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Abstract
Kuga varieties are a natural generalisation of universal families of abelian varieties. This thesis

describes the candidate’s work on the geometry of some types of Kuga varieties. In Part I, by
considering a special kind of Kuga varieties resulting from the Kuga-Satake construction, we construct
an explicit map from a moduli space of K3 surfaces of Picard rank 14 to a moduli space of polarised
abelian 8-folds with totally definite quaternion multiplication. This is a geometric interpretation of
an exceptional coincidence between locally symmetric spaces of type II4 and type IVg. In Part II,
we study the n-fold Kuga varieties associated to the moduli space of (1, p)-polarised abelian surfaces
with canonical level structure for prime p at least 3, and compute their Kodaira dimensions for all
but 27 possible combinations of (n,p).
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1 Introduction

Moduli spaces, which are geometric spaces parametrising a collection of mathematical objects, have
been a very active area of research. In particular, the notion of Kuga varieties arise naturally in the
study of moduli spaces of abelian varieties. Given an embedding from any moduli variety to a moduli
space of abelian varieties, a Kuga variety is defined as the pullback of the universal family over the
moduli space of abelian varieties by this embedding. Apart from being beneficial for the study of the
Hodge conjecture [HaKul, Kuga varieties are interesting varieties standalone as they generalise universal
families of abelian varieties. There is work on their classification [A] and geometric properties such as
unirationality of special examples [EF'V].

One special type of Kuga varieties can be constructed with the Kuga-Satake (KS) construction. The
process associates an abelian variety called a Kuga-Satake variety [KS] to a K3 surface. A Kuga variety
can be obtained by associating to each point of a moduli variety of K3 surfaces its corresponding KS
variety. Moreover, the KS construction can be lifted to the level of moduli, whose geometry such as
endomorphism structure and simpleness of a generic member is controlled by the family of K3 surfaces
one starts with [vG1].

Another special type of Kuga varieties is the n-fold Kuga varieties, i.e. varieties over a Siegel modular
variety such that each fibre is a product of n copies of the abelian variety or Kummer variety to which
it corresponds in the base.

In Part T of this thesis, we study the Kuga-Satake construction. Our main result is Theorem [5.1.6
in which we lift the Kuga-Satake construction and construct a map F from a moduli space of K3
surfaces of Picard rank 14 to a moduli space of polarised abelian 8-folds with totally definite quaternion
multiplication.

Furthermore, we realise F' using MAGMA for a few specific families (Table[f]) studied in [CM2], and
investigate some special loci. Our main result here is Theorem [6.4.1

In Part II of the thesis, we focus on the special n-fold Kuga varieties X};, where the fibres are
polarised abelian surfaces of polarisation type (1, p), denoted as X, , with p being an odd prime number
and n > 1. Our main result is Theorem which shows that the Kodaira dimension of X} is 3
(the maximum possible) for almost every pair (n,p). We do this using modular forms and a special
toroidal compactification of X}. This result has appeared in [Po] and is accepted for publication in the
Tohoku Mathematical Journal. It complements previous works [Ve|, [EV] on unirationality of certain
1-fold Kuga varieties, and also [PSMS] where we computed the Kodaira dimension of any Kuga variety
over moduli spaces of principally polarised abelian varieties of dimension g > 2.

The outline for Part I is as follows. In Section [2, we explain the motivation of this work, which comes
from the geometric interpretation of locally symmetric varieties. In Section [3] we give the definitions
of abelian varieties and K3 surfaces, introduce their polarisation and endomorphism structures, and
describe their moduli spaces. In Sections [4] and |5, we recall the classical Kuga-Satake construction,
then explain how it is lifted to the maps F' between moduli spaces and F between their Hermitian
symmetric domain overspaces respectively. In Section [6] we focus on six special families of lattice
polarised K3 surfaces and explain some results and observations from our MAGMA realisation of the
map F. Finally in Section we discuss some possible directions for future investigation. The MAGMA
code used is included in the appendix at the end of the thesis.

Part II has the following outline: Section [§| contains definitions concerning Kodaira dimension,
modular forms, and the Kuga varieties X}, their singularities and compactification. We also give the
general strategy of applying S. Ma’s theorem (Theorem , and introduce some necessary tools for
our investigation. In Section [9] we show that the assumptions in Ma’s theorem are satisfied, namely,
for n > 2 and any p, the particular compactification X of X} constructed in [PSMS] has canonical
singularities. In Section we compute the Kodaira dimension of X} for all but 27 combinations of
the indices (n, p), using some results and techniques about modular forms.



Remark on notations

We will use the following notation throughout the thesis.

The symbol W usually means a complex vector space, and A means a lattice of full rank in W.
The symbol V' usually means a real vector space, and A’ means a lattice of full rank in V.

Let L/k be a finite extension of fields. Let G be an algebraic group defined over k. We denote by
G(L) the corresponding algebraic group defined over L.

Let R be a ring, V' be an R-module, and K be a field over R. Then we write K-extension of V' as
Vk =V or K

Round brackets are used in matrices, and squared brackets are used in block matrices.

In Part I Section [3.3] and Section [6], we choose most of our notations to match with that in the
main reference [Sh]. In particular, we use Z to denote an element in any Hermitian symmetric
domain, including in a Siegel upper half space. In Part II, we follow the traditional notation to
denote an element in the Siegel upper half space S, by .

Note that some necessary definitions for the work in Part II have already been introduced in Part I. We
hope that the index pages at the very end of the document will be helpful for navigating through the
thesis.



Part 1
Kuga-Satake varieties of moduli spaces of K3
surfaces of Picard rank 14

2 Locally symmetric varieties

In this section we give a classification of locally symmetric varieties, and explain how it motivates our
work in Part I.

A locally symmetric space is an arithmetic quotient of a symmetric space of non-compact type. It
is a locally symmetric variety if and only if the overspace of this quotient is a Hermitian symmetric
domain. We will explain these notions in the following subsections.

2.1 Symmetric spaces and locally symmetric spaces

Locally symmetric varieties are locally symmetric spaces: locally, they look like symmetric spaces, which
are differentiable complex manifolds with extra structure. In some texts e.g. [He|, symmetric spaces are
also referred to as Riemannian globally symmetric spaces. In this subsection, we will define symmetric
space and locally symmetric space. First let us recall the definition of a Riemannian manifold.

Definition 2.1.1. [He, Chapter I, Section 9]
Let M be a differentiable complex manifold. A Riemannian structure g on M is a tensor field of
type (0,2), i.e. an element in T'((T*M)®?), such that

(i) g(X,Y) =g(Y,X) for all X, Y € TM.
(i1) For allp € M, gy, is a positive definite bilinear form on TyM x T,M.

The pair (M, g) is called o Riemannian manifold.
A diffeomorphism of Riemannian manifolds s: (M,g) — (N,h) satisfying s*h = g is called an
isometry. An isometry s of M is involutive if s> is the identity morphism.

A symmetric space and a locally symmetric space are defined as follows.

Definition 2.1.2. [Hel Chapter IV, Section 3 and 5]

A Riemannian manifold M is a symmetric space if every point p € M is an isolated fized point
of an involutive isometry of M.

A Riemannian manifold M’ is a locally symmetric space if there exists a symmetric space M
such that for any point p' € M', there is a neighbourhood Ny of p' and an isometry ¢,y taking Ny to
an open neighbourhood of ¢ (p') in M.

In fact, one can characterise symmetric spaces in terms of Lie groups.

Theorem 2.1.3. [He, Theorem IV.2.5, IV.3.3]

Let M be a symmetric space and p be a point in M. Let G := Io(M) be the identity component of
the group of isometries of M and K be the stabiliser subgroup with respect to p. Then G is a connected
Lie group, K is a compact subgroup of G, and the quotient G /K is diffeomorphic to M.

Moreover, symmetric spaces can be divided into compact type and non-compact type depending on
the Lie groups G, and K. We are interested in the symmetric spaces of non-compact type. They are
homogeneous manifolds i.e. they admit a transitive G-action. In particular, a locally symmetric space is
an arithmetic quotient of a symmetric space of non-compact type. To conclude this subsection, we give
the specific characterisations of symmetric spaces of non-compact type and define a locally symmetric
space using Theorem [2.1.3]



Definition 2.1.4. [BJ) II1.2.1, II1.2.5]

A symmetric space of non-compact type is a Lie group quotient G/K , where G is a connected
reductive real Lie group, and K is a maximal compact subgroup of G.

If G is an algebraic group defined over Q, then a subgroup T' < G(Q) is called an arithmetic
subgroup if it is commensurable with G(Z) i.e. T N G(Z) has finite index in both T and G(Z).

Let G/K be a symmetric space of non-compact type. Let T be an arithmetic subgroup of G. Then T
acts properly discontinuously on X and the biquotient T'\G /K is called a locally symmetric space.

Remark 2.1.5.
(i) K| VIL.2] Any semisimple Lie group with finite centre is reductive.

(ii) [Hel, Theorem VI.2.2] All mazximal compact subgroups K of a connected semi-simple Lie group G
are connected, and conjugate under an inner automorphism of G. This gives the quotient G /K
the structure of a homogeneous manifold.

(i1i) [BJ, II1.2.5] T' admits a torsion-free subgroup of finite index. When T is torsion-free, then the
resulting locally symmetric space is smooth.

2.2 Hermitian symmetric domains

Hermitian symmetric domains form a special class of symmetric spaces of non-compact type, and are
vital in the construction of locally symmetric varieties. In this subsection, we introduce the definition
and a characterisation of Hermitian symmetric domains, and give a classification of these objects.

Definition 2.2.1. [He, Chapter VIII, Section 1 and 4]
Let M be a differentiable complex manifold with tangent bundle T M.
An almost complex structure .J on M is a tensor field of (1,1) type such that J?> = —1.
Suppose M admits both an almost complex structure J and a Riemannian structure g. Then M is
a Hermitian symmetric space if

(i) it admits a Hermitian structure. i.e. g(JX,JY) = g(X,Y) for all X,Y € TM; and

(ii) every point p € M is an isolated fixed point of an involutive holomorphic isometry of M. In
particular, M is a symmetric space.

