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Summary

Many researchers have constructed examples of non general type surfaces in weighted
projective spaces in various dimensions. Most of these constructions so far have been
concentrated on complete intersections, and in the past three decades there has been a
lot of success in this direction. Nowadays we have seen use of computer algebra systems
to handle examples that are too cumbersome to do by hand.

All smooth projective surfaces can be embedded in P5, but only few of them in P4.
The most amazing fact is that the numerical invariants of any smooth surface in P4

must satisfy the double point formula.
A natural question is whether there are any non general type surfaces in four di-

mensional weighted projective space, P4(w), which are not complete intersections.
We believe that the answer is “yes, but they are not abundant”.
This thesis shows the first part, and justifies the second part. That is, this thesis

has two distinctive parts. First we prove that families of non general type surfaces
in weighted projective four–space, P4(w) are rare by showing that their corresponding
covers in straight P4, which are usually general type surfaces, are rare.

In the second part we construct explicit examples of these rare objects in P4 using
a technique involving sheaf cohomology and the Beilinson monad. We concentrate on
the case of weights w = (1, 1, 1, 1, 2) for our particular examples. We present three
explicit examples, one of which is symmetric. The main computer algebra system used
is Macaulay2, Version 1.1 developed by D. Grayson and M. Stillman.

i



Acknowledgements

First and foremost I thank my supervisor Gregory Sankaran for first introducing me to
this project. Without his support and patient guidance I would not have made it this
far. I am greatly indebted to him, I could not have been more undeservedly lucky to
have such a wonderful supervisor.

Next, I thank Alastair King for his constructive comments and questions in the
reviews.

I thank my examiners Gavin Brown and James Davenport for their wonderful com-
ments and suggestions. I thank them for making my viva an experience; I could not
have wished for a better one.

I thank the Commonwealth Scholarship Commission in the UK for the financial
support of this entire study.

I thank the National University of Lesotho, the Department of Mathematics and
Computer Science for giving me a study leave to pursue this PhD.

I wish to thank the Department of Mathematical Sciences of the University of
Bath for providing me with an exceptional environment in which to study. I will miss
the postgraduates I shared an office with: Richard Akinola, Robert Knobloch, Aidan
O’Byrne, David Sibley, Claire Thacker and Simon Turner. I am grateful to all the
maths computer support team: Mark Chappell, Darrel Johnson, Jessica Jones, Adam
Prowse and Mark Willis. My special gratitudes go to the administration staff for each
going out of their way to ensure my study is a memorable experience. Especially Eric
Wing, for making sure I never had to worry about finances, I am very grateful. I also
thank Gabrielle Lowe.Gabrielle, you can finally remove the oil heater from 1W3.7, but
do not be surprised if you meet severe resistance! I will miss the OMF on Thursdays.

I thank all my friends and family for their love and support over the years.
I wish to direct special gratitude to my mother ’Mé Aloisia Rammea, in Sesotho,
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Chapter 0
Introduction

Ellingsrud and Peskine [24] proved that there exists an integer d0 such that all smooth
non general type surfaces in P4 have degree less than or equal to d0. This motivated
a search for such surfaces, partly by computational methods, and also an effort to find
an effective bound on d0, begun by Braun and Fløystad in [12]. As far as we know
the smallest proven bound is 52 by Decker and Schreyer [19]. This upper bound whose
existence is proved by [24] is generally believed to be fifteen. Examples in degree 15
were constructed by Popescu [41]. In fact examples are known in all degrees up to 15.
The following table shows the chronological contributions in finding an effective bound
for the degrees of smooth non general type surface in in P4.

Table 1: The race is still on!

Authors year degree bound

Ellingsrud and Pesk-
ine [24]

1989 ≤ several thousand

Braun and Fløystad [12] 1994 ≤ 105

Cook [16] 1995 ≤ 80

Braun and Cook [11] 1997 ≤ 66

Cook [15] 1997 ≤ 46∗

Decker and Schreyer [19] 2000 ≤ 52 *in response to errors
they found above

1



Introduction 2

In recent years computer algebra systems such as Macaulay 2, Magma and Singular,
have been used extensively in these computational methods. Many researchers have
followed ideas developed by Decker, Ein and Schreyer in [18] to construct explicit
examples. In [18] the authors give concrete constructions of non general type surfaces
in P4.

Perhaps one can see some similarities among these construction methods, the most
noteworthy being that they utilise a globalized form of the Hilbert-Burch theorem that
allows one to realise any surface (more precisely, any codimension 2 locally Cohen-
Macaulay subscheme) as the degeneracy locus of a map of vector bundles. In other
words: for every codimension 2 subvariety X in Pn there is a short exact sequence

0 −−−−→ F ϕ−−−−→ G ψ−−−−→ OPn −−−−→ 0,

where F and G are vector bundles with rkG = rkF + 1 and ψ is locally given by the
maximal minors of ϕ taken with alternating signs. (see [45])

There are two main parts to this thesis.
The first part is a proof that there exists a bound on the degree of quasismooth

non general type surfaces in weighted projective four–space, P4(w).
Some of the methods used to find non general type surfaces in P4 are also applicable

to surfaces in weighted projective spaces P4(w). It is therefore natural to ask whether
a bound similar to the one whose existence is proved in [24] can be found for the degree
of quasismooth non general type surfaces in a weighted projective space with given
weights. In chapter three we show that such a readily computable bound (of course
depending on the weights) does exist, and we compute it in some cases.

To show that a bound exists all we need is a fairly simple adaptation of the way in
which the results of [24] (or [12]) are applied. For a computable bound we use the results
of [12] together with some information about the contribution from the singularities of
the surface in P4(w).

Our procedure is to exploit the representation of P4(w) as a quotient of P4 by a
finite group action. Starting with a quasismooth non general type surface X in weighted
projective 4-space P4(w), we take its cover in P4. This will (usually) be of general type,
but it will have invariants bounded in terms of those of X, and the results of [12] still
apply in this situation.

The second part consists of construction of new examples of general type surfaces in
straight P4 which could possibly arise as double covers of non general type surfaces in
weighted projective 4-space. We start by assuming existence of these non general type
surfaces and end up by constructing general type surfaces: given enough information,
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which we do not have at the moment, one could conceivably prove that they arise as
double covers of non general type surfaces.

We present three examples, one of which is symmetric under an involution ψ

on P4, therefore indicating that maybe there exist non general type surfaces in P4(w)
which are not complete intersections. We reiterate that the difficulty here is that we
are not yet able to determine whether the quotient of a general type surface is the one
we were trying to obtain.

The main computer algebra system used is Macaulay2, Version 1.1 developed by
D. Grayson and M. Stillman [27]. We provide the programs that we used to construct
the three examples, both in an Appendix and on DVD. The DVD also contains partial
output of each program.

0.1. Brief overview of our construction method

In this section we give an outline of our construction method. A detailed account
will come in chapter three along with the degree bound proof and chapter four via an
example. Our construction technique follows the model of Decker, Ein and Schreyer in
[18]. This model has been used over the last decade with a lot of success in constructing
non general type surfaces in P4. It provides a very efficient way to construct new
surfaces in P4.

We first guess the numerical invariants of our desired non general type surface X
in P4(w). Then we consider X̂ ⊂ P4, which is a cover of X ⊂ P4(w). This X̂ is usually

a general type surface with particular numerical invariants. Moreover X̂ is a smooth
surface. We then construct X̂ as the degeneracy locus of a morphism between vector
bundles.

At this point we recall the definition of the degeneracy locus Ur. (A glance at [3,
page 83] or [26, page 2] might be useful.)

Definition 1. Given an l ×m matrix A = (i, j) of forms in variables x0, . . . , xN , let
0 ≤ r < min(l,m). Consider the locus Ur of points in PN at which the rank of A is at
most r. This will be defined (cut out) by the minors of size r + 1 of A. This locus Ur
is called the degeneracy locus.

Lemma 1. If F and G are vector bundles on P4 of rank rkF = f , and rkG = f+1 and
if φ ∈ Hom(F ,G) is a morphism, then V (φ) = {p ∈ P4| rkφ(p) < f} has codimension

≤ 2. If equality holds then X̂ = V (φ) is a locally Cohen-Macaulay surface, and the
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Eagon-Northcott complex

0 ←−−−− O bX(j) ←−−−−
∧f F∗ ⊗

∧f+1 G ←−−−− G φ←−−−− F ←−−−− 0 (1)

is exact and identifies cokerφ with the twisted ideal sheaf

cokerφ ∼= J bX(j)

of X̂.

That is, to construct X̂ with the particular numerical invariants, we find the ap-
propriate F and G then we analyse the resulting Beilinson monad (see Definition 7) for
the suitably twisted ideal sheaf J bX(j).

We carry out this analysis in steps: first we (carefully) choose a Beilinson coho-
mology table. We apply the Beilinson theorems and the Riemann-Roch formula for
surfaces to determine some of the dimensions hi(J bX(j)); 0 ≤ i, j ≤ 4. In all the ex-
amples discussed we have applied the Beilinson theorems to the twisted ideal sheaf
J bX(4).

Remark 1. Decker et al. [18, Proposition 1.7] say that if X ⊂ P4 is a smooth surface
not of general type then h3(J bX(j)) = h2(OP4(j)) = h0ωX(−j) = 0 for j ≥ 1. We do

not know if a similar vanishing result holds for general type surfaces in P4.

Proposition 1. All our Beilinson cohomology tables will be of the kind depicted in
Table 2.

In there, the blanks mean we have reason to put zeros and the rest can be filled
according to the Euler characteristic χ(J bX(j)) =

∑
i(−1)ihi(J bX(j)); and for each j

this sum is known to us by the Riemann-Roch formula.

We carry out the justification of this choice of cohomology table in two lemmas.

Theorem 1. h2(J bX) = q(X̂) and h3(J bX) = pg(X̂).

Proof. From the short exact sequence

0 −−−−→ J bX −−−−→ OP4 −−−−→ O bX −−−−→ 0 (2)

we obtain a long exact sequence

0 −−−−→ H0(J bX) −−−−→ H0(OP4) −−−−→ H0(O bX) −−−−→

H1(J bX) −−−−→ H1(OP4) −−−−→ H1(O bX) −−−−→

H2(J bX) −−−−→ H2(OP4) −−−−→ . . .

(3)
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Table 2: Our General Beilinson Cohomology Table

i = 4

i = 3 pg(X̂) h3(J bX(1)) h3(J bX(2)) h3(J bX(3)) h3(J bX(4))

i = 2 q(X̂) h2(J bX(1)) h2(J bX(2)) h2(J bX(3)) h2(J bX(4))

i = 1 h1(J bX(2)) h1(J bX(3)) h1(J bX(4))

i = 0 h0(J bX(4))

j = 0 j = 1 j = 2 j = 3 j = 4

By Theorem 10 we know that H1(OP4) = H2(OP4) = H3(OP4) = 0 so

H1(O bX) ∼= H2(J bX), H2(O bX) ∼= H3(J bX)

so h2(J bX) = q(X̂) and h3(J bX) = pg(X̂).

In the examples we shall have q(X̂) = 0.

Theorem 2. Some more cohomologies vanish.

1. h4(J bX(j)) = h4OP4(j) = 0 for j ≥ −4;

2. h1(J bX(1)) = 0 because X̂ is not a Veronese surface.

3. By Kodaira vanishing h2(J bX(j)) = h1(O bX(j)) = h1(ω bX(−j)) = 0 for j ≤ −1

4. We will also assume that X̂ is non-degenerate (does not lie in any hyperplane)
so h0(J bX(1)) = 0

5. Since all smooth surfaces that lie in a quadric or in a cubic have been fully clas-
sified, (see [5, 36]) we assume X̂ neither lies in a quadric nor in a cubic, hence
we can also set h0(J bX(2)) = 0, h0(J bX(3)) = 0.
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0.2. Structure of the thesis

Chapter 0 is the introduction. Here we explain what this thesis studies as briefly as
possible.

Chapter 1 is the background material. In this chapter we include material that we
feel helps the thesis to be self-contained.

Chapter 2 is continuation of background information with particular emphasis on
algebraic surfaces. The main aim is to give the briefest outline and point the reader to
references that give detailed treatments.

Chapter 3 provides the general construction method that we use throughout the
remaining chapters. In this chapter we present the first main result of this thesis:

Theorem. There exists dw ∈ N depending only on the weights wi such that any quasi-
smooth normal surface X ∈ P4(w) of degree d > dw is of general type.

Put another way, we prove that there exists a bound on the degrees of quasismooth
non general type surfaces in weighted projective four–space and this bound depends on
the weights. We compute explicit bounds in a few interesting cases and point out that
this is a mild generalisation of the result of Ellingsrud and Peskine in [24].

Chapter 4 provides the second main result of this thesis. We elaborate more
on the construction method using particular weights w = (1, 1, 1, 1, 2). We present
an explicit example and extract some code from the program used to help realise this
result.

Proposition. There exists a smooth general type surface X̂ in P4, of degree d̂ = 14,
sectional genus π̂ = 18, topological Euler characteristic c2(X̂) = 64, first Chern number

c21(X̂) = 20, Euler characteristic of the structure sheaf χ
(
O bX) = 7, irregularity q = 0

and geometric genus pg = 6.

Moreover, P4 has an involution under which X̂ is invariant, giving a quotient X ∈
P4(w).

Chapter 5 contains the third main result of this thesis:

Proposition. There exists a smooth general type surface X̂ in P4, of degree d̂ = 9,
sectional genus π̂ = 10, topological Euler characteristic c2(X̂) = 63, first Chern number

c21(X̂) = 9, Euler characteristic of the structure sheaf χ
(
O bX) = 6, irregularity q = 0

and geometric genus pg = 5.

We also give some evidence for
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Conjecture. There exists a smooth general type surface X̂ in P4, of degree d̂ = 5,
sectional genus π̂ = 6, topological Euler characteristic c2(X̂) = 55, first Chern number

c21(X̂) = 5, Euler characteristic of the structure sheaf χ
(
O bX) = 5, irregularity q = 0

and geometric genus pg = 4.

Chapter 6 gives a few concluding remarks.
The appendix is reserved for our Macaulay2 programs for the three examples. We

attach a DVD with the programs and some partial output from each. Of course, if the
reader so wishes they can remove all the semicolons at the end of each line and run the
program to get all the output, but then they might need to have a lot of patience.



Chapter 1
Background

In this chapter we give a brief summary of concepts relevant to our research. In
particular we refer to the text books [6, 9, 23, 29, 38] and [44].

The first section is a glimpse at the Hilbert series. We refer to [2] for more details.
The second section discusses the Koszul complex on a projective space.
Section three deals with the Beilinson monad, the major tool that we use throughout

our construction of examples.
Section four gives a brief overview of weighted projective spaces.
Section five tackles the interpretation of Betti tables produced by Macaulay2. The

final section is dedicated to summarising the construction method of Decker, Ein and
Schreyer [18] on which our own construction method is modelled.

1.1. Hilbert series

Definition 2. Let R = ⊕n≥0Rn be a finitely generated graded k-algebra. The Hilbert
function of R is defined to be

H(R,n) = dimk(Rn)

where dimk Rn is the dimension of the vector space Rn over k.

If I is a homogeneous ideal of R we define the Hilbert function of I as

H(I, n) = dim In.

The Hilbert series of R is the generating function of the sequence given by the
Hilbert function.

8
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Definition 3. Let R = ⊕n≥0Rn be a finitely generated k-algebra. The Hilbert series
of R is

F(R, t) =
∞∑
n=0

H(R,n)tn.

Similarly, if I is a homogeneous ideal of R then the Hilbert series of I is

F(I, t) =
∞∑
n=0

H(I, n)tn

The Macaulay2 command hilbertSeries I, which might be expected to return
the series for I, actually returns the series for R/I. This is because most of the time this
is the interesting object one would be looking for anyway. In other words Macaulay2
has been designed with the knowledge that, most of the time, one is more interested in
how the ideal sits inside the ambient ring. However sometimes one really does want to
find the series of I without taking a quotient. In that case the following theorem from
[17, Chapter 6] can be used.

Theorem 3. Let R = ⊕n≥oRn be a graded k-algebra and I = ⊕n≥oIn be a graded ideal.
Then

F(R/I, t) = F(R, t)−F(I, t)

We also use the following definition of the Hilbert series.

Theorem 4 (Hilbert, Serre). Given a graded polynomial ring R = k[x0, x1, . . . , xn]
and graded ideal I in R, then the Hilbert series of R/I is expressed as

F(R/I, t) =
p(t)

(1− t)n+1

where p(t) is a polynomial in t with integer coefficients.

The polynomial p(t) is called Poincaré polynomial. We end this section with an
example from Chapter 6, where IX denotes the twisted ideal sheaf J bX(4).
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ii85 : hilbertSeries IX

5 6

1 - 6T + 5T

oo85 = -------------

5

(1 - T)

oo85 : Expression of class Divide

1.2. Koszul resolution

Let V be a five-dimensional vector space with basis {e0, . . . , e4}.

Definition 4. The Koszul complex on P4 = P4(V ) is an exact sequence

0 k1←−−−− V ∗ ⊗O(−1) k2←−−−−
∧2 V ∗ ⊗O(−2) k3←−−−−

∧3 V ∗ ⊗O(−3)

k4←−−−−
∧4 V ∗ ⊗O(−4) k5←−−−−

∧5 V ∗ ⊗O(−5) ←−−−− 0
(1.1)

with ker(ki) ∼= Ωi, 0 ≤ i ≤ 4, where Ωi =
∧i T ∗P4(V ).

