we will want to think of it in the following

way.

Definition 3.1.3. When tk = 0 and all other ti are nonzero, we consider ∆
(k)
1 and

all ∆
(j)
1 for j ≥ k as being equal to Y1, meaning that the projective coordinates

introduced by the j-th blow-up are proportional to 1/yz. This follows from the
equality

x
(j)
0 yz = x

(j)
1 tj+1 · · · tn+1,

obtained from the above equations of the blow-ups. Similarly, the components
∆

(j)
1 with j < k are considered to be equal to the union Y2 ∪ Y3, which follows

from equality
x
(j)
0 t1 · · · tj = xx

(j)
1 ,

obtained from the equations of the blow-up. When tn+1 = 0 and all other tk are

nonzero, then all ∆
(k)
1 are equal to the union Y2 ∪ Y3.

Blow-ups of the Y2 component. For the component Y2 we can make similar
definitions to the above. We blow up b∗(n,0)Y2 ×A1 V (tn+1) in X(n,0) and name the

resulting space X(n,1). Let b(n,k) : X(n,k) ! X ×A1 An+1 be the composition of the
n blow-ups of Y1 and the first k blow-ups of Y2 on X(n,0). Similarly to the above,
but with the order of the basis directions reversed, we blow up b∗(n,k−1)(Y2 ×A1

V (tn+2−k)) in X(n,k−1) for each k ≤ n. The resulting space is denoted X(n,n)

and the components introduced by these new blow-ups are labelled ∆
(k)
2 . The

equations of the blow-ups in local coordinates are as follows:

y
(1)
0 tn+1 = yy

(1)
1 ,

y
(k−1)
1 y

(k)
0 tn+2−k = y

(k−1)
0 y

(k)
1 for 2 ≤ k ≤ n,

y
(n)
0 xz = y

(n)
1 t1

x
(k)
0 y

(n+1−k)
0 z = x

(k)
1 y

(n+1−k)
1 .

Note that the order in which we make the blow-ups, i.e. expand out the ∆1 or
the ∆2-components first, makes no difference. We can therefore express the space
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X(m1,m2) as the space X(m1,0) on which we perform a sequence of blow-ups of the
pullback of Y2 or as the space X(0,m2) on which we perform a sequence of blow-ups
of the pullback of Y1, etc.

To simplify notation, we will denote the base An+1×A1C by C[n], the expanded
construction X(n,n) by X[n] and the natural projection to the original family X
by π : X[n]! X. We have blow-up morphisms

β1
(i,j) : X(i,j) −! X(i−1,j),

β2
(i,j) : X(i,j) −! X(i,j−1),

corresponding to each individual blow-up of a pullback of the Y1-component and
Y2-component respectively. The composition of all the blow-up morphisms is
denoted

b := β2
(n,n) ◦ · · · ◦ β2

(n,1) ◦ · · · ◦ β1
(n,0) ◦ · · · ◦ β1

(1,0) : X[n]! X ×A1 An+1.

Proposition 3.1.4. If we take X ! C to be the étale local model

Spec k[x, y, z, t]/(xyz − t) −! Spec k[t],

the corresponding scheme X[n] obtained after the sequence of blow-ups b is a
subvariety of (X ×A1 An+1)× (P1)2n defined by the local equations of the blow-ups
given above.

Proof. This is immediate from the local description of the blow-ups above.

Proposition 3.1.5. The family X[n]! C[n] thus constructed is projective.

Proof. The morphism X ×A1 An+1 ! C[n] must be projective since X ! C is
projective. Then X[n] ! X ×A1 An+1 is just a sequence of blow-ups along Weil
divisors, hence projective. This proves projectivity of the morphism X[n] !
C[n].

Remark 3.1.6. The issue with projectivity in Proposition 1.10 of [GHH19] only
arises if the local descriptions of the blow-ups they use to create the familyX[n]!
C[n] do not glue globally to define blow-ups.

We now extend the definition of ∆1-components to the schemes X[n] and fix
some additional terminology.

Definition 3.1.7. We say that a dimension 2 component of X[n] ! C[n] is a
∆i-component if it is contracted by the morphism βi(j,k) for some i, j, k. Moreover
if a ∆i-component in a fibre is contracted by such a map then we say it is expanded
out in this fibre. We say that a dimension 2 component of X[n] is a ∆-component
if it is a ∆i-component for some i. If it is expanded out in some fibre we may
alternatively refer to it as an expanded component. Similarly, we may extend
Definition 3.1.3 to say that a ∆-component is equal to a component W of a
fibre of X[n] if the projective coordinates associated to this ∆-component are
proportional to the non-vanishing coordinates of W .
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Figure 3: Local picture at ti = tj = 0.

Definition 3.1.8. We say that a ∆i-component is of pure type if it is not equal
to any ∆j-component for j ̸= i. Otherwise we say it is of mixed type.

In order to understand what these blow-ups look like, let us consider first a
fibre of the scheme X[n] over C[n], where ti = tj = 0 for some i < j and no other
tk = 0. The blow-ups of pullbacks of the Y1-component cause exactly one ∆1-
component to be expanded in such a fibre, and this expanded component is given
by ∆

(i)
1 = . . . = ∆

(j−1)
1 . In this case, the singularities occurring at the intersection

of Y1 and Y2 have already been resolved by expanding out this ∆1-component.
As the blow-ups of pullbacks of the Y2-component also cause one ∆2-component
to be expanded in this fibre, given by ∆

(n+2−j)
2 = . . . = ∆

(n+1−i)
2 , we therefore

have
∆

(i)
1 = . . . = ∆

(j−1)
1 = ∆

(n+2−j)
2 = . . . = ∆

(n+1−i)
2

in the π∗((Y1 ∩Y2)◦) locus of the fibre. This can be easily deduced from studying
the equations of the blow-ups. In the π∗((Y1 ∩ Y3)◦) locus of the fibre, we see a

single expanded component of pure type given by ∆
(i)
1 = . . . = ∆

(j−1)
1 . Similarly,

in the π∗((Y2 ∩ Y3)
◦) locus of the fibre, we see a single expanded component of

pure type given by ∆
(n+1−j)
2 = . . . = ∆

(n+1−i)
2 . Finally, the component ∆

(k)
1 is

equal to the union Y2 ∪ Y3 for k < i and ∆
(l)
1 is equal to the component Y1 if

l > j − 1. The situation for the ∆2 components is similar. This can be seen in
Figure 3.

Before we continue we fix some terminology which will help us describe the
expanded components.

Definition 3.1.9. We refer to an irreducible component of a ∆-component as a
bubble. The notions of two bubbles being equal and a bubble being expanded out
in a certain fibre follow directly from our previous definitions.

When ti = tj = tk = 0, where i, j, k are distinct, and all other basis directions
are non-zero, then in the locus π∗((Y1 ∩ Y2)◦), we see exactly two expanded com-
ponents, which are both of mixed type. Note that, more generally in any fibre
of X[n], all expanded components in the π∗((Y1 ∩ Y2)◦) locus are of mixed type.

Moreover, in any fibre of X[n] we have that ∆
(l)
1 = ∆

(n+1−l)
2 in the π∗((Y1 ∩ Y2)◦)

locus for all l.
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Figure 4: Local picture at ti = tj = tk = 0.

In the example given here, the two bubbles in the π∗((Y1 ∩ Y2)
◦) locus can

be described as follows. The bubble which intersects Y1 non-trivially is given by
∆

(i)
1 = . . . = ∆

(j−1)
1 . By the above, each of these ∆1-components is equivalent to

a ∆2-component in the π∗((Y1 ∩ Y2)◦) locus, so this bubble is equivalently given

by ∆
(n+1−j)
2 = . . . = ∆

(n+1−i)
2 . The second bubble in this locus, which intersects

Y2 non-trivially, is given by

∆
(j)
1 = . . . = ∆

(k−1)
1 = ∆

(n+2−k)
2 = . . . = ∆

(n+1−j)
2 .

There is a single bubble expanded out in the π∗(Y1∩Y2∩Y3) locus. This is a P1×P1,

given by the meeting of the ∆
(i)
1 = . . . = ∆

(j−1)
1 and ∆

(n+2−k)
2 = . . . = ∆

(n+1−j)
2

components. Finally, in the π∗((Y1∩Y3)◦) locus we see exactly two bubbles given
by the two distinct expanded ∆1-components and in the π∗((Y2 ∩ Y3)◦) locus we
see also two bubbles given by the two distinct expanded ∆2-components. This
can be seen in Figure 4.

Now, we note that there is a natural inclusion

C[n] ↪−! C[n+ 1] (3.1.1)

(t1, . . . , tn+1) 7−! (t1, . . . , tn+1, 1),

which, in turn, induces a natural inclusion

X[n] ↪−! X[n+ 1].

Under these inclusions, we may consider the space X[n] as the locus of a larger
space X[n+ k] where all ti ̸= 0 for i > n+ 1.

The group action. We may define a group action on X[n] very similarly to
[GHH19]. Let G ⊂ SL(n + 1) be the maximal diagonal torus. We have Gn

m
∼=

G ⊂ Gn+1
m , where we can view an element of G as an (n+ 1)-tuple (σ1, . . . , σn+1)

such that
∏

i σi = 1. This acts naturally on An+1, which induces an action on
C[n]. The isomorphism Gn

m
∼= G is given by

(τ1, . . . , τn) −! (τ1, τ
−1
1 τ2, . . . , τ

−1
n−1τn, τ

−1
n ).
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We shall use the notation (τ1, . . . , τn) to describe elements of G throughout this
work.

Proposition 3.1.10. We have the following properties.

1. There is a unique G-action on X[n] such that X[n] ! X ×A1 An+1 is
equivariant with respect to the natural action of G on An+1.

2. In the étale local model, this action is the restriction of the action on (X×A1

An+1)× (P1)2n, which is trivial on X, acts by

t1 7−! τ−1
1 t1

tk 7−! τ−1
k τk−1tk

tn+1 7−! τntn+1

on the basis directions, and by

(x
(k)
0 : x

(k)
1 ) 7−! (τkx

(k)
0 : x

(k)
1 )

(y
(k)
0 : y

(k)
1 ) 7−! (y

(k)
0 : τn+1−ky

(k)
1 ).

on the ∆-components.

Proof. This follows immediately from [GHH19].

Note that the group action on the (y
(k)
0 : y

(k)
1 ) coordinates follows immediately

from the fact that ∆
(k)
1 = ∆

(n+1−k)
2 in the π∗((Y1∩Y2)◦) locus. Given the equations

of the blow-ups above, there is no other possible choice of action such that the
map π : X[n] ! X ×A1 An+1 is G-equivariant (the equations must be invariant
under group action). Note also that the natural inclusions

X[n] ↪−! X[n+ k],

we described in the previous section are equivariant under the group action.
Moreover, up to linear independence there is a single function on C[n] which is
G-invariant.

Lemma 3.1.11. We have the isomorphism

H0(C[n],OC[n])
G ∼= k[t],

where H0(C[n],OC[n])
G denotes the space of G-invariant sections of H0(C[n],OC[n]).

Proof. From the above description of the group action, it is clear that up to linear
independence there is only one G-invariant function on C[n].

Remark that we abuse notation slightly by referring to the group acting on
X[n] by G, instead of G[n]. It should always be clear from the context what
group G is meant.
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3.2 Embedding into product of projective bundles

In this section, we show how X[n] can be embedded into a fibre product of
projective bundles. We will then be able to define aG-linearised ample line bundle
L on X[n] by taking the tautological bundle of this fibre product of projective
bundles. From this line bundle we will then construct a second line bundle M
on the relative Hilbert scheme of m points Hm

[n] := Hilbm(X[n]/C[n]) with an
induced G-linearisation.

More precisely, keeping the notation as above, let I(k)
1 , I(k)

2 be the ideal sheaves

corresponding to each blow-up we perform, for example I(1)
1 is the ideal sheaf of

Y1 ×A1 V (t1) on X ×A1 An+1. Then I(1)
2 is the ideal sheaf of b∗(1,0)(Y2 ×A1 V (tn+1))

on X(1,0), and so on for I(k)
j .

Let pr1 and pr2 be the projections of X ×A1 An+1 to X and An+1 respectively.
Similarly to [GHH19], define vector bundles

F (k)
1 = pr∗1OX(−Y1)⊕ pr∗2OAn+1(−V (tk))

F (k)
2 = pr∗1OX(−Y2)⊕ pr∗2OAn+1(−V (tn+2−k))

on X ×A1 An+1. As we will explain below, we then have, for each of these vector
bundles, the embeddings

X(k1,k2) ↪−! P(b∗(k1−1,k2)
F (k1)

1 ),

X(k1,k2) ↪−! P(b∗(k1,k2−1)F
(k2)
2 ),

where b(0,0) is understood to be just the identity map on X(0,0) := X ×A1 An+1.
Indeed, the scheme X(k1,k2) embeds into the projectivisations of the ideals of these

blow-ups P(I(k1)
1 ) and P(I(k2)

2 ). For a reference on projectivisations of ideals see
[EH00]. There is a surjection

b∗(k1−1,k2)
F (k1)

1 −! I(k1)
1 given by

(
b∗(k1−1,k2)

x

tk1

)
,

where x is a defining equation of the locus to be blown up projected forward to
X, i.e. it is the defining equation of Y1. Similarly, there is a surjection

b∗(k1,k2−1)F
(k2)
2 −! I(k2)

2 .

From this, we deduce that there are embeddings

P(I(k1)
1 ) ↪−! P(b∗(k1−1,k2)

F (k1)
1 ),

P(I(k2)
2 ) ↪−! P(b∗(k1,k2−1)F

(k2)
2 ).

Hence we have embeddings

X(k1,k2)

P(b∗(k1−1,k2)
F (k1)

1 ) P(b∗(k1,k2−1)F
(k2)
2 ).
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Now, similarly to [GHH19], we can embed X[n] = X(n,n) into
∏

i,j P(F
(j)
i ),

which is to be understood as the fibre product over X ×A1 An+1. This can be
seen by iteration on i, j in the following way. The simplest case is X(1,0) ↪!

P(b∗(0,0)F
(1)
1 ) = P(F (1)

1 ), which is obvious. Then for X(1,1), we have the following
commutative diagram

X(1,1) ⊂ b∗(1,0)P(F
(1)
2 ) X(1,0) ⊂ P(F (1)

1 )

P(F (1)
2 ) X ×A1 An+1

b(1,0)

(recall b∗(1,0)P(F
(1)
2 ) is a vector bundle over X(1,0) and P(F (1)

2 ) is a vector bundle

overX×A1An+1, giving us the horizontal maps). By the universal property of fibre

products, there is a unique mapX(1,1) ! P(F (1)
1 )×P(F (1)

2 ). But by universal prop-

erty of the pullback there is also a unique map P(F (1)
1 )×P(F (1)

2 )! b∗(1,0)P(F
(1)
2 ),

hence the embedding X(1,1) ↪! b∗(1,0)P(F
(1)
2 ) factors through P(F (1)

1 ) × P(F (1)
2 ).

Since the composition of the two maps is injective, the first map, i.e. X(1,1) !

P(F (1)
1 )× P(F (1)

2 ), must be injective and the image in P(F (1)
1 )× P(F (1)

2 ) is closed
by properness. We can then iterate this argument until we obtain the embedding
X(n,n) ↪!

∏
i,j P(F

(j)
i ).

The G-action is a restriction of the torus action on
∏

i,j P(F
(j)
i ), described

étale locally in Proposition 3.1.10.

Linearisations. The following lemma gives a method to construct all the lin-
earised line bundles we will need to vary the GIT stability condition.

Lemma 3.2.1. There exists a G-linearised ample line bundle L on X[n] such
that locally the lifts to this line bundle of the G-action on each P1 corresponding
to a ∆

(k)
1 and on each P1 corresponding to a ∆

(n+1−k)
2 are given by

(x
(k)
0 ;x

(k)
1 ) 7−! (τakk x

(k)
0 ; τ−bkk x

(k)
1 ) (3.2.1)

(y
(n+1−k)
0 ; y

(n+1−k)
1 ) 7−! (τ−ckk y

(n+1−k)
0 ; τ dkk y

(n+1−k)
1 ) (3.2.2)

for any choice of positive integers ak, bk, ck, dk.

Proof. Similarly to the proof of Lemma 1.18 in [GHH19], we see that each locally

free sheaf F (k)
i on X×A1An+1 has a canonical G-linearisation. There is an induced

G-action on the projective product
∏

i,k P(F
(k)
i ), which is equivariant under the

embedding

X[n] ↪−!
∏
i,k

P(F (k)
i ).
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The G-action on each P(F (k)
i ) lifts to a G-action on the corresponding vector

bundle, which gives us a canonical linearisation of the line bundle OP(F(k)
i )

(1).