A Hermitian symmetric space is called o Hermitian symmetric domain if it is a symmetric space
of non-compact type.

Remark 2.2.2. [He, Theorem VIIL.7.1]
A Hermitian symmetric domain is a bounded domain. i.e. a bounded open connected subset of C™
for some positive integer n.

From now on, we use the abbreviation HSD for a Hermitian symmetric domain.
We are interested in irreducible HSDs. Their characterisation in terms of Lie groups is, of course,
more restrictive than the one in Definition 2.1.41

Theorem 2.2.3. [He, Theorem VIII.6.1]

The irreducible HSDs are exactly the manifolds G/K where G is a connected non-compact simple
Lie group with centre containing only the trivial element; K has a non-discrete centre and is a mazximal
compact subgroup of G.

Base on this characterisation, there is a classification of HSDs which depends only on the Lie group G
in the quotient G/ K. This separates all HSDs into four classical types I to IV, and two more exceptional
types when G = Eg and E7. See [Lol, Section 3|, [He, Table X.6.V].



Type of HSD G K
Ipq SU(p.a) | S(U(p)xU(q))
I, SO*(2m) U(m)
11, Sp(29) U(g)
IV, SOT(2,n) | SO(2) x SO(n)

Table 1: Classical types of HSDs

We give the definitions of the Lie groups U(m), Sp(2g), SOT (p, ¢) and SO*(2m), where the notations
for the last two are less standard. The definitions of all Lie groups appearing above can be found in
[He, Chapter X, Section 2.1].

Definition 2.2.4. Let 1,, be the identity matriz of size n. Define the matrices

1 0 0 1

(i) The indefinite unitary group U(p,q) is the group of matrices
{M € GLy14(C) : M'I, M = p7q} ‘
We call the group U(m) = U(m,0) = U(0,m) the definite unitary group of degree m.
(ii) The symplectic group Sp(2g) is the group of matrices
{M € GLyy(R) : M*"J,M = Jy} .

In fact J, is the matriz associated to a skew-symmetric bilinear form on R?9 called the standard
symplectic form.

(iii) The indefinite special orthogonal group SO(p,q) is the group of matrices
{M € SLyg(R) : M' Iy oM = Ipq} .

The determinant of any member is 1, i.e. it preserves orientation of the entire p + q-dimensional
vector space.

We call the group SO(n) = SO(n,0) = SO(0,n) the definite special orthogonal group of
degree n.

The reduced orthogonal group SO™(p,q) is the identity component of the group SO(p,q). It
contains matrices that preserve orientation of the p-dimensional positive definite subspaces.

(iv) The Lie group SO*(2m) is the group of matrices
{M € My (C) : M"Jpu M = Jpy, MM =19y, } .

Equivalently, it is the group of matrices in SO(2m,C) = {M € SLoy(C) : MM = Izm} which
leaves invariant the skew Hermitian form

—21Zm+41 + Zm+121 — 22Zm+2 + Zm4222 — -0 — ZmZom + Z22mZm-



2.3 Locally symmetric varieties

In general, locally symmetric spaces are not projective. However, a locally symmetric space that is an
arithmetic quotient of a HSD is a quasi-projective variety by the Baily-Borel Theorem [Lo, Section 4].
We call varieties that arise in this way locally symmetric varieties, abbreviated as LSVs. In this
subsection, we will study the geometric interpretation of LSVs as modular varieties.

From Definition LSVs are exactly the Lie group biquotients I'\G/K where G/K gives a HSD,
and I' is an arithmetic subgroup of G. Such a characterisation allows LSVs to inherit a classification
from HSDs: the type of a LSV is the type of its overspace HSD.

It is well known that type III and certain type IV classical types of LSVs are modular varieties.

Definition 2.3.1. [Mi, Section 7]

A moduli problem over a field k is a contravariant functor F from the category of (some class
of ) schemes over k to the category of sets. A wvariety S over k is called a modular variety if it is a
solution to the moduli problem F i.e. there is a natural isomorphism ¢: F +— Homyg(e,.S).

In this thesis, by a moduli space we always mean a coarse moduli space: a solution to a moduli
problem F such that F(S) is the set of isomorphism classes of the structured algebraic varieties that
belong to a family f : X — S. Some common structures shared by a family of varieties include
polarisation (Sections [3.1.1] and [3.5.1)) and endomorphism structures (Section [3.3.2)). For those type
IIT or type IV LSVs that are coarse moduli spaces, the HSD overspace of such a LSV behaves like
a parametrisation space of the structured algebraic varieties (this space is what will be called the
period domain from Section [3[onwards). The quotient of the HSD overspace by the arithmetic group T’
identifies the isomorphic varieties in the family. In fact the type II LSVs also admit a similar modular
interpretation ([He, Exercise X.D.1], [BLl Section 9.5]). Table [2| gives a summary of the modular
interpretations of LSVs of classical type II, III and IV. Note that the specific structures of the varieties
parametrised by a LSV of one of the above types depend on the group I'.

Type of LSV | G Modular interpretation
I, SO*(2m) Moduh spaces o{:’ polarlsed.abehan.Qm—fo.lds
with totally definite quaternion multiplication
111, Sp(2g) Moduli spaces of polarised abelian g-folds
Moduli spaces of lattice polarised K3 surfaces
+
Ve SOT(2.r) of Picard rank (20 —r) for 0 < r < 20

Table 2: Some types of LSVs with modular intepertation

We are especially interested in the type IV, series, because for r large, i.e. close to 20, the HSD
overspace of each moduli variety of K3 surfaces of Picard rank r coincides with that of a different
modular variety M:

r M

20 (supersingular) points

19 modular curves

18 Hilbert modular surfaces

17 modular varieties of polarised abelian surfaces with level structure

16 modular varieties of deformation of generalised Kummer varieties

15 modular varieties of deformation of hyperkahler manifolds of type OG6

14 | modular varieties of abelian 8-folds with totally definite quaternion multiplication

Table 3: Some modular varieties M with an analytic overspace being a type IV, HSD for r large.

10



In particular, upon choosing the suitable group I" in the biquotient T\SO™(2,20—7)/(SO(2) xSO(r)),
it is possible that the resulting type IV, LSV is isomorphic to M as modular varieties. We will see
(Lemma that as r decreases, the dimension of the LSV increases, and therefore the difficulty of
finding a type IV, LSV with two modular interpretations also increases. The case r = 14 is the case
with smallest  where an identification of the analytic overspaces of two different modular varieties is
known to the author. In fact, the cases r = 16 and r = 15 are also hard because there is no known
explicit family of generalised Kummer varieties or OG6 varieties.

In fact, there is a necessary condition from classical literature for the existence of an isomorphism

F: Fl\Dl — FQ\DQ

from a LSV of one of the classical types to a LSV of type II or III. Note that F' lifts to a holomorphic
isometry F' : Dy — Dy that is equivariant with respect to the actions of the groups G; and G2 on
Dy = G1/K; and Dy = Gy/ K> respectively. Satake studied [Sa] a more general question of when does
D; holomorphically imbed into Ds, i.e. when does an equivariant holomorphic isometry that embeds
D, into D, exist. The existence of such a holomorphic imbedding is equivalent to the existence of an
injective homomorphism of the Lie algebras Lie(G1) — Lie(G2) and an extra analytic condition, and
by checking the latter conditions, Satake has come up with a complete classification of the problem.
In particular for the case r = 17, there is an exceptional Lie algebra isomorphism between the
associated Lie algebras of modular varieties of K3 surfaces and abelian surfaces [He, Section X.6.4(iii)]

507(2,3) ~ sp(2).

In [Sal, it is proved that given any HSDs D; of type IV and Ds of type III3, there exists a holomorphic
imbedding F: Dy — Ds. So by choosing an arithmetic subgroup I' of SO (2, 3), we have a mapping of
LSVs

F :T\D; — F(I')\Ds.

Subject to a suitable choice of T', it is possible that F' is in fact an isomorphism.
The source [He, Section X.6.4(viii)] states another exceptional Lie algebra isomorphism which cor-
responds to the case r = 14:
507(2,6) ~ s50*(8).

Moreover from [Sal, a type IVg HSD is always holomorphically imbedded into a type II; one. These
results further assert the possibility for an isomorphism between a modular variety of K3 surfaces of
Picard rank 14 and a modular variety of abelian 8-folds with totally definite quaternion multiplication
to exist. On top of that, it is hinted in [KSTT] that such an isomorphism comes from the Kuga-Satake
construction [KS] which takes a K3 surface to an abelian variety called the Kuga-Satake variety.

3 Moduli of K3 surfaces and abelian varieties

Before we give the details of the Kuga-Satake construction, let us recall some basic facts about K3
surfaces and abelian varieties, as well as their moduli spaces. Thoughout the thesis, we work over the
complex numbers.

Both an abelian variety and a K3 surface are smooth complex projective varieties. In Section
we give the notions of polarisations, polarised Hodge structures and period maps related to (a
family of) smooth complex projective varieties. This is essential for the treatment of moduli spaces of
abelian varieties, abelian varieties with totally definite quaternion multiplication and lattice polarised
K3 surfaces in Sections and [3.5] respectively. In Section we recall some classical facts about
lattices, as they encode a lot of information about polarised K3 surfaces.

11



3.1 Smooth complex projective varieties
3.1.1 Polarisation

Before giving the definition of a polarisation, we need to first recall the definition of the first Chern
map [Vol Section 7.1.3]. Consider the exponential short exact sequence for a smooth complex projective
variety X.

21

0—7Z50x 250 —0

It induces a long exact sequence of cohomology groups. We define the first Chern map to be the
connecting homomorphism
c1: HY(X,0%) — H*(X,Z).

Remark 3.1.1. Concerning the first Chern map, note that

(i) [Hartl Exercise I11.4.5] The domain H'(X,O%) can be identified with the Picard group Pic(X),
the group of isomorphism classes of line bundles on X.

(ii) [Vol, Section 7.2.2] We define Pic’(X) to be the kernel of the first Chern map cy. It is also the
subgroup in Pic(X) of line bundles that are algebraically equivalent to 0. The image of ¢1 is called
the Néron-Severi group NS(X) of X.