Remark 2. Notice that one can use the Koszul complex to prove that

Hom(Ωi(i),Ωj(j)) ∼=
i−j∧

V

the isomorphism being defined by contraction.

As a simple illustration we write down the Koszul complexes of some vector bundles.

Example 1. (a)
0←− Ω4(4)←− O(−1)←− 0

(b)
0←− Ω3(3)←− 5O(−1)←− O(−2)←− 0

(c)
0←− Ω2(2)←− 10O(−1)←− 5O(−2)←− O(−3)←− 0

(d)
0←− Ω1(1)←− 10O(−1)←− 10O(−2)←− 5O(−3)←− O(−4)←− 0
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Definition 5 (Linear determinantal varieties). These are defined as follows: let Ω be
an m× n matrix of homogeneous linear forms Ω = (Li,j) on a projective space Pl, not
all vanishing simultaneously. Then the variety

∑
k

(Ω) = {[Z0, . . . , Zl] : rk(Ω(Z)) ≤ k}

is called a linear determinantal variety.

Thus, we can construct examples which are just the common zero locus of the
(k+1)× (k+1) minors, which are homogeneous polynomials of degree k+1. For small
enough values of k we can do this explicitly in Macaulay2, but for large values of k we
run out of memory.

1.3. Monads and spectral sequences

The technique of monads provides powerful tools in construction and classification
of coherent sheaves with prescribed invariants. The basic idea behind monads is to
represent arbitrary coherent sheaves in terms of simpler sheaves such as line bundles
or bundles of differentials, and in terms of homomorphisms between these simpler
sheaves [23]. In particular, we have relied heavily on the Beilinson monad in our
construction method. This is just a monad for a sheaf F that involves direct sums
of twisted bundles of differentials, and thus homogeneous matrices over the exterior
algebra on a vector space of finite dimension n+ 1 over a field R.

Below follows a formal definition of a monad. We start with the basic version from
[40].

In this version, a monad over a compact complex manifold X is a complex

0 −−−−→ A
a−−−−→ B

b−−−−→ C −−−−→ 0 (1.2)

of holomorphic vector bundles over X which is exact at A and at C, such that Im(a)
is subbundle of B. The holomorphic vector bundle

E =
Ker b
Im a

is the homology of the monad. We also have the definition below [23, page 230].

Definition 6. A monad on X is a bounded complex

. . . −−−−→ K−1 −−−−→ K0 −−−−→ K1 −−−−→ . . . (1.3)
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of coherent sheaves on X which is exact except at K0. The homology F at K0 is called
the homology of the monad, and the monad is said to be a monad for F . We say that
the type of a monad is determined if the sheaves Ki are determined.

In [23]X is assumed to be Pn. Below we shall always haveX = P4 in practice. Every
monad (1.2) has an associated commutative diagram with exact rows and columns
which is called the display of the monad, shown below.

0 0y y
0 −−−−→ A −−−−→ K −−−−→ E −−−−→ 0∥∥∥ y y
0 −−−−→ A

a−−−−→ B −−−−→ Q −−−−→ 0yb y
C Cy y
0 0

Remark 3. In cohomology we learn that simplest bundles over Pn are bundles Ωi
P4(j)

of twisted i−forms. We can think of these bundles as a foundation or, as Eisenbud et
al. [22] put it, “as building blocks for more complicated bundles”. The next theorems
have been used to exploit this fact.

Theorem 5 (Beilinson 1978, Monad Version). (see [19] or [22])
For any coherent sheaf J bX on P4 there is a complex K• with

Ki ∼=
⊕
j

H i−j (P4,J bX(j)
)
⊗ Ω−j(−j)

such that

H i(K•) =

{
J bX i = 0
0 i 6= 0

(1.4)

Remark 4. The differentials of K• are given by matrices with entries in the exterior
algebra

∧
V over the underlying vector space V of P4

Definition 7. K• above is called the Beilinson monad for J .

Theorem 6 (Beilinson 1978, Spectral Sequence Version). (see [22])
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For any coherent sheaf J on Pn there is a spectral sequence with E1−term

Eji1 = H i(Pn,J (j))⊗ Ω−j(−j)

converging to J , that is, Eji∞ = 0 for j + i 6= 0 and ⊕E−j,j∞ is the associated graded
sheaf of a suitable filtration of J .

Definition 8. The sequence above is called the Beilinson spectral sequence.

Decker et al. [19] advise that one should pick a twist m carefully and apply Beilin-
son’s theorem to the twisted ideal sheaf J (m) instead of J itself, and experience will
always guide one on which is a suitable twist. In the last section of this chapter we will
see that one has some way of choosing a suitable twist for very simple monads with
only two nonzero terms on P4.

All the E1-terms are in the second quadrant and only finitely many of them are
different from zero. The higher differentials are

djir : Ejir −→ Ej+r,i−r+1
r , r ≥ 2.

1.3.1. Hand calculations on differentials

We use the first example, appearing in Chapter 4, to illustrate the steps and the Ei-
diagrams involved in the spectral sequence. In practice our use of computer algebra
system renders this exercise unnecessary. This is the only time we ever do an example
by hand this way: for more examples done this way consult [40, Chapter II, section 3].

The E1-diagram is shown in Table 1.1.
The differential dj,i1 : Ej,i1 → Ej+1,i

1 gives the complex

0 −−−−→ 5Ω1(1)
d−1,1
1−−−−→ 9O −−−−→ 0

So that the E2-diagram is as in Table 1.2
The differential dj,i2 : Ej,i2 → Ej+2,i−1

2 gives the complex

0 −−−−→ Ω3(3)
d−3,2
2−−−−→ ker d−1,1

1 −−−−→ 0

Hence the E3-diagram is as in Table 1.3
The differential dj,i3 : Ej,i3 → Ej+3,i−2

3 gives the complex

0 −−−−→ 6O(−1)
d−4,3
3−−−−→ coker d−3,2

2 −−−−→ 0



Preliminaries 14

Table 1.1: E1- Diagram I

3 6O(−1)

2 Ω3(3)

1 5Ω1(1) 9O

0

−4 −3 −2 −1 0

Therefore the E∞ = E4-diagram is as in Table 1.4
In this case the display of our monad looks as follows.

0 0y y
0 −−−−→ 6Ω4(4)⊕ Ω3(3) −−−−→ K −−−−→ E −−−−→ 0∥∥∥ y y
0 −−−−→ 6Ω4(4)⊕ Ω3(3) a−−−−→ 5Ω1(1) −−−−→ Q −−−−→ 0yb y

9O 9Oy y
0 0

Lemma 2. If E is the cohomology of the monad

0 −−−−→ A
α−−−−→ B

β−−−−→ C −−−−→ 0

then the rank E is given by

rkE = rkB − rkA− rkC



Preliminaries 15

Table 1.2: E2-Diagram I

6O(−1)

Ω3(3)

ker d−1,1
1 coker d−1,1

1

−4 −3 −2 −1 0

And in this case we get

rkE = 5×
(

4
1

)
−
(

6×
(

4
4

)
+ 1×

(
4
3

)
+ 9×

(
4
0

))
= 1

For more details on spectral sequences and Ei−diagrams consult [40].
The shape of the monad (spectral sequence) for J bX is determined by the dimensions

hiJ (j) := H i(Pn,J (j + n)), 0 ≤ i ≤ n in the range −n ≤ j ≤ 0.
When n = 4 we know that for i = 1, 2 only finitely many of the hiJ (j), j ∈ Z, are

different from zero. That is, the Hartshorne-Rao modules of X̂, the graded R−modules

H i
∗J bX =

⊕
j∈Z

H i(P4,J bX(j)), i = 1, 2,

are of finite length.
Table 1.5 show a typical Beilinson cohomology table in P4: the blanks represent

zeros.
The longest complex we can have in P4 is

0 −→ K−2 −→ K−1 −→ K0 −→ K1 −→ K2 −→ K3 −→ 0

or where K−2 = AΩ4(4), K−1 = B1Ω4(4)⊕B2Ω3(3)⊕B3 and so on.
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Table 1.3: E3-Diagram I

6O(−1)

ker d−3,2
2

coker d−3,2
2 coker d−1,1

1

−4 −3 −2 −1 0

1.4. Weighted projective spaces

Definition 9. Weighted projective space Pn(w), with w = (w0, . . . , wn) nonzero posi-
tive integers, is the quotient

Pn(w) =
(
An+1 \ 0

)
/Gm

of An+1 under the equivalence relation

(x0, . . . , xn) ∼ (λw0x0, . . . , λ
wnxn) for λ ∈ Gm

In our case n = 4, and Gm is C∗.

Definition 10. We will say that a weighted projective space is well-formed if no n− 1
of w0, w1, . . . , wn have a common factor.

In this thesis we may assume that we have a well-formed space. The above definition
comes from [42]: compare with [34, Definition 5.11].

Remark 5. For a general polynomial f in a weighted projective space, f(x) = a does
not make sense for a ∈ C. For example, take P2(1, 2, 3), f = xy + y − z, a = −8 then
f(1, 2, 4) = 0 but f(2, 8, 32) = −8, yet the points (1, 2, 4) and (2, 8, 32) represent the
same point of P2(1, 2, 3) in weighted homogeneous coordinates. We can never make
f(x) = a make sense for a 6= 0 but we can make sure that the set of points in Pn(w) at
which f vanishes, V (f), is always well-defined by restricting to only weighted homoge-
neous polynomials (see Lemma 3).
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Table 1.4: E4-Diagram I

ker d−4,3
3

ker d−3,2
2

coker d−4,3
3 coker d−1,1

1

−4 −3 −2 −1 0

Table 1.5: General Beilinson cohomology table in P4

B1 C1 D1 E1 F

A B2 C2 D2 E2

B3 C3 D3

C4

Thus, the only polynomials worth looking at in weighted projective space are the
weighted homogeneous polynomials, as defined below.

Definition 11. A polynomial f ∈ Pn(w) is weighted homogeneous of degree d if each
term appearing in f has total degree d, where d = α0w0 +α1w1 + . . .+αnwn for a term
in f of the form cxα0

0 xα1
1 · · ·xαnn , c ∈ C.

A weighted homogeneous ideal is an ideal generated by weighted homogeneous
polynomials.

1.4.1. Quasismoothness

Let X be a closed subscheme of a weighted space Pn(w) and ρ : An+1 \ {0} → Pn(w)
be the canonical projection. The Zariski closure CX of ρ−1(X) in Ar+1 is called the
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affine quasicone over X. The point 0 ∈ CX is called the vertex of CX .

Definition 12. A closed subscheme X ⊂ Pn(w) is called quasismooth (with respect to
the embedding X → Pn(w)) if its affine quasicone is smooth outside its vertex.

1.4.2. Some observations

More details can be found in [20].

Proposition 2. (a) If d is a factor of all the wi then

Pn(w0, . . . , wn) = Pn(w0
d , . . . ,

wn
d )

(b) Suppose that w0, w1, . . . , wn have no common factors and that d is a common factor
of all wi for i 6= j (and therefore coprime to wj [42]). Then

Pn(w0, . . . , wn) = Pn(w0
d , . . . ,

wj−1

d , wj ,
wj+1

d , . . . , wnd )

Pn(w) is singular: see Chapter 3.

Lemma 3. Let w = (w0, . . . , wn), be the weights, where wi ∈ N. Let f ∈ C[x0, . . . , xn]
be a weighted homogeneous polynomial. If f vanishes on any set of homogeneous coor-
dinates for a point p ∈ Pn(w), then f vanishes for all homogeneous coordinates of p.
In particular

V (f) = {p ∈ Pn(w) : f(p) = 0}

is a well-defined subset of Pn(w).

Proof. Let (a0, . . . , an) and (λw0a0, . . . , λ
wnan) be homogeneous coordinates of p ∈

Pn(w) and assume that f(a0, . . . , an) = 0. If f is homogeneous of degree d then every
term in f has the form

cxα0
0 xα1

1 · · ·x
αn
n , (1.5)

where α0w0 + α1w1 + . . .+ αnwn = d and c ∈ C. When we substitute λwiai into (1.5),
we obtain

λdcaα0
0 aα1

1 · · · a
αn
n .

Summing over terms of f , we find a common factor λd, and hence

f(λw0a0, . . . , λ
wnan) = λdf(a0, . . . , an) = 0
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1.5. Betti table

The main purpose of this section is to summarise the information one reads from
a typical Betti table: see [23, page 22]). Consider a Betti Table 1.6 produced by
Macaulay2.

Table 1.6: An example of a Betti table produced by Macaulay2

0 1 2

total: 54 28 5

1: 54 27 4

2: . 1 1

Interpretation: the top row denotes the subscripts of the free modules in the reso-
lution of our twisted ideal sheaf J bX(4): we will call them G0, G1 and G2. The maps
go from right to left, so that we can write

G0 ←− G1 ←− G2 ←− 0

The second row tells the number of generators in each module, so G0 has 54 generators,
G1 has 28 generators and G2 has five generators. Now look at the third and fourth
rows, ignoring the first column headed by the word “total” for now. Then notice that
the sum of the numbers in a column in these two rows is exactly the number in the
same column in row two. This gives a breakdown of the generators in different degrees,
and this is how it works: G0 has all fifty-four generators in degree one ( T1,0, where
one comes from the first column and zero comes from the first row ), G1 has 27 of its
generators in degree two T1,1, one generator in degree three T2,1 and G2 has four of its
generators in degree three T1,2, one generator in degree four (2 + 2).

1.6. Construction method of Decker, Ein and Schreyer

This section is a summary of construction method for smooth non general type surfaces
in P4. We will mostly cover material from [19] and [18], but an interested reader would
probably want to read these sources.

Appendix A of [18] on remarks about computations is really worth looking at be-
cause it explains why computations done entirely over a finite prime field should be
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trusted to carry over to the field of complex numbers. The largest prime that Macaulay2
version 1.1 can work with is 32749. It is not obvious why an example obtained in char-
acteristic p should lift to characteristic zero.

However, the authors of [18] eventually want to say that their results lift to the
complex numbers. First they argue that it is to their advantage that Macaulay2 works
over a finite prime field because this helps reduce the accumulation of denominators
during the calculations. The next argument is to deduce that a surface exists over the
complex numbers by saying that their constructions work over a Zariski open subset
of Spec Z. The explicit equations obtained may be regarded as the reduction modulo
p of a surface over Spec Z, which then implies that the surface exists over the complex
numbers by applying openness of smoothness.

At some point in the computations they need to pick a sufficiently general element of
some space. The trick here is to make a random choice and then verify that the point
chosen is a good point for the current situation. They say that the reason explicit
examples can be computed easily is that the components of the Hilbert scheme of
(nearly all) of their examples are unirational, and the unirationality is inherent in the
construction method.

The main references here are [1, 4, 18, 19, 22] and [23, pages 215–247].
The method makes frequent use of Riemann-Roch in the following form.

Proposition 3 (Riemann-Roch). Let S ⊂ P4 be a smooth surface of degree d, sectional
genus π. Then

χ (JS(j)) = χ (OP4(j))−
(
j + 1

2

)
d+ j(π − 1)− χ(OS) (1.6)

Note that χ (OP4(j)) =
(
j+4
4

)
For a detailed account of the steps in this construction

method, consult [19, 5.10]. The main idea is that the existence of a family of smooth
non general type surfaces in P4, with prescribed invariants, is verified by constructing
an explicit example. The authors of [18] construct vector bundles F and G. With a bit
of patience they can find simple F and G such that rank G exceeds rank F by one and
a morphism ϕ : F → G drops rank along the desired surface S. If S really has the
expected codimension 2, then S is locally Cohen-Macaulay and the Eagon-Northcott
complex (1) defined by the minors of ϕ identifies cokerϕ with a suitable twisted ideal
sheaf of S,

0 ←−−−− JS(m) ←−−−− G ϕ←−−−− F ←−−−− 0.

This will generally describe a smooth S.

Riemann-Roch gives χ(J (j)) for each 0 ≤ j ≤ 4. Filling out a plausible cohomology
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table for the ideal sheaf of S carefully is also central to finding S. Notice that choosing
a suitable twist m is part of the exercise. Then from the table as we explained earlier
one reads off the shape of the monad. It is possible that for surfaces of low degree, the
monad is just a sequence

0 −−−−→ K−1 −−−−→ K0 −−−−→ JS(m) −−−−→ 0.

Note that when m = 4 one obtains this simple monad if and only if S is regular and
JS is 5−regular. Then in this case one just takes F = K−1 and G = K0 and a generic
ϕ ∈ Hom(F ,G) will yield a smooth surface, or else no smooth surface with such a
cohomology table exists.

If a smooth surface is obtained then the corresponding family of surfaces is unira-
tional.

Remark 6. (i) A subvariety X has expected codimension at x if locally it resembles
a complete intersection. See [25, page 158] or [26, page 2].

(ii) An ideal I is r−regular if the jth syzygy module of I is generated in degrees
≤ r + j, for j ≥ 0. Consult [8].

(iii) We recall that a variety X is rational if, equivalently,

(a) X is birational to Pn;

(b) K(X) ∼= K(x1, . . . , xn); or

(c) X possesses an open subset U isomorphic to an open subset of An. If these
conditions do not hold, the variety is called irrational.

(iv) Recall that a variety X is is unirational if there exists a dominant rational map

φ : Pn 99K X

for some n.