Locally, the actions on OP(F(k)
1 )

(1) and OP(F(k)
2 )

(1) are given by

(x
(k)
0 ; τ−1

k x
(k)
1 ) and

(y
(k)
0 ; τn+1−ky

(k)
1 )

respectively. We therefore may define the lifts (3.2.1) and (3.2.2) on the line
bundles OP(F(k)

1 )
(ak + bk) and OP(F(n+1−k)

2 )
(ck + dk) respectively. We then pull

back each OP(F(k)
1 )

(ak + bk) and OP(F(k)
2 )

(cn+1−k + dn+1−k) to
∏

i,k P(F
(k)
i ) and

form their tensor product to obtain a G-linearised line bundle, which we denote
by L.

Each such line bundle L which can be constructed in this way will induce
a G-linearised line bundle M on Hm

[n]. This, in turn, will yield a GIT stability
condition on Hm

[n].

4 GIT stability

In this section, we set up some results analogous to those of [GHH19] to de-
scribe various GIT stability conditions on the scheme X[n] with respect to the
possible choices of G-linearised line bundles described in the previous section.
In particular, we show that these stability conditions does not depend on the
scheme structure of the length m zero-dimensional subschemes, but instead can
be reduced to a combinatorial criterion on configurations of n points.

4.1 Hilbert-Mumford criterion

In this section, we shall recall the definition of Hilbert-Mumford invariants and
give a numerical criterion for stability and semi-stability in terms of these invari-
ants.

Let H be a reductive group and S be a scheme, proper over an algebraically
closed field k. Let L be a H-linearised ample line bundle. Then a 1-parameter
subgroup of H (denoted 1-PS for convenience) is defined to be a homomorphism

λ : Gm ! H.

Now let P be any point in S. Obviously, τ ∈ Gm acts on P and we denote by P0

the limit of τP as τ tends towards 0 if such a limit exists. Then let µL(λ, P ) be
the negative of the weight of the Gm-action on the fibre L(P0). We call µL(λ, P )
a Hilbert-Mumford invariant.

In our case we will want to think of H as being our group G, of S as being
the relative Hilbert scheme of points Hm

[n] and of L as being the line bundle M
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on Hm
[n], which we define in the next section. A 1-parameter subgroup of G will

be given by a map

λ : Gm ! G, τ 7! (τ s1 , . . . , τ sn),

where (s1, . . . , sn) ∈ Zn. The following result will allow us to use these invariants
to determine stability and semi-stability in our GIT constructions. It is a relative
version of the Hilbert-Mumford criterion (see Mumford, Fogarty and Kirwan
[MFK94]) proven by Gulbrandsen, Halle and Hulek in [GHH15].

Theorem 4.1.1. Let k be an algebraically closed field and f : S ! B a projective
morphism of k-schemes. Assume B = SpecA is noetherian and B is of finite
type over k. Let H be an affine, linearly reductive group over k acting on S and
B such that f is equivariant and let L be an ample H-linearised line bundle on
S. Suppose P ∈ S is a closed point. Then P is stable (or semistable) if and only
if µL(λ, P ) > 0 (or ≥ 0) for every non-trivial 1-PS λ : Gm ! H.

4.2 Action of 1-parameter subgroup

Let P be any point in X[n] and let pn : X[n] ! C[n] be the projection to the
base. As stated in [GHH19], the limit P0 of P under a 1-PS as defined above
exists if and only if its projection onto the base, pn(P ) ∈ C[n], has a limit. The
G-action on the base is a pullback of the action on An+1 and the corresponding
action of a 1-PS is

t1 7−! τ−s1t1,

tk 7−! τ sk−1−sktk, for 1 < k ≤ n,

tn+1 7−! τ sntn+1.

The projection pn(P ) of the point P to the base has a limit as τ tends to zero
if and only if each power of τ in the action is nonnegative on the nonzero basis
directions ti, i.e. if and only if

0 ≥ s1 ≥ . . . ≥ sn+1 ≥ 0, (4.2.1)

where each inequality from left to right must hold if t1, . . . , tn+1 is nonzero re-
spectively. Thus we obtain boundedness conditions on the weights si dependent
on where P lies over the base. In particular, when ti ̸= 0 for all i, this implies
that si = 0 for all i, so the 1-PS are trivial and all points are trivially semistable.

Let L be a line bundle as described in Lemma 3.2.1. Assume that locally the
lifts to L of the G-action on each P1 corresponding to a ∆

(k)
1 and on each P1

corresponding to a ∆
(n+1−k)
2 are given by

(x
(k)
0 ;x

(k)
1 ) 7−! (τakk x

(k)
0 ; τ−bkk x

(k)
1 )

(y
(n+1−k)
0 ; y

(n+1−k)
1 ) 7−! (τ−ckk y

(n+1−k)
0 ; τ dkk y

(n+1−k)
1 )
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for some choice of positive integers ak, bk, ck, dk. Then the corresponding lifts of
the 1-PS action to L are given by

(x
(k)
0 ;x

(k)
1 ) 7−! (τakskx

(k)
0 : τ−bkskx

(k)
1 ),

(y
(n+1−k)
0 ; y

(n+1−k)
1 ) 7−! (τ−cksn+1−ky

(k)
0 : τ dksn+1−ky

(k)
1 ).

We will see in the next section that the Hilbert-Mumford invariants that interest
us, which are the invariants relating to 1-PS subgroups of the induced action of
G on Hm

[n] with associated line bundle M, can be calculated by simply adding the

invariants of the points (with multiplicity) in X[n] which make up the support
of an element of Hm

[n]. Indeed, we will see that it is possible for this purpose to

think of an element of Hm
[n] as just a union of points with multiplicity in X[n] and

forget about its scheme structure.

4.3 Bounded and combinatorial weights

In this section, we explain the relation between what [GHH19] call the bounded
and combinatorial weights of the Hilbert-Mumford invariants.

Keeping the notation as consistent as possible with [GHH19], let

Zm
[n] ⊂ Hm

[n] ×C[n] X[n]

be the universal family, with first and second projections p and q. The line bundle

Ml := det p∗(q
∗L⊗l|Zm

[n]
)

is relatively ample when l ≫ 0 and is G-linearised, exactly as in Section 2.2.1 of
[GHH19].

Given a point [Z] ∈ Hm
[n] and a 1-PS λs given by (s1, . . . , sn) ∈ Zn, denote

the limit of λs(τ) · Z as τ tends to zero by Z0. The Hilbert-Mumford invariant
µMl(Z, λs) is given by the negative of the weight of the Gm-action on the line
bundle Ml at the point Z0. At the point Z0, the line bundle Ml is given by
det(H0(OZ0 ⊗ L⊗l)). We can write Z0 as a union of length mP zero-dimensional
subschemes

⋃
P Z0,P supported at points P . Let L⊗l(P ) denote the fibre of L⊗l

at P . Following [GHH19], there is an isomorphism

H0(OZ0 ⊗ L⊗l) ∼=
⊕
P

(
H0(OZ0,P )⊗ L⊗l(P )

)
.

Then, by taking determinants, as in [GHH19], we get

m∧
H0(OZ0 ⊗ L⊗l) ∼=

( m∧
H0(OZ0)

)
⊗
(⊗

P

L⊗lmP (P )
)
.

which allows us to write the invariant µMl(Z, λs) as a sum of what Gulbrandsen,
Halle and Hulek call the bounded weight µMl

b (Z, λs), coming from
∧mH0(OZ0) in
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the above, and the combinatorial weight µMl
c (Z, λs), coming from

⊗
i L⊗lmP (P ).

It is clear also that
µMl
b (Z, λs) = µM1

b (Z, λs),

since the bounded weight does not depend on the value of l, and

µMl
c (Z, λs) = l · µM1

c (Z, λs).

Hence, we have

µMl(Z, λs) = µM1
b (Z, λs) + l · µM1

c (Z, λs).

Note that, whereas the combinatorial weight depends on the choice of linearised
line bundle, the bounded weight does not. Similarly to [GHH19], we can show
that the bounded weight, as its name suggests, can be given an upper bound. The
following result is based on Lemma 2.3 of [GHH19], with some slight modifications
to suit our setting.

Lemma 4.3.1. Let µM1
b (Z, λs) be the bounded weight of [Z] ∈ Hm

[n] and s ∈ Zn
such that the limit of λs(τ) · Z as τ goes to zero exists. Then

µM1
b (Z, λs) =

n∑
i=1

bisi,

where |bi| ≤ 2m2 for every i.

Proof. Let Z0 be the limit point of Z with respect to some s ∈ Zn, where Z0 is
supported at points Qi ∈ X[n]. Since Z0 is a limit point of the action, the Qi

must be a Gm-fixpoint. And since Z0,Qi
is a finite local scheme, we can work with

the local coordinates we set up earlier.

Following our previous notation, let nQi
denote the multiplicity of the scheme

Z0 at point Qi. The coordinate ring of Z0,Qi
is then generated by nQi

monomials

in the variables x, y, z, t1, . . . , tn+1 and x
(k)
0 /x

(k)
1 or x

(k)
1 /x

(k)
0 depending on which

side of ∆
(k)
1 the point Qi lies, and y

(k)
0 /y

(k)
1 or y

(k)
1 /y

(k)
0 depending on which side

of ∆
(k)
2 the point Qi lies. Note that the coordinate ring of Z0,Qi

will only contain

monomials in the variable x
(k)
0 /x

(k)
1 or x

(k)
1 /x

(k)
0 if Qi ∈ ∆

(k)
1 , and similarly for the

variable y
(k)
0 /y

(k)
1 or y

(k)
1 /y

(k)
0 . Moreover, if Qi ∈ (∆

(k)
1 )◦ ∪ (∆

(n+1−k)
2 )◦, then this

means that sk = 0 as Z0 is the limit of the 1-PS action. So the weight of the
Gm-action on a ∆-component will be nontrivial only if Qi lies on the boundary
of this component.

The weight ak restricted to the point Qi is given by adding the multiplicity of
x
(k)
0 /x

(k)
1 times sk or that of x

(k)
1 /x

(k)
0 times −sk (depending on which side of ∆

(k)
1

the point Qi lies) in each monomial, plus the multiplicity of y
(n+1−k)
0 /y

(n+1−k)
1

times −sk or that of y
(n+1−k)
1 /y

(n+1−k)
0 times sk (depending on which side of

∆
(n+1−k)
2 the point Qi lies) in each monomial. Each monomial has degree at most

nQi
. The parts of ak coming from the actions on ∆

(k)
1 and ∆

(n+1−k)
2 therefore both

have absolute value at most m2, so |ak| ≤ 2m2.
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Let us discuss now how the bounded weight affects the overall stability condi-
tion. The following lemma is immediate from [GHH19], but we recall their proof
here for convenience.

Lemma 4.3.2. Let Z be a length m zero-dimensional subscheme in a fibre of
X[n]. Assume that, for all s ∈ Zn such that the limit λs(τ) ·Z as τ tends to zero
exists, the combinatorial weight can be written as

µM1
c (Z, λs) =

n∑
i=1

cisi,

where cisi ≥ 0 with equality if and only if si = 0. Then Z is stable (not strictly
semistable) with respect to the G-linearised line bundle Ml on H

m
[n] for some large

enough l.

Proof. As we have shown that the bounded weight can be expressed as

µM1
b (Z, λs) =

n∑
i=1

bisi,

where |bi| ≤ 2m2, and recalling that

µMl(Z, λs) = µM1
b (Z, λs) + l · µM1

c (Z, λs),

it is just a matter of choosing a big enough value of l to make the combinatorial
weight overpower the bounded weight. This allows us effectively to treat the
bounded weight as negligible and ignore it in our computations.

Remark 4.3.3. The assumption of Lemma 4.3.2 does not hold in general for all
possible G-linearised line bundles on Hm

[n].

Let Z be a length m zero-dimensional subscheme in a fibre of X[n]. With
the following lemmas, we shall establish that if there is at least one point of the
support of Z in the union (∆

(k)
1 )◦ ∪ (∆

(n+1−k)
2 )◦ for every k, then there exists a

GIT stability condition which makes Z stable. We start by showing that for such
a subscheme Z there exists a G-linearised line bundle M on Hm

[n] such that the
corresponding combinatorial weight will be strictly positive. We will then use
Lemma 4.3.2 to show that Z is stable in the corresponding GIT stability.

Remark 4.3.4. Note, here, that such a Z will not necessarily have smooth support,
i.e. be supported in the smooth locus of the fibre in which it lies, and every point
of the support of Z need not necessarily be contained in a ∆-component.

Lemma 4.3.5. Let Z be in a fibre of X[n] as above. If there is at least one point

of the support of Z in the union (∆
(k)
1 )◦ ∪ (∆

(n+1−k)
2 )◦ for every k, then there

exists a G-linearised line bundle on Hm
[n] with respect to which the combinatorial

weight of Z is strictly positive for every nontrivial 1-PS λs such that the limit of
λs(τ) · Z as τ tends to zero exists.
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Proof. We will construct a G-linearised line bundle L on X[n] as in Lemma

3.2.1, by specifying lifts of the G-action on each P(F (k)
1 ) and P(F (n+1−k)

2 ) to
line bundles OP(F(k)

1 )
(ak + bk) and OP(F(n+1−k)

2 )
(ck + dk) for some chosen values

ak, bk, ck, dk ∈ Z≥0.

Let k ∈ {1, . . . , n}. If there is some point of the support of Z, denoted P , in

(∆
(k)
1 )◦ ⊆ π∗(Y1 ∩ Y3), and if m′ points of the support lie on the (1 : 0) side of

∆
(k)
1 , then we will want the lift of the G-action on P(F (k)

1 ) to OP(F(k)
1 )

(ak + bk) to

be locally given by

(x
(k)
0 ;x

(k)
1 ) 7−! (τ

m(m−m′)
k x

(k)
0 ; τ

−m(m′+1)
k x

(k)
1 ) ∈ A2.

This lift is therefore defined on OP(F(k)
1 )

(m2+m), i.e. we have chosen ak = m(m−
m′) and bk = n(m′ + 1). We will then choose ck = 0 and dk = 1, so that the

action on P(F (n+1−k)
2 ) lifts to OP(F(n+1−k)

2 )
(1) and it is locally given by

(y
(n+1−k)
0 ; y

(n+1−k)
1 ) 7−! (y

(n+1−k)
0 ; τky

(n+1−k)
1 ) ∈ A2

If there is no point of the support of Z in ∆
(k)
1 , we set the lift of the G-action on

P(F (k)
1 ) to OP(F(k)

1 )
(1) to be locally given by

(x
(k)
0 ;x

(k)
1 ) 7−! (τkx

(k)
0 ;x

(k)
1 ) ∈ A2,

i.e. we have chosen ak = 1 and bk = 0. In this case there must be at least one
point of the support in (∆n+1−k

2 )◦. Let m′′ be the number of points of the support

on the (1 : 0) side of ∆
(n+1−k)
2 . We then set ck = m(m−m′′) and dk = m(m′′+1),

i.e. we have a lift of the G-action on P(F (n+1−k)
2 ) to OP(F(n+1−k)

2 )
(m2 +m), locally

given by

(y
(n+1−k)
0 ; y

(n+1−k)
1 ) 7−! (τ

−m(m−m′′)
k y

(n+1−k)
0 ; τ

−m(m′′+1)
k y

(n+1−k)
1 ) ∈ A2.

Repeating this process over all k ∈ {1, . . . , n} will give us a description of L
and we may form the G-linearised line bundle M from this line bundle in the
way described at the start of this section. For more details on why this yields a
positive combinatorial weight, see the proof of the following lemma. Note that
this is not the only GIT stability condition for which Z is stable.

Lemma 4.3.6. Let Z be as in the statement of Lemma 4.3.5 and let M be a
G-linearised line bundle constructed as in the proof of Lemma 4.3.5. Then, for
any s ∈ Zn, the combinatorial weight can be written

µM
c (Z, λs) =

n∑
i=1

cisi,

where cisi ≥ 0 with equality if and only if si = 0.
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Proof. It is clear that the combinatorial weight may be written as a sum

µM
c (Z, λs) =

n∑
i=1

cisi.

Now, let us take any k ∈ {1, . . . , n}. First, let us assume that there is at least

one point of the support in (∆
(k)
1 )◦ ⊆ π∗(Y1 ∩ Y3) and denote by m′ the number

of points of the support on the (1 : 0) side of ∆
(k)
1 . Then, if sk > 0,

cksk ≥ (−m′m(m−m′) + (m−m′)m(m′ + 1))sk − (m′)sk = (m2 −m′)sk ≥ 0.

Here, the first bracketed term on the left hand side corresponds to the weight
coming from P(F (k)

1 ) and the second bracketed term corresponds to the weight

coming from P(F (n+1−k)
2 ). The value of the second bracketed term arises from

the fact that there are at most m′ points of the support on the (0 : 1) side of

∆
(n+1−k)
2 . And since m′ can be at most m− 1, we have that m2 −m′ > 0.
Now, if sk < 0, then

cksk ≥ (−(m′+1)m(m−m′)+(m−m′−1)m(m′+1))sk+0 = −(m′+1)msk ≥ 0,

where again the first bracketed term on the left hand side corresponds to the
weight coming from P(F (k)

1 ) and the second term corresponds to the weight com-

ing from P(F (n+1−k)
2 ). As (m′ + 1)m > 0, this gives the desired answer.