Definition 3.1.2. [Vo, Theorem 7.8, 7.10] A polarisation of a projective variety X is given by c¢1(L),
the first Chern class of a choice of an ample line bundle L on X.

The ample line bundle L realises projectivity of the variety X: there exists an integer m > 0 such
that L®™ is very ample [Hartl Remark 7.4.3]. The existence of a very ample line bundle is equivalent
to the existence of an embedding of X into a projective space. To be specific,

Theorem 3.1.3. [Hartl, Section II. 5, Theorem I1.7.1(b)]
Let L be a very ample line bundle on X over C. Let {sg, -+ ,s,} C H°(X,L) be global sections
which generate L. Then there exists an immersion

¢: X — PG := Proj Clxog, - -+ .xy]
such that L ~ ¢*(O(1)) and s; = ¢*(x;).

Since the polarisation ¢1(L) is determined by the ample line bundle L, we also say as a shorthand
that the polarisation of X is the line bundle L € Pic(X).

Remark 3.1.4. Note that the Chern map may not be injective. As long as c¢1(L1) ~ c1(Lz) for the two
ample line bundles L1 and Lo, we do not distinguish the polarisations L1 and Lo in our shorthand.

We will explain in details a few alternative definitions of a polarisation on a complex projective
variety X: as the first Chern class of a positive line bundle (Remark [3.1.10); and as certain bilinear
or Hermitian forms when in particular X is an abelian variety (Sections [3.2.1]and [3.2.2)). We will also
consider a lattice polarisation, which is a generalisation of a polarisation, for algebraic K3 surfaces

(Section [3.5.1)).

3.1.2 Hodge structure

We will recall the definition and some facts about Hodge structures, which are of particular importance
in the study of moduli spaces of K3 surfaces and abelian varieties due to the famous Global Torelli
Theorem.

Let V be a free R-module of finite rank where R = 7Z,Q or R.
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Definition 3.1.5. [Hul Definition 3.1.1], [Mi, Section 5]
A Hodge structure of weight k£ on V' is given by a direct sum decomposition of its complexified
vector space
Vei=VaC=  vre
p+q=k
such that VP4 = V9P
The Hodge structure is said to be real, rational or integral if V is real, rational or integral

respectively.
The dimensions h?9 of the vector spaces VP9 are called the Hodge numbers.

We will mainly use Definition as the definition of a Hodge structure, but there is an alternative
definition, which leads to the definition of the Mumford-Tate group and Hodge group of a rational
Hodge structure.

Definition 3.1.6. [vG1l, Proposition 1.4]
A Hodge structure of weight k on V' can be identified to a real representation of C*, which is the

group homomorphism
h: C* — GL(W)

where for any v € VP h(z) sends v to zPz%v.

Remark 3.1.7. [Hul Section 3.1.4]
The homomorphism h restricted to R* is the k-th power map. Therefore, h can be recovered from
its restriction to the kernel of the norm map U :=ker(Nm) = {z € C* : 2z = 1} >~ C*/R.

Definition 3.1.8. [Hul Section 3.3.4]

The Mumford-Tate group MT (V) of a rational Hodge structure h is the smallest algebraic sub-
group of GL(V') defined over Q satisfying h(C*) C MT(V)(R). Similarly, the Hodge group Hdg(V') of
a rational Hodge structure h is the smallest algebraic subgroup of GL(V') over Q with h(U) C Hdg(V)(R).
Equivalently, the Hodge group can be defined by the surjection

Hdg(V) x R* —s MT(V)
(9, 1) — gp.

By [Vol, Section 6.1], if X is a smooth complex projective variety of dimension n, then the torsion
free part of its singular cohomology group H¥(X,Z) for 0 < k < 2n has a Hodge structure of weight k

H*X,C)=H'X,Z)oC= @ H(X)
ptq=k

where HP9(X) is given by the Dolbeault cohomology group HY(X, QX).
With the notion of Hodge structure, we can say more about the image of the first Chern map c;.

Theorem 3.1.9 (Lefschetz’ theorem on (1, 1) classes). [Vol, Theorem 11.30]
Let X be a smooth complex projective variety. Then

NS(X) = H"(X)n H*(X, Z).

Therefore, a polarisation ¢1(L) of X is a (1, 1)-form. Moreover, it is a K&hler form: it corresponds
to the Kéhler metric which gives X the structure of a Kéhler manifold (see [Vol, Sections 3.1, 3.3.1] and
Remark [3.5.4]). In particular, all complex projective varieties are Kédhler manifolds.
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Remark 3.1.10. Any line bundle L on a compact complex manifold X is said to be positive [Vo,
Section 3.3.1] if c1(L) is a Kdhler form for X. In fact by the Kodaira embedding theorem [Vo, Theorem
7.8], any positive line bundle on a complexr projective variety is ample. This leads to an alternative
definition of a polarisation on a complex projective variety [BL] as the first Chern class of a positive
line bundle.

There is also a notion of polarisation on Hodge structures.

Definition 3.1.11. [Hul Section 3.1]

Let Vo = ®p+q=k VP4 pe a Hodge structure of weight k over R =7,Q or R.

Define the Weil operator C as the element in GL(V¢) which acts on VP? by multiplication by i77P.
In particular it preserves the real vector space (VP11 @ VIP) N Vg.

Define the Tate Hodge structure R(m) to be the Hodge structure of the R-submodule/subvector
space (2mi)™R of C of weight —2m, such that R(m)~"™~™ is 1-dimensional.

A morphism of Hodge structures of weight [ is an R-linear map f: Vi — Va such that its
C-linear extension fc satisfies fc(V{?) C V2p+l’q+l.

If V1 and Vs are Hodge structures of weight k and | respectively, then the tensor product vector space
Vi ® Vo also has a natural Hodge structure of weight k + 1 given by

(V1 ® Vo)t = @ ({/11?17111 ® ‘/21)2,112) 7

where the direct sum is taken over all pairs (p1,q1) and (p2,q2) such that p1 + pa = p.
A polarisation of Hodge structure V' of weight k is a morphism of Hodge structures of weight 0

U: VeV — R(-k)
such that its real linear extension gives a positive definite symmetric form
¢: V@V — R
(v, w) — (271)* U (v, Cw) € R.
We say the Hodge structure of V is polarised if it admits a polarisation.

From the definition of a polarsation for a Hodge structure, we may derive a set of equivalent condi-
tions.

Theorem 3.1.12. [Mi, Section 5, Polarizations]

Consider an R-module V' with a weight k Hodge structure, and let b be an R-bilinear form on V.
Then U := (27i)~*b is a polarisation of the Hodge structure on V if and only if it satisfies the Hodge-
Riemann relations:

(i) For z € VPv& y € VP22 Wc(z,y) # 0 only if (p1,q1) = (g2, p2)-
(ii) (v, w) = (=1)¥¥(w,v) for all v,w € V.
(iii) (2mi)FiP~90c(z,T) > 0 for all x € VPI.

Proof. Let us first prove the only if part.
Firstly for part (i): let € VP19 and y € VP2%, Then (z,y) € (V ® V)P1HP201+%2_ Since U is a
weight 0 morphism of Hodge structures, ¥c(z,y) # 0 only if Uc(x,y) € R(—k)**. That is p; +p2 = k,

or p2 = qi-
For part (ii): the C-extension of the symmetric form b is also symmetric, so we have

P (2, y) = (2m8) Fb(x,y) = (2m0) Fb(y, x) = 1T PUc(y, x) = (—1)FP ¢ (y, x)
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for any x € VP? and y € V?P. Now for any general v, w € Vg, we may write v = > vP? and w = > w4
summing over p, q, where v”9, wP? € VP4, Then by above,

\Il(v,w) = Z \IJ(C<’Up7qa wqm) = Z(_l)k\pc(wq,p’vp,q) = (_l)k\ll(wa U)'
Finally for part (iii): let z € VP4, we have = + = € V. So ¢(v,v) > 0 implies
0 < (27))"We(x + T,19 Px +iP797) = (2mi)F (P~ (2, T) + i97PVc (T, x)) = 2 - (2m0)FiP~ W (z, T)

where the last equality is due to part (i).

We now give the proof for the if part. The image of W lies in (27i)~*R, which has a Tate Hodge
structure R(—k). For any = € VPU% and y € VP24 such that We(z,y) € R(—k)*F # 0, part (i) implies
that

(z,y) € (V@ V)Prtarte = (v g )bk,

Therefore ¥ : V x V' — R(—k) is a morphism of Hodge structures of weight 0. By extending to C, parts
(i) and (ii) imply that for all v,w € Vg with v = )" vP? and w = ) wP? summing over v, wP? € VP4,

g(v,w) =Y (2mi)" PN (oP9, W) = Y (2mi)*(—1)F P e (whP, 0P ) = g(w,v).
Again consider v € Vg with v = ) vP?, then v = v%P. So parts (i) and (iii) imply

g(v,0) = 37 (2mi) (i)~ 9D (P9, v4P) > 0.
O

In fact, a polarisation on the rational Hodge structure of the first and second cohomology groups
of a projective variety is induced by the polarisation on the projective variety. Let R = Q. Consider a
polarised variety X of dimension n with a (integral) Kihler form w. Then for k& < n, its k** cohomology
group H*(X,Q) (up to torsion) is a Hodge structure with the Hodge-Riemann pairing [Hul, Section
3.1, Equation (1.5)]
(u,v) — (—1)FE=D/2 / uAv AW €Q.
b'e
Note that when H*(X,Q) is the middle cohomology i.e. n = k, the Hodge-Riemann pairing is just the
intersection form (up to sign), and is independent of w.
Define the primitive part of the cohomology group H*(X,Q) to be

H*(X,Q), = ker </\w”_k+1: H*(X,Q) —s H™k+2(X, Q)) .

Then the Hodge-Riemann pairing twisted by (27i)~* and restricted to the primitive cohomology satisfies
the Hodge-Riemann relations |GrifH, Section 1.7, The Lefschetz Decomposition]. In other words, it is
a polarisation form ¥ on Hk(X, Q)p-

In particular, when k = 1, we have H'(X,Q) = H'(X,Q),, so the twisted Hodge-Riemann pairing
gives the polarisation on the first cohomology.