In other words, in this construction one aims to compute Hom(F ,G) and then
see if a general ϕ ∈ Hom(F ,G) yields a smooth surface. But one may fail to obtain a
smooth surface this way, and then one should try and see why this misfortune occurred.
Possible causes are

1. Hom(F ,G) = 0.

2. A general ϕ ∈ Hom(F ,G) is not injective.
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3. A general ϕ ∈ Hom(F ,G) does not vanish in expected codimension.

4. A general ϕ ∈ Hom(F ,G) defines a surface but always a singular one.

Depending on the outcome of the analysis one decides on the course of action; this will
usually be constructing F or G or both, such that either Hom(F ,G) becomes bigger or
a surface in an entirely different family is obtained.

The final step in this construction is to identify the constructed surface given by
explicit equations within the Enriques-Kodaira classification. This is achieved by ap-
plying adjunction: consult [19, Theorem 8.1]. In [19, Remark 8.3], the authors say
that they do not know if adjunction theory holds over a finite field. It is not known if
adjunction theory applies but Proposition 8.3 and Corollary 8.4 of [19] provide suffi-
cient conditions to carry out the process to spot the surface in the Enriques-Kodaira
classification, for a surface given by explicit equations over a finite field. The authors
describe in detail how this is done in [19, 8.6], for a surface in P4.

We end this section by recording two smoothness checking criteria.
Notation Let f1, . . . , fN be the generators of JS and I := 〈f1, . . . , fN 〉. Then

J := 〈 ∂fi
∂xj
|1 ≤ i ≤ N, 0 ≤ j ≤ 4〉

is the Jacobian ideal of f1, . . . , fN and Ik(J) the ideal of k × k minors of J. Moreover,
if f = fi is one of the generators, then we write Ik(f) for the ideal of k × k minors of
J which involves the row corresponding to f and J(f) for the Jacobian matrix of f.

Remark 7. If an ideal I is primary, i.e., if fg ∈ I =⇒ either f ∈ I or gm ∈ I for
some m > 0, and if

√
I = P , then we say that I is P−primary.(Consult [21, page 94]

for more details.)

Let us recall the following definition (obtained from [28], page 137.)

Definition 13. S has pure dimension n if every irreducible component of S has the
same dimension n.

Theorem 7 (Jacobian Criterion). A pure 2-dimensional subscheme S ⊂ P4 is smooth
if and only if

S ∩ V (I2(J)) = ∅,

that is, if and only if I2(J) + I is 〈x0, . . . , x4〉−primary.

That is, to check smoothness it is enough to check that the ideal generated by
the 2 × 2-minors of the Jacobian matrix together with the original generators defines
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something in codimension 5. Checking smoothness is the most time and memory
consuming step in the computation.

It is known that checking smoothness by the above criterion is expensive because
it requires computing the codimension of I2(J) + I. This involves two very large com-
putations:

1. computation of the ideal I2(J)

2. computation of a Gröbner basis of I2(J) + I.

The authors of [18, 19] provide an alternative smoothness checking criterion which
is more efficient.

Theorem 8. Let S ⊂ P4 be a locally Cohen-Macaulay surface of degree d and sectional
genus π. Let f = fi be one of the generators of JS as above and write e := deg f.
Suppose that

1. V ((I1(J)<e + I) = ∅

2. V (I2(f)) is finite and

deg V (I2(f) + I = deg V (J(f) + I) = d2 + e(e− 4)d− 2e(π − 1)

Then S is smooth.

Since checking (2) involves computing a Gröbner basis of I2(f), it is easiest if f is
chosen as a generator of lowest possible degree.



Chapter 2
Algebraic surfaces

Definition 14. An algebraic surface X is minimal if it does not contain any exceptional
curve E of the first kind (i.e. E ∼= P1, E2 = −1). An algebraic surface X is a minimal
model of a surface Y if there exists a birational morphism Y → X such that X is
minimal (see [25, page 70]).

Remark 8. (see [7]) Every surface can be obtained from a minimal one (its “minimal
model”) after a finite sequence of blowings up of smooth points; this model is moreover
unique if κ(S) ≥ 0. (See Definition 15.) This means that the minimal models of the
rational and ruled surfaces are not unique.

Theorem 9 (Serre Duality). For any coherent sheaf E on a smooth complete algebraic
variety X of dimension n

Hq(X,E )∗ ∼= Hn−q(X,E ∗ ⊗O(KX))

Theorem 10. Let A be a noetherian ring, S = A[x0, . . . , xr] and let Y = PrA be the
projective space over A, with r ≥ 1. Then:

(a) the natural map S −→
⊕

n∈ZH
0(Y,OY (n)) is an isomorphism of graded S-modules;

(b) H i(Y,OY (n)) = 0 for 0 < i < r and all n ∈ Z;

(c) Hr(Y,OY (−r − 1)) ∼= A;

(d) The natural map

H0(Y,OY (n))×Hr(Y,OY (−n− r − 1)) −→ Hr(Y,OY (−r − 1)) ∼= A

is a perfect pairing of finitely generated free A-modules, for each n ∈ Z.

24
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For the proof see [29, Chapter III, Theorem 5.1.].
Notice in particular that Theorem 10, part (b) says that the cohomology groups

H i(P4,OP4(n)) vanish for 0 < i < 4 and all n ∈ Z.

Theorem 11 (Noether’s formula). Let X be a smooth projective surface. Then

χ(OX) =
1
12
(
K2
X + c2(X)

)
Theorem 12 (The Kodaira Vanishing Theorem). If Y is a projective nonsingular
variety of dimension n over C, and if L is an ample line bundle on Y , then:

(a) H i(Y,L ⊗O(KY )) = 0 for i > 0;

(b) H i(Y,L −1) = 0 for i < n.

2.1. Enriques–Kodaira classification of algebraic surfaces

Table 2.1 summarises Enriques–Kodaira classification of algebraic surfaces.

Definition 15. (see [9, page 86]) Let S be a smooth projective variety, K a canonical
divisor of S, φnK the rational map from S to the projective space determined by
the linear system |nK|. The Kodaira dimension of S, written κ(S) or just κ, is the
maximum dimension of the images φnK(S), for n ≥ 1.

So for example curves can have Kodaira dimension −∞, 0 or 1, surfaces can have
Kodaira dimension −∞, 0, 1 or 2.

Recall that by definition Pn(S) = h0(S,K⊗n)
For more details see [6, chapters V and VI] or [9].

2.1.1. Surfaces with κ = −∞

Definition 16. A surface X is ruled if it is birationally equivalent to C × P1, where
C is a smooth curve.

Definition 17. A rational surface is a surface that is birationally equivalent to P2.

For example C × P1 itself is ruled. In particular rational surfaces are ruled. [9,
Chapter IV] provides many examples of rational surfaces.

Definition 18. Let C be a smooth curve. A geometrically ruled surface over C is a
surface S, together with a smooth morphism p : S → C whose fibres are isomorphic
to P1.
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It is not immediately clear that a geometrically ruled surface is ruled. Theorem
III.4 in [9] establishes this.

The following characterisation [9, Proposition III.21] of ruled surfaces is worth not-
ing.

Proposition 4. Let S be a ruled surface over a curve C. Then q(S) = g(S); pg(S) = 0;
Pn(S) = 0 for all n ≥ 2.

If S is geometrically ruled, then K2
s = 8(1− g(C)), b2(S) = 2.

2.1.2. Surfaces with κ = 0

For a thorough treatment of this kind of surfaces consult [9, Chapter VIII]. Note that
all surfaces of κ = 0 to be discussed below are minimal by definition.

Definition 19. A torus T is a surface, isomorphic to the quotient of C2 by a lattice of
real rank four. If T admits an embedding into projective space, we say it is an abelian
surface.

Note that in this case we have K2
X = c21 = 0, and this is true for all minimal

surfaces with κ = 0. We also know that pg(X) = 1 and q(X) = 2. From χ(OX) =
1− q(X) + pg(X) and Noether’s formula (Theorem 11), it follows that the topological
Euler–Poincaré characteristic, c2(X) of a minimal abelian surface is 0.

Definition 20. An Enriques surface is a surface X with q(X) = 0, for which K⊗2
X
∼=

OX , but KX 6= OX .

We also know that pg = 0: hence a similar argument to the one given for the abelian
surfaces implies that the topological Euler–Poincaré characteristic c2(X) of a minimal
Enriques surface is 12.

Definition 21. A hyperelliptic surface is a surface with q(X) = 1, admitting a holo-
morphic, locally trivial fibration over an elliptic curve with an elliptic curve as typical
fibre. In particular every hyperelliptic surface is algebraic.

Here pg(X) = 0, hence the topological Euler–Poincaré characteristic c2(X) of a
minimal hyperelliptic surface is 0.

Definition 22. A K3 surface is a surface X with q(X) = 0 for which KX = OX .

Note that this definition means that K2
X = c21 = 0. We also know that pg = 1:

in fact much more is true, namely Pn = 1 for all n ≥ 1. From χ(OX) = 1 − q + pg

and χ(OX) =
1
12
(
c21(X) + c2(X)

)
it follows that the topological Euler characteristic
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or the Euler number of a minimal K3 surface is 24. Examples of these surfaces include
the complete intersections S4 ⊂ P3, S2,3 ⊂ P4 and S2,2,2 ⊂ P5. In 1979 Reid found 95
families of K3 hypersurfaces which are now referred to as the famous 95 and a recent
proof by Johnson and Kollár [35]1 reaffirms that this list is complete, i.e. these are the
only K3 hypersurfaces in weighted P3. But they are singular.

2.1.3. Surfaces with κ = 1

Definition 23. A properly elliptic surface is an elliptic surface with κ = 1.

Remark 9. For more examples see [9, Examples IX.4, page 109]. In particular note
that every Enriques surface is elliptic. We recall also that an elliptic fibration of a
surface X means a proper, connected holomorphic map f : X → S, such that
the general fibre Xs = f−1(s) is non-singular elliptic (the holomorphic structure may
depend on s ∈ S.)

2.1.4. Surfaces with κ = 2

These are called surfaces of general type. For some recent progress see [7]. Although
classification of these type of surfaces is far from being fully understood, a lot is known
about them. In particular we mention the well-known theorem of Gieseker:

Theorem 13. There exists a quasi-projective coarse moduli scheme for the minimal
surfaces of general type X with fixed Chern numbers c21(X) and c2(X).

Notice that since the numbers c21(X) and c2(X) are non-negative integers, we read
this theorem to say that any given pair would define a moduli scheme, in particular it
does not tell us to exclude the empty ones. A lot of work has been done to try and see
which numbers are worth looking at.

Remark 10. Enriques classified surfaces according to the plurigenus P12. It seems
that the terminology of Kodaira dimension was introduced by Shafarevich in his 1965
seminar. We have

• κ = −∞⇐⇒ P12 = 0.

• κ = 0⇐⇒ P12 = 1

• κ = 1⇐⇒ P12 ≥ 2 and K2 = 0

• κ = 2⇐⇒ P12 ≥ 2 and K2 > 0
1reference kindly shown to us by Gavin Brown
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Here we collect some classical inequalities which a minimal surface of general type
must satisfy. Consult [7].

Lemma 4. Let X be a minimal general type surface. Then

1. K2
X ≥ 1; χ(OX) ≥ 1

2. (Noether) K2
X ≥ 2pg − 4 or the weaker K2

X ≥ 2χ(OX)− 6

3. (Debarre) if q > 0, K2
X ≥ 2pg or the weaker if q > 0, K2

X ≥ 2χ(OX)

4. (Bogomolov-Miyaoka-Yau) K2
X ≤ 9χ

5. χ(OX) ≤ 1
2
c21 + 3 (c21(X) even)

6. χ(OX) ≤ 1
2
c21 +

5
2

(c21(X) odd)

7. c2 > 0

8. c21(X) + c2(X) ≡ 0 mod 12

We also record Corollary (3.3) from [6].

Corollary 1. If X is a minimal surface of general type with

5c21(X)− c2 + 36 = 0 (c21(X) even)

or
5c21(X)− c2 + 30 = 0 (c21(X) odd)

then q(X) = 0.

In the geography diagram (Figure 2-1) of minimal surfaces of general type, the
coloured circles indicate the approximate position of the examples we found. The
picture is not drawn to scale. Note that we mimic [7] and draw the Severi line K2 = 4χ,
the discussion of which can be found in [7], section 1.4. We have also inserted the Konno
and Horikawa lines (see Chapter 6.)

Beyond these numerical restrictions, the study of surfaces of general type largely
consists of studying examples and goes under two names: Botany and Geography (see
[25]).

It is customary to summarise the Enriques–Kodaira classification in a table.
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K2

N

H

K

χ = 1

K2 = 1

χ

S

D

B-M-Y

EX1

EX2

EX3

Figure 2-1: The geography diagram for minimal surfaces of general type.
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Table 2.1: Enriques–Kodaira classification

κ pg q c21 c2 surface
class

−∞ 0 0 8 or 9 4 or 3 Rational

−∞ 0 π 8(1− π) 4(1− π) Ruled

0 1 0 0 24 K3

0 0 0 0 12 Enriques

0 1 2 0 0 Abelian

0 0 1 0 0 Hyperelliptic

1 0 ≥ 0 Elliptic

2 > 0 > 0 General
Type.



Chapter 3
Boundedness for surfaces in weighted P4

In this chapter we consider bounds on the degree of quasismooth non general type
surfaces in weighted projective 4–space. We show that such a bound in terms of the
weights exists, and compute an explicit bound in simple cases.

Ellingsrud and Peskine [24] proved that there exists an integer d0 such that all
smooth non general type surfaces in P4 have degree less than or equal to d0. This
motivated a search for such surfaces, partly by computational methods, and also an
effort to find an effective bound on d0, begun by Braun and Fløystad in [12]. As far as
we know the smallest proven bound is 52 by Decker and Schreyer [19]. It is generally
believed that the true bound is 15. Examples in degree 15: see for instance [4, 41].

Some of the methods used to find such surfaces are also applicable to surfaces in
weighted projective spaces P4(w). It is therefore natural to ask whether a similar
bound can be found for the degree of quasismooth non general type surfaces in a
weighted projective space with given weights. In this chapter we show that such a
readily computable bound (of course depending on the weights) does exist, and we
compute it in some cases.

To show that a bound exists all we need is a fairly simple adaptation of the way in
which the results of [24] (or [12]) are applied. For a computable bound we use the results
of [12] together with some information about the contribution from the singularities of
the surface in P4(w).

Our procedure is to exploit the representation of P4(w) as a quotient of P4 by a
finite group action. Starting with a quasismooth non general type surface X in weighted
projective 4–space P4(w), we take its cover in P4. This will (usually) be of general type,
but it will have invariants bounded in terms of those of X, and the results of [12] still
apply in this situation.

31
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3.1. Bounding the degrees

We fix weights w = (w0, w1, w2, w3, w4) with wi ∈ N: unless otherwise stated, i and j

always denote indices in the range 0 ≤ i, j ≤ 4. We may assume that any four of the
wi are coprime: see for example [42, Definition 3.5 and Proposition 3.6]. Such weights
are called well-formed: see Definition 10. Later we shall look in more detail at the case
where the wi are pairwise coprime. We also order the weights so that wi ≤ wi+1: in
particular, the largest weight is w4. We write |w| for the sum of the weights, and m

for their product.
We recall that the weighted projective space P4(w) of dimension 4 is defined to be

the quotient (C5 \ {0})/C∗, where C∗ acts by

t : (x0, . . . , x4)→ (tw0x0, . . . , t
w4x4).

Recall from Definition 12 that a surface X ⊂ P4(w) is said to be quasismooth if
its punctured affine cone X∗ is smooth: that is, if X∗ = q−1(X) is smooth, where
q : (C5 \ {0})/C∗ → P4(w) is the quotient map.

Alternatively we may regard P4(w) as a quotient of P4 under an action of the group
Gw =

∏
i Z/wiZ of order m. A generator gi of the ith factor acts by xi 7→ xwii . We

denote the quotient map P4 → P4(w) by φw.
Suppose that X is a quasismooth surface, not of general type, in P4(w). Denote

by X̂ the cover of X in P4 under the m-to-1 map φw: then X̂ is smooth. We always
assume that X and X̂ are nondegenerate: that is, X̂ is not contained in any hyperplane
in P4.

Let f : X̃ → X be the minimal resolution of X (note that X̃ need not be a minimal
surface).

X̂ ⊂ P4

φw

y yφw
X̃

f−−−−→ X ⊂ P4(w)

Further let d be the degree of X ⊂ P4(w) and π the sectional genus of X. These are
defined as follows: P4(w) and X are Q-factorial varieties and there are Q-line bundles
OP4(w)(1), OX(1) and KX . Writing H for the class of OX(1) in PicX ⊗ Q and using

the intersection form on PicX we have d = H2 and 2π−2 = H ·(H+KX), so d, π ∈ Q.

We let d̂ be the degree of X̂ and π̂ the sectional genus of X̂. We put

ŝ = min
{
k|h0I bX(k) 6= 0

}
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and denote by σf the number of irreducible exceptional curves of f .

We first collect the facts about these invariants of the smooth surface X̂ ⊂ P4.