Finally, if there is no point of the support in (∆
(k)
1 )◦ ⊆ π∗(Y1 ∩ Y3), we can

make a very similar argument, as the weight coming from P(F (k)
1 ) is overpowered

by the weight coming from P(F (n+1−k)
2 ) in the line bundle M we set up.

4.4 Semistable locus and GIT quotient

Lemma 4.4.1. Let Z be as in the statement of Lemma 4.3.5. Then there exists
a GIT stability condition on Hm

[n] which makes Z stable.

Proof. This follows from Lemmas 4.3.2 and 4.3.6. Indeed, by Lemma 4.3.2, if the
combinatorial weight can be written in the form

µM
c (Z, λs) =

n∑
i=1

cisi,

where cisi ≥ 0 with equality if and only if si = 0, then we may choose a high
enough tensor power l of M such that Z is stable if and only if the combinatorial
weight is strictly positive. But this condition is satisfied by Lemma 4.3.6.

Lemma 4.4.2. Let Z be a length m zero-dimensional subscheme in a fibre of
X[n], such that no point of the support is contained in the union (∆

(k)
1 )◦ ∪

(∆
(n+1−k)
2 )◦ for some k (these components may be expanded or not in the fibre).

Then there exists no GIT stability condition on Hm
[n] with respect to the group G

which makes Z stable.
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Proof. Let us choose an arbitrary G-linearised line bundle M, not necessarily
constructed as above, with respect to which Z has Hilbert-Mumford invariant

µM(Z, λs) =
n∑
i=1

aisi,

for some s ∈ Zn such that the limit of λs(τ) · Z as τ tends to zero exists. Either
ak = 0, in which case Z cannot be stable (it will at best be semistable) with
respect to the stability condition given by the chosen linearisation, or ak ̸= 0.

If ∆
(k)
1 and ∆

(n+1−k)
2 are expanded out in the fibre, then sk is not bounded

above or below by 0 or by any weights acting nontrivially outside of these com-
ponents. Moreover, as no point of the support of Z are contained in (∆

(k)
1 )◦ ∪

(∆
(n+1−k)
2 )◦, we know that τ sk acts trivially on all points of the support. The

integer ak is therefore independent of the value of sk; different values of sk will
not change ak. If ak > 0, we may choose sk to be negative with large enough
absolute value to destabilise Z. Similarly, if ak < 0, we may choose sk to be
positive and large enough to destabilise Z.

Finally, if ∆
(k)
1 and ∆

(n+1−k)
2 are not expanded out in the fibre, either tl ̸= 0 for

l ≥ k or tl ̸= 0 for l ≤ k. If tl ̸= 0 for l ≥ k, then ∆
(k)
1 = Y1 and ∆

(n+1−k)
2 = Y1∪Y3.

All points of the support of Z must therefore be on the (1 : 0) side of ∆
(k)
1 and

on the (0 : 1) side of ∆
(n+1−k)
2 , which implies that ak < 0. But by the condition

(4.2.1), we have sk ≥ 0, and we can therefore choose sk large enough to destabilise
Z. A very similar argument can be made if instead tl ̸= 0 for l ≤ k.

Theorem 4.4.3. Let Z be a length m zero-dimensional subscheme in a fibre
of X[n]. Then there exists a GIT stability condition on Hm

[n] which makes Z
stable if and only if there is at least one point of the support of Z in the union
(∆

(k)
1 )◦ ∪ (∆

(n+1−k)
2 )◦ for every k.

Proof. This follows directly from Lemmas 4.4.1 and 4.4.2.

We can now describe the GIT quotients resulting from these constructions.
Let

A[n] := H0(C[n],OC[n]).

Then we recall from Lemma 3.1.11, the isomorphism

H0(C[n],OC[n])
G ∼= k[t].

For all choices of linearised line bundle described in the above, the GIT quotient
on the base therefore behaves as follows

C[n]//G = SpecA[n]//G = Spec(A[n]G) ∼= A1.

Now let us denote by Hm,s
[n],M the locus of GIT stable subschemes in Hm

[n] with
respect to the stability condition determined by one of the choices of G-linearised
line bundle M as constructed in Section 4.3 and let

Im[n],M := Hm,s
[n],M//G

denote the corresponding GIT quotient.
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Figure 5: Non-separatedness in t1 = t2 = 0

Theorem 4.4.4. The GIT quotients Im[n],M thus constructed are projective over

Spec(A[n]G) ∼= A1.

Proof. This result follows directly from the relative Hilbert-Mumford criterion of
[GHH15].

We remark that two types of subscheme arise in the stable loci Hm,s
[n],M. Firstly,

subschemes whose support is entirely in the smooth locus of the fibre in which
they lie and, secondly, subschemes whose support has nonempty intersection with
the singular locus of this fibre. Since we do not necessarily require all points of
the support to lie in the interior of a ∆-component, some of these singularities
may be quite complicated.

Remark 4.4.5. We note that, although the GIT quotients Im[n],M are projective

and thus proper over A1, their corresponding stack quotients are not necessarily
proper. Indeed, the GIT quotient does not see the orbits of the group action
themselves but the closures of these orbits. For example in Figure 5, the red pair
of points and the blue pair of points are in the same orbit closure, so the GIT
quotient considers them as equivalent, while the corresponding stack quotient
regards them as belonging to separate orbits. This means that, in the stack,
allowing for both pairs will break separatedness.

In the following sections, when studying quotient stacks, we will therefore want
to consider the sublocus of the GIT stable stable locus containing only length m
zero-dimensional subschemes which have smooth support in a given fibre of X[n].
Building a compactification in which limits are represented by subschemes with
smooth support will also be useful for future applications as it allows us to break
down the problem of a Hilbert scheme of m points on a singular surface into
products of Hilbert schemes of fewer than m points on smooth components.

No single GIT quotient Im[n],M contains all desired limits with smooth support.
Therefore in the stack construction, the stability condition we define will draw on
these local quotients, but globally will not correspond to one single GIT stability
condition. We now define a notion that we will use in the following sections.

Definition 4.4.6. We say that a fibre in some expanded degeneration X[n] has
base codimension k if exactly k basis directions vanish at this fibre. This is
independent of the value n.
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Finally, we would like to point out that if we construct a unique GIT quotient
which does not realise all limit subschemes with smooth support then the limits
given by orbit closures containing only subschemes with singular support will not
lie in a fibre of the expected base codimension. This gives an intuition that the
degeneration we have chosen is too small. That being said, it can be useful to
think about this GIT quotient if what we are trying to do is simply to resolve
singularities in a way that preserves some good properties of the space, e.g. in
the context of constructing minimal models for type III degenerations of Hilbert
schemes of points on K3 surfaces. We will touch on this again briefly in Section
8.

5 Stack perspective

In this section, we generalise the scheme construction of Section 3 and define
the analogous stack of expansions and its family X ! C. As mentioned before,
we impose additional equivalences in the stack, which have the effect of setting
any two fibres with the same expanded components to be equivalent. We exam-
ine the loci of GIT stable points again on this stack and discuss their relation
with stability conditions of Li and Wu and of Maulik and Ranganathan ([LW15],
[MR20]). Finally, we construct a proper Deligne-Mumford stack which we will
show to be isomorphic to a choice of underlying algebraic stack obtained through
the Maulik-Ranganthan construction. We use the word underlying here because
what is constructed in [MR20] is a logarithmic algebraic stack and we impose no
logarithmic structure on our space.

5.1 Expanded construction for stacks

In this section we construct a stack of expansions C and family over it X, keeping
our notation as close as possible to that of [LW15].

The stack C. In the following we define the stack C identically to the stack of
expanded degenerations defined by Li and Wu. For convenience, we recall the
details of this construction here.

Let us consider An+1 with its natural torus action Gn
m as defined above. We

then impose some additional relations given by a collection of isomorphisms
which we describe in the following. As before, we label elements of the base
as (t1, . . . , tn+1). We start by defining the set

[n+ 1] := {1, . . . , n+ 1}.

Let I ⊆ [n+ 1] and I◦ = [n+ 1]− I be the complement of I. For |I| = r + 1, let

indI : [r + 1] −! I ⊂ [n+ 1]

and
indI◦ : [n− r] −! I◦ ⊂ [n+ 1]
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be the order preserving isomorphisms. Let

An+1
I = {(t) ∈ An+1| ti = 0, ti ∈ I} ⊂ An+1

and
An+1
U(I) = {(t) ∈ An+1| ti ̸= 0, ti ∈ I◦} ⊂ An+1.

Then we have the isomorphism

τ̃I : (Ar+1 ×Gn−r
m ) −! An+1

U(I)

given by
(a1, . . . , ar+1, σ1, . . . , σn−r) 7−! (t1, . . . , tn+1),

where

tk = al, if indI(l) = k,

tk = σl, if indI◦(l) = k.

Then, given I, I ′ ⊂ [n+ 1] such that |I| = |I ′|, we define an isomorphism

τ̃I,I′ = τ̃I ◦ τ̃−1
I′ : An+1

U(I′) −! An+1
U(I).

Recall from Section 3.1 that we had natural inclusions (3.1.1)

C[n] ↪−! C[n+ 1],

which Li and Wu refer to as standard embeddings.

Finally, we define Un to be the quotient [An+1/∼] by the equivalences gener-
ated by the Gn

m-action and the equivalences τ̃I,I′ for pairs I, I
′ with |I| = |I ′|. We

can define open immersions

Un −! Un+1,

induced by the standard embeddings. Let U := lim
!

Un be the direct limit over n

and let C := C ×A1 U.

The stack X. Let X[n]! C[n] be as in Section 3 and recall that π : X[n]! X
is the projection to the original family. Let

τ I : C[m] ↪−! C[n]

be the standard embedding. Then the induced family

(τ ∗IX[n], τ ∗Iπ)

is isomorphic to (X[m], π) over C[m]. The equivalences on Un lift to C-isomorphisms
of fibres.

We define Xn to be the quotient [X[n]/∼] by the equivalences generated by
the Gn

m-action and equivalences lifted from Un. There are natural immersions of
stacks

Xn −! Xn+1,

induced by the immersions Un ! Un+1. Finally, we define X = lim
!

Xn to be the

direct limit over n. It is an Artin stack.
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5.2 Stability conditions.

We start by examining some stability conditions on the scheme Hm
[n]. We have

defined several G-linearised line bundles M on this space. As before, let us
denote by Hm,ss

[n],M and Hm,s
[n],M the corresponding GIT semistable and stable loci

respectively. As discussed in Section 4.4, considering the GIT stable locus does
not give us a separated quotient stack, among other reasons because it contains
subschemes with non-smooth support in some fibres. Recall that the relative
Hilbert scheme of m points on X[n] ! C[n], which we denoted Hm

[n], is the
scheme which represents the functor

h : k-Schop −! Sets,

where k-Schop is the category of k-schemes. This functor associates to any k-
scheme B the set of flat families over B of subschemes of fibres of X[n] over
C[n]. Restricting X[n] to the smooth locus of its fibres yields a family of open
subschemesX[n]sm over C[n], and we can similarly define a Hilbert functor hsm on
this family. There is a morphism from the corresponding Hilbert schemeHm

[n],sm :=

Hilb(X[n]sm/C[n]) to Hm
[n] which is clearly a monomorphism and it is étale since

deformations of subschemes with smooth support have smooth support. We could
also note that the complement of Hm

[n],sm in Hm
[n] is closed by the valuative criterion

since the limit of any subscheme with part of its support in the singular locus of
a fibre must also have part of its support in the singular locus of a fibre.

We remark that since the smooth locus of the fibres of X[n] is G-invariant,
restricting the functor to this locus preserves the G-invariance. The restriction
of the semistable and stable loci, denoted Hm,ss

[n],M and Hm,s
[n],M, to the loci of sub-

schemes with smooth support will therefore yield a G-invariant open subscheme.
We may therefore write inclusions

Hm,s
[n],M,sm ⊂ Hm,ss

[n],M,sm ⊂ Hm,ss
[n],M,

where the first two terms in the above chain of inclusions denote the loci of GIT
stable and semistable subschemes which have smooth support.

Now recall that the Li-Wu stability states that a subscheme Z in X is stable
if and only if it is admissible and has finite automorphism group. Let X[n]0 be a
fibre of X[n] over a closed point and let D denote the singular locus of X[n]0. A
subscheme Z in X[n]0 is said to be admissible if the morphism

IZ ⊗OD ! OD

is injective, where IZ is the ideal sheaf of Z, i.e. when Z is normal to D. A family
Z in X[n] is admissible if it is admissible in every fibre over a closed point. For a
length m zero-dimensional scheme, the admissible condition will mean that none
of the points in the support of Z lie in the singular locus of the given fibre. The
second condition means that the stabiliser of Z with respect to the torus action
we defined on the blow-ups must be finite. Denote the Li-Wu stable locus by

49



Hm
[n],LW. From now on, we will abbreviate to LW stability for convenience. Note

that we have an inclusion
Hm,s

[n],M,sm ⊂ Hm
[n],LW

for all G-linearised line bundles M on Hm
[n] since, if points are GIT stable, they

must have finite stabilisers. This inclusion no longer holds for the GIT semistable
locus. This is a strict inclusion as the LW stability is clearly a weaker condition
than the GIT strict stability with smooth support. We now make the following
definition on schemes.

Definition 5.2.1. Let [Z] ∈ Hm
[n]. We say that Z is weakly stable (we will

abbreviate to WS stable) if there exists a G-linearised ample line bundle on Hm
[n]

with respect to which Z is stable. We denote the WS stable locus in Hm
[n] by

Hm
[n],WS.

We shall denote by Hm
[n],SWS the locus of WS stable subschemes with smooth

support. From the above, it is then obvious that we have an inclusion Hm
[n],SWS ⊂

Hm
[n],LW. We will now want to compare these stability conditions on the stack X,

so we will need to extend our definition of WS stability to this stack.

Given a C-scheme S, an object of X(S) is a pullback family ξ∗X[n] for a
morphism

ξ : S ! C[n].

Now we describe WS stability on the stack X.

Definition 5.2.2. A pair (Z,X ) ⊂ X(S) is said to be WS stable if and only if
X := ξ∗X[n] for some morphism ξ : S ! C[n] and there exists some G-linearised
ample line bundle on Hm

[n] which makes Z be GIT stable. We will say that Z is
SWS stable if it has smooth support and is WS stable.

Remark 5.2.3. Note that we are slightly abusing notation in the above definition,
by asking for Z to be GIT stable in Hm

[n], when Z is defined in X , and it is in
fact ξ∗Z which must be GIT stable in Hm

[n]. This is a harmless a simplification
as it will always be clear from context what we mean. We continue to use it
throughout the work for convenience, especially where the map ξ has not been
specified.

Let us denote by Mm
SWS and Mm

LW the stacks of SWS and LW stable length m
zero-dimensional subschemes in X respectively. Let S be a C-scheme. An object
of Mm

SWS(S) is defined to be a pair (Z,X ), where X ∈ X(S) and Z is an S-flat
SWS stable family in X . Similarly, an object of Mn

LW(S) is a pair (Z,X ), where
X ∈ X(S) and Z is an S-flat LW stable family in X .

Remark 5.2.4. Note that it does not make sense in general to speak of Maulik-
Ranganathan stability (MR stability) without defining an appropriate notion
of tube components on our stacks as in Section 2.5. In this specific setting,
however, we will see that there is no need to specify tube components as the
stacks Mm

SWS and Mm
LW are already proper. The LW stability which we extended

to our situation will therefore be equivalent to MR stability on X. In this setting
we may therefore use both terminologies interchangeably.
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We will see in Section 7 that we can also make constructions, equivalent to
some of the constructions of Maulik-Ranganathan, which require choices of repre-
sentatives of limit subschemes and labelling of components as tube components.
As the construction we make here requires the minimal amount of choice (the
only choice was in choosing to blow up Y1 and Y2 but not Y3 at the very start)
we shall refer to it as the canonical construction.

6 The canonical moduli stack

In this section we show that the stacks Mm
SWS and Mm

LW are proper and Deligne-
Mumford and that they are in fact isomorphic.

6.1 Properness and Deligne-Mumford property

In this section, we show that the stacks Mm
SWS and Mm

LW are universally closed,
separated and have finite automorphisms. Before we give these proofs, we make
the following definition.

Definition 6.1.1. Let S := SpecR ! C, where R is some discrete valuation
ring and let η denote the generic point of S. Now, let (Z,X ) be a pair where
X ∈ X(S) and Z is an S-flat family of length m zero-dimensional subschemes in
X . Let S ′ ! S be some finite base change and denote the generic and closed
points of S ′ by η′ and η′0 respectively. We say that a pair (Z ′

η′0
,X ′

η′0
) is an extension

of (Zη,Xη) if there exists such a base change and (Z ′
η′0
,X ′

η′0
) is the restriction to

η′0 of some S-flat family (Z ′,X ′) with X ′ ∈ X′(S ′) such that Zη ×η η
′ ∼= Z ′

η′ and
Xη ×η η

′ ∼= X ′
η′ .