As for k = 2, we have

H(X,Q) =Q-we H*(X,Q),

by [GrifH, Section 1.7, Hard Lefschetz Theorem]. If we change the sign of the twisted Hodge-Riemann
pairing on Q - w, then this gives a polarisation form ¥ on the entire cohomology group H?(X, Q).

The Kihler form w also determines a polarisation on the integral Hodge structure of H*(X,Z) for
k = 1,2. By restricting the polarisation form for H*(X, Q) obtained from the twisted Hodge-Riemann
pairing to H*(X,Z), we have a bilinear map

H*(X,7) x H*(X,Z) — Q(—k).

The image in Q(—k) is a Z-module, so the denominators of the fractions in the image are bounded, and
rescaling the bilinear map by a sufficiently large integer gives a polarisation form on H*(X,Z).
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3.1.3 Period map

We will discuss the period map associated to a family of polarised complex projective varieties.

First, we explain the notion of a period domain, which is the set of polarised Hodge structures of
the same Hodge numbers and polarised by the same bilinear form ([DK| Section 3], [Mi, Section 7]).
This uses the definition of a Hodge filtration, which is equivalent to a polarised Hodge structure.

Definition 3.1.13. [Hul, Section 3.1.1]
A Hodge filtration associated to a Hodge structure V' of weight k is the flag of subspaces (F'®)

0CF*Vec FF"We - c FVe =g
where F'Ve := Dp> VP,
The Hodge structure can be recovered from the Hodge filtration by
VPP = FPVe N FRFPVg.

A Hodge filtration can be identified to a point in a Grassmann variety, which is a product of
Grassmannians. To be specific, let (F'*) be a Hodge filtration associated to a polarised Hodge structure
(V,¥) of weight k. We define f = (fo,---, fx) where f; = 2p>l hP? = dim F', which is equivalent to
giving the Hodge numbers. Thus (F'*) is a point in the Grassmann variety Gry(Ve) = IIF_, Gr(fi, V).

We now restrict ourselves to consider a vector space V over R. Let ¥ be a bilinear form on V. The
set of Hodge filtrations on (V, ¥) of dimensions f such that ¥ is the polarisation of the Hodge structure
is called the period domain of (V, ¥) of type f, denoted by D;(V, V).

Theorem 3.1.14. [Mil, Section 7, Period domains]
A flag of subspaces in Gry Vg is a polarised Hodge structure of weight k with respect to a bilinear
form ¥ on V if B

(i) Vo = F' @ FF=141 for all 1;
(ii) Ue(FL, FF=HY =0 for all I;
(iii) U(v,w) = (=1)*¥(w,v) for all v,w € V;
(iv) (2mi)*i2 =W (2, ) > 0 for all non zero elements z € F'WVe N FF1Ve.

Remark 3.1.15. The first condition is required for a flag to give a Hodge structure. The second to
the fourth conditions come from the Hodge-Riemann relations (Theorem . The last condition
is open. This [Mi, Theorem 7.2] identifies D¢(V,¥) with an open submanifold of a compact complex
submanifold of Gry(Vc) . a

One can obtain a specific expression of the period domain associated to (V,¥) of type f. Fix a
standard basis in V which identifies (V,¥) to (Rf Ws). Then with respect to these bases one can
express a flag of subspaces as a square matrix of size fy. The conditions in Theorem can be
translated into the language of matrices. Moreover, the following generalisation of Witt’s Theorem
is known.

Theorem 3.1.16. [DK| Section 3]
Let Gg be the group Aut(Rf0,Ug). Then it acts transitively on Dy := Df(RfO,\IIO) with compact
1sotropy subgroup K, and B B
Df ~ GR/K

is a complex non-compact homogeneous space.
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We will provide more details of this isomorphism for a few specific period domains containing Hodge
structures of weight 1 or 2 in later sections. Those period domains parametrise certain structured
smooth complex projective varieties. More generally, let f: X — S be a family of smooth complex
projective varieties. Let X, = f~(s) be its fibre at s € S. For each s € S, consider V, := H*(X,,R) a
real Hodge structure of weight & with polarisation determined by a (1,1)-form. Let Wy be the bilinear
form obtained as in Definition By [DK| Section 3] and [Vo, 10.1.2], the set (Vs, ¥s)ses is a
polarised family of real Hodge structures: it is a vector bundle V = {V;}scs together with a
filtration on the associated Hodge bundle V := Og ®r V and a polarisation of weight k given by a
bilinear pairing of vector bundles

U:VxV—R(-k)

that give a Hodge filtration and a polarisation form W, on Vy at each point s € S. In simpler terms, this
means that S is covered by open connected subsets U’s on which (V;, Us)sey — U is trivial. in particular,
we can fix a k" marking of X, for each s € U, which is an isomorphism Ps: (V, ¥) — (Vi, ¥,) where
U is a bilinear form on V. For each s € U, Py ! ((V;, ¥y)) is a polarised Hodge structure of weight k on
(V,¥) and of the same Hodge numbers f, thus corresponds to a point in the period domain Dy. This
gives a map from U to Dy called the period map. ;

Theorem 3.1.17. [Mi, Theorem 7.3]
The period map

P U — 'Di
s+ P ((Va, 0y))

s a holomorphic map.

We would like to have a global version of the period map. For a general vector bundle, there is no
canonical way to patch the trivialisation mappings, or the k** markings in our case. There are many
choices of transition functions up to monodromy of S, which give rise to a multi-valued global mapping
P : S — Dy. However [DK| Section 3|, the vector bundle V is in fact a real local coefficient system.
That is, we can fix a standard basis in each (Vs, ¥Us) which varies holomorphically with s € S, such that
V has transition functions given by matrices with constant entries. Specifically if we fix a point sg € S
and let V :=V;, and ¥ := ¥, , then we have a homomorphism of groups

1 (S, 80) — GL(V)

called a monodromy representation. A monodromy representation preserves the polarisation form
U, and the images of the monodromy representations form a subgroup I'(f) in Aut(V, ¥) which we call
the monodromy group. We can deduce more information about the monodromy group and define a
global period map if each X is a smooth complex projective variety.

Theorem 3.1.18. [DK| Equation 3.4]

Let f: X — S be a family of smooth complex projective varieties. Let f be the dimensions of the
flag of subspaces associated to the real polarised Hodge structure (H*(X4,R), W,) for any s € S. Fir a
k-th marking (H*(X,,R),U,) — (V,¥) and let A be the image of H*(X,, 7).

Then the monodromy group I'(f) is discrete, and is the group Aut(A,¥|s) of automorphisms of the
lattice A preserving the bilinear form V|x. Furthermore, there is a holomorphic map called the global
period map

S — T(f)\Dy.

Remark 3.1.19. [Mi, Theorem 7.10]
Every HSD arises as a connected component of a period domain This aligns with the existence of a
modular intepretation of some locally symmetric spaces.
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Finally, let us state the Global Torelli Theorem for a family of smooth complex projective varieties.

Theorem 3.1.20. [DK| Section 3]

A family of structured smooth complex projective varieties f: X — S satisfies the Global Torelli
Theorem if for any two points s, s’ € S with the same image under the global period map, there is an
isomorphism of the fibres ¢: Xs — Xg such that f*([wy]) = [ws], where ws and W’ are the Kdhler forms
defining the polarisations for Xs and Xy respectively.

If a family f: & — S satisfies the Global Torelli Theorem, then the image of S in I'(f)\D(s) under
the holomorphic map in Theorem [3.1.18| is a coarse moduli space i.e. it parametrises the members
in the family X up to isomorphsm. Moreover, if Dy is a HSD, then the quotient is a quasi-projective
variety by the Baily-Borel Theorem. In particular, the quotient is also a LSV.

Remark 3.1.21. We will show that any family of abelian varieties or K3 surfaces to be studied in
this thesis satisfies the Global Torelli Theorem, and that the associated period domain is a (union of)
HSD(s). The base S is therefore a quasi-projective variety, and we say that S is a modular variety.
Conversely if a family f: X — S of complex projective varieties is also a smooth projective map
of complex algebraic varieties, then the associated period domain Dy, as a polarised family of Hodge
structures, satisfies Griffiths transversality [Mi, Theorem 5.2]. It is a compatibility condition for a
flat connection on the Hodge bundle V and the filtration on V. Furthermore, this implies that Dy is a
HSD ([Mi, Theorem 7.9]). a

We will discuss more about polarisations, polarised Hodge structures, period maps and moduli
varieties specific to abelian varieties and K3 surfaces respectively in the following subsections.

3.2 Abelian varieties
3.2.1 Polarised abelian varieties

We start with the definition of a complex abelian variety.

Definition 3.2.1. [BL, Section 4.1]

An abelian variety A of dimension g is a pair (T = W/A,c1(L)) where W ~ CY, A is a lattice
of rank 2g (full rank) in W, and c¢1(L), the first Chern class of an ample line bundle L on the complex
torus T, is the polarisation of A.

For a detailed definition of lattices, see Theorem In particular, a lattice is a Z-module, and
can be described by a basis. The expression of a basis of A embedded in W depends on the choice of a
basis of W.

Definition 3.2.2. [BL| Section 1.1]
Let W/A be a complex torus. Fiz a basis e1,--- ,eq of W and a basis A\, -+, Xag of A. Write each
Ai in terms of the basis e1,--- ,eq
g
)\i = Z)\Mej.
j=1

We call the g x 2g complex matrizx

ALl o Al

H — . .
Agi Mgz

the period matrix of the torus.
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The polarisation of an abelian variety only depends on the choice of an ample line bundle L, so we
also write A := (W/A, L). We can also consider a polarisation on A as an alternating form that satisfies
the following conditions.

Theorem 3.2.3. [BL, Theorems 2.1.6]

Let T = W/A be a complex torus. Let E: W x W — R be an alternating form. Then E represents
the first Chern class c1(L) of an ample line bundle L on T if and only if the following conditions are
satisfied

(i) E(A,A) C Z;
(ii) E(ix,iy) = E(x,y) for all z,y € W; and
(i1i) E(x,ix) >0 for allz € W.