Proposition 5. If X̂ ⊂ P4 is a smooth surface (possibly of general type), and r ≤ ŝ

and r2 < d̂, then

2π̂ ≤ d̂2

r
+ (r − 4)d̂+ 1. (3.1)

Moreover
d̂2 − 5d̂− 10(π̂ − 1) + 12χ

(
O bX)− 2K2bX = 0. (3.2)

Finally, if d̂ > ŝ(ŝ− 1) we have the lower bound for χ
(
O bX)

χ
(
O bX) ≥ d̂3

6ŝ
+ d̂2

(
ŝ− 5

4ŝ

)
+ d̂

(
3ŝ2 − 30ŝ+ 71

24

)
(3.3)

− ŝ
4 − 5ŝ3 − ŝ2 + 5ŝ

24
− γ2

2
− γ(

d̂

ŝ
+ ŝ− 5

2
)

where 0 ≤ γ ≤ d̂(ŝ− 1)2/2ŝ.

Proof: The inequality (3.1) is a consequence of [24, (B), (C), page 2]. Let Ĥ denote

a general hyperplane section of X̂, so that π̂ = g(Ĥ). According to [43] (as quoted in

[24, (C), page 2]), if ŝ > r and d̂ > r2 then Ĥ ⊂ P3 does not lie on any surface of degree

< r. Therefore, according to [24, (B), page 2], we have r(2π̂ − 2) ≤ d̂2 + r(r − 4)d̂. If

ŝ = r then (again by [24, (B), page 2]) we have the same inequality because then Ĥ

does lie on a surface of degree r.
Equation (3.2) is the double point formula as stated in [12] and [24]: see [29, page

434]. The estimate (3.3) is [12, (1.1)(e)].

A more precise version of (3.1), valid under certain conditions, is given in [12, (1.1)].
In order to bound the degree of smooth surfaces in P4 what is needed is not the precise

form of (3.3) but an estimate of the form χ
(
O bX) ≥ a(ŝ)d̂3 + o(d̂3), where a(ŝ) is some

positive constant depending on ŝ only. Ellingsrud and Peskine proved the existence of
such a bound in [24] but did not give an explicit one.

It will be convenient to work with the invariants c21(S) = K2
S and c2(S) (which is the

topological Euler number e(S)) of a smooth projective surface S: these are connected
by Noether’s formula (Theorem (11))

12χ(OS) = c21(S) + c2(S) (3.4)
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Since we are assuming that X̃ is not of general type we have (as in [12] and [24] )

that K2eX ≤ 9. Moreover, unless X̃ is a rational surface with K2eX ≥ 6 we also have

6χ
(
O eX) ≥ K2eX (i.e. c2(X̃) − c21(X̃) ≥ 0). If X̃ is a rational surface then χ

(
O eX) = 1

so c2(X̃)− c21(X̃) = 12χ
(
O eX)− 2K2eX = 12− 2K2eX ≥ −6. So in any case if X is not of

general type we have
c21(X̃)− c2(X̃) ≤ 6. (3.5)

So we need to estimate d̂ and π̂ in terms of d and π, and K2bX and χ
(
O bX) in terms of

K2eX and χ
(
O eX). We shall show the two propositions below.

Proposition 6. Suppose X is a quasismooth normal surface in P4(w). Then

c21(X̂) ≤ mc21(X̃) + θ1 (3.6)

where
θ1 = k0 + k1d̂+ k2δ̂ (3.7)

for suitable k0, k1, k2 depending only on the weights wi. Moreover

c2(X̂) ≥ mc2(X̃)− θ2, (3.8)

and
θ1 + θ2 = k′0 + k′1d̂+ k′2δ̂ (3.9)

for suitable k′0, k
′
1, k

′
2 depending only on the weights, and k′2 > −5.

This proposition will be proved in Sections 3.3 and 3.4, below.
Our main qualitative result is then the following.

Theorem 14. There exists dw ∈ N depending only on the weights wi such that any
quasismooth normal surface X ∈ P4(w) of degree d > dw is of general type.

Proof: We have seen that X̂ → X is m-to-1, so

d̂ = md (3.10)

so it is sufficient to show that if X is not of general type then d̂ is bounded by a function
of the weights.

Suppose then that X is not of general type. We have, by adjunction, 2π̂ − 2 =

Ĥ ·(Ĥ+K bX) = d̂+ δ̂, where Ĥ is a hyperplane section of X̂. Therefore by the estimate
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(3.1) we obtain

δ̂ ≤ 1
r
d̂2 + (r − 5)d̂− 1 (3.11)

as long as r ≤ ŝ and r2 < d̂. We may also write the double point formula as

d̂2 − 10d̂− 5δ̂ + c2(X̂)− c21(X̂) = 0. (3.12)

By Proposition 6 and the inequality (3.5) we have

c2(X̂)− c21(X̂) ≥ −6m− (θ1 + θ2), (3.13)

so

0 ≥ d̂2 − 10d̂− 5δ̂ − 6m− (θ1 + θ2)

= d̂2 − (10 + k′1)d̂− (6m+ k′0)− (5 + k′2)δ̂. (3.14)

Combining this with (3.11) gives (since 5 + k′2 > 0)

0 ≥ d̂2 − (10 + k′1)d̂− (6m+ k′0)− (5 + k′2)(
1
r
d̂2 + (r − 5)d̂)

=
(

1− 5 + k′2
r

)
d̂2 − ((10 + k′1 + (5 + k′2)(r − 5))d̂− (6m+ k′0).

So if ŝ > k′2 + 5 we may take r = k′2 + 6 and this bounds d̂ in that case.
On the other hand, suppose that X is not of general type and ŝ ≤ k′2 + 5. Then

using Noether’s formula, the double point formula (3.12), and (3.3) we have

0 = d̂2 − 10d̂− 5δ̂ + 12χ
(
O bX)− 2c21(X̂)

≥ −2c21(X̂) +
2
ŝ
d̂3 +O(d̂2)

≥ −2mc21(X̃)− θ1 +
2
ŝ
d̂3 +O(d̂2)

≥ 2
ŝ
d̂3 +O(d̂2)− 18m− k0 − k1d̂− k2δ̂

=
2
ŝ
d̂3 +O(d̂2)

by (3.7) and (3.11): the constants depend on ŝ but this is now bounded in terms of the

weights. So again we obtain a bound for d̂ in terms of the wi.
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3.2. Singularities of P4(w) and of X

In this section we collect some preliminary information about the action of Gw on P4

and on X̂. We choose an isomorphism Gw→̃
∏

Z/wiZ by choosing generators gi ∈ Gw
of order wi. The singularities arise at fixed points of the Gw-action, so let us consider
those.

Suppose that x = (x0 : . . . : x4) ∈ P4 is fixed by g = ga0
0 . . . ga4

4 . Without loss of

generality we take x0 = 1: then for j 6= 0 we have ζ−a0
0 ζ

aj
j = 1, where ζj = e2πi/wj .

Lemma 5. If x ∈ P4 is fixed by a non-trivial element of Gw, then x lies in a coordinate
linear subspace PJ given by PJ = {xj = 0 | j ∈ J ⊂ {0, . . . , 4}}. The stabiliser of a
general point of PJ is the group ΓJ generated by the gj for j ∈ J and the element

gJ =
∏
i 6∈J g

wi/rJ
i , where rJ = hcf(ai | i 6∈ J).

This is immediate from the description of the action above. By a general point in
PJ is meant, in this case, a point that is not in PJ ′ for any J ′ ⊃ J .

Lemma 6. The singularities of X are cyclic quotient singularities whose order divides
one of the weights.

Proof: At a fixed point x ∈ P4, the elements gj ∈ ΓJ act on the tangent space by
quasi-reflections: the jth eigenvalue is ζajj and the others are 1. So the quotient by the

subgroup Γ′J generated by those elements is smooth, and the singularity of Pw or of
X at z = φw(x) is a quotient by the action of the cyclic group generated by gJ . The
order of this element, or of its image in ΓJ/Γ′J , is rJ , which divides wi for i 6∈ J .

Remark 11. If #J = 1 then rJ = 1 since the weights are well-formed, so the general
point of a coordinate hyperplane in P4(w) is smooth. For each i, the number of singular

points of X with zi = 0 is at most d̂.

Remark 12. If the weights are pairwise coprime then the singularities occur at the
points P0 = (1 : 0 : . . . : 0), . . . , P4 = (0 : . . . : 0 : 1) ∈ P4(w), and the singularity of Pw
at Pi has order exactly wi. If X 3 Pi then X also has a cyclic quotient singularity of
order wi at Pi.

Lemma 7. Suppose that (Y, 0) is a nondegenerate smooth surface germ in (A4, 0) with
coordinates t1, . . . , t4 at 0 ∈ A4. Let γ be the quasi-reflection γ(t1) = ξt1, where ξ is
a primitive nth root of unity, and that Y is γ-invariant. Then Y meets A = (t1 = 0)
transversely.
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Proof: Suppose not: then TY,0 ⊂ A. Therefore the ideal IY,0 ⊂ OA4,0 contains an

element f of the form f = t1 + h with h ∈ m2 ⊂ OA4,0, where m is the maximal ideal
of OA4,0.

We write h =
n−1∑
ν=0

hν , where γ(hν) = ξν(hν): if we write h =
∑
r
ar(t2, t3, t4)tr1 as a

polynomial in t1 we have hν =
∑

r≡ν mod n

art
r
1. Then

IY,0 3 (1 + γ + γ2 + · · ·+ γn−1)(f) = nh0

so IY,0 3 f − h0 = t1 +
∑
ν 6=0

hν . But t1 divides the right-hand side, so since h ∈ m2 we

have f − h0 = t1(1 + b), where b ∈ m. Since IY,0 is a prime ideal contained in m this
implies t1 ∈ IY,0, contradicting the nondegeneracy.

Corollary 2. If wi 6= 1, then X̂ meets the ramification divisor P{i} transversely and

the curve Ĉi = X̂ ∩ P{i} is a smooth curve of genus π̂.

Proof: The second part follows immediately from the first, which is immediate from
Lemma 7.

3.3. Comparing c2
1.

In this section we prove (3.6) and (3.7) from Proposition 6, and give values for the
constants k0, k1 and k2.

Let ∆ =
∑

1≤ν≤σf aνEν be the discrepancy of f , so that aν ∈ Q and K eX =

f∗KX + ∆. Then f∗KX ·∆ vanishes and (f∗KX)2 = K2
X , so K2eX = K2

X + ∆2.

Lemma 8. If f0 : Ỹ → Y is the minimal resolution of a isolated cyclic quotient (Y, 0)
of order n and the discrepancy of f0 is ∆0, then 0 > ∆2

0 ≥ −n.

Proof. This (which is not a sharp bound) is most easily seen by toric methods. If the
singularity is 1

n(1, a) with (n, a) = 1 then the minimal resolution is described by taking

the decomposition given by the convex hull of Z2 + 1
n(1, a)Z in the first quadrant of R2.

The exceptional curves Eν , 0 < ν < k, correspond to primitive vectors Pν = (xν , yν) of
this lattice: put `ν = xν + yν , and write E0 and Ek for the toric curves corresponding
to the rays spanned by (1, 0) and (0, 1). Then we have EνEν±1 = 1 and EµEν = 0

if µ 6= ν, ν ± 1. Moreover on Ỹ we have
∑

0≤ν≤k
`νEν ≡ 0 (linear equivalence), and
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(1,0)

P0

Pk−1

Pk

P1

Pν = (xν , yν) ∈ Λ

Λ = Z2 + 1
n
(1, a)Z

x+ y = `k−1

(0,1)

Figure 3-1: The toric resolution.

∆ = −
∑

0<ν<k

Eν . Therefore

∆2
0 =

∑
0<ν<k

Eν(
∑

0<µ<k

Eµ)

=
∑

0<ν<k

Eν

(
(
∑

µ6=0, ν, k

Eµ) + Eν

)
=

∑
0<ν<k

Eν(−E0 − Ek +
∑
µ6=ν

(1− `µ
`ν

)Eµ)

= −2−
∑

0<ν<k

((
`ν−1

`ν
− 1) + (

`ν+1

`ν
− 1))

Suppose for definiteness that `nu+1 > `ν . Then `ν+1

`ν
− 1 is twice the area (relative
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to the lattice Λ = Z2 + 1
n(1, a)Z) of the triangle T+

ν = PνQνPν+1, where Qν = `ν+1

`ν
Pν ,

since Area(OPνPν+1) = 1
2 relative to Λ: see Figure 3-2. So

−1
2

∆2
0 ≤ −1−

∑
0<ν<k

Area(T+
ν )

= −Area(OP0P1)−Area(OPk−1Pk)−
∑

0<ν<k

Area(T+
ν ).

But these triangles do not overlap and they are contained in the unit triangle OP0Pk,
which has area n

2 relative to Λ.

O

Pν

T+
ν

Pν+1

Qν

Figure 3-2: ∆2
0.

Now we compute K2bX from K bX = φ∗w(KX) +
∑

(wi − 1)Ĥi, where Ĥi = P{i} ∩ X̂ =

(xi = 0) and so we get
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K2bX = mK2
X + 2

∑
(wi − 1)δ̂ −

∑
(wi − 1)(wj − 1)d̂ (3.15)

since φ∗w(KX)2 = mK2
X .

Proposition 7. We have c21(X̂) ≤ mc21(X̃) + θ1, where (recall that w4 is the largest
weight)

θ1 =
(

10mw4 −
∑

0≤i,j≤4

(wi − 1)(wj − 1)
)
d̂+ 2(|w| − 5)δ̂. (3.16)

Proof: For a singular point z ∈ Sing(X) we denote the discrepancy at z by ∆z.
If z ∈ HJ = φw(PJ) ∩ X then the order of the singularity is rJ = hcf(wi | i 6∈ J).

There are at most 1
2

(
5
2

)
d̂ distinct points on the Ĥ{ij} altogether, so the total number

of singular points is at most 10d̂.
Each singular point has order rJ dividing some of the wi, so ∆2

z ≥ −rJ ≥ −w4.
Then

c21(X̃) = K2eX = K2
X + ∆2

= K2
X +

∑
z∈Sing(X)

∆2
x

≥ K2
X − 10w4d̂.

Now, using (3.15), we get

c21(X̂) = mK2
X + 2δ̂

(
|w| − 5

)
− d̂

∑
0≤i,j≤4

(wi − 1)(wj − 1)

≤ mc21(X̃) + 2δ̂
(
|w| − 5

)
+ d̂
(

10mw4 −
∑

0≤i,j≤4

(wi − 1)(wj − 1)
)

as required.
If the wi are pairwise coprime we can do slightly better. In that case the only

singularities are at the points Pi if they are in X. Therefore we have

c21(X̃) = K2
X +

∑
Pi∈X

∆2
i ≥ K2

X −
∑
i

qiwi, (3.17)

where ∆i is the discrepancy at Pi and qi = 1 if Pi ∈ X, qi = 0 if Pi 6∈ X. This gives

c21(X̂) ≤ mc21(X̃) +m
∑

qiwi + 2(|w| − 5)δ̂ − d̂
∑

0≤i,j≤4

(wi − 1)(wj − 1). (3.18)
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3.4. Comparing c2

Recall that if x ∈ X̂∩PJ then ΓJ stabilises x. We put X̂J = X̂∩(PJ \
⋃
J ′)J PJ ′). That

is, at the points x ∈ X̂J we have xi = 0 if and only if i ∈ J . On X̂J the stabiliser is
precisely ΓJ . The order of ΓJ is hJ = rJ

∏
j∈J wj : in particular, h∅ = 1 and h{i} = wi.

X̂{i} is the complement of up to 4d̂ points on a smooth curve of genus π̂, by Corol-

lary 2. Those points lie in some X̂J with #J ≥ 2: in particular they all lie on Ĥj for

some j 6= i, and there are d̂ such points for each such j. They may not all be distinct,
however. Therefore

2− 2π̂ > e(X̂{i}) ≥ 2− 2π̂ − 4d̂. (3.19)

Denote by Q the set of points of X̂ lying in at least two coordinate hyperplanes of

P4: thus Q = X̂ ∩
⋃

#J≥2 PJ as a set. The set Q is finite, of cardinality q ≤ 10d̂, and

X̂ = X̂∅
∐⋃

i X̂{i}
∐
Q.

We put XJ = φw(X̂J), for J ⊂ {0, . . . , 4}, so that

φw| bXJ : X̂J −→ XJ

is unramified and its degree is |Gw : ΓJ | = m/rJ .

Lemma 9. For each x ∈ Q, let rx be the order of the singularity of z = φw(x) ∈ X,

so rx = rJ if x ∈ X̂J . Then

c2(X̃) ≤ e(X) +
∑
x∈Q

(rx − 1).

Proof: The resolution f : X̃ → X, in a neighbourhood of z, consists of a sequence
of at most rx − 1 blow-ups, needed to resolve the quotient singularity of order rx at
z ∈ X. Therefore σf ≤

∑
x∈Q(rx − 1). Each blow-up contracts a smooth rational

curve: topologically, therefore, f contracts σf 2–spheres to points, and each of these

contractions reduces the Euler characteristic by 1, so e(X̃) = e(X) + σf ≤ e(X) +∑
x∈Q(rx − 1).