Proposition 6.1.2. The stack Mm
SWS is universally closed.

Proof. Let S := SpecR ! C, where R is some discrete valuation ring with
uniformising parameter w and quotient field k. We denote by η and η0 the
generic and closed points of S respectively. Let (Z,X ) be an S-flat family of
length m zero-dimensional subschemes such that X := ζ∗X[r] ∈ X(S) for some
morphism ζ : S ! C[r] and (Zη,Xη) ∈ Mm

SWS(η). We show that there exists a
finite base change S ′ := SpecR′ ! S, for some discrete valuation ring R′ and
a pair (Z ′,X ′) ∈ Mm

SWS(S
′) satisfying the following condition. We denote by η′

and η′0 the generic and closed points of S ′ respectively. Then S ′ and (Z ′,X ′)
are chosen such that we have an equivalence X ′

η′
∼= Xη ×η η

′ which induces an
equivalence Z ′

η′
∼= Zη ×η η

′.

Let X(S) be defined by the equation xyz = cwh, where w is the uniformising
parameter of R as above and c ∈ R× (the notation R× is used to denote the
invertible elements of R). The subscheme Z is a union of irreducible compo-
nents Zi whose defining equations we will want to express in terms of the uni-
formising parameter. We therefore start by taking an appropriate base change
S ′ := SpecR′ ! S, which maps uk ! wh, where u is the uniformising parameter
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of R′ and where u is chosen such that each Zi can be written locally in terms of
its x, y and z coordinates as

{(ci,1uei,1 , ci,2uei,2 , ci,3uei,3)}, (6.1.1)

for some ei,j ∈ Z and ci,j ∈ (R′)×. Note that X(S ′) is defined by the equation
xyz = cuk and we therefore have the equality

ci,1ci,2ci,3u
ei,1+ei,2+ei,3 = cuk

for all i.

We now form an ordered list (d1u
e1 , . . . , d2mu

e2m), where we arrange all values
ci,1u

ei,1 and (ci,2)
−1cuk−ei,2 from smallest to largest power of u. If two terms have

the same power of u, we may place them in any order. We shall now inductively
construct an element (t1, . . . , tn+1) of An+1 determining a morphism ξ : S ′ ! C[n]
such that the pullback ξ∗X[n] defines the family X ′. We start by setting

(t1, t2) = (d1u
e1 , (d1u

e1)−1cuk).

If e1 = e2, then we do not include d2u
e2 and move on to e3. If e1 ̸= e2, however,

we set
(t1, t2, t3) = (d1u

e1 , (d1u
e1)−1d2u

e2 , (d2u
e2)−1cuk).

We continue to iterate this process in the following way. Assume we have (t1, . . . , tj),
where tj = (dlu

el)−1cuk. Then, if el+1 ̸= el, we write

(t1, . . . , tj, tj+1) = (d1u
e1 , . . . , (dlu

el)−1dl+1u
el+1 , (dl+1u

el+1)−1cuk),

and if el+1 = el, then we move on to l + 2 without including dl+1u
el+1 in the

expression. We iterate this until we find

(t1, . . . , tn+1) = (f1u
g1 , . . . , fn+1u

gn+1) (6.1.2)

which has exactly one entry for each different power of u contained in the list
(d1u

e1 , . . . , d2mu
e2m).

We now denote by πn : C[n] ! An+1 the natural projection. The morphism
ξ : S ′ ! C[n] is defined by the condition that

πn ◦ ξ = (f1u
g1 , . . . , fn+1u

gn+1). (6.1.3)

We may then define X ′ := ξ∗X[n] and let Z ′ := Z ×X X ′. We show now that this
satisfies all the necessary conditions.

Since X ∈ X(S) is a pullback X = ζ∗X[r] for some r, where ζ : S ! C[r] is
given by a similar expression to (6.1.3), then we have that X ′

η′
∼= Xη×η η

′. Indeed,
over the generic point, the uniformising parameter is invertible and any two ex-
pressions (t1, . . . , tl) and (t1, . . . , tl′) are equivalent in C up to the equivalences of
this stack if they have the same product t1 · · · tl = t1 · · · tl′ . But in our case this
product was chosen to be identical up to the base change factor.
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Moreover, the expression (6.1.3) is chosen precisely to give an S ′-flat extension
of Z×η η

′ to the closed point η′0, where all points of the support of this extension
lie in the smooth locus of the fibre Xη0 . Finally, the expression (6.1.3) ensures
that we have expanded out the ∆-components in the fibre X ′

η0
in such a way that

every expanded ∆-component in this fibre contains some point of the support of
Z ′. By Theorem 4.4.3, such a configuration will be stable with respect to some
GIT stability condition on Hm

[n].

The above discussion shows that if (Zη,Xη) is pulled back from a fibre above
a point (t1, . . . , tn+1) in some C[n] whose entries are all invertible, then (Zη,Xη)
has an SWS stable extension. See Corollary 7.5.11 for a proof that there exists an
extension if Xη is a modified special fibre, i.e. if some of the entries of (t1, . . . , tn+1)
are not invertible.

Corollary 6.1.3. The stack Mm
LW is universally closed.

Proof. As every SWS stable subscheme must be LW stable, the existence of limits
in Mm

LW follows from the existence of limits in Mm
SWS.

Proposition 6.1.4. The stacks Mm
SWS and Mm

LW are separated.

Proof. Let S := SpecR! C, where R is a discrete valuation ring with uniformis-
ing parameter u. Let η denote the generic point of S and η0 its closed point.
Now, assume that there are two pairs (Z,X ) and (Z ′,X ′) in Mm

SWS(S) such that
(Zη,Xη) ∼= (Z ′

η,X ′
η). We will show that it must follow that (Zη0 ,Xη0)

∼= (Z ′
η0
,X ′

η0
).

We may assume that S is chosen so that the i-th irreducible component of Z
is given in terms of its local coordinates x, y and z by

{(ci,1uei,1 , ci,2uei,2 , ci,3uei,3)}, (6.1.4)

and the i-th irreducible component of Z ′ is given in terms of its local coordinates
x, y and z by

{(di,1ufi,1 , di,2ufi,2 , di,3ufi,3)}. (6.1.5)

Since the equivalences of the stack fix x, y and z and we know that (Zη,Xη) ∼=
(Z ′

η,X ′
η), it must therefore follow that Z and Z ′ have the same number of irre-

ducible components. Moreover, if these components are labelled in a compatible
way, then ci,1 = di,1 and ei,1 = fi,1 for all i. But now, by flatness, each Zi and Z

′
i

component must satisfy the equations

x = ci,1u
ei,1 , (6.1.6)

y = ci,2u
ei,2 , (6.1.7)

z = ci,3u
ei,3 , (6.1.8)

also above the closed point. If more than one element of the set {ei,1, ei,2, ei,3}
is nonzero, then this implies that either Zi and Z

′
i must either have non-smooth

support or be supported in a component blown-up along the vanishings of both
sides of the above components. The stability condition forces Zi and Z

′
i to have
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smooth support, so the latter must be true. Moreover, since in our construction
we have chosen to do our blow-ups along the vanishing of x and the vanishing of
y, this implies that Zi and Z

′
i must be supported in a component blown up along

⟨x, cuei,1⟩ and ⟨y, c′uei,2⟩ over the closed point η0, for some c, c′ ∈ R×.

Note that different values of c and c′ will cause the relevant points of the
support of Zi and Z

′
i to take on different values in the interior of the P1 introduced

by each blow-up. Since the Gm-action imposed on the P1 identifies all points
within the interior of a P1, this choice makes no difference.

Notice also that blowing up along ⟨x, cuei,1⟩ is the same as blowing up along
⟨yz, (cuei,1)−1duk⟩, where X(S) is defined by the equation xyz = duk. This allows
us to obtain the equation (6.1.8).

We have established that both Zi and Z
′
i must be supported in the blown-up

components described above for all i such that more than one element of the
set {ei,1, ei,2, ei,3} is nonzero. We also know that by the stability conditions the
pairs (Zη0 ,Xη0) and (Z ′

η0
,X ′

η0
) cannot have an expanded component containing

no point of the support. Let πn : C[n]! An+1 denote the natural projection, as
above. It follows that the morphism

πn ◦ ξ = (h1u
g1 , . . . , hnu

gn) : S ! C[n]! An+1 (6.1.9)

defining the family X = ξ∗X[n] is uniquely determined up to the choices of
values hi ∈ R× and embeddings by the standard embeddings. If the family
X ′ is defined by a morphism as in (6.1.9) but with different nonzero gi values,
then the pair (Z ′

η0
,X ′

η0
) will necessarily have either non-smooth support or an

expanded component containing no point of the support. This shows uniqueness
of limits.

Proposition 6.1.5. The stacks Mm
LW and Mm

SWS have finite automorphisms.

Proof. On the stack Mm
LW this is immediate from the definition of LW stability.

Since the SWS stable locus is a subset of the LW stable locus, it follows that
Mm

SWS must also have finite automorphisms. Alternatively, one can recall that a
GIT stable point must have finite stabiliser with respect to the relevant G-action.

Note that any equivalence on X lifted from an isomorphism τ̃I,I′ does not fix
any object unless τ̃I,I′ is the identity map. This is clear from the fact that τ̃I,I′ acts
on a tuple in An+1 by changing the position of its zero entries while preserving
the relative order of its nonzero entries. The only way to fix a tuple is to leave
its zero entries in their original position, but any map τ̃I,I′ which does this is just
the identity map.

Corollary 6.1.6. The stacks Mm
LW and Mm

SWS are Deligne-Mumford and proper.

Proof. This follows directly from the results of this section.
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6.2 An isomorphism of stacks

We shall now show that the stacks Mm
SWS and Mm

LW are isomorphic. The following
lemma is a standard result, quoted from [GHH19].

Lemma 6.2.1. Let W and Y be Deligne-Mumford stacks of finite type over an
algebraically closed field k, and let

f : W! Y

be a representable étale morphism of finite type. Let |W(k)| denote the set of
equivalence classes of objects in W(k) and similarly for |Y(k)|. Assume

• |f | : |W(k)|! |Y(k)| is bijective.

• For every x ∈ W(k), f induces an isomorphism

AutW(x)! AutY(f(x)).

Then f is an isomorphism of stacks.

We may construct such a map f : Mm
SWS !Mm

LW, which we will show to have
the required properties, in the following way. First recall from above that we have
an inclusion Hm

[n],SWS ⊂ Hm
[n],LW. Therefore the natural morphism Hm

[n],LW !Mm
LW

restricts to give a morphism Hm
[n],SWS ! Mm

LW. This morphism is equivariant
under the group action so must factor through the morphism

f : Mm
SWS −!Mm

LW.

Lemma 6.2.2. The function |f | : |Mm
SWS(k)| ! |Mm

LW(k)| induced by f is a
bijection.

Proof. As we have an inclusion of the SWS stable locus into the LW stable locus,
we know that this map must be injective. It remains to show that it is surjective.
Let us take any point in |Mm

LW(k)|. This is given by the equivalence class of a pair
(Zk,Xk), where Zk is a length m zero-dimensional subscheme in a fibre Xk over
the point Spec k. Either the pair (Zk,Xk) is already SWS stable, in which case
there is nothing left to prove, or we are in the following case. If (Zk,Xk) is LW
stable but not SWS stable then it must mean that there is at least a point of the
support in each expanded ∆-component, but there is at least one ∆-component
which is not expanded out which contains no point of the support. Let us say
this ∆-component is equal to Yi. But by the equivalences of the stack X such a
fibre is equivalent to a fibre where Yi is not equal to any ∆-component. It will
therefore be equivalent to a fibre in which every ∆-component contains at least
one point of the support, which gives us an SWS stable fibre-subscheme pair.

We will need also the following result from Alper and Kresch [AK16].
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Lemma 6.2.3. Let W be a Deligne-Mumford stack with finite inertia, let Y be an
algebraic stack with separated diagonal and let f : W! Y be a morphism. Then
the largest open substack U of W on which the restriction of f is a representable
morphism enjoys the following characterisation: the geometric points of U are
precisely those at which f induces an injective homomorphism of stabiliser group
schemes.

Now we are in a position to prove the following theorem:

Theorem 6.2.4. The map f : Mm
SWS !Mm

LW is an isomorphism of stacks.

Proof. This can be seen by applying Lemma 6.2.1 to the map f . In order to do
this we must show that this morphism is representable, with the help of Lemma
6.2.3. It follows directly from the fact thatMm

SWS is a separated Deligne-Mumford
stack that it has finite inertia. By Lemma 6.2.2, the first condition of Lemma
6.2.1 is satisfied. And the map f defined above must also induce a bijective
homomorphism of stabilisers since the only elements which can stabilise a family
(Z,X ) in Mm

SWS or Mm
LW are elements of Gn

m (the other equivalences on X do not
stabilise any families as explained in Proposition 6.1.5) and, by construction, if a
family (Z,X ) in Mm

SWS has stabiliser Stab(Z,X ) ⊂ Gn
m then f((Z,X )) must have

the same stabiliser in Gn
m. Lemma 6.2.1 therefore holds and f is an isomorphism

of stacks.

7 A second expanded construction

In this section we present a second construction of a stack of expansions and its
family, which we will denote by X′ ! C′ and which will contain more choices of
expansions of X. The SWS and LW stability conditions described in the previous
sections may be extended to this setting and we will see that, because of these
additional expansions, the stacks of stable SWS and LW objects will not separated
here. Indeed, there will be too many stable limits for a single object. We will
then explore how a separated stack may be constructed, either by identifying
all possible limits of a same object in a non-algebraic stack, similar to ideas
of Kennedy-Hunt in [Ken23], or by including an additional stability condition
which cuts out a separated substack. These choices of proper substacks will give
us more (though not all) examples of proper Deligne-Mumford stacks arising from
the methods of Maulik and Ranganathan in [MR20].

7.1 Scheme construction

The blow-ups. Let X ! C ∼= A1 be as before, a projective family of surfaces
locally given by Spec k[x, y, z, t]/(xyz − t). We form a fibre product X ×A1 An+1

in the same way as in Section 3.1.

Similarly to the first construction, we now make a sequence of blow-ups of Y1
and Y2 in X ×A1 An+1 along the vanishing of certain basis directions, but we do
not require here that both Y1 and Y2 should be blown up along all basis directions.
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Definition 7.1.1. Let A and B be subsets of [n + 1] := {1, . . . , n + 1}. We say
that the triple (A,B, n) is unbroken if there are real intervals [1, a) and (b, n+1]
with 1 < b < a < n+ 1 such that A = N ∩ [1, a) and B = N ∩ (b, n+ 1].

In other words, if (A,B, n) is an unbroken triple, then elements of [n + 1] in
order from 1 to n + 1 are contained first in A \ B, then in A ∩ B and then in
B \A, where A∩B may be empty but the other two are not. In particular, A is
forced to contain 1 but not n+1 and, similarly, B must contain n+1 but not 1.

Let (A,B, n) be an unbroken triple. We blow up X ×A1 An+1 in the ideals

⟨x, t1⟩, ⟨x, t1t2⟩, . . . , ⟨x, t1t2 · · · t⌊a⌋⟩

and the ideals

⟨y, tn+1⟩, ⟨y, tn+1tn⟩, . . . , ⟨y, tn+1tn · · · t⌈b⌉⟩.

We denote the resulting space by X[A,B]. Note that if A = {1, . . . , n} and
B = {2, . . . , n + 1}, then we get back exactly the space X[n] of Section 3.1. We
extend the terminology of expanded components, ∆-components, bubbles, etc. from
Section 3 in the obvious way. We abuse notation slightly and again denote by
π : X[A,B]! X the projection to the original family (it will always be clear from

context to which map π we are referring). We will denote by ∆
(i)
1 the component

introduced by the blow-up of the ideal ⟨x, t1t2 · · · ti⟩. Similarly we will denote by

∆
(n+2−j)
2 the component introduced by the blow-up of the ideal ⟨y, tn+1tn · · · tj⟩.

Finally, we set the notation C[A,B] to refer to the base C×A1 An+1 together with
the data of the sets A and B. This is the same scheme as C[n] from Section 3,
but here for each basis direction ti we retain the extra information of whether i
belongs to the set A or B. Before we continue describing the schemes X[A,B],
we make one additional definition.

Definition 7.1.2. Let X[A,B] be a scheme as defined above. A ∆-component
in a fibre of X[A,B] is said to have ∆i-multiplicity l if this component is equal

to ∆
(j)
i = · · · = ∆

(j+l)
i for some j and it is not equal to any other ∆i-components.

Note that when restricting to the setting of the construction X[n] of Section
3, then the ∆1- and ∆2-multiplicity of a component will always be identical.