Remark 3.2.4. In Lemma we will show how these conditions are related to the Hodge-Riemann
relations.

This gives rise to two more equivalent expressions for a polarisation of an abelian variety; by a
Hermitian symmetric form or by a symmetric form.

Theorem 3.2.5. [BL, Theorem 2.1.7], [Harv, Lemma 2.63]

Let W be a C-vector space. Let H be an arbitrary Hermitian symmetric form on W, i.e. a bilinear
form H: W x W — C which is C-linear in the first component and satisfies H(x,y) = H(y,x) for all
x,y € W. Then there exists a real-valued alternating form E on W satisfying E(iz,iy) = E(z,y) such
that

Im(H(z,y)) = E(z,y) and H(z,y) = E(z,iy) +iE(z,y).
Moreover, if H has signature (p,q), then the symmetric form
Q :=Re(H): (z,y) — E(z,1iy)
has signature (2p,2q).

Clearly, any one of the three forms H, @) = Re(H), and E = Im(H) recovers the other two forms.
Moreover, if E corresponds to the first Chern class of an ample line bundle on a complex torus, then
Theorem [3.2.3[(iii) implies that both @ and H are positive definite.

By considering a polarisation of an abelian variety as an alternating form, one can define the type
of polarisation.

Definition 3.2.6. [BL, Section 3.1]

Let A = (CI/A,E) be an abelian variety of dimension g where its polarisation is given by the
alternating form E. Then there exits a basis of the lattice A with respect to which E is given by the
matrix

0 D
b o)

where D is the g-by-g diagonal matriz diag(dy, - -- ,dg) with d; > 0, satisfying d;|dj41 fori=1,--- ,g—1.
Such basis of A is called a symplectic basis for the associated Hermitian form H. The polarisation
type of A is the vector (di,--- ,dg), which is uniquely determined by E. We say that A is principally
polarised if A has polarisation type (1,---,1).

Remark 3.2.7. There exists a basis of R?9 such that this alternating form E is the standard symplectic
form i.e. given by the matrix Jg.
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Remark 3.2.8. [BL, Section 8.3.1]
For any abelian variety A = (W/A, E) of type D = (di,--- ,dy), there are choices of a canonical
level structure which describes the chosen symplectic basis. To be specific, we define

AE) ={weW:E(w,A) CZ}
K(FE) :=A(E)/A.

The group K(E) has a pairing that depends on E. On the other hand, we define the group

g
K(D):=2%/D7? ®79/DZ9 with 79/DZ := HZ/diZ
i=1
which also has a pairing that depends on D. As groups, K(F) ~ K(D). A canonical level structure of
A is a choice of group isomorphism K(E) — K (D) that preserves the respective pairings. It is possible

to futher rigidify an abelian variety by imposing a level n structure for some positive integer n (see
|BL, Section 8.3.2]).

3.2.2 Complex structure

The complex torus C9/A structure of an abelian g-fold A can be seen [DK| Section 4] as a real torus
V/A where V = AL ~ R?9, with a complex structure .J on V. A real torus is a manifold with an additive
group structure. In particular, any real torus V/A’ of dimension 2g is diffeomorphic to (S1)29 = R?9 /729,

Definition 3.2.9. A complex structure J on a real vector space V is a linear operator satisfying
J?=-1.

The pair (V,J) can be identified to CY by
VESVexWoW 5 W ~CY

where ¢ is the natural inclusion map, W and W are the +i and —i eigenspaces of J in V respectively
with ¢ being the imaginary unit in C, and 7 is the projection map onto W. In fact, the above map is a
R-linear isomorphism given by

w:'V—w

vi— %(v i),

The decomposition Ve ~ W @ W is a weight one Hodge structure of V. Setting V%! = W, then J is the
WEeil operator of the Hodge structure. Furthermore, if ¥ is the polarisation of this weight one Hodge

structure, then in particular we have
2wV (v, J(v)) >0

for all v € V, and we also call J the positive complex structure with respect to V. Let us give a
precise description of this equivalence between a polarised Hodge structure of weight one and a positive
complex structure.

Lemma 3.2.10. [DK|, Theorem 4.1]
There is a natural bijection between the set of Hodge structures of weight one on V' with polarisation
form U and the set of positive complex structures on V' with respect to V.
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Proof. Given a positive complex structure J on V, we can define the R-linear map p as above and
obtain the decomposition Ve = p(V) @ pu(V). Indeed for any 2 € V! = ;(V), there exists v € V such
that p(v) = z, and

0 < 2 - (—i) - Ue(2,7) = _Zi 2 W (v — i (v), v+ T (0))

= _f 22mi - (U(v,v) + U(J(v), J(v) + i (v, J(v) — ¥ (J(v),v))

_ %.zm LW (v, J(v)).

The last equality is due to Theorem [3.1.12(ii).

On the other hand, given a weight one Hodge structure Ve ~ V10 @ V1 then for all v € V, we can
write v = 2 + Z where € V%!, We can define a complex structure J by .J(v) = iz — iz. This is also
a positive complex structure with respect to the polarisation form ¥ of V due to the same equations
above. O

Remark 3.2.11. With respect to Definition[3.1.6, the weight one Hodge structure on V' that corresponds
to the complex structure J is given by the group homomorphism

h: C* — GL(W)
a+bi—a-+bJ

Lemma 3.2.12. [DK| Section 5] The polarisation form ¥ of the weight one Hodge structure on (V,J)
determines a polarisation of the abelian variety A.

Proof. Define a real bilinear form E on W such that E(z,y) = 2mi¥(u,v) for all x = p(u) and y = p(v)
in W. From Theorem (ii), it is clear that F is an alternating form. We will show that E satisfies
all three conditions in Theorem

First, (A, ¥|p/) is a Z-sub Hodge structure of (V, V), so 2miW¥ (resp. E) is integral with respect to
A’ (resp. A), which is the statement of 3.2.3[i). Let 2,y € W with z = p(u) and y = u(v) for some
u,v € V. Note that u =2 +7 and v =y + 7, and so

(I (), J(0)) = Ve(iz — T, 1y — if) = Ve, ) + Ve(@,y) = U(u,0).
Since

(I (w)) = =(J(w) + iw) = iu(w)

1
2
for any w € V, we have |3.2.3((ii):

E(iz,iy) = 2miV(J(u), J(v)) = 2wV (u,v) = E(z,y).

Also,
E(z,iz) = 2miV(u, J(u)) >0
by the definition of a polarisation form. This gives [3.2.3((iii). O

Remark 3.2.13. From now on, we will interchangeably use an ample line bundle L, or one of the
forms W, q on'V ~R29, or one of the forms H, E,Q on W ~ C9 to denote the polarisation of an abelian
variety or that of its weight one Hodge structure.

Remark 3.2.14.

An almost complex structure of a differentiable complex manifold M as in Definition [2.2.1] gives a
complez structure on the tangent space T,(M) that varies continuously with the point p € M. In fact
the almost complex structure of an abelian variety A is invariant with respect to tramslation in the
torus [DK, Section 5], so the holomorphic tangent bundle is isomorphic to the trivial bundle with fibre
(V >~ To(A),J). In particular, any abelian variety has a translation invariant Hermitian structure,
which is given by the positive definite symmetric form q = 2wiv(-,J -).
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3.2.3 Homomorphisms of abelian varieties

A homomorphism of abelian varieties is a homomorphism of complex tori compatible with the respective
polarisations.

Definition 3.2.15. [BL Section 1.4, 4.1]

A homomorphism of complex tori f: Ty — T2 is a holomorphic map that preserves the respective
group structure.

A homomorphism of abelian varieties f : (Ty, L1) — (Te, L) is a homomorphism of complex

tori f: Ty — Ty such that f*ci(La) = c1(L1).

A homomorphism of complex tori f: T; — Ty is an isomorphism if there exists another homomor-
phism of complex tori g: Ty — T such that fog = 17, and go f = 1p,. Similarly, a homomorphism
of abelian varieties f: A] — As is an isomorphism if there exists another homomorphism of abelian
varieties g: Aa — Aj such that fog=14, and go f = 14,.

Under addition, the set of homomorphisms of abelian varieties from A; to Ay forms an abelian
group Hom(A;, A3). An endomorphism of an abelian variety A is a homomorphism of A into
itself. Denote the set of endomorphisms of an abelian variety A by End(A). Under addition and
composition, the set of Q-endomorphisms Endg(A) := End(A) ®z Q forms an algebra.

We would like to focus on a special kind of homomorphisms of abelian varieties.

Definition 3.2.16. [BL, Section 1.2, Section 4.1]
An isogeny of complex tori is a surjective homomorphism of complex tori with finite kernel.
An isogeny of abelian varieties is an isogeny between the underlying complex tori.

Remark 3.2.17. [BL, Corollary 3.2.7]

Isogenies of abelian varieties define an equivalence relation. We say two abelian varieties are isoge-
nous if there is an isogeny between them. If A1 and As are non-isogenous abelian varieties, then
HOHl(Al, AQ) =0.

Remark 3.2.18. An isogeny of abelian varieties does not preserve the polarisation type. Zarhin’s trick
shows that for all abelian g-fold A, and g-tuple D = (di,--- ,dgy) such that di|di11, there exists an
isogeny f such that f(A) has polarisation type D.

3.2.4 Moduli of polarised abelian varieties

Let f: X — S be a family of polarised abelian g-folds over a connected complex variety S. By
Theorem the set of polarised weight one Hodge structures of the first cohomology groups
H(f7(s),R) =~ R forms the associated period domain for the family f. In this section, we
will give more details of this period domain which leads to the expression of a coarse moduli space for
the family.

Lemma 3.2.19. The type of polarisation of the abelian variety As = f~1(s) is independent of s.
Proof. The variable s varies in S continuously, while the type of polarisation is discrete. ]

Let us describe the period domain that locally parametrises a family of polarised abelian g-folds
f: X = S of polarisation type D up to isomorphism.