Proposition 8. We have c2(X̂) ≥ mc2(X̃) − θ2, where (recall that w4 is the largest
weight)

θ2 =
(

10mw4 − (|w| − 5)
)
d̂− (|w| − 5)δ̂. (3.20)
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Proof: By the additiviity of Euler characteristic we have

c2(X̂) =
∑
J

e(X̂J)

=
∑
J

|Gw : ΓJ |e(XJ)

= me(X∅) +
∑
J 6=∅

|Gw : ΓJ |e(XJ)

= m
(
e(X)−

∑
J 6=∅

e(XJ)
)

+
∑
J 6=∅

|Gw : ΓJ |e(XJ)

= me(X) +
∑
J 6=∅

(1− hJ)|Gw : ΓJ |e(XJ)

= me(X) +
∑
J 6=∅

(1− hJ)e(X̂J).

Write hx = hJ if x ∈ X̂J . Using X̂ = X̂∅
∐⋃

i X̂{i}
∐
Q and Lemma 9, this gives

c2(X̂) = me(X)−
∑
i

(wi − 1)e(X̂{i})−
∑
x∈Q

(hx − 1)

≥ mc2(X̃)−
∑
i

(wi − 1)e(X̂{i})−m
∑
x∈Q

(rx − 1)−
∑
x∈Q

(hx − 1)

≥ mc2(X̃)− (|w| − 5)(2− 2π̂)−m
∑
x∈Q

(rx − 1)−
∑
x∈Q

(hx − 1)

= mc2(X̃) + (|w| − 5)(d̂+ δ̂)−m
∑
x∈Q

(rx − 1)−
∑
x∈Q

(hx − 1)

≥ mc2(X̃) + (|w| − 5)(d̂+ δ̂)− 10mw4d̂,

as claimed, since q ≤ 10d̂, rx ≤ w4 and hx ≤ m.
We can now complete the proof of Proposition 6 and hence of Theorem 14, by

remarking that from Propositions 7 and 8 we get

θ1 + θ2 =
(

20mw4 − (|w| − 5)−
∑

(wi − 1)(wj − 1)
)
d̂+ (|w| − 5)δ̂

so k′2 = |w| − 5 > −5.
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3.5. Examples

It would of course be possible to obtain an explicit bound as in Theorem 14 from
the argument above. However, such a bound would be likely to be rather poor. In
specific cases it is possible to obtain a bound better than the general one implied
above. Although we still do not expect such a bound to be good, in the sense that we
expect that in fact all non general type surfaces will be of much lower degree, in some
cases it is not absurdly big.

3.5.1. Weights (1, 1, 1, 1, 2)

We calculate a bound for the case of weights (1, 1, 1, 1, 2). In this case there is at most
one singular point of X and if there is a singular point it is an ordinary double point.
We let q be the number of singularities of X, so q = 0 or q = 1.

In this case the singularity, if any, is canonical and blowing up once gives a crepant
resolution, so ∆2 = 0 and c21(X̃) = K2

X . Moreover K bX = φ∗KX + Ĥ, so

c21(X̂) = (φ∗KX + Ĥ)2

= 2K2
X + 2φ∗KXĤ + Ĥ2

= 2c21(X̃) + 2(K bX − Ĥ)Ĥ + Ĥ2

= 2c21(X̃)− d̂+ 2δ̂.

We also have c2(X̃) = e(X) + q and

c2(X̂) = 2e(X)−
∑
i

(wi − 1)e(X̂{i})−
∑
x∈Q

(hx − 1)

= 2e(X)− (2− 2π̂)− q

= 2c2(X̃) + d̂+ δ̂ − 3q.

Thus θ1 = −d̂+ 2δ̂ and θ2 = 3q − d̂− δ̂. Therefore k′0 = 3q, k′1 = −2 and k′2 = 1, and
(3.14) and the formula below it give

0 ≥
(

1− 6
r

)
d̂2 − (6r − 22)d̂− (12 + 3q)

as long as r ≥ ŝ ≥ 7 and r2 < d̂. Taking r = 7, we see that d̂ ≤ 140 in this case. (By

taking r = 9 we can obtain d̂ ≤ 96, but as we shall see that will not yield a better
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bound in the end. Clearly taking r ≥ 10 we cannot do better than d ≤ 100 because for

this case we need r2 < d̂.)
We must also deal with the cases ŝ < 7: if we use r = 9 we must also handle ŝ = 7

and ŝ = 8 separately. But now we have, using c21(X̃) ≤ 9, the estimate (3.1) for δ̂ with
r = ŝ, the bounds on χ

(
O bX) and γ from Proposition 5, and the double point formula

0 = d̂2 − 10d̂+ 12χ
(
O bX)− 2c21(X̂)

= d̂2 − 10d̂+ 12χ
(
O bX)− 4c21(X̃) + 2d̂ = 4δ̂

≥ d̂2 − 8d̂+ 12χ
(
O bX)− 36− 4

ŝ
d̂2 − 4(ŝ− 5)d̂+ 4

≥ 12
[ d̂3

6ŝ
+ d̂2

( ŝ− 5
4ŝ

)
+ d̂
(3ŝ2 − 30ŝ+ 71

24

)
− ŝ4 − 5ŝ3 − ŝ2 + 5ŝ

24

−1
2

((ŝ− 1)4

4ŝ2
)
d̂2 −

((ŝ− 1)2

2ŝ2
)
d̂2 −

((ŝ− 5/2)(ŝ− 1)2

2ŝ

)
d̂
]

+d̂2(1− 4
ŝ

) + d̂(−8− 4(ŝ− 5))− 32

=
2
ŝ
d̂3 − 3ŝ4 − 12ŝ3 + 22ŝ2 + 2ŝ+ 15

2ŝ2
d̂2

−9ŝ3 − 16ŝ2 − 23ŝ− 30
2ŝ

d̂− ŝ4 − 5ŝ3 − ŝ2 + 5ŝ+ 64
2

(for ŝ = 2 the −
(

(bs−5/2)(bs−1)2

2bs
)
d̂ term should be omitted). It is easy to compute that

this implies d̂ ≤ 91 for ŝ ≤ 6, but ŝ = 7 we obtain only d̂ ≤ 153, so taking r = 9 does

not improve the overall bound. Taking r = 7, we find the overall bound d̂ ≤ 140.
Generally we see from (3.3) that for large weights, and hence large ŝ, the two biggest

terms in absolute value in the cubic will be the d̂3 term and a term −bs2
4 d̂

2. Therefore

the bound on d̂ will be around ŝ3/8, i.e. around |w|3/8.

3.5.2. Weights (1, 1, 1, 2, 6)

As a further example, we calculate a bound for the case of weights (1, 1, 1, 2, 6). In this

case the possible singularities are: up to d̂ order 2 singularities (ordinary nodes) along
x0 = x1 = x2 = 0, with rx = hx = 2, and one singularity of order 6 at (0 : 0 : 0 : 0 : 1),
with rx = 6, hx = 12. At the double points, ∆2

x = 0, and at the 6-fold point one has in
fact ∆2

x ≥ −8
3 .

In this case we have K2bX = 12K2
x− 36d̂+ 12δ̂, and c21(X̃) = K2

X −
∑

x ∆2
x ≥ K2

x− 8
3 ,
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so θ1 = 32− 36d̂+ 12δ̂. We also have

c2(X̂) = 12c2(X̃) + 6(d̂+ δ̂)− 12
∑
x∈Q

(rx − 1)−
∑
x∈Q

(hx − 1)

≥ 12c2(X̃) + 6(d̂+ δ̂)− 12d̂− 60− d̂− 11

= 2c2(X̃)− 71− 7d̂+ 6δ̂.

Thus θ2 = 71 + 7d̂− 6δ̂. Therefore k′0 = 103, k′1 = −29 and k′2 = 6, and the quadratic
is

0 ≥
(

1− 11
r

)
d̂2 − (11r − 274)d̂− 175

as long as r ≥ ŝ ≥ 12 and r2 < d̂. Taking r = 12, we see that d̂ ≤ 699 in this case.
We must also deal with the cases ŝ < 12 by using the cubic. For ŝ = 11 we obtain

d̂ ≤ 710: as this is already bigger than 699 it is no use looking at other choices for r.

Smaller values of ŝ give smaller bounds, so the overall bound remains d̂ ≤ 710.



Chapter 4
On Enriques surfaces

We illustrate the main ideas in our construction method by concentrating on the partic-
ular case of the weights (1,1,1,1,2). In this chapter any mention of w shall be understood
to mean w = (1, 1, 1, 1, 2) which is the next simplest one after P4. The idea here is to
predict some numerical invariants of a double cover of a non general type surface, if
such a surface exists. Once we have the numerical invariants we use methods of sheaf
cohomology and the Beilinson monad to find explicit generators of the twisted ideal
sheaf of X̂. The next task is to prove that the corresponding variety is smooth.

The main result of this chapter is construction of a general type surface which
possibly arises as a double cover of an Enriques surface blown up in three points in
P4(w). Although we manage to find a general type example that has a quotient that
lives in P4(w) we must point out that this in itself does not necessarily mean the quotient
is an Enriques surface, nor even non general type for that matter. The point is that a
quotient of a general type surface can very well be also of general type. Nevertheless,
we still obtain an interesting example which can be studied further. We conjecture
that it arises as a double cover of an Enriques surface but we do not know how to show
this at the moment.

4.1. Fixing numerical invariants

The space P4(w) has a single ordinary double point at the point P0 = (0 : 0 : 0 : 0 : 1).
Suppose X is a quasismooth surface that passes through P0, so it is singular only at

P0 and the singularity is inherited from the ambient space. As a first attempt, assume
that X is a minimal Enriques surface, that is, an Enriques surface that does not contain
any −1-curves. Obviously we are abusing notation a little here, by using minimal for

46
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a surface that still has a node. Used correctly this term, minimal, means a smooth
algebraic surface that cannot be obtained from another smooth algebraic surface by
blowing up a point. For us we are happy to use it in this case where we allow only
one node and everywhere away from the node things are smooth and we cannot do any
blowing down to smooth points.

First, we take an automorphism ψ on P4 defined by

ψ : P4 −→ P4;

(z0 : z1 : z2 : z3 : z4) 7→ (−z0 : −z1 : −z2 : −z3 : z4) = (z0 : z1 : z2 : z3 : −z4)

whose fixed points are (0 : 0 : 0 : 0 : 1) and (z4 = 0).
Now we take a map ϕ defined by

ϕ : P4 −→ P4(w);

(z0 : z1 : z2 : z3 : z4) 7→ (z0 : z1 : z2 : z3 : z2
4).

This map ϕ is 2 : 1. Therefore X̂ is a double cover of X, with branching along the
hyperplane section Q0 = (z4 = 0) and ramified at the singular point P0 = (0 : 0 : 0 :
0 : 1) of P4.

Recall that if this X̂ exists then it is a smooth surface, and X̂ is of general type
because K bX = Ĥ mod torsion. We study the numerical invariants of X̂. A general
linear hyperplane section of X will pass through the singular point of the ambient space
(any linear section will not contain a term in z4 in its defining equations because z4 is
already in degree 2.)

The simplest invariant first: from (3.10) in Chapter 3 we have d̂ = 2d.
Since X is not smooth by assumption, we can blow up at the singular point to

obtain the minimal resolution σ : X̃ −→ X. Then X̃ being a minimal smooth Enriques
surface (by assumption) has c2(X̃) = 12. (see Chapter 2, section 2.1.2.)

We will prove that it is not possible to get any useful construction without assuming
any (−1)-curves. Formally, we prove

Proposition 9. There is no minimal nodal Enriques surface in P4(w) with weights
w = (1, 1, 1, 1, 2).

Proof. The proof is very simple. All we do is find all the numerical invariants of the
required smooth surface in P4; having obtained these numbers we put them into the
double point formula and observe that we do not get an integer solution. So we proceed
as follows.
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Let E0 ⊂ X̃ be the exceptional curve corresponding to P0. That is, E0 = σ−1(P0)

and let Q0 = (z4 = 0). Then X0 = X \ P0 = X̃ \ E0. Then the Euler number e(X0)

of X0 is given by e(X0) = e(X̃) − e(E0), because the Euler number is additive and

we have already seen that e(X̃) = 12 and we know that e(E0) = 2, hence we obtain
e(X0) = 10.

From the virtual genus formula −χ(Q0 ∩ X̂) = C · (C + K bX), where C = Q0 ∩ X̂

and we know that C2 = d̂, so we obtain −χ(Q0 ∩ X̂) = 2d̂. That is, −e(Q0) = 2d̂

We need some more notation. Let X00 = X0 \ Q0. Then e (X00) = 10 + 2d̂.

From X̂ = 2X00 ∪ Q0 ∪ P0, and additivity of the Euler number we arrive easily at

e(X̂) = 21 + 2d̂, which is actually c2(X̂).
Now, recall that K2

X = 0 by assumption, so that together with the ramification

formula K bX = ϕ∗KX + Ĥ, it follows that c21(X̂) = K2bX = Ĥ2 = d̂. Let π̂ denote the

sectional genus of X̂. Then from the adjunction formula 2π̂ − 2 = Ĥ · (Ĥ + K bX) we

obtain π̂ = d̂+ 1. Now, recall that the numerical invariants of a smooth surface in P4

must satisfy the double point formula (3.2) in Chapter 3.

Substituting all the values in the double point formula we obtain d̂2−14d̂+ 21 = 0,

which clearly has no integer solutions for d̂. This completes the proof of Proposition 9.

4.2. Nodal Enriques surfaces

Since we had no luck by assuming that we have a minimal surface to start with, let us
modify our assumption a little and assume existence of some (−1)-curves on X.

So, let us begin: suppose instead that X is a nodal Enriques surface that has k
disjoint (−1)-curves none of which passes through the node. Denote these curves by
E1, . . . , Ek and let Ej · H = λj be the degree of the curve Ej , where H is a general
hyperplane section in X. Then we note:

Lemma 10.

E2
j = −1, Ê2

j = 2E2
j = −2 and Êi · Êj = 0 whenever i 6= j

Proof. Follows from definitions.

Let us introduce some more notation before moving on. We let λ =
∑k

j=1 λj denote

the sum of the degrees of the (−1)-curves. Let Q denote a general quadric section of

X̂.
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Lemma 11.

−χ(Q ∩ X̂) = 2d̂+ 2λ

Proof. LetQ∩X̂ = Ĉ. Then by direct application of the virtual genus formula−χ(Ĉ) =

Ĉ · (Ĉ +K bX) and Lemma 13 below we obtain the result.

Now σ : X̃ → X is a resolution of X but X̃ is no longer minimal: rather, it is an
Enriques surface with k (−1)-curves on it, so we get

Lemma 12. c2(X̃) = 12 + k

Lemma 13. Let Ĥ denote the hyperplane section of X̂. Then the canonical class K bX
is given by K bX = Ĥ +

∑k
j=1 Êj.

Proof. By the ramification formula K bX = Ĥ + ϕ∗KX and because we assumed an

Enriques surface with k (−1)-curves, we get K bX =
∑k

j=1 µjÊj + Ĥ. So to complete
the proof we need to show that µj = 1 for all 1 ≤ j ≤ k. We achieve this by computing

the genus of the curve Êj in two ways.
First: from adjunction formula we get

2g(Êj)− 2 = Êj ·
(
Êj +K bX

)

= −2 + Êj ·
(
Ĥ +

k∑
i=1

µiÊi

)
= −2− 2µj + 2λj (4.1)

Second: Using the fact that our map ϕ is 2:1; that is X̂ ⊃ Êj
2:1−−→ Ej ⊂ X and the

Hurwitz formula (see [29],page 301) we obtain

2g(Êj)− 2 = 2(2g(Ej)− 2) + 2λj

= −4 + 2λj (4.2)

Equating (4.1) and (4.2) gives the result.

The following example on P2(1, 1, 2) might make things clearer. Take E = (f = 0)
with f(x, y, z) = x2 − y2 + z then

E ∩ (x = 0) = {(0 : y : y2) | y 6= 0}

= {(0 : 1 : 1)}
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so the meeting happens at one point as expected. On the other hand if we take

E ∩ (z = 0) = {(1 : ±1 : 0)}

and this time they meet at two distinct points.

Lemma 14. The self intersection of the canonical class of X̂ is given by

K2bX = d̂+ 2λ− 2k

Proof. The result follows by direct computation as follows:

K2bX =
(
Ĥ +

k∑
j=1

Êj

)2

= d̂+ 2λ− 2k

Lemma 15. The Euler number of X0 is given by e (X0) = 10 + k.

Proof. Follows easily from X0 = X̃ \ E0.

Lemma 16. The Euler number of X00 is given by e (X00) = 10 + k + 2d̂+ 2λ.

Proof. Again this follows by easy calculation from X00 = X0 \Q0.

Hence, the Euler number of X̂ = 2X00 ∪Q0 ∪ P0 is easily computed.

Lemma 17. e(X̂) = 21 + 2k + 2d̂+ 2λ

Lemma 18. The sectional genus of X̂ is π̂ = d̂+ λ
2 + 1.

Proof. Application of the formula 2π̂ − 2 = Ĥ · (Ĥ + K bX) and Lemma 13 yield the
result.

Lemma 19. The Euler-Poincaré characteristic of the structure sheaf, χ(O bX) is equal

to
1
12

(3d̂+ 4λ+ 21)

Proof. We apply Lemma 14 and 17 and Noether’s formula χ(O bX) =
1
12

(K2bX + c2(X̂))

and obtain the result.
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Putting all the numerical values into the double point formula (3.2), we get

d̂2 − 14d̂− 5λ+ 4k + 21 = 0 (4.3)

We look for plausible values of k for which the discriminant is a perfect square and

d̂ is a positive integer. That is, 28 + 5λ− 4k must be a square number.
In particular

Lemma 20. k must be congruent to 1, 2 or 3 mod 5. Also (from Lemma 18), λ must
be even.