Now, let (t) ∈ C[A,B] and let ti and tj be two consecutive zero entries of
(t), i.e. ti = tj = 0 and ti+1, . . . , tj−1 ̸= 0. If both i and j are in A and j /∈ B,

then the component ∆
(i)
1 = · · · = ∆

(j−1)
1 is expanded out in the fibre of X[A,B]

over (t) and it is of pure type; there is no component ∆n+2−k
2 in X[A,B] for

k ≤ j. Similarly, if both i and j are in B and i /∈ A, then the component
∆

(n+3−i)
2 = · · · = ∆

(n+2−j)
1 is expanded out in the fibre of X[A,B] over (t) and of

pure type.
If i ∈ A and j ∈ B, then ∆

(i)
1 = ∆

(n+2−j)
1 is expanded out in the fibre of

X[A,B] over (t). The ∆1-multiplicity of this component will be equal to the
number of elements of the set {i, . . . , j − 1} which are contained in A. Similarly,
the ∆2-multiplicity of this component is given by the number of elements of the
set {i+ 1, . . . , j} contained in B.
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Remark 7.1.3. The condition in Definition 7.1.1 is there to ensure that all modified
special fibres have the expected base codimension. Indeed, if we allowed for
example i ∈ B \ A and j ∈ A \ B with i < j and the blow-ups as given above,
then when ti = tj = 0 and all other basis directions are non-vanishing, we would
see a copy of X0. Then we would need to identify such a fibre with other copies
of X0 in our stack X′, but this would imply identifying fibres of different base
codimension, which cannot be done through isomorphisms on the base. To avoid
this unpleasantness, we therefore fix an ordering of the elements of A \B, A∩B
and B \ A.

Now, let n′ > n, let (A′, B′, n′) be an unbroken triple, and suppose that
|A| ≤ |A′| and |B| ≤ |B′|, where |A \B| = i, |A∩B| = j− i and |B \A| = n− j.
In this case, we may define a natural inclusion

ι : C[A,B] ↪−! C[A′, B′], (7.1.1)

given by

(t1, . . . , ti, ti+1, . . . , tj, tj+1 . . . , tn)

(t1, . . . , ti, 1, . . . , 1, ti+1, . . . , tj, 1, . . . , 1, tj+1 . . . , tn, 1, . . . , 1).

These, in turn, determine embeddings

X[A,B] ↪−! X[A′, B′].

The group action. We may define a natural torus action on X[A,B] similarly
to the first construction. Let G := Gn

m, where again we denote an element of
this group (τ1, . . . , τn). This group acts trivially on the original family X. If

the component ∆
(k)
1 exists in X[A,B], then G acts on the coordinates of this

component by
(x

(k)
0 : x

(k)
1 ) 7−! (τkx

(k)
0 : x

(k)
1 ).

If the component ∆
(k)
2 exists in X[A,B], then G acts on it by

(y
(k)
0 : y

(k)
1 ) 7−! (y

(k)
0 : τn+1−ky

(k)
1 ).

As before, this action induces a natural action on the base given by

t1 7−! τ−1
1 t1,

tk 7−! τ−1
k τk−1tk,

tn+1 7−! τntn+1.

The morphisms π : X[A,B]! X and X[A,B] ↪! X[A′, B′] are equivariant under
the group action. Again, up to linear independence there is a single function on
C[A,B] which is G-invariant.
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The G-linearisation. Similarly to Section 3.2, we may embed X[A,B] into a
product of projective bundles. This is done again by defining vector bundles

F (i)
1 = pr∗1OX(−Y1)⊕ pr∗2OAn+1(−V (ti))

F (j)
2 = pr∗1OX(−Y2)⊕ pr∗2OAn+1(−V (tn+2−j))

on X ×A1 An+1 for i ∈ A and j ∈ B and repeating the steps of Section 3.2. We
may then construct the following G-linearised ample line bundles on X[A,B].
Then we may extend Lemma 3.2.1 of Section 3.2 to this situation as follows.

Lemma 7.1.4. There exists a G-linearised ample line bundle L on X[A,B] such
that locally the lifts to this line bundle of the G-action on each P1 corresponding
to a ∆

(i)
1 and on each P1 corresponding to a ∆

(n+2−j)
2 are given by

(x
(i)
0 ;x

(i)
1 ) 7−! (τaii x

(i)
0 ; τ−bii x

(i)
1 ) (7.1.2)

(y
(n+2−j)
0 ; y

(n+2−j)
1 ) 7−! (τ

−cj
j+1y

(n+2−j)
0 ; τ

dj
j+1y

(n+2−j)
1 ) (7.1.3)

for any i ∈ A and j ∈ B and any choice of positive integers ai, bi, cj, dj.

Proof. This follows directly from Lemma 3.2.1.

As before, we will apply the relative Hilbert-Mumford criterion of [GHH15]
to define GIT stability conditions with respect to the G-linearised line bundles
we defined. We leave this discussion for Section 7.3.

7.2 The stack of expansions and its family

Here we define a second version of the stack of expansions and its family, building
on the ideas of Section 5.

The stack C′. In the following we define the stack of expansions C′. This
will differ slightly from the construction of Li and Wu in that we will want to
remember what components of the special fibre X0 are blown up along which
basis directions.

Let us consider An+1 with its natural torus action Gn
m as before and denote by

(An+1)[A,B] this space enhanced by a choice of sets A and B such that (A,B, n)
is unbroken. We label elements of (An+1)[A,B] by (t1, . . . , tn+1) as before and, for
any k, we define the set

[k] := {1, . . . , k}.

Let J ⊆ [n + 1] and let J◦ = [n + 1] \ J be its complement. We denote the
cardinality of J by r := |J | and define

indJ : [r] −! J and

indJ◦ : {r + 1, . . . , n+ 1} −! J◦
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to be the order preserving isomorphisms.

Remark that though the map indJ is defined identically to the map of the
same name in Section 5, the map indJ◦ is given a different definition here. This
modification is introduced so that we may keep track of which indices of the
entries of (t1, . . . , tn+1) lie in A or B in the following isomorphisms.

Let

(An+1
J )[A,B] = {(t) ∈ (An+1)[A,B]| ti = 0, i ∈ J} ⊂ (An+1)[A,B]

and
(An+1

U(J))[A,B] = {(t) ∈ (An+1)[A,B]| ti ̸= 0, i ∈ J◦} ⊂ (An+1)[A,B].

Now, given (An+1
U(J))[A,B], we define a corresponding space (Ar × Gn+1−r

m )[ϵ(A),ϵ(B)]

by specifying the sets ϵ(A) and ϵ(B) in the following way. If indJ(1) ∈ A∩B, then
let 1 ∈ ϵ(A). Then, for i > 1, if indJ(i) ∈ A ∩B then i ∈ ϵ(A) ∩ ϵ(B). For i ≥ 1,
if indJ(i) ∈ A\B then i ∈ ϵ(A)\ ϵ(B) and if indJ(i) ∈ B \A then i ∈ ϵ(B)\ ϵ(A).
Finally, let i ∈ ϵ(B) \ ϵ(A) for all i > r. We note that (ϵ(A), ϵ(B), n) is unbroken.
We may then define the isomorphism

τ
[A,B]
J : (Ar ×Gn+1−r

m )[ϵ(A),ϵ(B)] −! (An+1
U(J))[A,B]

given by
(a1, . . . , ar, σr+1, . . . , σn+1) −! (t1, . . . , tn+1),

where

ti = aj, if indJ(j) = i,

ti = σj, if indJ◦(j) = i.

Now, given two triples (A,B, J) and (A′, B′, J ′) such that |J | = |J ′| and such
that ϵ(A) = ϵ(A′) and ϵ(B) = ϵ(B′), we define an isomorphism

τ
J ′,[A′,B′]
J,[A,B] = τ

[A,B]
J ◦ (τ [A

′,B′]
J ′ )−1 : (An+1

U(J ′))[A′,B′] −! (An+1
U(J))[A,B].

Now, we define a second set of isomorphisms similarly to the above. Given
any (An+1

U(J))[A,B], we may define an alternative space (Ar × Gn+1−r
m )[δ(A),δ(B)] by

describing sets δ(A) and δ(B) in the following way. If indJ(r) ∈ A ∩ B, then let
r ∈ δ(B). For i < r, if indJ(i) ∈ A ∩ B, then let i ∈ δ(A) ∩ δ(B). For i ≤ r, if
indJ(i) ∈ A\B, then let i ∈ δ(A)\δ(B) and if indJ(i) ∈ B \A let i ∈ δ(B)\δ(A).
Again, the triple (δ(A), δ(B), n) is unbroken. We then define an isomorphism

ρ
[A,B]
J : (Ar ×Gn+1−r

m )[δ(A),δ(B)] −! (An+1
U(J))[A,B]

given by
(a1, . . . , ar, σr+1, . . . , σn+1) −! (t1, . . . , tn+1),

where

ti = aj, if indJ(j) = i,

ti = σj, if indJ◦(j) = i.
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As above, given two triples (A,B, J) and (A′, B′, J ′) such that |J | = |J ′| and such
that δ(A) = δ(A′) and δ(B) = δ(B′), we may then specify an isomorphism

ρ
J ′,[A′,B′]
J,[A,B] = ρ

[A,B]
J ◦ (ρ[A

′,B′]
J ′ )−1 : (An+1

U(J ′))[A′,B′] −! (An+1
U(J))[A,B].

Finally, given (A,B, n), we define UA,B to be the quotient [(An+1)[A,B]/∼] by

the equivalences generated by the Gn
m-action and the equivalences τ

J ′,[A′,B′]
J,[A,B] and

ρ
J ′,[A′,B′]
J,[A,B] for compatible triples (A,B, J) and (A′, B′, J ′). Recall from Section 7.1

that we had natural inclusions (7.1.1)

C[A,B] ↪−! C[A′′, B′′],

for all A′′ and B′′ such that (A′′, B′′, n′′) is unbroken for some n′′ > n and such
that |A| ≤ |A′′| and |B| ≤ |B′′|. These induce open immersions of stacks

UA,B −! UA
′,B′
.

Let U′ := lim
!

UA,B be the direct limit over unbroken (A,B, n) and let C′ :=

C ×A1 U′.

We now make a few remarks concerning the isomorphisms described in this
section. These isomorphisms are effectively a reordering of the basis directions,
where the ti’s whose indices lie in J preserve their order relative to each other and
the corresponding indices preserve their A,B labelling, apart in certain cases for
the first and last index in J . As we will see in the proof of Proposition 7.2.1, these
are exactly the isomorphisms on the base which correspond to isomorphisms of
the corresponding fibres above these elements.

Finally, we note that if (An+1
U(J))[A,B] is such that indJ(1) ∈ A∩B, then as well

as being isomorphic to the space (Ar ×Gn+1−r
m )[ϵ(A),ϵ(B)] defined above, it is also

isomorphic to a spaces (An+1
U(J ′))[A′,B′] where indJ ′(1) ∈ A′ ∩ B′ and the equalities

ϵ(A) = ϵ(A′) and ϵ(B) = ϵ(B′) hold.

The stack X′. Let X[A,B]! C[A,B] be a construction as described in Section
7.1 and recall that π : X[A,B]! X is the projection to the original family. Let
n′ > n, let (A′, B′, n′) be unbroken, and let |A| ≤ |A′| and |B| ≤ |B′|. In such a
case, we have the natural inclusion (7.1.1)

ι : C[A,B] ↪−! C[A′, B′]

Then the induced family (ι∗X[A′, B′], ι∗π) is isomorphic to (X[A,B], π) over
C[A,B]. The following proposition shows that the equivalences on UA,B lift to
C-isomorphisms of fibres. Let X[A,B]U(J) and X[A,B]J be the restrictions of
X[A,B] to (An+1

U(J))[A,B] and (An+1
J )[A,B] respectively.

Proposition 7.2.1. The schemes X[A,B]U(J) and X[A′, B′]U(J ′) are isomor-
phic if and only if (An+1

U(J))[A,B] and (An+1
U(J ′))[A′,B′] are related by the isomorphisms

τ
J ′,[A′,B′]
J,[A,B] and ρ

J ′,[A′,B′]
J,[A,B] .
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Proof. It is clear thatX[A,B]U(J) andX[A′, B′]U(J ′) are isomorphic on π−1
[A,B](X

◦) ∼=
π−1
[A′,B′](X

◦), i.e. on the locus where all basis directions are nonzero. We must show

that for each modified special fibre in X[A,B]U(J) there is an isomorphic fibre in

X[A′, B′]U(J ′) if and only if the corresponding bases are related by τ
J ′,[A′,B′]
J,[A,B] and

ρ
J ′,[A′,B′]
J,[A,B] .

First, assume there is a sequence of τ
J ′,[A′,B′]
J,[A,B] and ρ

J ′,[A′,B′]
J,[A,B] isomorphisms such

that (An+1
U(J))[A,B]

∼= (An+1
U(J ′))[A′,B′]. Since |J | = |J ′| = r, this implies that, for

1 < i < r, the element indJ(i) belongs to A \ B if and only if indJ ′(i) belongs to
A′ \B′. The same goes for the sets A ∩B with A′ ∩B′ and B \ A with B′ \ A′.

Next, we note that the placement of the nonzero entries in (t1, . . . , tn+1) in-
fluences the ∆-multiplicity of the components but has no effect on how many
components are expanded out in the fibre above this point or whether these ex-
panded components are of type ∆1 or type ∆2. Moreover, changing the first
zero entry of (t1, . . . , tn+1) from an element of A \ B to an element of A ∩ B or
vice versa also does not affect which components are expanded out in this fibre.
The same is true of changing the last zero entry of (t1, . . . , tn+1) from B \ A to
A ∩ B or vice versa. This can be easily seen by studying the equations of the

blow-ups. It therefore must follow that a sequence of isomorphisms τ
J ′,[A′,B′]
J,[A,B] and

ρ
J ′,[A′,B′]
J,[A,B] , as they only modify the base in ways that preserve the fibres, induces

an isomorphism X[A,B]U(J)
∼= X[A′, B′]U(J ′).

Conversely, let us assume that all fibres in X[A,B]U(J) are isomorphic to
fibres in X[A′, B′]U(J ′). This means that for every fibre of X[A,B]U(J) over a
point (t1, . . . , tn+1) of the base (An+1

U(J))[A,B], there exists a fibre of X[A′, B′]U(J ′)

over a point (t′1, . . . , t
′
n+1) of the base (An+1

U(J ′))[A′,B′] such that the exact same
number of components are expanded out in the same loci of both fibres and these
components must have the same type. Clearly, there must be the same amount of
zero entries in (t1, . . . , tn+1) and (t′1, . . . , t

′
n+1); call this number k. Moreover, for

k > 1, by studying the equations of the blow-ups we can see that for the above
statement to be true, the first k − 1 zeroes of (t1, . . . , tn+1) must have indices
belonging to A if and only if the first k − 1 zeroes of (t′1, . . . , t

′
n+1) have indices

belonging to A′; and the last k − 1 zeroes of (t1, . . . , tn+1) must have indices
belonging to B if and only if the last k − 1 zeroes of (t′1, . . . , t

′
n+1) have indices

belonging to B′.
If the index of the first zero in (t1, . . . , tn+1) is not contained in A, then it

must be contained in B \A and all expanded components in the fibre above this
point are of type ∆2. This can only be isomorphic to the fibre above the point
(t′1, . . . , t

′
n+1) if the indices of all zero entries in (t′1, . . . , t

′
n+1) are contained in

B′ \ A′. If the index of the first zero in (t1, . . . , tn+1) is contained in A and the
indices of all subsequent zeroes are contained in B, however, then whether or not
this first index is contained in B has no effect on the components expanded out in
this fibre. In conclusion, if the fibres above points (t1, . . . , tn+1) and (t′1, . . . , t

′
n+1)

are isomorphic, then the index of the first zero entry of (t1, . . . , tn+1) is in B \ A
if and only if the index of the first zero entry of (t′1, . . . , t

′
n+1) is in B

′ \ A′; and
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if the index of the first zero entry of (t1, . . . , tn+1) is in A ∩ B then the index of
the first zero entry of (t′1, . . . , t

′
n+1) is in either of A′ \ B′ or A′ ∩ B′. A similar

reasoning holds with respect to the index of the last zero entry being contained
in B \A or A∩B. Indeed, if this index is contained in A∩B, then indJ ′(k) may
be contained in A′ ∩B′ or B′ \A′. But these are exactly the elements of the base

which are related by the isomorphisms τ
J ′,[A′,B′]
J,[A,B] and ρ

J ′,[A′,B′]
J,[A,B] .

We define XA,B to be the quotient [X[A,B]/∼] by the equivalences generated
by theGn

m-action and equivalences lifted from UA,B. There are natural immersions
of stacks

XA,B ↪−! XA′,B′
,

induced by the immersions UA,B ↪! UA
′,B′

. Finally, we define X = lim
!

XA,B to be

the direct limit over all unbroken triples (A,B, n). It is an Artin stack.