Since the fibre A, at any point s € S is diffeomorphic to a product of S!, it is clear that its first
cohomology group H!'(A,, R) is torsion free. One can compute the weight one Hodge structure on
H'(A,,R) using the de Rham cohomology [BLl Section 1.1.4], and associate it to a Hodge filtration
of degrees f = (2g,9). The period domain Dy is the set of 29 x 2g complex matrices which represent
bilinear forms that satisfy the Hodge-Riemann relations. But since it is possible to recover the entire
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Hodge decomposition from H'Y(A), one can consider elements of D(24,9) a8 2g X g complex matrices.
Moreover [DK| Equation 4.9, 4.10], under the symplectic basis of As in As = (R?9, A,), the corresponding
element II € Dy is a 2g X g matrix
Z
.= [7)

where Z is a square complex matrix of degree g, and D is the polarisation type of A; independent of s
by Lemma |3.2.19] The conditions in Theorem are equivalent to the two conditions in terms of Z

1 _

7' =Z,Im(Z) = 5(2 - Z)>0.
1

Therefore we have

Theorem 3.2.20. The period domain Dy 4y is isomorphic to the Siegel upper half space of degree g

Sy:={Z e My(C): 2" =2, Im(Z) >0} .

Given the above expression of the period domain Dy, ), we can deduce that D
family of polarised abelian varieties.

Theorem 3.2.21. [BL, Proposition 8.1.2]
There exists a complete family f: X — S of abelian varieties of some polarisation type D; i.e.
such that under the multi-valued period map

P:S— 8,

29,9) Parametrises a

every element in Sy has non-empty preimage.

Proof. Let Ay = (C9/A, E,) be the abelian g-fold corresponding to s € S. Let Ay, -+, Ag, 11, - , f1g be
the symplectic basis of A, and D = diag(dy,--- ,dy) be the polarisation type of Ay. Then with respect
to the basis A1, -+, Ag, 1 /dy, -+ , fig/dgy of R?9, the basis of Ay is given by the rows of

e fs

where Z = P(s). That is I, is a period matrix of As. Moreover, the matrix Im(Z)~! gives a Hermitian
form H, with respect to the basis p1/dy, -, pug/dg of C9, which is a polarisation of A, of type D by
Theorem Therefore, given any Z € S,, we have an abelian variety Az := C9/ ((Z, D)Z*9) whose
polarisation is Hz. So Az belongs to the family of polarised abelian g-folds of type D with symplectic
basis. O

In another direction, the period domain D(y, 4y = &, can be identified with the quotient of a Lie
group by a compact subgroup as in Theorem [3.1.16

Theorem 3.2.22.
Sy~ Sp(29)/ U(g).
Proof. The symplectic group Sp(2g) acts on S, by [BLl, Proposition 8.2.2]
Sp(29) x Sg — Sy

C D

By [BLl Proposition 8.2.3], every Z € S, lies on the Sp(2g)-orbit of i1, € S;. Moreover, the stabiliser
group of the action [BL, Proposition 8.2.3] is the compact subgroup

Sp(2g9) N O(2g) ~ U(g).

<M: [A B] ,Z) s (A-Z+B)(C-Z+ D).

23



Remark 3.2.23. We can also prove transitivity of the action by applying Theorem[3.1.16. By Remark
each polarised Hodge structure of weight one on H'(As,R) is equivalent to the pair (R%9,.J,),
where Jy is the matriz associated to the standard symplectic form. From Definition m Sp(2¢g) =
Aut(R%,.J,). So Sp(2g) preserves the polarisation form of a Hodge filtration in D and therefore
acts on Sy transitively.

Remark 3.2.24. [HKW2| Chapter 1.1]

The action of Sp(2g) on Sy is an analogue of the linear fractional transformation.

On the other hand, note that for any integer k > g, the Grassmannian Gr(g, C*) is isomorphic to
the orbit space Myx4(C)/ GL(g,C) of all k x g matrices modulo right multiplication by GL(g,C). The
Siegel upper half space Sy can be identified with a subset of Gr(g,C?9) by sending an element Z to the
GL(g, C)-equivalence class of block matrices:

29,9)>

7o )

With respect to this alternative expression of elements in Sy, the group Sp(2g) acts by left multiplication:

Z
v-Z= {7- [1 ” , Y ESP(29),Z €S,
g
Remark 3.2.25. By comparing to [Héd, Table X.6.V], the unitary group U(g) is the maximal compact
subgroup of Sp(2g), and S, is an irreducible HSD of type III,.

Moreover, we have the expression for the monodromy group I'(f) < Sp(2g) for a complete family f
which leads to the holomorphic map
S — F(f)\p(Qg,g)

as in Theorem [3.1.18, The group I'(f) is an arithmetic subgroup of the symplectic group, and is called
a modular group .

Theorem 3.2.26. The monodromy group T'(f) for a family of polarised abelian varieties f: X — S of
polarisation type D depends on D, and is given by

I'p = {M S Sp(Zg,Q) - M. Ap C AD} < Sp(29)

Ap = [19 0] z.

where

0 D

Proof. By [BL, Proposition 8.1,3|, two polarised abelian varieties (Az, Hz) and (Az/, Hz/) parametrised
by Sy are isomorphic if Z and Z’ lie in the same I'p-orbit. O

In particular, we have verified that a family of polarised abelian varieties of type D satisfies the
Global Torelli Theorem.

The quotient Ap :=I'p\S, is a normal complex analytic space as I'( f) acts properly discontinuously
on S, by [BL, Proposition 8.2.5], and is quasi-projective by the Baily-Borel theorem. We call Ap the
moduli variety of polarised abelian varieties of type D. It has dimension g(g +1)/2 as S, is of
the same dimension, and it is a LSV of type III.

3.3 Abelian varieties with totally definite quaternion multiplication

In Table |2 we mentioned moduli space of abelian varieties with totally definite quaternion multiplica-
tion. In fact, a totally definite quaternion multiplication is a special type of endomorphism structure
admitted by an abelian variety. Before studying this special moduli space, we first consider the endo-
morphism structure of simple abelian varieties.
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3.3.1 Simple abelian subvarieties

In this subsection we will give a characterisation of simple abelian subvarieties.
Let A := (T, L) be an abelian variety. The polarisation L induces an anti-involution p on Endg(A),
i.e. a self-inverse anti-homomorphism on Endg(A):

p* = Lpnag(ay and (f 0 ) = g°o f* for all f,g € Endg(A).

This special anti-involution is called the Rosati involution (see [BL, Section 5.1]).

For an element f in Endg(A), we say f is symmetric if it is stable under the Rosati involution of
Endg(A); f is an idempotent if f> = f. We denote the set of symmetric idempotents in Endg(A) as
Endg(A).

Any abelian subvariety of A corresponds to a symmetric idempotent in Endg(A).

Theorem 3.3.1. [BL, Theorem 5.3.2]

There is a bijection between the set of abelian subvarieties of an abelian variety A and the set of
symmetric idempotents in Endg(A)

To be specific, if € is an element in Endg(A), and d is the smallest positive integer such that
de € End(A), then under the above bijection, € corresponds to the abelian subvarity A® := Im(de) in A.

An abelian variety is called simple if it does not contain any abelian subvariety apart from itself
and 0. There is a simple decomposition of any abelian variety, unique up to isogeny.

Theorem 3.3.2 (Poincaré’s Complete Reducibility Theorem). [BL, Theorem 5.3.7]
Given an abelian variety A, there is an isogeny

ni n2 nE
A~ AT X AP X - X A

where Ay, --- , A, are non-isogenous simple abelian varieties. Moreover, the abelian varieties A; and
the integers n; are unique up to isogenies and permutations.

Note that any non-zero endomorphism of a simple abelian variety A is an isogeny, thus a unit in
Endg(A). Therefore Endg(A) is a division ring of finite dimension over Q. In fact, for any (non-simple)
abelian variety A, its Q-endomorphism algebra Endg(A) is semisimple.

Corollary 3.3.3. [BL, Corollary 5.3.8]
Suppose A ~ AT x AJ? x --- x A}* is an isogeny decomposing the abelian variety A into a product
of simple subvarieties. Then

Endg(A) =~ My, (F1) © Mp,(F2) @ -+ @ My, (F)

where F; = Endg(A;) are division rings of finite dimension over Q, and M, (F;) are the rings of n; X n;
matrices with entries in Fj.

3.3.2 Endomorphism structure of abelian varieties

In this subsection, we will introduce the possible endomorphism structures of an abelian variety. We
will first focus on simple abelian varieties and give a classification of division rings that arise as their
endomorphism algebras.

Let (F,p) be a division ring of finite dimension over Q with an anti-involution p. Let K be the
centre of F', and K be the fixed part in K by p.

One can define a quadratic form associated to (F, p) which we will describe as below [BLL Section
5.5]. The degree [F : K] of I over K is a square d>. Any element f in F has reduced characteristic

25



polynomial of f over K, which is the d power of a polynomial t? — a1t% + ... + (=1)%g € K|t].
The reduced trace of f over K is defined as

tr i (f) = a1

For any subfield k£ < K, the reduced trace of f over k is defined as

tr g (f) = tr g (bt P (f))

where trgy;, denotes the usual trace for field extension k¥ C K. Finally we define a quadratic form on F

by f = trpo(f? - f)-
Before we proceed, we give a list of definitions.

Definition 3.3.4. [BL, Section 5.5]
Let F' be a division ring of finite dimension over Q with an anti-involution p.

(i) F is a quaternion algebra if its degree over its centre K is 4, and it has a canonical anti-
involution

[ f=trpg(f)—f
(ii) p is positive if the quadratic form f w trpo(f? - f) is positive definite.

Definition 3.3.5. [BL, Section 5.5]
Let @@ be a number field.

(i) @ is a totally complex number field if there is no embedding Q@ — C that factors via R.
(ii) @ is a totally real number field if every embedding Q — C factors via R.

(i1i) If Q is totally real, then an element a € Q is totally positive (resp. totally negative) if
o(a) >0 (resp. o(a) <0) for every embedding o: @Q — R.

If (F,p) is the endomorphism algebra of a simple abelian variety, then more can be said about the
pair.