Proof. Straightforward.

Table 4.1 shows a few of the plausible numbers. We only include the values that
also satisfy the classical inequalities in Lemma 4.

Table 4.1: Plausible numbers I

d̂ π̂ χ c21 c2 λ k

17 26 12 49 91 16 2

17 28 15 57 109 20 7

21 40 20 93 141 36 3

21 42 23 101 159 40 8

Unfortunately we were unable to find an example from any of these numbers. We
tried several simple ways of completing the cohomology table 2 subject to Riemann-
Roch constraints, and they seemed plausible until it came to finding a surjective β in
the monad. This was not due to a failure of a random matrix (see [19, Remark 5.13]),
but rather to monad inconsistency.

4.3. On non nodal Enriques surfaces

The notation is still the same as in the previous section. This section presents the
second main result of this thesis. Suppose X is a an Enriques surface which does not
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pass through the node P0. Further, assume X has k (−1)-curves on it. To save time
and space we just record the results because the necessary details are similar to those
of the previous section with obvious changes.

Lemma 21. (i) c21

(
X̂
)

= d̂+ 4λ− 2k = K2bX
(ii) c2

(
X̂
)

= 2k + 2d̂+ 2λ+ 24

(iii) π̂ = d̂+ λ+ 1

(iv) χ
(
O bX) =

1
12

(
3d̂+ 6λ+ 24

)
The double point formula in this case is

d̂2 − 14d̂− 12λ+ 4k + 24 = 0

Clearly for the quadratic of the double point formula to have an integer solution

for d̂, 25 + 12λ− 4k must be a square.

Remark 13. Notice that here the case k = 0 = λ gives two possibilities. The first with

d̂ = 2 is rejected because it results in the sum c2(X̂) + c21(X̂) not being divisible by 12,
that is, it gives a non-integer value for χ

(
O bX).

The second, with d̂ = 12 is a possibility and satisfies all the classical inequalities in
Lemma 4. However, we observe that in this case pg = 4 and so X̂ ⊂ P4 is canonical;

that is, O bX(1) = K bX because of k = 0, so in fact X̂ ⊂ P3: this is not our case. Note
that surfaces with pg = 4 are fully described in [7, Section 3].

4.4. Example EX1

We perform a computer search for values of k and λ. Table 4.2 gives some possible
values for k = 3 for all possible 1 ≤ λ ≤ 100.

We pick the first row of Table 4.2 and we are ready to state the main result of this
chapter:

Proposition 10 (Main result of this chapter). There exists a smooth general type sur-

face X̂ in P4, of degree d̂ = 14, sectional genus π̂ = 18, topological Euler characteristic
c2(X̂) = 64, first Chern number c21(X̂) = 20, Euler characteristic of the structure sheaf
χ
(
O bX) = 7, irregularity q = 0 and geometric genus pg = 6.
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Table 4.2: Plausible numbers II

d̂ π̂ χ c21 c2 λ

14 18 7 20 64 3

18 28 11 48 84 9

30 74 31 196 176 43

38 118 51 348 264 79

Moreover, P4 has an involution under which X̂ is invariant, giving a quotient X ⊂
P4(w).

Remark 14. We believe that X̂ arises as a double cover of an Enriques surface in
P4(w), blown up in three points; and we make no claims at all about our conviction
except that we arrive at this family of general type surfaces guided by invariants we
fixed by initially assuming that we are taking a double cover of an Enriques surface.
The nature of our methods is such that we are not yet able to tell if we have a double
cover we were looking for, even though the family of general type is nonempty, and
symmetric under ψ.

On substituting all these values into the Riemann-Roch formula, we obtain numer-
ical values of χ

(
J bX(j)

)
for all 0 ≤ j ≤ 4. These are shown in Table 4.3.

Table 4.3: Euler characteristic EX1

j 0 1 2 3 4

χ
(
J bX(j)

)
−6 1 0 −5 −9

Lemma 22. Using values from Table 4.3 we present a plausible Beilinson cohomology
Table 4.4.
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Table 4.4: Cohomology table EX1

6

1

5 9

The resulting Beilinson monad is as shown below:

0 −−−−→ 6Ω4(4)⊕ Ω3(3) α−−−−→ 5Ω1(1)
β−−−−→ 9O −−−−→ 0

Remark 15. Observe that all our computer computations in this thesis are done over
F17. All the invariants of each of our surfaces lift to characteric zero: that a lift exists
can be seen from [18, Appendix A, page 213]. We will say more about this at the end of
Chapter 5, in section 5.3. In all cases the computations were checked over other primes
such as 101 and for example EX2 (because it runs the fastest), we checked them over
32749, the largest Macaulay2 can work with and everthing remains the same except
that the equations are not pretty for printing.

4.4.1. Macaulay2 implementation I

Remark 16. Each example requires its own program. However a lot of the code is
being reused. There are two implications here as far as errors are concerned: although
errors have been eliminated it is possible ( but unlikely) that there are systematic errors
that prevail in every program. On the other hand, we use our code more, and therefore
more systematic checks have been done thereby significantly reducing chances of unseen
errors. The reader who is more interested in general discusion of errors in algebraic
calculations may consult Birch and Swinnerton-Dyer [10, page 18–19]1: but our results
do have to meet their standard of independently programmed computations.

What follows is a very brief summary and is not intended to replace the program;
ExampleQues002.m2. The code used to determines the maps α and β is long but very
simple to follow. We do not reproduce it here. We keep the programs in the Appendix

1reference kindly shown to us by James Davenport.
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to this thesis and provide the DVD that contains them.
Now, α consists of

α11 ∈ Hom(Ω4(4),Ω1(1)) ∼=
3∧
V ∗

and

α21 ∈ Hom(Ω3(3),Ω1(1)) ∼=
2∧
V ∗.

On the other hand, β is just one block

β11 ∈ Hom(Ω1(1),O) ∼=
1∧
V ∗ ∼= V.

We normally write the matrices representing this maps in blocks as shown below where
we have just omitted the V ∗.

α =
5

6
1

( ∧3∧2

)

β =
9

5
(∧1

)
Recall that V is a vector space with basis {e0, e1, e2, e3, e4} therefore

∧2 V ∗ has

basis ei ∧ ej , and
∧3 V ∗ has basis ei ∧ ej ∧ ek, etc.

So
∧m V ∗ = 0, for all m > 5 and m < 0; and

∧0 V ∗ = F where F is our field of
scalars. So the dimension of

∧m V ∗ =
(

5
m

)
.

We ask Macaulay2 for α21 and solve for α11 and β from two systems:

• We start first by finding β from α21×β = 0, this yields 1×9×10 = 90 equations
in 5× 9× 5 = 225 unknowns.

• then we find α11 using α11×β = 0, giving 6×9×5 = 270 equations in 6×5×10 =
300 unknowns.

Once we have our α and β the next task is to determine the homology of the monad
using Macaulay2. The following code does precisely that and we take full advantage of
scripts written by Eisenbud et al. (see [23]). We choose to work over the prime field of
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characteristic 17. We have also verified the results with other primes such as 101 and
32749; here we choose a small prime for ease of printing.

ii76 : S=ZZ/17[x,y,z,u,t];

ii77 : Afinal = transpose(Afinal);

5 7

oo77 : Matrix E <--- E

ii78 : Bfinal = transpose(Bfinal);

9 5

oo78 : Matrix E <--- E

ii79 : beta=map(E^{9:1},E^{5:-1},Bfinal);

9 5

oo79 : Matrix E <--- E

ii80 : alpha=map( E^{5:-1},E^{6:-4,1:-3},Afinal);

5 7

oo80 : Matrix E <--- E

ii81 : needs"BeilinSon.m2"

ii82 : beta1=beilinson(beta,S);

oo82 : Matrix

ii83 : alpha1=beilinson(alpha,S);

oo83 : Matrix

ii84 : G6nj2 =prune homology(beta1,alpha1);
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ii85 :

betti res G6nj2

The last command gives the Betti Table 4.5.

Table 4.5: Betti table HEX1

0 1 2 3

total: 45 49 25 5

1: 45 49 25 5

The next piece of code gives us a random codimension two subvariety in P4. This is
in practice general: see discussion in [18, Appendix A]. Note that we guess the number
28 and if did not work we would try another one, in fact some potential examples were
discarded because we could not even get a number like the 28 appearing below in ii87.

ii86 : jj=numRows(presentation G6nj2);

ii87 : twenty8= random(S^28,S^jj)*presentation G6nj2;

28 49

oo87 : Matrix S <--- S

ii88 : IX = trim coker twenty8;

ii89 : --numgens IX

codim IX --can take some time so see it once

and comment out.

oo89 = 2

ii90 :

time betti res IX--see previous comment.

-- used 23.7214 seconds
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The last command produces Betti Table 4.6 for the twisted ideal sheaf J bX(4). The
original Macaulay2 (with just a few semicolons removed) output is provided in exam-
pleQues02.out

Table 4.6: Betti table JX4EX1

0 1 2 3

total: 28 49 26 5

0: 28 49 25 5

1: .

2: . . .

.: . . .

.: . . .

11: . . .

12: . . 1

It gives a free resolution of the twisted ideal sheaf as follows

ii90 : ResIX = res IX

28 49 26 5

oo90 = S <-- S <-- S <-- S <-- 0

0 1 2 3 4

oo90 : ChainComplex

The next command is supposed to yield all the matrices involved together with the
degrees, starting with the first 28× 49, then 49× 26, followed by the 26× 5 and finally
the zero matrix.

ii91 : ResIX.dd

Yet if we extract them one at a time we do see them and we have included the first
one in the output file whose truncated version is presented here

i116 : ResIX.dd_1
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o116 = | x+y+4z+6u-5t -4y+6u-t -2y-7z+3u-7t ...

| -2y+5z-2u+6t x-5z+8u-5t 2y-6z+3u-5t ...

| -3y-7z-6u+5t -4y-z-8u-3t x+6y-6z+2u ...

| 5y-7z-5u-t 8y+5z+3u 8y-3z-u ...

| -8y+8z+5u+t -6y-3z+4u+2t -5y-2z+5u-t ...

| -4y-4z-u+8t 2z-7u-5t y-z-8u+5t ...

| -4y+z+3u+7t 7y+6z-2u -8y-5z-8u-8t ...

| 4y+6z+4u+t 2y+3z-5u+6t 8y+8u-2t ...

| 8y-8z+u+8t 5y+5z-2u-2t 6z+2u+2t ...

| -y+3u+2t -y-z-5u+5t -y-3z+3u+5t ...

| y-3z+6u+8t -5y+2u+4t -6y-z-u-4t ...

............................................

--------------------------------------------

We end this example by extracting two of the generators from the twisted ideal
sheaf J bX(4).

i115 : IIX_0

o115 = z + 3u + 4t

o115 : S

i116 : IIX_60

13 12 11 2 10 3 9 4 8 5 6 7 5 8

o116 = y - 4y z - 4y z - 7y z + 5y z - 3y z - y z - 5y z

------------------------------------------------------------

+

-.........................................................

o116 : S

the dots mean we have truncated the polynomial because it was too long.



Chapter 5
On nodal K3 surfaces

Gavin Brown keeps a comprehensive database of K3 surfaces
(see http://malham.kent.ac.uk/grdb/K3Form.php or [13].)
We assume that X is a K3 surface that passes and is singular at the point P0 of

P4
w. Again, any mention of w in this chapter shall mean w = (1, 1, 1, 1, 2). We further

suppose X has k (−1)-curves, none of which passes through P0. Then we have the
following easy lemma

Lemma 23. (i) c2(X̃) = 24 + k

(ii) K2bX = d̂

(iii) e(X̂) = 2d̂+ 2k + 45

(iv) π̂ − 1 = 2d̂

(v) χ
(
O bX) =

1
12

(3d̂+ 2k + 45)

Proof. Part (i): just recall that we have shown in Chapter 2 that for a minimal K3
surface we have c2 = 24 then add the fact that now we have k (−1)-curves and the
result is trivial.

Part (ii): for K3 surfaces ϕ∗wKX = 0 so K bX = ϕ∗wKX + Ĥ just becomes K bX = Ĥ.
Hence the result.

Part (iii): again follows by easy computation and part (i).
Part (iv) : follows by adjunction formula.
Part (v): this follows directly from (i) and (ii) by Noether’s formula.

Finally putting all these expressions from Lemma 23 into the double point formula
and solving we obtain

60



Nodal K3 surfaces 61

Lemma 24.

d̂ = 7±
√

4− 2k.

Which clearly means we must have k = 0 or k = 2 to get an integer d̂.
The case k = 2 cannot happen because it yields a non integer value for χ

(
O bX).

The case k = 0 presents two possible examples, one of which we study first in

detail. The other likely example giving d̂ = 5, falls on a Horikawa line; these are
general type surfaces low on the geography diagram that satisfy c21 = 3pg − 7 (see
[30]). In fact, Horikawa carried out a detailed study over several papers with similar
titles ([31, 32, 33]). Despite our persistence, we could not prove smoothness without
Macaulay2 running out of memory for this example, but we will record what we have
after the next example.

5.1. Example EX2

The first case when k = 0, corresponds to d̂ = 9. We assume that q = 0. Using
χ
(
O bX) = 1 − q + pg this gives pg = 5. Perhaps one thing to note at once about this

example is that it belongs to a family that satisfies c21 = 3pg − 6. Surfaces that have
this property were studied by Konno [37]1.

Proposition 11 (Main result of this chapter). There exists a smooth general type

surface X̂ in P4 not lying on a cubic, of degree d̂ = 9, sectional genus π̂ = 10, topological
Euler characteristic c2(X̂) = 63, first Chern number c21(X̂) = 9, Euler characteristic of
the structure sheaf χ

(
O bX) = 6, irregularity q = 0 and geometric genus pg = 5.

Observe that X3,3, the complete intersection of two general cubics in P4, also has

these invariants. That q(X3,3) = 0 follows from [37, Theorems 3.1 and 4.1]. But X̂ is

not canonically embedded and is not X3,3. So X̂ and X3,3 are different as polarised

surfaces. It is not immediately clear whether X̂ is isomorphic as an abstract variety
to a complete intersection X3,3. Also in [37], Konno shows that the moduli space in
this case has several components, some of which are distinguished by the degree of the
canonical map. At present we do not know which component X̂ is in, nor whether it
is in a special subvariety of that component. The methods we use do not look directly
at the canonical map, so they are not well suited to settling such questions.

We apply the Riemann-Roch formula and present the numerical values in Table 5.1.

Lemma 25. Going through the now familiar exercise we see that the simplest Beilinson
cohomology table we can choose is as depicted by Table 5.2.

1reference kindly shown to us by Margarida Mendes Lopes
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Table 5.1: Euler characteristic EX2

j 0 1 2 3 4

χ
(
J bX(j)

)
−5 −1 0 2 10

Table 5.2: Cohomology table EX2

5 6

5 2

10

The Beilinson monad that results is given by (5.1).