7.3 Stability conditions

We now discuss stability conditions on the stack X′. As in Section 5.2, we will
give two perspectives, one coming from the GIT stability conditions arising from
the G-linearised line bundles we constructed in Section 7.1 and one which relates
to the stability conditions presented by Li and Wu in [LW15] and Maulik and
Ranganathan in [MR20].

Let (A,B, n) be an unbroken triple and denote by

Hm
[A,B] := Hilbm(X[A,B]/C[A,B])

the relative Hilbert scheme of m points. Recall that in Section 7.1, we discussed
possible choices for a G-linearised ample line bundle L on X[A,B]. As before,
this will induce a G-linearised ample line bundle on Hm

[A,B] in the following way.
Let

Zm
[A,B] ⊂ Hm

[A,B] ×C[A,B] X[A,B]

be the universal family, with first and second projections p and q. The line bundle

Ml := det p∗(q
∗L⊗l|Zm

[A,B]
)

is relatively ample when l ≫ 0 and is G-linearised, by the same argument as in
[GHH19].

Now, take a point [Z] ∈ Hm
[A,B] and a 1-PS λs for s ∈ Zn such that the limit

of λs(τ) · Z as τ tends to zero exists; we denote it by Z0. We can write Z0 as a
union of length mP zero-dimensional subschemes

⋃
P Z0,P supported at points P .

Let L⊗l(P ) denote the fibre of L⊗l at P . Then, as before, at the point Z0, the
line bundle Ml is given by the left hand side of the following isomorphism

m∧
H0(OZ0 ⊗ L⊗l) ∼=

( m∧
H0(OZ0)

)
⊗
(⊗

P

L⊗lmP (P )
)
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and the Hilbert-Mumford invariant µMl(Z, λs) is given by the negative of the
weight of the Gm-action on the line bundle Ml at this point Z0. There are again
bounded and combinatorial weights in the sense of [GHH19], which we denote by
µMl
b (Z, λs) and µ

Ml
c (Z, λs) respectively. As before, we may deduce the following

equality
µMl(Z, λs) = µM1

b (Z, λs) + l · µM1
c (Z, λs).

Again, the bounded weight has an upper bound by the same reasoning as the
proof of Lemma 4.3.1.

Lemma 7.3.1. Let Z be a length m zero-dimensional subscheme in a fibre of
X[A,B] such that no point of the support of Z lies in (∆

(k)
1 ∪∆

(n+1−k)
2 )◦ (if either

of these ∆-components does not exist in X[A,B] replace it by ∅). There is no
GIT stability condition on Hm

[A,B] for which Z is stable.

Proof. This follows directly from the proof of Lemma 4.4.2.

We extend the concept of LW stability to our current setting similarly to
before.

Definition 7.3.2. Let Z be a length m zero-dimensional subscheme in a fibre
of X[A,B]. We say that Z is LW stable if Z has smooth support and finite
automorphisms. Denote the LW stable locus by Hm

[A,B],LW.

Remark 7.3.3. In the case of Hilbert schemes of points it is sufficient to describe
LW stability in this simplified way, but if we want to generalise these results to
Hilbert schemes with non-constant polynomials we will need to take the original
definition of Li-Wu stability which we described in Section 5.2.

We also extend the definition of SWS stability to this setting in the obvious
way as follows.

Definition 7.3.4. Let Z be a length m zero-dimensional subscheme in a fibre of
X[A,B]. We say that Z is weakly strictly stable if there exists any G-linearised
ample line bundle M′ on Hm

[A,B] with respect to which Z is GIT stable. The term
strictly is used here to emphasize that we exclude strictly semistable points. If
Z also has smooth support in the fibre, then we say it is smoothly weakly strictly
stable (abbreviated SWS stable as before) and we denote the SWS stable locus
by Hm

[A,B],SWS.

We then have the inclusion

Hm
[A,B],SWS ⊂ Hm

[A,B],LW

since, if points are GIT stable, they must have finite stabilisers. We now extend
our definition of SWS stability to the stack X′.

Given any C-scheme S, an object of X′(S) is a pullback family ξ∗X[A,B] for
a morphism

ξ : S ! C[A,B].
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Definition 7.3.5. A pair (Z,X ) ⊂ X′(S) is said to be SWS stable if and only if
X := ξ∗X[A,B] for some morphism ξ : S ! C[A,B], where Z has smooth support
in X and there exists some G-linearised ample line bundle on Hm

[A,B] which makes
Z be GIT stable.

Lemma 7.3.6. Let Z be a length m zero-dimensional subscheme in a fibre X′(k)

as above. If there is at least one point of the support of Z in the union (∆
(i)
1 )◦ ∪

(∆
(n+1−i)
2 )◦ for every i for which either of these components is expanded out, then

(Z,X′(k)) is SWS stable.

Proof. This follows directly from Lemma 4.4.1.

Let us denote by Nm
SWS and Nm

LW the stacks of SWS and LW stable length m
zero-dimensional subschemes in X′ respectively. Let S be a C-scheme. An object
of Nn

SWS(S) is defined to be a pair (Z,X ), where X ∈ X′(S) and Z is an S-flat
SWS stable family in X . Similarly, an object of Nn

LW(S) is a pair (Z,X ), where
X ∈ X′(S) and Z is an S-flat LW stable family in X .

Remark 7.3.7. It does not make sense here to speak of Maulik-Ranganathan
stability on the stack X′ as we have not yet defined a notion of tube component
and choices of limit representatives. Unlike the stacksMm

SWS andMm
LW, the stacks

Nm
SWS and Nm

LW are universally closed but not separated, so here Li-Wu stability
and Maulik-Ranganathan stability do not coincide. Indeed, as we will see, in order
to construct separated stacks we will need to select one of two options. The first is
to identify all choices of representatives for a limit, which will yield a stack which
is no longer algebraic. This parallels work of Kennedy-Hunt [Ken23]. The second
is to make a choice of substack which picks out exactly one representative for each
limit and these substacks will be isomorphic to the underlying stacks produced
by the methods of Maulik and Ranganathan in [MR20] (the word underlying here
is used to signify that we do not speak of logarithmic structures).

7.4 Universal closure

Let S := SpecR! C, where R is some discrete valuation ring and η denotes the
generic point of S. Let (Zη,Xη) be a pair such that Xη ∈ X′(η) and Zη is a length
m zero-dimensional subscheme in Xη. We adjust the notion of an extension of
the pair (Zη,Xη) to the closed point of S from Definition 6.1.1 to the stack X′ in
the obvious way.

We will now show that the stacks Nm
SWS and Nm

LW are universally closed. The
proof of this proposition will illustrate also the fact that neither stack is separated,
and where these different choices of limit representatives for a family of length m
zero-dimensional subschemes occur.

Proposition 7.4.1. The stack Nm
SWS is universally closed.

Proof. Let S := SpecR ! C, where R is some discrete valuation ring with
uniformising parameter w and quotient field k. We denote by η and η0 the generic
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and closed points of S respectively. Let (Z,X ) be an S-flat family of length m
zero-dimensional subschemes such that X ∈ X′(S) and (Zη,Xη) ∈ Nm

SWS(η). As
in the proof of Proposition 6.1.2, we show that there exists a finite base change
S ′ := SpecR′ ! S, for some discrete valuation ring R′ and a pair (Z ′,X ′) ∈
Nm

SWS(S
′) satisfying the following condition. We denote by η′ and η′0 the generic

and closed points of S ′ respectively. Then S ′ and (Z ′,X ′) are chosen such that we
have an equivalence X ′

η′
∼= Xη ×η η

′ which induces an equivalence Z ′
η′
∼= Zη ×η η

′.

We start by repeating exactly the procedure of Proposition 6.1.2 in order to
find an expression (6.1.2). Note that this part of the proof can be adapted easily
to our current situation as all results up to the expression (6.1.2) still hold if we
replace X by X′ and Mm

SWS by Nm
SWS. We thus construct

(t1, . . . , tn+1) = (f1u
g1 , . . . , fn+1u

gn+1) ∈ An+1, (7.4.1)

where u is the uniformising parameter of R′ and fi ∈ (R′)×. It has been con-
structed, as in the proof of Proposition 6.1.2, such that the associated pullback
of some scheme X[A,B] to S ′ defines the family X ′. In this case, however, there
is a choice to be made in how A and B are defined, as we do not necessarily blow
up both x and y along every basis directions in this construction. We will see
that this choice is non-unique.

We will now describe the possible choices of A and B for each Z ′ and study
the corresponding stable loci. Recall from the proof of Proposition 6.1.2 that the
subscheme Z ′ is a union of irreducible components Z ′

i and that u was chosen such
that each Z ′

i can be written locally in terms of its x, y and z coordinates as

{(ci,1uei,1 , ci,2uei,2 , ci,3uei,3)}, (7.4.2)

for some ei,j ∈ Z and ci,j ∈ (R′)×. As Z ′ is a flat family given by the above
expression, it must satisfy the equations (6.1.6), (6.1.7) and (6.1.8). Part of our
stability conditions is to require smooth support, so, as in the proof of Proposition
6.1.2, if more than one element of the set {ei,1, ei,2, ei,3} is nonzero, then Z ′

η′0
must

be supported in a component blown up along the vanishing of both sides of the
relevant equations (6.1.6), (6.1.7) or (6.1.8).

In the first construction there was no choice in how these blow-ups were made,
but here there is some choice.

First, we discuss limits where the choice is unique. If ei,1 and ei,3 are nonzero
but ei,2 = 0, then the support of (Z ′

i)η′0 lies in the π∗(Y1 ∩ Y3)
◦ locus. In our

construction there is only one way of expanding a ∆-component in this locus
which will contain the support of (Z ′

i)η′0 in its interior, namely that which in the
localisation is given by blowing up the ideal ⟨x, uei,1⟩. There is exactly one j such
that t1 · · · tj = cuei,1 , for some c ∈ (R′)×, where tk are as in the expression (7.4.1).
It follows that j ∈ A.

Similarly, if ei,2 and ei,3 are nonzero but ei,1 = 0, then the support of (Z ′
i)η′0

lies in the π∗(Y2 ∩ Y3)
◦ locus. Again, there is only one way of expanding a ∆-

component in this locus such that the flat limit of (Z ′
i)η′ is contained in the
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interior of this ∆-component. In the localisation, this is given by the blow-up
of the ideal ⟨y, uei,2⟩. Now, as in the previous example, there is exactly one j
such that tj · · · tn+1 = cuei,2 , for some c ∈ (R′)×, where tk are as in the expression
(7.4.1) (the values of c and j may, of course, differ from those in the first example).
It follows that j ∈ B.

Finally, if ei,1, ei,2 and ei,3 are all nonzero then the support of (Z ′
i)η′0 lies in the

π∗(Y1∩Y2∩Y3) locus which is pulled back from a codimension 2 locus in X0. This
implies that in order for (Z ′

i)η′0 to have smooth support, it must be contained in
a P1 × P1 bubble, given by blowing up both ideals ⟨x, uei,1⟩ and ⟨y, uei,2⟩. If j
is such that t1 · · · tj = cuei,1 and k is such that tk · · · tn+1 = cuei,2 , then we must
include both j ∈ A and k ∈ B.

Now, on the other hand, if ei,1 and ei,2 are nonzero but ei,3 = 0, then the
support of (Z ′

i)η′0 lies in the π∗(Y1∩Y2)◦ locus and there are several possible ways
to expand out a component in this locus which would contain (Z ′

i)η′0 in its interior.
Indeed, (Z ′

i)η′0 may lie in a ∆1- or ∆2-component of pure type or in a component
of mixed type ∆1 = ∆2. In other words, if j is such that t1 · · · tj = cuei,1 , for
some c ∈ (R′)× and therefore tj+1 · · · tn+1 = duei,2 , for some d ∈ (R′)×, then we
may pick any of the following three options

j ∈ A and j + 1 /∈ B,

j /∈ A and j + 1 ∈ B,

j ∈ A and j + 1 ∈ B.

Of course, whether or not j and j + 1 are contained in A and B will depend also
on the other Zi and will this choices is constrained by the need for (A,B, n) to
be unbroken, so for certain Z, some of these choices are removed.

For any of the above compatible choices, the limit pair (Z ′
η0
,X ′

η0
) is such that

at least one point of the support of Z ′
η0

is in the union (∆
(i)
1 )◦ ∪ (∆

(n+1−i)
2 )◦ for

every i for which either of these components exists in X ′
η0
. By Lemma 7.3.6, this

limit is SWS stable.

This shows that if (Zη,Xη) is pulled back from a fibre above a point (t1, . . . , tn+1)
in some C[A,B] whose entries are all invertible, then (Zη,Xη) has an SWS stable
extension. See Corollary 7.5.11 for a proof that there exists an extension if Xη is
a modified special fibre.

Corollary 7.4.2. The stack Nm
LW is universally closed.

Proof. As SWS stable pairs must be LW stable, this follows immediately.

Remark 7.4.3. In the proof of Proposition 7.4.1, we saw how the stacks Nm
SWS

and Nm
LW fail to be separated by highlighting several possible choices of limit

representatives. We should note also that it is possible for such a pair (Z ′
η0
,X ′

η0
)

to have finite automorphisms while having expanded ∆-components in X ′
η0

which
contain no point of the support of Z ′

η0
. This may happen for example if, in the

expression (7.4.2), both ei,1 and ei,3 are nonzero but ei,2 = 0. Then, in order for
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Z ′
η0

to have smooth support in X ′
η0
, we must let j ∈ A (using the notation of the

proof) so as to expand out the component ∆
(j)
1 ; but we may also let j + 1 ∈ B

so as to have the component ∆
(n+1−j)
2 expanded out in X ′

η0
, even if the latter

contains no point of the support. As the same Gm acts on ∆
(j)
1 and ∆

(n+1−j)
2 ,

this will not add any automorphisms. In fact, this is exactly the type of blow-up
we made in Section 3 for the first construction. Clearly, such a pair is LW stable,
and it is also SWS stable by arguments of Lemmas 4.3.2, 4.3.6 and 4.4.1.

7.5 Constructing separated stacks.

We are now in a position to construct separated stacks. As mentioned earlier,
there are two ways of doing this. Firstly, one can avoid making any choices
and instead identify all possible limits of a given family in the stacks Nm

SWS and
Nm

LW; the resulting stacks will be in a sense minimal. We denote these by Nm
SWS

and Nm
LW respectively. As we will see, this comes at the cost of these stacks no

longer being algebraic. The second way to obtain separated stacks is to make a
systematic choice of representative for a given limit. This will be done by adding
an additional stability condition.

The stacks Nm
SWS and Nm

LW. Let S := SpecR ! C for some valuation ring
R as before and let η and η0 denote the generic and closed points of S. We
construct the separated stacks Nm

SWS and Nm
LW from the stacks Nm

SWS and Nm
LW

by introducing additional equivalences on these stacks. It is sufficient to define
these equivalences over the scheme S as we already have a well-defined notion of
equivalence up to base change on these stacks.

Let (Zη,Xη) ∈ Nm
SWS(η) (or N

m
LW(η)), where all basis directions are invertible

at the point η. Then (Zη,Xη) will also be an element of Nm
SWS(η) (or Nm

LW(η)).
We then define to be equivalent in Nm

SWS (or Nm
LW) all stable (for the respective

stability conditions) extensions of this pair.

Another way to understand this, closer to the language of Maulik and Ran-
ganathan, is the following. Take (Z,X ) ∈ Nm

SWS(S), where now η is not nec-
essarily pulled back from a point with only invertible basis directions (i.e. Xη

may be a modified special fibre). Then let trop(X ) denote the tropicalisation
of X as defined in Section 2.5 and let trop(Zη) be the image of the restriction
of the tropicalisation map to Zη. The latter may be seen as the space trop(X0)
where certain vertices have been added. More precisely, in the notation of the
proof of Proposition 7.4.1, if the irreducible components of Zη are given in local
coordinates x, y and z by

{(ci,1uei,1 , ci,2uei,2 , ci,3uei,3)},

as in (7.4.2), then (ei,1, ei,2, ei,3) are the vertices added to trop(X0) to make
trop(Zη). In order to construct an extension (Z ′

η′0
,X ′

η′0
) of (Zη,Xη) such that

Z ′
η′0

has smooth support in X ′
η′0
, each added vertex of trop(Zη) must correspond
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to a nonempty bubble in X ′
η′0
. This effectively determines all nonempty bubbles

which must exist in (Z ′
η′0
,X ′

η′0
), but there may be different blow-ups which produce

such bubbles, i.e. different fibres X ′
η′0

in which the closure of Zη after base change

is stable. For separatedness to hold, we must therefore identify all these different
options. In other words, any two pairs in Nm

SWS(k) (or N
m
LW(k)) whose nonempty

bubbles correspond to the same vertices in trop(X0) must belong to the same
equivalence class in Nm

SWS(k) (or N
m
LW(k)).