Proposition 3.3.6. [BL, Theorem 5.1.8, Lemma 5.5.2]
Let A = (T, L) be a simple abelian variety. Consider F = Endg(A), which is a division ring of finite
dimension over Q. Let p be the Rosati involution on F induced by the polarisation L. Then

(i) p is positive.
(ii) The fized part Ky of K by p is a totally real number field.
There is a classification of endomorphism algebras of simple abelian varieties:

Theorem 3.3.7. [BL, Theorem 5.5.3]

Let F' be the endomorphism algebra over Q of a simple abelian variety and p be its Rosati involution.
Let K, Kqg C F be as defined at the beginning of the section. Then F' falls into one of the following
cases:

1. F is of the first kind: K = K. In particular, F' can be a

i. totally real number field: F'= K and fP = f for all f € F.
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7. totally indefinite quaternion algebra: F' is a quaternion algebra over K and every em-
bedding o: K — R satisfies
o(F) @R ~ My(R).

Moreover, there exists an element a € F with a®> € K totally negative such that f° = o™ fa
forall f € F.

7i1. totally definite quaternion algebra: F' is a quaternion algebra over K and every embed-
ding o0: K — R satisfies
o(F) @R ~H

where H is the Hamilton quaternions (—1,—1)r. Moreover, fP = f for all f € F.

2. F is of the second kind: K # K. In particular, K is a totally complex number field [BL,
Lemma 5.5.4].

More generally, for any (possibly non-simple) polarised abelian variety, we can describe its endo-
morphism structure as a division ring (F, p) of one of the above types together with a representation
® of F, subject to satisfying some compatibility conditions.

Definition 3.3.8. [BL| Section 9.1]
Let (F, p) be a division ring of finite dimension over Q and p a positive anti-involution. Let ® be a
representation of F by g-by-g complex matrices

O: FF— My(C).

Then o polarised abelian variety with endomorphism structure (F,p, ®) is a triplet (A, E, 1)
where A ~ (C9/A) is an abelian variety, E is an alternating form on C9 defining a polarisation on X,
and ¢ is an embedding

t: F — Endg(A) C My(C)
such that

(i) ® and v are equivalent representations, i.e. there is a C-linear map G on Cy4 such that o(f) o G =
Go®(f) forall f € F, and

(it) (Rosati condition) the Rosati involution on Endg(A) extends the anti-involution p on F via t.

For the obvious reason, an abelian variety is said to admit a real multiplication, a totally in-
definite quaternion multiplication, a totally definite quaternion multiplication or a complex
multiplication if there is respectively an embedding of a totally real number field, a totally indefinite
quaternion algebra, a totally definite quaternion algebra or a division ring of the second kind into its
endomorphism algebra over Q.

Remark 3.3.9. The representation ® of F' realises C9 as a F-module.

Remark 3.3.10. Let (F,p) be a division ring with positive anti-involution p. Then for any integer
n, by putting MP = (mfj)lt for any M = (m;;) € My(F), the Rosati involution p extends to a positive
anti-involution on My (F') which we also call p. Under this notation, the Rosati condition then translates
to: for any a € F,

t(a”) = (a)P.

Moreover [BLl Proposition 5.1.1], if F = Endg(A) for some abelian g-fold A, then the Rosati
involution on Endg(A) is the adjoint operator with respect to the alternating form E associated to the
polarisation of A: for all x,y € C9 and a € F,

E(x,(a)y) = E((a”)z,y).
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We will discuss coarse moduli spaces of polarised abelian varieties with certain endomorphism struc-
ture in the next subsection. Recall a moduli space parametrises objects in a family up to isomorphisms.

Definition 3.3.11. Two polarised abelian varieties (A, E, 1) and (A’ E',.) with endomorphism struc-
ture (F, p, ®) are isomorphic if there is an isomorphism of polarised abelian varieties

f: (A E) — (A E)

such that for all a € F,
foula)=1i(a)o f.

3.3.3 Moduli of polarised abelian varieties with totally definite quaternion multiplication

Referencing [Sh, Section 2.2], we construct the moduli space for a family of polarised abelian varieties
with totally definite quaternion multiplication given by (F,p,®). For simplicity, we will restrict our
discussion to the case F' ~ Hg := (—1,—1)g, and in particular, KX = Q. One can refer to [Sh] for
the more general argument with respect to a totally definite quaternion algebra F' ~ (Hg)® with index
e:=[K:Q] >1.

Similar to Section we would like to obtain an expression of the period domain of the weight
one Hodge structures on the first cohomology groups. We will first introduce some attributes associated
with any polarised abelian g-fold A = (T = CY9/A, E, 1) with totally definite quaternion multiplication
(F, p, ®), which describe the abelian g-fold as a member in a family. These attributes depend on an
explicit expression of the representation ®. Following [Sh|, we will fix the representation ® of F' to
appear in a standard form ®g.

Theorem 3.3.12. [Sh Section 2.1]
Let X be the representation of Hg by 2-by-2 complex matrices

X: HQ — M2(C)
a+bj —s (—ab Z) with a,b € Q(1,1),

where Q(1,1) is the Q-algebra generated by 1 and the imaginary unit i.

Let m := g/2. Then for any representation ® of Hg by g-by-g complex matrices such that (F, p, ®)
1s the endomorphism structure of an abelian g-fold, ® is equivalent to a m-multiple of the representation
X. That is, there exists G € GL4(C) such that

GO(z)G™ = dyq(z) := X(2) @ 1y,

for any x in Hg, where ® is the Kronecker product of matrices: given any positive integers m,n,r, s
and K a field, define
®: Mm,’fl(K) X MT,S(K) — Mmr,ns(K)
auB tee alnB
(A ={aij}ij, B = {brtrt) — {aibritri-1)trsG-na = | '

amiB o amnB

Remark 3.3.13. The representation X extends to a representation of My(Hg), which we still denote
as X:

X: Md(HQ) — Mzd((C)

A B] , where A, B € Mg(Q(1,1)).

A+ Bj+— [B i
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In the rest of the subsection, we will fix the representation ® to be the standard representation ®gq.
By picking the right coordinate system for CY, the matrix «(x) is represented by ®(x) for all z € F', so
Ag = A ® Q can be considered as a left F-module, as F' — Endg(A).

Remark 3.3.14. [BL, Section 9.9]

In our case (m > 2 and F = Hg), we have «(F) = Endg(A) for most members A in the moduli
space, i.e. A is in the complement of the union of at most countably many proper subvarieties of the
moduli space. We call such a member A a very general member of the family.

The first attribute associated to A is a set of m vectors {x1, -,z } in C9 D A, such that
m
Ag=> O(F)xi. (1)
i=1

The second attribute is a free Z-module M of rank 4m in F"™ such that when restricting the equation
to the lattice A, we have

A:{;Cb(ai)xi: (ag,--- ,am)GM}. (2)

The third attribute is a non-degenerate matrix 7 € M,,(F') which determines the alternating form
E on CY, indexed with respect to {1, ,z;,}. Note that for each index i and j, the mapping

F—Q
avr— E(®(a)z;, ;)

is Q-linear. Therefore, there exists an element ¢;; € F' such that E(®(a)x;, zj) = trp|g(ati;). Combining
with Remark [3.3.10] for all z,y € Ag we have

m

Bz,y) = B [ Y ®(ai)wi, y_ b))z | = trp, | Y aitidf (3)
i=1

j=1 ij=1

for some suitable a;’s and b;’s. Thus T := (t;;) is the matrix for £|s,, which extends R-linearly to E.
Note that 7 reflects the properties of E as in Theorem (TP)t = —T for E is skew symmetric,
and trp), (MTMP) C Z for E is Z-valued on A.

Before we show the significance of these three attributes in the next theorem, let us derive another
matrix H out of the present data. Extend equation linearly to R. Then any x € C9 can be
expressed as a sum » .*, ®(a;)z; for some ay,- - ,an in Fr := F ® R. Therefore, the map sending
x— (a1, ,am) gives an isomorphism CY — F7*. In particular, if we denote by v/—1 the push forward
ws(J), where p: R29 — C9 is the isomorphism in Deﬁnition and J is the positive complex structure
J associated to A, then there exists a unique matrix H = (h;;) € My, (Fr) such that

\/jlxi = in: @(hij)xj (4)
=1

Remark 3.3.15. In Section we used the imaginary unit © € C to represent the action of J
on the C-vector space C9. But here, we deliberately choose a different symbol /—1 for the action
of J (or equivalently h(i) if we use the alternative definition for Hodge structure in Remark .
This is to avoid confusion with the purely imaginary elements i,j and k in the endomorphism algebra
Endg(A) D Hg which also act on CI: we now deem C9 as an Hg-module by Remark; .
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Indeed, by definition any endomorphism f € Endg(A) preserves the complex structure J of A. In
other words, the action of J commutes with the action of f. This further implies that for any simple
abelian g-fold A with a division ring F' := Endg(A), the action of any element f € F is on the right. To
see this, let /—1 be a general complex structure of A. It acts on the left as a complex structure is a linear
operator by definition. By Poincaré’s Complete Reducibility Theorem, we have Endg(A x A) ~ My(F).
In order for g € Endg(A x A) to commute with the action of v/—1 & \/—1, the matriz g € Ma(F)
must act by right multiplication. In particular, an endomorphism f € Endg(A) induces an element
f & f € Endg(A x A) which is equivalent to a scalar matriz in May(F'). Projection from Ma(F') onto F
in the (1,1)"-entry implies F also acts from the right.

However, under the representation ® (equivalent to ) which identifies f € F to an element in
My(C) as in Definition [3.3.8, the matriz ®(f) € My(C) = End(Cy) has the usual action on Cy by left

multiplication.

Upon satisfying some conditions, the above three attributes uniquely determine an abelian variety
with endomorphism structure.

Theorem 3.3.16. Let (F,p,®) as defined in Definition . Let M be a free Z-module in F™ of
rank 4m, and T a non-degenerate matriz in Mp(F) such that TP = =T and trpp(MTMP) C Z.
Then M and T, together with a set of C-linearly independent vectors {x1,--- ,xm} C C9, completely
determine a polarised abelian g-fold (T, E, 1) with endomorphism structure (F,p,®) if and only if both
of the following conditions are satisfied:

(a) Ag = >0 O(Fr)xi; and

(b) If H € My, (FRr) is derived from (a) and satisfies Equation ({]), then THP is p-symmetric and
p-positive, i.e. (THP)? = TH? and trpg(x(THP)z") > 0 for all x € Fg' \ {0}.