0 −−−−→ 5Ω4(4)⊕ 5Ω3(3) α−−−−→ 6Ω2(2)⊕ 10O β−−−−→ 2Ω1(1) −−−−→ 0 (5.1)

5.1.1. Macaulay2 implementation II

The program for this example is ExampleK3n003.m2. We take a small sample.

ii2 : R=ZZ/17[e_0..e_4,a_0..a_149,SkewCommutative=>{e_0,e_1,e_2,e_3,e_4}];

ii3 : V11bss = matrix{{e_0,e_1,e_2,e_3,e_4}};

1 5

oo3 : Matrix R <--- R

ii4 : V22bss = matrix{{e_0*e_1,e_0*e_2,e_0*e_3,e_0*e_4,

e_1*e_2,e_1*e_3,e_1*e_4,e_2*e_3,e_2*e_4,e_3*e_4}};

1 10

oo4 : Matrix R <--- R
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ii5 :

A0 = V11bss*genericMatrix(R,a_0,5,6);--first row

1 6

oo5 : Matrix R <--- R

ii6 : A1 = V11bss*genericMatrix(R,a_30,5,6); --second row

1 6

oo6 : Matrix R <--- R

ii7 : A2 = V11bss*genericMatrix(R,a_60,5,6);

1 6

oo7 : Matrix R <--- R

ii8 : A3 = V11bss*genericMatrix(R,a_90,5,6);

1 6

oo8 : Matrix R <--- R

ii9 : A4 = V11bss*genericMatrix(R,a_120,5,6);

1 6

oo9 : Matrix R <--- R

ii10 : A11V= A0||A1||A2||A3||A4;

5 6

oo10 : Matrix R <--- R

ii11 : E = ZZ/17[e_0..e_4,SkewCommutative=>true];

ii12 : VEbss = matrix{{e_0,e_1,e_2,e_3,e_4}};

1 5
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oo12 : Matrix E <--- E

ii13 : E2=ZZ/17;

ii14 : B11 = random(E^6,E^{2:-1});

6 2

oo14 : Matrix E <--- E

ii15 : B11A = sub(B11,R);-- for A21*B12=0

6 2

oo15 : Matrix R <--- R

ii16 : B21 = map(E^10,E^2,0);

10 2

oo16 : Matrix E <--- E

ii17 : A21 = map(E^5,E^6,0);

5 6

oo17 : Matrix E <--- E

ii18 : A12 = random(E^5,E^{10:-4});

5 10

oo18 : Matrix E <--- E

ii19 : A22 = random(E^5,E^{10:-3});

5 10

oo19 : Matrix E <--- E

ii20 : S1=A11V*B11A; --5*2 in e_ie_j:

5 2
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oo20 : Matrix R <--- R

ii21 : IS1 = gens ideal(S1);

1 10

oo21 : Matrix R <--- R

ii22 : use R;

ii23 : H01=IS1//V22bss;

10 10

oo23 : Matrix R <--- R

ii24 : --Now we produce the coefficient matrix

IH1=gens ideal(H01);

1 100

oo24 : Matrix R <--- R

ii25 : mat1 =genericMatrix(R,a_0,1,150);

1 150

oo25 : Matrix R <--- R

ii26 : H1cols = IH1//mat1;

150 100

oo26 : Matrix R <--- R

ii27 : TraH1=transpose(H1cols);

100 150

oo27 : Matrix R <--- R

ii28 : TraH1 = sub(TraH1,E2);
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100 150

oo28 : Matrix E2 <--- E2

ii29 : ---Solving

use E2;

ii30 : time psol1= gens ker TraH1;

-- used 0.004999 seconds

150 50

oo30 : Matrix E2 <--- E2

ii31 : nps1= numColumns(psol1);

ii32 : cho1 = psol1*random(E2^nps1,E2^1); --random choice

150 1

oo32 : Matrix E2 <--- E2

ii33 : Amat3= flatten cho1;

1 150

oo33 : Matrix E2 <--- E2

ii34 : Alist= entries Amat3;

ii35 : Amat1= flatten Alist;

ii36 : Af0= VEbss*(matrix table(5,6,(i,j)->Amat1#(0+i+5*j)));

1 6

oo36 : Matrix E <--- E

ii37 : Af1= VEbss*(matrix table(5,6,(i,j)->Amat1#(30+i+5*j)));

1 6

oo37 : Matrix E <--- E
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ii38 : Af2= VEbss*(matrix table(5,6,(i,j)->Amat1#(60+i+5*j)));

1 6

oo38 : Matrix E <--- E

ii39 : Af3= VEbss*(matrix table(5,6,(i,j)->Amat1#(90+i+5*j)));

1 6

oo39 : Matrix E <--- E

ii40 : Af4= VEbss*(matrix table(5,6,(i,j)->Amat1#(120+i+5*j)));

1 6

oo40 : Matrix E <--- E

ii41 : Af11V =Af0||Af1||Af2||Af3||Af4;

5 6

oo41 : Matrix E <--- E

ii42 : --A test

if Af11V*B11==0 and A12*B21==0 and A21*B11==0 and A22*B21==0

then print("OK") else print("\n \n NO.")

OK

ii43 : --Finally put A together, and B together

Afinal= (Af11V||A21)|(A12||A22);

10 16

oo43 : Matrix E <--- E

ii44 : Bfinal= B11||B21;

16 2

oo44 : Matrix E <--- E
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ii45 : if Afinal*Bfinal != 0 then print("\n Not GooD")

else print("\n \n Good")

Good

ii46 : --------------------------------------------

Afinal = toExternalString Afinal;

ii47 : Bfinal = toExternalString Bfinal;

ii48 : Atemp = openOut "Eg6Afinal";

ii49 : Btemp = openOut "Eg6Bfinal";

ii50 : Atemp << Afinal<< close;--keep

ii51 : Btemp << Bfinal<< close;--keep

ii52 : clearAll; --clear everything else

ii53 : E = ZZ/17[e_0..e_4,SkewCommutative=>true];

ii54 : Afinal = value get "Eg6Afinal";

10 16

oo54 : Matrix E <--- E

ii55 : Bfinal = value get "Eg6Bfinal";

16 2

oo55 : Matrix E <--- E

ii56 : ------------------------------------------------------

removeFile"Eg6Afinal";

ii57 : removeFile"Eg6Bfinal";
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ii58 : S=ZZ/17[x_0..x_4];

ii59 : Afinal = transpose(Afinal);

16 10

oo59 : Matrix E <--- E

ii60 : Bfinal = transpose(Bfinal);

2 16

oo60 : Matrix E <--- E

ii61 : beta=map(E^{2:-1},E^{6:-3,10:1},Bfinal)

oo61 = {1} | -3e_0-4e_1-4e_2-e_3+7e_4 8e_0+6e_1+8e_2+5e_3-e_4

{1} | 3e_0-3e_1-7e_2-6e_3-2e_4 -8e_0-6e_1+5e_2+e_3-3e_4

--------------------------------------------------------------------

-2e_1-5e_2+4e_3-6e_4 -e_0-5e_1+3e_2+e_3-2e_4 7e_0-8e_1-4e_2-6e_3+e_4

-8e_0+6e_2+2e_4 6e_0-3e_1+2e_2+2e_4 -4e_0+6e_1-6e_2-7e_4

--------------------------------------------------------------------

8e_0+4e_1+2e_2-8e_3+7e_4 0 0 0 0 0 0 0 0 0 0 |

3e_0-3e_1+7e_2+7e_3-6e_4 0 0 0 0 0 0 0 0 0 0 |

2 16

oo61 : Matrix E <--- E

ii63 : needs"BeilinSon.m2";

ii64 : beta1=beilinson(beta,S);

oo64 : Matrix

ii65 : alpha1=beilinson(alpha,S);
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oo65 : Matrix

ii66 : Gj2 =prune homology(beta1,alpha1);

ii67 : Gj2 = toExternalString Gj2;

ii68 : Gj2temp = openOut "Eg6gj2";

ii69 : Gj2temp << Gj2<< close;--keep

ii70 : clearAll;

ii71 : S=ZZ/17[x_0..x_4];

ii72 : Gj2 = value get "Eg6gj2";

ii73 : removeFile"Eg6gj2";

ii74 : betti res Gj2

The last command gives the Betti table 5.3.

Table 5.3: Betti table HEX2

0 1

total: 25 6

1: 25 6

For a change we check smoothness using the in-built smoothness (see ii94) checking
algorithm in Macaulay2 in an example.

ii76 : fourty1= random(S^5,S^jj)*presentation Gj2;

5 6

oo76 : Matrix S <--- S

ii83 : IX = trim minors(5,fourty1);
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oo83 : Ideal of S

ii84 :

betti res IX

The last command produces the Betti table 5.4. Notice the use of trim to obtain
a minimal presentation of J bX(4) (called IX in the programs).

Table 5.4: Betti table JX4EX2

0 1 2

total: 1 6 5

0: 1 . .

1: . . .

2: . . .

3: . . .

4: . 6 5

ii87 : theo1 = res IX

1 6 5

oo87 = S <-- S <-- S <-- 0

0 1 2 3

oo87 : ChainComplex

Since this resolution is minimal, the twisted ideal J bX(4) has six generators in degree
five which can be viewed by running the next line without the semicolon.

ii89 : dIXX = gens IX;

1 6

oo89 : Matrix S <--- S
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We can see the generators one at a time since the above matrix might appear unread-
able. For example here is the truncated first generator

ii90 : dIXX_{0}^{0}

oo90 = | x_1^5-7x_0^4x_2-4x_0^3x_1x_2+3x_0^2x_1^2x_2

---------------------------------------------

.............................................

---------------------------------------------

We now just verify that we have a smooth surface in P4.

ii93 : codim IX -- usually see once then comment out!

oo93 = 2

ii94 : time codim singularLocus IX

-- used 6.24505 seconds

oo94 = 5

Now we turn to the example on the Horikawa line that did not finish.

5.2. Example EX3

Conjecture 1. There exists a smooth general type surface X̂ in P4, of degree d̂ = 5,
sectional genus π̂ = 6, topological Euler characteristic c2(X̂) = 55, first Chern number

c21X̂) = 5, Euler characteristic of the structure sheaf χ
(
O bX) = 5, irregularity q = 0

and geometric genus pg = 4.

We have been unable to prove this so far only because the computation needed to
check smoothness did not finish. We run out of memory before we can even built the
equations of the surface we seek.

The results of the Riemann-Roch formula are recorded in Table 5.5.

Lemma 26. A plausible Beilinson Cohomology table is as in Table 5.6. Hence the
Beilinson monad is

0 −−−−→ 4Ω4(4)⊕ 11Ω2(2) α−−−−→ 16Ω2(2)⊕ 35O β−−−−→ 15Ω1(1) −−−−→ 0 (5.2)
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Table 5.5: Euler characteristic EX3

j 0 1 2 3 4

χ
(
J bX(j)

)
−4 0 5 15 35

Table 5.6: Cohomology table EX3

4

16 15

11

35

5.2.1. Macaulay2 implementation III

The program for this example is ExampleK3n004.m2. We take a small sample.

ii53 : Gj2 =prune homology(beta1,alpha1);

ii54 :

betti res Gj2

Table 5.7: Betti table HEG3

0 1 2

total: 76 59 15

1: 6 . .

2: 70 59 15

Macaulay2 runs out of memory when we try to find the value of a to go in the
following command. We need this in order to produce equations for our surface to
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continue the analysis.

fifty6= random(S^a,S^{jj})*presentation Gj2;

We believe the number we want is between 32 and 44 if it exists, that is if a smooth
example is to be obtained by our method. If the reader can obtain this number then
it should be easy to adapt the code of example one to complete this one.

The singular locus is cut out by many equations given by minors of a certain matrix.
It is empty as soon as some subset of these equations defines the empty set. The number
a is the size of a submatrix and we look only at the minors of that submatrix. Searching
through all a takes too much computer memory but if we know a in advance it might
work.

5.3. Further remarks about computations

Although we constructed our surfaces over F17, they lift to characteristic zero and the
lifted surface has the same invariants. Take our constructed surface Xp in characteristic
p = 17, which is known to smooth (in particular reduced) and consider the invariants
q, pg, c21, c2, χ(O) and π̂ = sectional genus. Supose we have a lift X0 to characteristic
zero, got by lifting the equations to equations of the same degrees. We may assume
that this is also smooth (see [18, Appendix A]. The question is, does it have the same
invariants?

On X0 we have line bundles H = OX0(1) and KX0 , the canonical bundle, and we
can compute c21, c2 and χ(O) in terms of their characteristic classes. The sectional
genus is just H · (H + K). These do not change under good reduction mod p. So the
only issue is whether we could have pg and q change, in other words, whether X0 could
have q > 0.

Observe that for examples EX2 and EX3 that can be excluded immediately because
such a surface would violate Debarre’s inequality for irregular surfaces (Lemma 4(3)).

Unfortunately, for EX1 this inequality does not help us. But in any case X0 cannot
have q > 0. This would be requiring a differential form on X0 that vanishes in charac-
teristic p, but without the surface having bad (i.e. singular) reduction. It is of course
absolutely crucial that Xp is smooth: we cannot hope to get any useful information at
a prime of bad reduction.

It is well-known that in this situation Xp and X0 have the same (étale) cohomology:
see [39, Chapter 20] for details. This is sufficient for us.The real difficulty is not the
cohomology but the existence of a lift at all (again see [39, Chapter 20]) Here, however,
the situation is the same as in [18, Appendix A, p.213]. Frank Schreyer explained to
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us that although lifting the equations can in general give a variety of smaller than
expected dimension, the varieties here are defined as degeneracy loci and they always
have at least the expected dimension.



Chapter 6
Conclusions

In this final section we summarise the results of this thesis.
The main result of Chapter 3 proves that for given weights there are only finitely

many families quasismooth non general type surfaces in weighted P4. This theorem was
motivated by a similar result in straight P4. In 1989 Ellingsrud and Peskine proved
that the degree of non general type surfaces in P4 are bounded. In 1994, Braun and
Fløystad used Gröbner base techniques to prove that a bound is degree 105. Over a
few attempts, Braun and Cook, and Cook alone, improved the bound to 66. Cook
announced a bound of 46 but her proof was flawed, and Decker and Schreyer in 2000
put the bound back to 52. So the known bound is now 52. The conjectured bound is
15 and examples are known in all degrees up to 15.

If we consider weighted P4 as a quotient of straight P4, the techniques of Braun
and Fløystad should apply. One quickly finds that in order to take advantage of their
methods one should work in straight P4, rather than trying to mimic their proof directly
with weights. But care now needs to be taken because the surfaces in P4 that are
assumed to arise as covers of non general type surfaces in weighted P4 are of general
type. In this case some of the standard theorems that work for non general type surfaces
in straight P4 no longer apply. However, the general type surfaces that arise are special
ones, with rather small invariants, so similar ideas still work.

In the rest of the thesis we construct two examples of general type surfaces in P4

that have the invariants one would expect if they were coming from non general type
surfaces in weighted P4. We also give a third example, which remains conjectural
because we could not finish all the computations. Thus we are able to predict plausible
invariants for general type surfaces in P4 and show that in some cases such surfaces
actually exist. This also gives some evidence that the corresponding non general type
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surfaces in weighted P4 actually exist. Note that the examples we have are not complete
intersections. Note also that an arbitrary surface will not in general have any embedding
into P4: thus the surfaces we have constructed are special ones.

From a computational point of view, we see that the techniques used for finding
non general type surfaces can be adapted so as to work for general type surfaces with
sufficiently small invariants. One of our examples failed to complete, because we ran
out of memory before we could produce the equations needed for further analysis. Thus
we also see the current limitations of the method as we implemented it.

The computations exhibited in this thesis were carried out over F17 for ease of print-
ing, though they were checked for some other primes (101 and 32749) also. Although
the actual computational results were obtained over F17 they lift to characteristic zero.
We used the computer algebra system Macaulay2, version 1.1 for our computations.

There are many possible directions that this research could be carried further in.
We did not attempt to exploit the results of Canonaco [14], which could be useful for
a direct attempt to find surfaces in weighted P4. One could look at more complicated
weights (we used only the simplest nontrivial case, (1, 1, 1, 1, 2)), or study the moduli
of the surfaces we construct.
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A.1. Program for example EX1

The the following Macaulay 2 program will also be found on the attached DVD under
the name: ExampleQues002.m2.

--Strategy for Part I: determining the homogeneous matrices A and B.

--step1: Fix A21

--step2: solve for B from A21*B =0(225 vars,)(90 eqns)

--step3: use B from step 2 to solve for A11

using A11*B=0(300 vars.)(280eqns)

-----------------------------------------------------

R1=ZZ/17[e_0..e_4,a_0..a_299,SkewCommutative=>{e_0,e_1,e_2,e_3,e_4}];

V11bss = matrix{{e_0,e_1,e_2,e_3,e_4}};

V33bss=matrix{{e_0*e_1*e_2,e_0*e_1*e_3,e_0*e_1*e_4,e_0*e_2*e_3,

e_0*e_2*e_4,e_0*e_3*e_4,e_1*e_2*e_3,

e_1*e_2*e_4,e_1*e_3*e_4,e_2*e_3*e_4}};

A0 = V33bss*genericMatrix(R1,a_0,10,5);--first row

A1 = V33bss*genericMatrix(R1,a_50,10,5); --second row

A2 = V33bss*genericMatrix(R1,a_100,10,5);

A3 = V33bss*genericMatrix(R1,a_150,10,5);

A4 = V33bss*genericMatrix(R1,a_200,10,5);

A5 = V33bss*genericMatrix(R1,a_250,10,5);

A11V= A0||A1||A2||A3||A4||A5; -- to solve for

B0 = V11bss*genericMatrix(R1,a_0,5,9);

B1 = V11bss*genericMatrix(R1,a_45,5,9);

B2 = V11bss*genericMatrix(R1,a_90,5,9);
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B3 = V11bss*genericMatrix(R1,a_135,5,9);

B4 = V11bss*genericMatrix(R1,a_180,5,9);

B11V= B0||B1||B2||B3||B4;

E = ZZ/17[e_0..e_4,SkewCommutative=>true];

VEbss = matrix{{e_0,e_1,e_2,e_3,e_4}};

V3Ebss=matrix{{e_0*e_1*e_2,e_0*e_1*e_3,e_0*e_1*e_4,

e_0*e_2*e_3,e_0*e_2*e_4,e_0*e_3*e_4,e_1*e_2*e_3,

e_1*e_2*e_4,e_1*e_3*e_4,e_2*e_3*e_4}};

E2=ZZ/17;

A21 = random(E^1,E^{5:-2});

A21A = sub(A21,R1); -- for A21*B12=0

---------------step 2: Finding B

-------------------------------------------------------

S1=A21A*B11V;

------------------Factoring .----

IS1 = gens ideal(S1);

use R1

V3tbss=matrix{{e_0*e_1*e_2,e_0*e_1*e_3,

e_0*e_1*e_4,e_0*e_2*e_3,e_0*e_2*e_4,

e_0*e_3*e_4,e_1*e_2*e_3,e_1*e_2*e_4,

e_1*e_3*e_4,e_2*e_3*e_4}};

H01=IS1//V3tbss;

IH1=gens ideal(H01);

mat1 =genericMatrix(R1,a_0,1,225);

H1cols = IH1//mat1;

TraH1=transpose(H1cols);

TraH1 = sub(TraH1,E2);

-----------------Solving

use E2

time psol1= gens ker TraH1;

nps1= numColumns(psol1);

cho1 = psol1*random(E2^nps1,E2^1); --random choice

Bmat3= flatten cho1;

Blist= entries Bmat3;

Bmat1= flatten Blist;

Bf0= VEbss*(matrix table(5,9,(i,j)->Bmat1#(0+i+5*j)));

Bf1= VEbss*(matrix table(5,9,(i,j)->Bmat1#(45+i+5*j)));
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Bf2= VEbss*(matrix table(5,9,(i,j)->Bmat1#(90+i+5*j)));

Bf3= VEbss*(matrix table(5,9,(i,j)->Bmat1#(135+i+5*j)));

Bf4= VEbss*(matrix table(5,9,(i,j)->Bmat1#(180+i+5*j)));

Bf11V =Bf0||Bf1||Bf2||Bf3||Bf4;

Bf11h = sub(Bf11V,R1);-- for A21*B11

-----------------------------------------------------

S2=A11V*Bf11h; --4*7 in e_ie_j:

IS2 = gens ideal(S2);

use R1

V4tbss=matrix{{e_0*e_1*e_2*e_3,e_0*e_1*e_2*e_4,

e_0*e_1*e_3*e_4,e_0*e_2*e_3*e_4,e_1*e_2*e_3*e_4}};

H02=IS2//V4tbss;

IH2=gens ideal(H02);

mat2 =genericMatrix(R1,a_0,1,300);

H2cols = IH2//mat2;

TraH2=transpose(H2cols);

TraH2 = sub(TraH2,E2);

use E2

time psol2= gens ker TraH2;

nps2= numColumns(psol2);

cho2 = psol2*random(E2^nps2,E2^1); --random choice

Amat3= flatten cho2;

Alist= entries Amat3;

Amat1= flatten Alist;

Af0= V3Ebss*(matrix table(10,5,(i,j)->Amat1#(0+i+10*j)));

Af1= V3Ebss*(matrix table(10,5,(i,j)->Amat1#(50+i+10*j)));

Af2= V3Ebss*(matrix table(10,5,(i,j)->Amat1#(100+i+10*j)));

Af3= V3Ebss*(matrix table(10,5,(i,j)->Amat1#(150+i+10*j)));

Af4= V3Ebss*(matrix table(10,5,(i,j)->Amat1#(200+i+10*j)));

Af5= V3Ebss*(matrix table(10,5,(i,j)->Amat1#(250+i+10*j)));

Af11V =Af0||Af1||Af2||Af3||Af4||Af5;

--A test

if Af11V*Bf11V==0 and A21*Bf11V==0 then print("OK")

else print("\n \n NO.")