Definition 7.5.1. In the notation of the above paragraph, we will say that a pair
(Zη0 ,Xη0) is associated to a configuration of points in trop(X0) if these points cor-
respond exactly to the non-empty bubbles in (Zη0 ,Xη0) in the manner described
above.

This stack construction will be, in a sense, more canonical, as the only choices
come from the construction of the stack X′, but all subsequent choices are avoided.
This, however, implies that the objects of the stack are equivalence classes of pairs
(Z,X ), where for two representatives (Z,X ) and (Z ′,X ′) of a given equivalence
class, there may exist no isomorphism of schemes X ∼= X ′. Defining this more
canonical stack therefore comes at the cost of our stack being no longer alge-
braic. This parallels the canonical choice of underlying stack in Kennedy-Hunt’s
construction of a logarithmic Quot scheme [Ken23].

Theorem 7.5.2. The stacks Nm
SWS and Nm

LW have finite automorphisms and are
proper.

Proof. They have finite automorphisms because the stack Nm
SWS has finite auto-

morphisms by the same argument as Lemma 6.1.5 and Nm
LW has finite automor-

phisms by construction. The universal closure follows directly from the universal
closure of Nm

SWS and Nm
LW in Proposition 7.4.1 and Corollary 7.4.2, and from

Corollary 7.5.11. It remains to prove that the stacks are separated. This part of
the proof will build upon the proof of Proposition 6.1.4.

Let S := SpecR! C, where R is a discrete valuation ring with uniformising
parameter u. Let η denote the generic point of S and η0 its closed point. Now,
assume that there are two pairs [(Z,X )] and [(Z ′,X ′)] in Nm

SWS (or Nm
LW) such

that [(Zη,Xη)] ∼= [(Z ′
η,X ′

η)]. We will show that it must follow that [(Zη0 ,Xη0)]
∼=

[(Z ′
η0
,X ′

η0
)].

(Z,X ) and (Z ′,X ′) are some representatives of the above equivalence classes.
As in the the proof of Proposition 6.1.4, we may assume that S is chosen so that
the i-th irreducible component of Z is given in terms of its local coordinates x, y
and z by

{(ci,1uei,1 , ci,2uei,2 , ci,3uei,3)}, (7.5.1)

and the i-th irreducible component of Z ′ is given in terms of its local coordinates
x, y and z by

{(di,1ufi,1 , di,2ufi,2 , di,3ufi,3)}. (7.5.2)
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Since the equivalences of the stack act trivially on x, y and z and we know that
(Zη,Xη) ∼= (Z ′

η,X ′
η), it must therefore follow that Z and Z ′ have the same num-

ber of irreducible components. Moreover, if these components are labelled in a
compatible way, then ci,1 = di,1 and ei,1 = fi,1 for all i. This is independent of
the choices of representative Z and Z ′, as the valuation vectors (ei,1, ei,2, ei,3) and
(fi,1, fi,2, fi,3) are precisely the data of the tropicalisation of Z and Z ′ and this is
constant across the equivalence classes.

Now, as before, the fact that Z and Z ′ must be S-flat families in X and X ′

respectively means that each Zi and Z
′
i component must satisfy the equations

x = ci,1u
ei,1 ,

y = ci,2u
ei,2 ,

z = ci,3u
ei,3 ,

also above the closed point. If more than one element of the set {ei,1, ei,2, ei,3}
is nonzero, then Zi and Z ′

i must be supported in a component blown up along
⟨x, cuei,1⟩ and ⟨y, c′uei,2⟩ over the closed point η0, for some c, c′ ∈ R×. But this
tells us exactly that the nonempty bubbles of the pairs (Zη0 ,Xη0) and (Z ′

η0
,X ′

η0
)

must correspond to the same points in the tropicalisation and therefore these two
pairs must belong to the same equivalence class.

Remark 7.5.3. As mentioned above, the stacks Nm
SWS and Nm

LW mirror Kennedy-
Hunt’s underlying stack construction of a logarithmic Quot scheme. We should
note, however, that restricting the construction of [Ken23] to the case of Hilbert
schemes of points, though similar, would not yield either of the stacks Nm

SWS

and Nm
LW. This is because some choices were made in the way we constructed

X[A,B], and X′ does not contain every possible expansion of X. Kennedy-Hunt’s
construction precludes any such choices. Let us denote for now by Y ! C the
underlying stack of the restriction of the logarithmic Quot scheme construction
to the case of Hilbert schemes of points. For any algebraically closed field k, an
object of Y(k) is an equivalence class. While there is a bijection between |Y(k)|
and |Nm

SWS(k)| or |Nm
LW(k)|, some representatives of the equivalence class defining

an object of Y(k) do not exist in the equivalence class defining the corresponding
object in Nm

SWS(k) or N
m
LW(k).

Finally, we would like to comment on the fact that we do not assert an iso-
morphism between the stacks Nm

SWS and Nm
LW here. This is because the results

we used to establish equivalence of stacks require the stacks to be algebraic. We
do, in fact, expect these stacks to be isomorphic but some further work is needed
to show this.

Choices of proper algebraic stacks. As mentioned before, the second way we
have of making separated stacks is to make a systematic choice among all pairs
(Z,X ) ∈ Nm

SWS(k) (or Nm
LW) associated to the same configuration of vertices in

trop(X0). These choices effectively cut out substacks of Nm
SWS and Nm

LW.
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In order to make these choices of limit representatives, we may declare that
certain fibres X ∈ X′ contain no stable subschemes and we may also decide that
certain bubbles in given fibres contain no points of the support. The Maulik-
Ranganathan stability condition is close to this description. The starting point
for their construction is to look at the image of a given subscheme Z under the
tropicalisation map, which is a collection of vertices in the tropicalisation of X0,
and then construct an expansion around the bubbles introduced by these new
vertices. Implicitly, choices are made at this stage to exclude certain superfluous
fibres. We must therefore emulate this with our stability condition. Moreover,
in the modified special fibres they do construct, it is necessary to allow certain
configurations of points and not others, hence labelling certain bubbles as tube
components and introducing the notion of Donaldson-Thomas stability with re-
spect to these labellings. We describe suitable additions to the stability conditions
previously discussed and extend Maulik-Ranganathan stability to our situation
with the following definitions.

Definition 7.5.4. Let X ∈ X′(k) and let Z be a length m zero-dimensional
subscheme in X . A tube labelling of X is a choice of a collection of bubbles
in X which we call tube components. Given such a labelling, the pair (Z,X ) is
Donaldson-Thomas stable (abbreviated DT stable) if each bubble in X contains
no point of the support of Z if and only if it is a tube component.

Definition 7.5.5. Let α denote a collection of equivalence classes of fibres in
X′(k) and let β denote a collection of tube labellings on the equivalence classes
of fibres remaining after the fibres α have been removed. Let X ∈ X′(k). We say
that the pair (Z,X ), where Z is a length m zero-dimensional subscheme in X , is
(α, β)-stable if X is not one of the fibres in α and the pair (Z,X ) is DT stable.

We will only want to consider (α, β)-stability as a restriction of SWS or LW
stability. We denote by Nm

SWS,(α,β) and Nm
LW,(α,β) the stacks Nm

SWS and Nm
LW re-

stricted to their (α, β)-stable loci. As we will see with the next two results, an
appropriate choice of (α, β)-stability condition will give us unique limits and allow
us to build proper stacks. First, let us define some useful terminology.

Definition 7.5.6. We say that a pair (α, β) is an almost proper SWS stability
condition if it is chosen so that for any closed point η′0 there exists a unique
equivalence class (Z ′

η′0
,X ′

η′0
) ∈ Nm

SWS,(α,β)(η
′
0) associated to each configuration of

points in trop(X0). The corresponding definition of almost proper LW stability
condition can be made in a similar way.

Proposition 7.5.7. Let (α, β) be an almost proper SWS stability condition and
let X := ξ∗X[A,B] for some unbroken (A,B, n), where ξ : S ! C[A,B] and
S := SpecR for some discrete valuation ring R. Let η be the generic point of S.
If (ZηXη) ∈ Nm

SWS,(α,β)(η), then (Zη,Xη) has an extension in Nm
SWS,(α,β).

Proof. This follows directly from the proof of Proposition 7.4.1. Indeed, given
such a pair (Zη,Xη), we recall that, up to some finite base change, each irreducible
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component of Zη can be written locally in terms of its x, y and z coordinates as

{(ci,1uei,1 , ci,2uei,2 , ci,3uei,3)},

for some ei,j ∈ Z and ci,j ∈ R×. Moreover, we showed that if more than one ele-
ment of the set {ei,1, ei,2, ei,3} is nonzero, the closure of Zη in any stable extension
of (Zη,Xη) must be supported in a component blown up along the vanishing of
both sides of the relevant equations (6.1.6), (6.1.7) or (6.1.8). Now, we note that
each of these triples (ei,1, ei,2, ei,3) corresponds to a point in trop(X0), and for such
a configuration of points in the tropicalisation we know that we have an associ-
ated pair (Z ′

η0
,X ′

η0
) over the closed point η0 of S which is SWS and (α, β)-stable,

since (α, β) is an almost proper SWS stability condition. But, again from the
proof of Proposition 7.4.1, all choices of such a fibre and subscheme pair appear
as choices of limits for (Zη,Xη).

We have therefore proven that, if (α, β) is an almost proper SWS (or LW)
stability condition, families whose generic fibre is pulled back from a fibre in
X[A,B] over a point (t1, . . . , tn+1) whose entries are all nonzero have a unique
(α, β)-stable limit.

In order to ensure that the stacks Nm
SWS,(α,β) and Nm

LW,(α,β) are proper, we need
one more compatibility condition to hold. We give here an example of how the
stack Nm

SWS,(α,β) may fail to be proper if we do not add this extra condition. Let

the equivalence class in Nm
SWS,(α,β) associated to trop(X0) with one vertex added

to the Y1 ∩Y2 edge be given by expanding one ∆1-component of pure type. Now,
we decide that the equivalence class associated to trop(X0) with two vertices
added to the Y1∩Y2 edge will be given by expanding two ∆2-components of pure
type. See Figure 7.5. Now let us take a length 2 zero-dimensional subscheme in
the first fibre whose support consists of a point in ∆◦

1∩π∗(Y1∩Y2)◦ and a point in
Y ◦
2 . This is SWS and (α, β)-stable for our choice of (α, β). We may now study the

limit of this subscheme as the point in Y ◦
2 tends towards π∗(Y1 ∩ Y2), i.e. as its x

coordinate tends to zero. If the stack Nm
SWS,(α,β) were proper it would contain this

limit, but it does not. Indeed, our second fibre has the same associated tropical
configuration as this limit, but is clearly not a limit for this pair. This breaks
universal closure. We therefore need the following additional condition.

Definition 7.5.8. Let (α, β) define an almost proper SWS stability condition
and let X1 and X2 be two fibres of X′ over a closed point. Assume that X1 is
pulled back from some X[A,B]J1 and X2 is pulled back from some X[A′, B′]J2 ,
where |J1| ≤ |J2|. We denote by W1 ⊆ X1 and W2 ⊆ X2 the union of all
irreducible components in each fibre which are not tubes. We say that (α, β)
defines a proper SWS stability condition if the following compatibility condition
holds. If π∗(W2) ⊂ π∗(W1), then there exists a fibre X3 equivalent to X2 in X′

such that X3 is pulled back from X[A,B]J3 for some J3 with J ⊆ J3. A similar
definition can be made for LW stability.

If (α, β) is a proper LW stability condition and the pair (Z,X ) is LW and
(α, β)-stable, then we say it is Maulik-Ranganathan stable (abbreviated MR sta-
ble) for the given choice (α, β).
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Figure 6: The picture on the right is not a limit of the one on the left.

Proposition 7.5.9. Let (α, β) be some choice of stability condition. The corre-
sponding stack Nm

SWS,(α,β) is proper if and only if (α, β) is a proper SWS stability
condition.

Proof. Once again we apply the valuative criterion. Let S := SpecR! C, where
R is a discrete valuation ring and let η and η0 be denote the generic and closed
points of S. Now, we take any (Z,X ) ∈ Nm

SWS,(α,β)(S), where (α, β) is a proper
SWS stability condition. From Proposition 7.5.7, we know already that that if
the restriction to the generic fibre Xη is pulled back from a fibre in some X[A,B]
over a point (t1, . . . , tn+1) whose entries are all nonzero, then (Zη,Xη) has a stable
extension in Nm

SWS,(α,β). We may therefore assume that X := ξ∗X[A,B]I for some

morphism ξ : S ! C[A,B]I and some nonempty set I. The generic fibre Xη is
therefore a modified special fibre.

We split the proof into the following two cases. The first case is where a
point P of the support of Zη tends towards a codimension greater or equal to one
stratum in Xη, i.e. one or more of its local coordinates x, y or z tends to zero. The
second case is where a point P of the support of Zη has fixed x, y and z values

but one or more of its (x
(i)
0 : x

(i)
1 ) or (y

(i)
0 : y

(i)
1 ) coordinates tends towards (1 : 0)

or (0 : 1).

We start by proving existence and uniqueness of limits in the first case us-
ing the valuative criterion. Let V denote the irreducible component of Xη in
the interior of which P lies. Notice that since P tends towards a codimension
greater or equal to one stratum of X , then in order for its limit to have smooth
support in an extension of (Zη,Xη), it will be necessary to expand out at least
one ∆-component in this extension. Moreover, there exists a smoothing from the
interior of V in the fibre over the generic point to the interior of this expanded
∆-component in such an extension of (Zη,Xη) if and only if this ∆-component is
equal to V in the fibre over the generic point.

Since (α, β) is an almost proper SWS stability condition, we know that there
exists an associated pair (Z ′

η′0
,X ′

η′0
) for the image trop(Zη) of Zη in trop(X0).

Precisely, this means that there exists some base change S ′ ! S and some SWS
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(α, β)-stable pair (Z ′
η′0
,X ′

η′0
) over the closed point η′0 of S

′ such that the non-tube

bubbles of X ′
η′0

correspond exactly to the vertices in trop(Zη). Moreover, as (α, β)

is a proper SWS stability condition, we know that every vertex in trop(Xη) is a
vertex in trop(X ′

η′0
), i.e. the two fibres are compatible in the sense that X ′

η′0
can be

seen as a blow-up of Xη. This tells us that (Z
′
η′0
,X ′

η′0
) is the restriction to the closed

point η′0 of an S-flat family (Z ′,X ′) ∈ Nm
SWS,(α,β)(S

′) such that X ′
η′
∼= Xη×η η

′. In

other words, X ′
η′ is the choice of representative of the equivalence class of (Zη,Xη),

possibly after some base change, such that all newly expanded components in
X ′
η′0

containing the limit of P are equal to V in X ′
η′ . Note that we are abusing

notation slightly here: as Xη and X ′
η′ are isomorphic, we refer to the irreducible

component in X ′
η′ corresponding to V in Xη as V also for simplicity. By the above,

we therefore get the required smoothing to the SWS (α, β)-stable pair (Z ′
η′0
,X ′

η′0
).

Now, let us dicuss the second case. Denote again by V the irreducible com-
ponent of Xη in the interior of which P lies. Firstly, let us assume that any other
point of the support of Zη lying in the interior of V shares the same equations
as P up to multiplication by a constant. In particular, for all these points the
same coordinates (x

(i)
0 : x

(i)
1 ) or (y

(i)
0 : y

(i)
1 ) will be fixed and the same will vary

(recall that in this case we are assuming already that all x, y and z coordinates are
fixed). By flatness, it therefore follows that all points of the support of Zη which
lie in the interior of V will tend to the interior of the same irreducible component
in any extension of (Zη,Xη). Any extension in which an additional ∆-component
is expanded out, i.e. in which an additional basis direction is set to zero, cannot
be stable, since it would necessarily have an empty expanded component which
would destabilise the pair.

Notice that any (x
(i)
0 : x

(i)
1 ) or (y

(i)
0 : y

(i)
1 ) which are fixed for one of these

points contained in the interior of V ⊂ Xη must be fixed for all of them. We
may therefore choose a representative (Z ′

η,X ′
η) in the same equivalence class as

(Zη,Xη) such that the coordinates x
(i)
0 /x

(i)
1 , x

(i)
1 /x

(i)
0 , y

(i)
0 /y

(i)
1 or y

(i)
1 /y

(i)
0 which

are allowed to vary in Z are invertible only outside of V ⊂ X ′
η. Then the limit

of (Z ′
η,X ′

η) is (Z
′
η,X ′

η) itself. And by the above this equivalence class gives us the
only stable limit for such a family.

Now, if two points P0 and P1 of the support of Zη which lie in V ⊂ Xη have
different defining equations up to multiplication by a constant, it means that
there are some coordinates (x

(i)
0 : x

(i)
1 ) or (y

(i)
0 : y

(i)
1 ) which are fixed for P0 but

not P1 and vice versa. This means that, as one or the other of these coordinates
tends toward (1 : 0) or (0 : 1), the points P0 and P1 must tend towards different
irreducible components. Similarly to the first case, as (α, β) is an almost proper
SWS stability condition, we know that there exists an associated pair (Z ′

η′0
,X ′

η′0
)

for trop(Zη) and since (α, β) is, in fact, a proper SWS stability condition, we
know that every vertex in trop(Xη) is a vertex in trop(X ′

η′0
). As before this shows

that (Z ′
η′0
,X ′

η′0
) is the unique SWS (α, β)-stable extension of (Zη,Xη).