--Finally put A together, and B together

Afinal= Af11V||A21;

Bfinal= Bf11V;
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if Afinal*Bfinal != 0 then print("\n Not GooD")

else print("\n \n Good")

S=ZZ/17[x,y,z,u,t];

--Now having all the maps we need it is time to determine the

twisted ideal sheaf J_X(4)

Afinal = transpose(Afinal);

Bfinal = transpose(Bfinal);

beta=map(E^{9:1},E^{5:-1},Bfinal);

alpha=map( E^{5:-1},E^{6:-4,1:-3},Afinal);

needs"BeilinSon.m2"

beta1=beilinson(beta,S);

alpha1=beilinson(alpha,S);

G6nj2 =prune homology(beta1,alpha1);

betti res G6nj2

----------------------SMOOTHNESS-----------------------------

--verifying smoothness in an example.

jj=numRows(presentation G6nj2);

twenty8= random(S^28,S^jj)*presentation G6nj2;

IX = trim coker twenty8;

--res IX

--numgens IX

--codim IX --can take sometime so see it once and comment out.

--time betti res IX

--------------------------------------------------------------

peIX= presentation IX;

peIIX =gens gb peIX;

IIX = ideal();

IIX = sub(IIX,S);

for i from 0 to 60 do IIX = IIX +ideal sum(entries peIIX_i);

JJX = transpose jacobian IIX;

time Areunited = ideal flatten JJX + IIX;

if codim Areunited >= 5 then print("\n OK to continue.")

--part (i) of Theorem 7.3 completed

--time codim Areunited

---------------------------------------------------------------

--now I am taking suficiently many 2by2 minors involving the
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-- last generator, it is of degree 2.

-- I have 61 generators! I decide that 20 is sufficiently many.

--time JJ00 = submatrix(JJX,{60,40},);

--time minJJ00 = minors(2,JJ00);

--time JJ01 = submatrix(JJX,{60,41},);

--time minJJ01 = minors(2,JJ01);

--time JJ02 = submatrix(JJX,{60,42},);

--time minJJ02 = minors(2,JJ02);

--time JJ03 = submatrix(JJX,{60,43},);

--time minJJ03 = minors(2,JJ03);

--time JJ04 = submatrix(JJX,{60,44},);

--time minJJ04 = minors(2,JJ04);

--time JJ05 = submatrix(JJX,{60,45},);

--time minJJ05 = minors(2,JJ05);

--time JJ06 = submatrix(JJX,{60,46},);

--time minJJ06 = minors(2,JJ06);

--time JJ07 = submatrix(JJX,{60,47},);

--time minJJ07 = minors(2,JJ07);

--time JJ08 = submatrix(JJX,{60,48},);

--time minJJ08 = minors(2,JJ08);

--time JJ09 = submatrix(JJX,{60,49},);

--time minJJ09 = minors(2,JJ09);

--time JJ010 = submatrix(JJX,{60,50},);

--time minJJ010 = minors(2,JJ010);

--time JJ011 = submatrix(JJX,{60,51},);

--time minJJ011 = minors(2,JJ011);

--time JJ012 = submatrix(JJX,{60,52},);

--time minJJ012 = minors(2,JJ012);

--time JJ013 = submatrix(JJX,{60,53},);

--time minJJ013 = minors(2,JJ013);
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--time JJ014 = submatrix(JJX,{60,54},);

--time minJJ014 = minors(2,JJ014);

--time JJ015 = submatrix(JJX,{60,55},);

--time minJJ015 = minors(2,JJ015);

--time JJ016 = submatrix(JJX,{60,56},);

--time minJJ016 = minors(2,JJ016);

--time JJ017 = submatrix(JJX,{60,57},);

--time minJJ017 = minors(2,JJ017);

--time JJ018 = submatrix(JJX,{60,58},);

--time minJJ018 = minors(2,JJ018);

--time JJ019 = submatrix(JJX,{60,59},);

--time minJJ019 = minors(2,JJ019);

--time MoreUnite = minJJ00+minJJ01+minJJ02+minJJ03+minJJ04

+minJJ05+minJJ06+minJJ07+minJJ08+minJJ09+minJJ010+minJJ011

+minJJ012+minJJ013+minJJ014+minJJ015+minJJ016+minJJ017

+minJJ018+minJJ019+IIX;

--------------------------------------------------------

--all of the above 20 lines can be replaced by

the next four lines.

Morite=ideal();

Morite = sub(Morite,S);

time for j from 20 to 60 do

Morite = Morite+ minors(2,submatrix(JJX,{60,j},));

MoreUnite = Morite +IIX;

---------------------------------------

time isfinite = dim MoreUnite;

time degI2f = degree MoreUnite;

time JJf = submatrix(JJX,{60},);

time IfunionIX = ideal flatten JJf + IIX;

time degUIX = degree IfunionIX;

if isfinite < infinity and degI2f==degUIX

then print("\n SMOOTH");

--__________________ SYMMETRY______________
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symap = map(S,S,{t=>-t});

IXcopy = symap(IIX);

if IXcopy == IIX then print("\n \n SYMMETRIC!!")

else print("\n NOT SYMMETRIC.")

A.2. Program for example EX2

The the following Macaulay 2 program will also be found on the attached DVD under
the name: ExampleK3n003.m2.

--Strategy for Part I: determining the homogeneous matrices A and B.

--step1: Fix B,(B11, and B21=0)

--step2: Fix A12 and A22 ( they multiply 0)

--step3: solve for A11 using A21*B11=0(150 vars.)(100eqns)

-----------------------------------------------------------------

R=ZZ/17[e_0..e_4,a_0..a_149,SkewCommutative=>{e_0,e_1,e_2,e_3,e_4}];

V11bss = matrix{{e_0,e_1,e_2,e_3,e_4}};

V22bss = matrix{{e_0*e_1,e_0*e_2,e_0*e_3,

e_0*e_4,e_1*e_2,e_1*e_3,e_1*e_4,e_2*e_3,e_2*e_4,e_3*e_4}};

A0 = V11bss*genericMatrix(R,a_0,5,6);--first row

A1 = V11bss*genericMatrix(R,a_30,5,6); --second row

A2 = V11bss*genericMatrix(R,a_60,5,6);

A3 = V11bss*genericMatrix(R,a_90,5,6);

A4 = V11bss*genericMatrix(R,a_120,5,6);

A11V= A0||A1||A2||A3||A4;

E = ZZ/17[e_0..e_4,SkewCommutative=>true];

VEbss = matrix{{e_0,e_1,e_2,e_3,e_4}};

E2=ZZ/17;

B11 = random(E^6,E^{2:-1});

B11A = sub(B11,R);-- for A21*B12=0

B21 = map(E^10,E^2,0);

A21 = map(E^5,E^6,0);

A12 = random(E^5,E^{10:-4});

A22 = random(E^5,E^{10:-3});

-----------------------------------------------------

S1=A11V*B11A; --5*2 in e_ie_j:
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IS1 = gens ideal(S1);

use R;

H01=IS1//V22bss;

--Now we produce the coefficient matrix

IH1=gens ideal(H01);

mat1 =genericMatrix(R,a_0,1,150);

H1cols = IH1//mat1;

TraH1=transpose(H1cols);

TraH1 = sub(TraH1,E2);

-----------------Solving-----------------------------

use E2;

time psol1= gens ker TraH1;

nps1= numColumns(psol1);

cho1 = psol1*random(E2^nps1,E2^1); --random choice

Amat3= flatten cho1;

Alist= entries Amat3;

Amat1= flatten Alist;

Af0= VEbss*(matrix table(5,6,(i,j)->Amat1#(0+i+5*j)));

Af1= VEbss*(matrix table(5,6,(i,j)->Amat1#(30+i+5*j)));

Af2= VEbss*(matrix table(5,6,(i,j)->Amat1#(60+i+5*j)));

Af3= VEbss*(matrix table(5,6,(i,j)->Amat1#(90+i+5*j)));

Af4= VEbss*(matrix table(5,6,(i,j)->Amat1#(120+i+5*j)));

Af11V =Af0||Af1||Af2||Af3||Af4;

--A test

if Af11V*B11==0 and A12*B21==0 and A21*B11==0

and A22*B21==0 then print("OK") else print("\n \n NO.")

--Finally put A together, and B together

Afinal= (Af11V||A21)|(A12||A22);

Bfinal= B11||B21;

if Afinal*Bfinal != 0 then print("\n Not GooD")

else print("\n \n Good")

--------------------------------------------

Afinal = toExternalString Afinal;

Bfinal = toExternalString Bfinal;

Atemp = openOut "Eg6Afinal";

Btemp = openOut "Eg6Bfinal";
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Atemp << Afinal<< close;--keep

Btemp << Bfinal<< close;--keep

clearAll; --clear everything else

E = ZZ/17[e_0..e_4,SkewCommutative=>true];

Afinal = value get "Eg6Afinal";

Bfinal = value get "Eg6Bfinal";

---------------------------------------------------------

removeFile"Eg6Afinal";

removeFile"Eg6Bfinal";

S=ZZ/17[x_0..x_4];

--Now having all the maps we need it is time to determine

the twisted ideal sheaf J_X(4)

Afinal = transpose(Afinal);

Bfinal = transpose(Bfinal);

beta=map(E^{2:-1},E^{6:-3,10:1},Bfinal)

alpha=map( E^{6:-3,10:1},E^{5:-4,5:-3},Afinal)

----------------------------------------------------

needs"BeilinSon.m2";

beta1=beilinson(beta,S);

alpha1=beilinson(alpha,S);

Gj2 =prune homology(beta1,alpha1);

Gj2 = toExternalString Gj2;

Gj2temp = openOut "Eg6gj2";

Gj2temp << Gj2<< close;--keep

clearAll; --clear everything else

S=ZZ/17[x_0..x_4];

Gj2 = value get "Eg6gj2";

-------------------------------------------------------

removeFile"Eg6gj2";

time betti res Gj2

jj=numRows(presentation Gj2);

------------------SMOOTHNESS---------------------------

--The smoothness can be checked in an example using

--the built-in Jacobian criterion.

fourty1= random(S^5,S^jj)*presentation Gj2;

--fourty1 is a 5 by 6 matrix of linear forms

-- which do not all vanish at the same time.
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-------Linear Determinantal variety---------

geFo = gens ideal(fourty1);

geGo = genericMatrix(S,x_0,1,5);

intFo = geFo//geGo;

E2=ZZ/17;

use E2;

if gens ker intFo !=0 then

print("\n \n \n We have a linear determinantal variety ")

else error

------------------------------------

--hence \wX is a linear determinantal variety.

IX = trim minors(5,fourty1);

betti res IX

hilbertSeries IX

-------------------

theo1 = res IX

theo2 = theo1_0

theo3 = theo1_1

theo4 = theo1_2

---------------

codim IX -- see once then comment out!

time codim singularLocus IX

--(in-built smoothness checking in M2 acceptable here)

--Hence smooth.

--#flatten entries gens gb IX --to enable counting, flatten first!

--numgens IX --should equal previous because minimal.

--isHomogeneous IX --true

--JX4=gens gb IX

A.3. Program for example EX3

The the following Macaulay 2 program will also be found on the attached DVD under
the name: ExampleK3n004.m2.

--step 1: Fix B (B11, and B21 =0)

--step 2: Fix A12 and A22
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--step 3: solve for all A11 using A21*B11 =0

R = ZZ/17[e_0..e_4,a_0..a_639,SkewCommutative=>{e_0,e_1,e_2,e_3,e_4}];

V11bss = matrix{{e_0,e_1,e_2,e_3,e_4}};

V22bss = matrix{{e_0*e_1,e_0*e_2,e_0*e_3,e_0*e_4,e_1*e_2

,e_1*e_3,e_1*e_4,e_2*e_3,e_2*e_4,e_3*e_4}};

A0 = V22bss*genericMatrix(R,a_0,10,16);

A1 = V22bss*genericMatrix(R,a_160,10,16);

A2 = V22bss*genericMatrix(R,a_320,10,16);

A3 = V22bss*genericMatrix(R,a_480,10,16);

A11V= A0||A1||A2||A3;

E = ZZ/17[e_0..e_4,SkewCommutative=>true];

V2Ebss = matrix{{e_0*e_1,e_0*e_2,e_0*e_3,

e_0*e_4,e_1*e_2,e_1*e_3,e_1*e_4,e_2*e_3,e_2*e_4,e_3*e_4}};

E2 = ZZ/17;

B11 = random(E^16,E^{15:-1});

B11A = sub(B11,R);

B21 = map(E^35,E^15,0);

A12 = random(E^4,E^{35:-4});

A22 = random(E^11,E^{35:-2});

A21 = map(E^11,E^16,0);

-----------------------------------------A11

S1=A11V*B11A; --4*15 in e_ie_je_k:

------------------Factoring .----

IS1 = gens ideal(S1);

use R

V3tbss=matrix{{e_0*e_1*e_2,e_0*e_1*e_3,e_0*e_1*e_4,

e_0*e_2*e_3,e_0*e_2*e_4,e_0*e_3*e_4,e_1*e_2*e_3,

e_1*e_2*e_4,e_1*e_3*e_4,e_2*e_3*e_4}};
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H01=IS1//V3tbss;

--Now we produce the coefficient matrix

IH1=gens ideal(H01);

mat1 =genericMatrix(R,a_0,1,640);

H1cols = IH1//mat1;

TraH1=transpose(H1cols);

TraH1 = sub(TraH1,E2);

-----------------Solving

use E2

time psol1= gens ker TraH1;

nps1= numColumns(psol1);

cho1 = psol1*random(E2^nps1,E2^1);

Amat3= flatten cho1;

Alist= entries Amat3;

Amat1= flatten Alist;

Af0= V2Ebss*(matrix table(10,16,(i,j)->Amat1#(0+i+10*j)));

Af1= V2Ebss*(matrix table(10,16,(i,j)->Amat1#(160+i+10*j)));

Af2= V2Ebss*(matrix table(10,16,(i,j)->Amat1#(320+i+10*j)));

Af3= V2Ebss*(matrix table(10,16,(i,j)->Amat1#(480+i+10*j)));

Af11V =Af0||Af1||Af2||Af3;

--A test

if Af11V*B11==0 and A12*B21==0 and A21*B11==0

and A22*B21==0 then print("OK") else print("\n \n NO.")

--Finally put A together, and B together

Afinal= (Af11V||A21)|(A12||A22);
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Bfinal= B11||B21;

if Afinal*Bfinal != 0 then print("\n Not GooD")

else print("\n \n Good")

S=ZZ/17[x,y,z,u,t];

--Now having all the maps we need it is time to determine

-- the twisted ideal sheaf J_X(4)

Afinal = transpose(Afinal);

Bfinal = transpose(Bfinal);

beta=map(E^{15:-1},E^{16:-2,35:1},Bfinal);

alpha=map( E^{16:-2,35:1},E^{4:-4,11:-2},Afinal);

needs"BeilinSon.m2"

beta1=beilinson(beta,S);

alpha1=beilinson(alpha,S);

Gj2 =prune homology(beta1,alpha1);

betti res Gj2

jj=numRows(presentation Gj2);

--M2 ran out of memory when attempting to check

smoothness in an example.
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