If V ⊂ Xη contains more than two points of the support which have different
equations up to multiplication by a constant, we can just repeat the steps of the
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previous paragraph until we find a stable extension. It will be unique as it will
be the unique pair associated to trop(Zη).

Finally, the converse is straightforward. Indeed if the stability condition (α, β)
is not a proper SWS stability condition, it either means that for some (Zη,Xη)
there does not exist a unique stable pair inNm

SWS,(α,β) associated to trop(Zη) which
will break universal closure or separatedness, or that this associated pair exists
and is unique but not compatible with Xη. In the second case, universal closure
will not be satisfied because the pair associated to trop(Zη) is the only possible
limit but it is not an extension of (Zη,Xη), similarly to the example preceding
this proposition.

Corollary 7.5.10. The stack Nm
LW,(α,β) is proper if and only if (α, β) is a proper

LW stability condition.

Proof. This follows immediately from the proof of Proposition 7.5.9.

In the following we shall denote by Nm
PSWS,(α,β) a stack Nm

SWS,(α,β) where (α, β)
is a proper SWS stability condition, and by Nm

MR,(α,β) a stack Nm
LW,(α,β) where

(α, β) is a proper LW stability condition.

Corollary 7.5.11. Let S and η as before and let (Zη,Xη) be an element of
Mm

SWS(η), Mm
LW(η), Nm

SWS(η), Nm
LW(η), Nm

SWS(η) or Nm
LW(η) such that Xη is a

modified special fibre. Then (Zη,Xη) has a stable extension with respect to the
relevant stability condition in the relevant stack.

Proof. The stacksMm
SWS andMm

LW are examples of stacksNm
PSWS,(α,β) andNm

MR,(α,β).

In other words the choice (α, β) which defines these stacks clearly satisfies the
conditions of a proper SWS (or LW) stability condition, therefore Mm

SWS and
Mm

LW are proper stacks.

In the non-separated stacks Nm
SWS and Nm

LW, we allow for all limits. In par-
ticular, each stack will contain all the associated pairs for trop(Zη) which are
compatible with Xη and stable for their respective stability conditions.

In the case of Nm
SWS(η) and Nm

LW(η), we do not make any choices, so for
any such (Zη,Xη) all possible associated pairs of trop(Zη) form an equivalence
class in Nm

SWS(η) or N
m
LW(η). In particular, there will be a representative of this

equivalence class which is compatible with Xη in the sense of Definition 7.5.8.

Theorem 7.5.12. The stacks Nm
PSWS,(α,β) and Nm

MR,(α,β) are Deligne-Mumford
and proper.

Proof. Properness follows from Proposition 7.5.9 and Corollary 7.5.10. The
Deligne-Mumford condition holds because SWS and LW stability ensure finite
automorphisms.

Remark 7.5.13. Let (Zη,Xη) be a pair consisting of a length m zero-dimensional
subscheme Zη in a modified special fibre Xη. Assume that the pair is either SWS
or LW stable. Let P be a point of the support which lies in some irreducible
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component W ⊂ Xη and let V be some other irreducible component in Xη which
intersectsW nontrivially. If there exists no representative in the equivalence class
of (Zη,Xη) such that there is a smoothing from the interior of W in Xη to the
interior of some ∆-components expanded out in the W ∩ V locus, i.e. such that
these ∆-components are equal to W in Xη, then there exists no flat family of
length m zero-dimensional subschemes such that (Zη,Xη) is the generic fibre and
P tends towards W ∩ V over the closed point. This can be seen by studying the
equations of the blow-ups.

For example, let Xη be a fibre with one expanded ∆1-component of pure
type and no other expanded components. Let Zη be a length 2 zero-dimensional
subscheme with one point of its support, P0, lying in the interior of this ∆1-
component in the π∗(Y1∩Y2)◦ locus and the other point of the support, P1, lying
in Y ◦

2 , as in the picture on the left of Figure 7.5. In this fibre, there cannot be
a ∆2-component which is equal to Y2 and thus there can be no smoothing from
the interior of Y2 to an expanded component in the Y2 ∩ Y3 locus. But there also
cannot be any flat family such that P1 tends towards z = 0, as any equation for
P1 containing z must also contain y, which is already zero.

Instead of (α, β) stability, it is also possible to cut out a proper substack of
Nm

SWS by restricting the G-linearised line bundles that we use for the stability
condition. By allowing subschemes to be stable only if they are GIT stable with
respect to this chosen collection of G-linearised line bundles, we may recover some
of the stacks Nm

PSWS,(α,β). This type of stability will behave well with respect to
limits of special objects, as GIT stability has good properties for smoothings.
More precisely, this means that if the (α, β)-stability condition recovered by such
a choice is almost proper, it is necessarily proper as well.

Relating the proper stacks. We may now show how the stacks Nm
PSWS,(α,β)

and Nm
MR,(α,β) relate to each other. Note that the stacks Nm

MR,(α,β) constructed
in the previous section give us some choices of compactifications arising through
the methods of Maulik and Ranganathan, but they do not give us every possible
choice that their constructions would yield, because of the choices we made in
the definition of the stack X′.

Theorem 7.5.14. Let Nm
PSWS,(α,β) and Nm

MR,(α,β) be two choices given by the same

(α, β). There then exists an isomorphism of stacks

Nm
PSWS,(α,β)

∼= Nm
MR,(α,β).

Proof. Similarly to the arguments of Section 6.2, it is clear that on the scheme
level we have an inclusion

H
m,[A,B]
LW,(α,β) ↪−! H

m,[A,B]
SWS,(α,β),

where H
m,[A,B]
LW,(α,β) and H

m,[A,B]
SWS,(α,β) are the restrictions of Hm

[A,B],SWS and Hm
[A,B],LW to

their respective (α, β)-stable loci. As before, this gives rise to a morphism of
stacks

f : Nm
PSWS,(α,β) −! Nm

MR,(α,β).
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By Lemma 7.3.6, for every MR stable pair (Z,X ) ∈ Nm
MR,(α,β)(k), where k is an

algebraically closed field as before, there exists a representative of the equivalence
class of (Z,X ) which is SWS stable. We therefore have an induced bijection of
sets

|f | : |Nm
PSWS,(α,β)(k)| −! |Nm

MR,(α,β)(k)|.

Moreover, f is representable by Theorem 7.5.12 as Nm
PSWS,(α,β) is separated and

Deligne-Mumford and therefore has finite inertia. The morphism f induces a
bijective homomorphism of stabilisers by the same argument as in the proof of
Theorem 6.2, so f is an isomorphism of stacks by Lemma 6.2.1.

As shown in [MR20], all choices of proper Deligne-Mumford stacks obtained
for different (α, β), are birational to each other.

8 An example and discussion of minimality

Up until now, we have only been considering the property that X ! C is
semistable. In this section, we will discuss what properties our constructions
have if we start with some added assumptions. We will want to show that the
proper stacks we construct are semistable themselves, in the sense of Definition
2.3.6, and that moreover, if KX + (X0)red is semi-ample, i.e. X ! C is a good
semistable model, then the proper stacks constructed in previous sections also
satisfy this property.

In particular, we will want to consider the case where X ! C is a good type
III degeneration of K3 surfaces. In practice, this means that X ! C is a family
of simply connected surfaces together with a relative holomorphic symplectic
differential 2-form, which is nowhere degenerate. Note this implies the relative
canonical bundle is trivial. The general fibres of the family are smooth K3 surfaces
and the dual complex of its central fibre X0 is a triangulated sphere. In this
case, we will show that such a 2-form on X ! C induces a nowhere degenerate
logarithmic 2-form on the proper stacks we constructed.

Most of the results in this section follow easily from the results of Gulbrandsen,
Halle, Hulek and Zhang in [GHHZ21]. For clarity, however, we give certain of
the relevant proofs again here, where the details are slightly different for our
situation.

8.1 Good semistable and dlt minimal models

Proposition 8.1.1. The stacks Mm
SWS, M

m
LW, Nm

PSWS,(α,β) and N
m
MR,(α,β) are semistable

degenerations over C. Moreover, they are normal and Q-factorial.

Proof. Semistability follows directly from Lemma 7.3 of [GHHZ21]. The stacks
are normal as they are semistable. This also applies to any constructions arising
from the methods of Maulik and Ranganthan [MR20]. Finally, the stacks are
Q-factorial, as all object of the stacks have finite stabilisers.
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We will now assume that KX + (X0)red is semi-ample and prove the following
result.

Theorem 8.1.2. The stacks listed in Proposition 8.1.1 are good minimal models.

Proof. Let S ! C be a scheme over C and let X ∈ X′(S) (note that X ∈ X(S) is
a special case), where X := ξ∗X[A,B] for some étale morphism ξ : S ! C[A,B].
We denote by ϕ : ξ∗X[A,B]! X[A,B] the relevant strongly cartesian morphism.
Now let P1, . . . , Pm be a collection of points in X . Since ϕ is a base change
morphism and π : X[A,B] ! X is the G-equivariant projection, similarly to
Lemma 5.12 of [GHHZ21], we have that KX ∼= (π ◦ ϕ)∗KX (note that all blow-
ups we make in our construction are also small).

Now, let P1, . . . , Pm be a finite collection of points in X . Similarly to Lemma
5.13 of [GHHZ21], we may find a G-invariant section of K⊗r

X , not vanishing at any
Pi. Indeed, as we have assumed that X ! C is a good semistable minimal model,
for each i, we know that there exists a section s̃i of K

⊗r
X that does not vanish at

(π ◦ ϕ)(Pi). It follows by the above that si := (π ◦ ϕ)∗s̃i is a G-invariant section
of K⊗r

X which does not vanish at Pi. Therefore, as in Lemma 5.13 of [GHHZ21],
if we take a k-linear combination s =

∑
i λisi, for sufficiently general λi ∈ k, the

section s does not vanish at any Pi.

Now, let Z = (P1, . . . , Pm) ∈ Xm, where Xm denotes the product X ×S · · ·×S

X . Then, similarly to Lemma 5.14 of [GHHZ21], there exists a G- and Sm-
invariant section σ of (KXm)⊗r that does not vanish at Z, where Sm denotes the
m-th symmetric group. This is given by the restriction to the stable locus of the
tensor product pr∗1(s) ⊗ · · · ⊗ pr∗m(s) of the pullbacks of s along each projection
pri : Xm ! X . Clearly, this is G- and Sm-invariant and does not vanish at Z.

We may now apply a generalised version of Beauville’s argument from [Bea83].
LetW denote the inverse image of X \Sing(X0) by the composition of morphisms
π ◦ ϕ. (Note that this is not defined quite in the same way as in [GHHZ21] but
the overall idea is the same.) We then denote by Wm and W [m] the relative
product and relative Hilbert scheme of W ! S. Additionally, we denote by Wm

∗
and W

[m]
∗ the restrictions of the above schemes to the open loci whose points are

length m zero-dimensional subschemes which have at most one double point. The
complements of Wm

∗ in Wm and W
[m]
∗ in W [m] are both of codimension 2.

Now, the Hilbert scheme W [m] is obtained from Wm by blowing up the diag-
onal in Wm and quotienting by the action of Sm. Denote by bdiag : W̃m

∗ ! Wm
∗

and qm : W̃m
∗ ! W

[m]
∗ the appropriate restrictions of the blow-up and quotient

maps and by qG : W
[m]
∗ ! W

[m]
∗,G the quotient by the group G. Let E be the ex-

ceptional divisor of bdiag. Then, following [Bea83] and [GHHZ21], E is precisely
the ramification locus of qm, which gives rise to the isomorphisms

KW̃m
∗

∼= q∗m(KW
[m]
∗

)(E)

KW̃m
∗

∼= b∗diag(KWm
∗ )(E).
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Note that if the blow-ups made in the construction of X[A,B] are small, then qG
contracts no divisors and we have again an isomorphism

K
W

[m]
∗

∼= q∗G(KW
[m]
∗,G

).

This, in turn, will yield an isomorphism

(qG ◦ qm) ∗ (KW
[m]
∗,G

)(E) ∼= b∗diag(KWm
∗ )(E).

Finally, let W
[m],s
∗,G be the restriction of W

[m]
∗,G to some stable locus, with respect

to any of the stability conditions defined in previous sections. For any point in
W

[m],s
∗,G , the section (qG◦qm)∗b∗diagσ, where σ is defined as above gives an everywhere

nonvanishing section of (K
W

[m],s
∗,G

)⊗r. But as W
[m],s
∗,G has codimension 2 in W

[m],s
G ,

the section σ extends to a nonvanishing section of (K
W

[m],s
G

)⊗r. Then, again,

as W
[m],s
G has codimension 2 in X [m],s

G , where X [m],s
G is the stable locus of X [m]

quotiented by G, this section extends to an everywhere nonvanishing section on
K⊗r

X [m],s
G

.

Let Y be any of the stacks listed in Proposition 8.1.1. Any stable object
(Z,X ) of Y is such that Z ∈ X [m],s

G for some stability condition. And we have
shown that for any such Z, there is a section of K⊗r

X [m],s
G

which does not vanish

at Z. Now, for any such stack f : Y ! C that we constructed, Y0 := f ∗(0)
is a reduced principal divisor in the following sense. Let S and ξ be as above
and write Y := ξ∗Hm,s

[A,B] in Y, where Hm,s
[A,B] is the stable locus of length m zero-

dimensional subschemes on X[A,B]. Let ϕ : Y ! Hm,s
[A,B] be the corresponding

strongly cartesian morphism. Then we have that Y0 := (f ◦ ϕ)∗(0) is a reduced
principal divisor in Y . We therefore have that

KY + Y0

is semi-ample and f : Y! C is a good minimal model.

Remark 8.1.3. In the above proof, we used the assumption that all blow-ups
made in the construction of X[A,B] were small, i.e. that the map b : X[A,B]!
X×A1An+1 contracts no divisors. This assumption happens to be true in our case
and is convenient, but not strictly necessary. Indeed, keeping with the notation
of the above proof, we have a diagram

W̃m
∗ Wm

∗ (X ×A1 An+1)m

W
[m]
∗ C ×A1 An+1

W
[m]
∗,G C,

bdiag

qm

bm

qG /G
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where the morphisms in the diagram denote the restrictions of the previous
morphisms of the same names to the W∗ locus. As G is given as the natural
torus action on the projective coordinates introduced by the blow-up map b, the
morphism qG must contract exactly the divisors coming from the exceptional
divisors of bm and no other divisors. By applying a generalised version of the
Beauville argument once more, we may obtain the desired result.

Corollary 8.1.4. Suppose X ! C has trivial relative canonical bundle. Then
the relative canonical bundle KY/C is trivial, for any of the stacks Y! C listed
in Proposition 8.1.1.

Remark 8.1.5. Finally, we would like to remark that the fact that we are work-
ing with stacks and not schemes here allows us to produce semistable minimal
models, as we do not see any quotient singularities. It is possible to construct
good minimal models in the world of schemes using these expanded degeneration
techniques, but these will no longer be semistable; they will be dlt as they must
contain quotient singularities, by nature of the expanded degeneration machinery.
This can be seen to happen already in [GHH19] and [GHHZ21].

8.2 Symplectic structure

We will now assume that X ! C is a type III good degeneration of K3 surfaces.
In particular, this means that KX/C is trivial. By Corollary 8.1.4, this implies
that KY/C is trivial, for any of the stacks Y ! C listed in Proposition 8.1.1.
This can be seen alternatively as following from the fact that the relative holo-
morphic symplectic 2-form on X ! C induces a relative holomorphic symplectic
logarithmic 2-form on Y! C.

As the dual complex of X0 is a triangulated sphere, we may choose a labelling
of the vertices of this triangulation, such that each vertex is labelled by either Y1,
Y2 or Y3 and each triangle has exactly one of each vertices. All the constructions
we made on the local family Spec k[x, y, z, t]! Spec k[t] can then be extended to a
family X ! C of K3 surfaces by making the following modification. Everywhere
we blew up the pullback of Yi ×A1 V (tj) inside some scheme, we now blow up
instead the pullback of Y(i) ×A1 V (tj), where Y(i) denotes the union of all Yi
components in X.

Proposition 8.2.1. The stacks listed in Proposition 8.1.1 are symplectic, in the
sense that they carry a nowhere degenerate logarithmic 2-form.

Proof. Let f : Y! C be one such construction. Since f is semistable, this follows
from Section 7.2 of [GHHZ21]. The logarithmic 2-form is defined with respect to
the divisorial logarithmic structure given by the divisors 0 in C and Y0 = f ∗(0)
in Y.
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