Proof. (=) Condition (a) was shown in the derivation of Equation (4). Condition (b) is immediate
because of our construction of the alternating form E from the polarisation form ¥ on H'(A, R)..

(<) It is clear that T is determined and ¢ is equivalent to ® as representations. We can define £
by the R-linear extension of equation . It remains to show that E defines a polarisation on T as in
Theorem and the Rosati condition in Definition [3.3.8

Theorem i) is a result of the assumption trpg(MTMP) C Z.

Combining equations and , then we can represent the form (x,y) — E(x,v/—1y) by the
matrix 7H?. Then Theorem [3.2.3(iii) follows from condition (b). So by Remark the form
(z,y) = E(v/—1z,1/—1y) is given by the matrix H7 H”. Condition (b) and T* = —T give us

TH? = (THP) = —HT

so the matrix HTH? is in fact —H?T. Moreover, by multiplying equation by v/—1, we know
H? = —1. So Theorem (ii) is also satisfied.

Finally as in [BL, Proposition 9.5.3], for all ¢ € F and z,y € CY such that x = ;" | ®(a;)z; and
y =7 ®(bj)z;, we have

m m
E(®(c)r,y) =tr pg Z caitijbf =1 ;| Z a;itij(c’b;)P | = E(z, ®(c”)y).
i,j=1 t,j=1

Again by Remark [3.3.10] the extension of the anti-involution p on F' via ® is the Rosati involution as
it is the adjoint operator with respect to E. ]
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Given a pair (M, T) satisfying 77 = —T and trpg(MTMP) C Z, the abelian g-folds with the
attributes (M, T) then form a family fa7 which we call a family of polarised abelian g-folds
with endomorphism structure (F,p, ®) associated to (M, 7). Clearly the remaining attribute
{z1, -,z } C CY distinguishes isomorphic abelian varieties. It is therefore natural to consider the set
of {1, - ,xm} as the period domain associated to faq 7.

Remark 3.3.17. In fact the only important information that the attribute {x1,--- ,xm} C CI associated
to a member A of the family fa 7 encode, is the complex structure J of A. We will later see in the

explicit calculations in Section that we may choose a set of real vectors {(zr)1,- -+ , (Tr)m} C RI®
shared by all members in the fa 7, such that the attribute {z1,--- ,xm} of a member A can be recovered

from this set and the complex structure J of A. Moreover, there are “real” versions of Equations (@
and (@) that only depend on the set of real vectors. Therefore, the parameter of the family fi 71 is
effectively the complex structure of the members.

One can in fact standardise the attribute {zi,---,z,} by associating it to a period matrix X €
M,(C). Write each vector z; in the form
%
i

where u;, v; € M, x1(C) and put U = (ug, -+ ,up), V = (v1, -+ ,vm). Define a matrix

S pa)

Upon choosing a suitable basis of Fg* such that 7! is given by v/—1 - 1,, with respect to M, or
equivalently the complex matrix v/—1X(7)~! is in the form diag(—1,,,1,,), then the m-by-m complex
matrix Z := —V U satisfies Z! = —Z and 1 — ZZ' > 0. Furthermore by change of basis of CY, that
is by the left multiplication action of GL4(C), we can assume that V' = 1,,, and the period matrix X
is in the standardised normalised form

—7 1y

B

which is unique to the attribute {x1,--- ,x,,}. Therefore, we have the following theorem analogous to

Theorem [3.2.21]

Theorem 3.3.18. There exists a complete family f : X — S of polarised abelian g folds with endomor-
phism structure (F,p, ®) associated to (M,T), that is, the association of a normalised period matriz
to a member in the family which is determined by the attribute {x1, -,z } C CI gives a multi-valued
map

S — Hypn = {ZeMm(C):—Z:Zt,l—Z7t>O}
such that the preimage of any Z € H,, is non-empty.
As in Section H., is a period domain for some polarised weight 1 Hodge structures.

Corollary 3.3.19. In a family fa 1 of polarised abelian g-folds with endomorphism structure (F, p, ®)
associated to a pair (M,T), the analytic manifold H,, is the period domain of the weight 1 Hodge
structures on R% = Al of the abelian varieties as real tori R?9/A’.

Proof. Tt can be seen that the standardised normalised period matrix X of any abelian variety A in
fm,7 depends only on v/—1, which is the action of the positive complex structure J of A: it gives the
generators of A = p(A’) in terms of a suitable basis of C9 such that 7! = /—1 - 1,,.

In particular, if we replace ® by ®g, a representation of F' by 2g-by-2¢ real matrices, then there
exists a set of m vectors {(zr)1, -, (Zr)m} C R?9 such that A’ = Y- | ®g(F)(zr);. This set of real
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vectors of length 2¢ is invariant in the family. So H,, parametrises the positive complex structures on
R29 /A’ whose action commutes with that of F', which are equivalent to the weight one Hodge structures
of the first cohomology of the members in faq7. O

With this interpretation of H,,, we can derive another expression of H,, as a quotient of Lie groups
similar to Theorem [3.2.22]

Theorem 3.3.20.
Hy >~ SO*(2m)/ U(m).

To prove the statement, first we derive another expression of the Lie group SO*(2m). Similar to X
in Remark [3.3.13] there is natural embedding

XR = Mgm((C) — M4m(R)

A+ Bi— [ A B] , where A, B € My, (R).
—-B A
We will show that

Theorem 3.3.21. B
Xg (SO*(2m)) = Xg (M2, (C)) N Autg (RY™) N Sp(J).

where

Autg(RY™) := {M € GLyn(R) : Mh = hM for all h € H}
is the automorphism group of R¥™ as a H-module, and

Sp(J) := {M € Mym(R) : M*TM = J} with J = [Jm 0 ]

0 Jnl|’
Proof. Recall from Definition [2.2.4|(iv)
SO*(2m) = {M € Mo(C) : M"JyM = Jp, M'M = 15, }
Write M € SO*(2m) = A + Bi, where A, B € Ms,,(C). Then the condition M*M = 14, translates to

{AfA — B'B =1y, -

A'B + B'A = Ogpp,.

Moreover, M'M = 14, is equivalent to M* = M~!. So the condition M?!.J,,M = J,, is equivalent to
saying J,M = M J,,, which translates to

ImA = A (**)
IJmB = —BJ,,.

On the other hand, to give an explicit expression of the group Auty(R*™), let us realise R*™ as a
H-module using a specific representation ®: H — My, (R) determined by

i —1:= Jom
[0

One can check that indeed 7% = 5> = —1 and ij = —i. This gives

Autg(R?*™) = {M € GLy,,(R) : Mi =M and Mj=jM}.
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So for M = Xg(A + Bi) where A, B € My, (C), then M € Autg(R*™) if and only if A and B satisfy
. Moreover, M!JM = J if and only if

A'A - B'B —A'B - B'A] + ~

A'JnA+ B'JnB A'Jn,B - B'J,A] F_j
BtJ,A—- A'J,B B'J,B+ A'J,A by () B'A+ A'B —B'B+ AtA|" 7
i.e. if and only if @ is satisfied. O

Remark 3.3.22. By Corollary|3.3.19, the group SO*(8) is the automorphism group of the period domain
for weight one Hodge structures on A associated to the family faq 7.

We are ready to prove Theorem [3.3.20
Proof. As in [BLl Chapter 9.7], consider the group
Uy (H) := {M € M,,(H) : M*(i1,,)M = il,,}

where M is the canonical involution of the quaternion algebra on M as defined in Definition m
The representation ® in the proof of Theorem identifies X(U,,(H)) < GL2,(C) to a subgroup
of Autg(R*™). Moreover, if we denote by e the standard H-Hermitian skew form represented by the
matrix 71,,
e(z,y) = Triys + -+ + TmiYm,

then ie is a H-Hermitian symmetric form. Therefore X(U,,(H)) also leaves the Hermitian form X, (i€)
invariant. B

On the other hand, note that the symplectic form represented by J is equivalent to the standard
symplectic form represented by Jo,, by reordering the chosen basis of R¥™. By the same argument
as in the proof of Theorem [3.2.22] preserving Jo, is equivalent to preserving an alternating form E
associated to the polarisation of a weight 1 Hodge structure on R*”™. Note that the Rosati condition
for E is automatically satisfied. Since F uniquely determines a Hermitian symmetric form by Theorem
the group X(U,,(H)) is isomorphic to SO*(2m).

By [BL, Proposition 9.7.2], the group X(U,,(H)) acts on #,, by

X(Up(H)) X Hypp — Him

([—é} ﬁ] ’Z> > (A-Z+B)(~B-Z+A)".

Furthermore, [BLl, Proposition 9.7.2] says this action is transitive, and the stabliser subgroup

X(Un(H)) N U(2m) = { [‘g iﬂ € Mop(C) : AA = 1m} ~ U(m)

is compact. O

Remark 3.3.23. Again, we can apply Theorem to show transitivity of the action of SO*(2m) on
Hom: let g = 2m, then by Theorem|3.3.21, Xg(SO*(2m)) is the automorphism group of R?9, preserving
its H-module structure and the polarisation E of its weight 1 Hodge structure.

Remark 3.3.24. When working with Shimura’s construction of the family fa,7 which we have just
introduced above, the preferred definition for the group SO*(8) is X(U,,(H)). i.e. we may consider
Xr(X(Up,(H))) C Aut(Ag) which preserves the real torus structure R?9 /A’ shared by every abelian g-
fold in the family. Indeed, left multiplication by Xgr(X(U,,(H))) preserves the H-module structure of Agr
(given by M), as well as the matriz il,, (which is exactly the matriz T ' when X is in the standardised
normalised form,).
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As in Remark |3.2.24), we may identify any element Z in H,, with a GL(g,C)-equivalence class of
block matrices
Z
1,]°

and the action of X(U,,(H)) on H,, in [BL, Proposition 9.7.2] can be thought of as left multiplication
on these classes.

Remark 3.3.25. Referencing [He, Table X.6.V], the unitary group U(m) is the mazimal compact
subgroup of SO*(2m), and H,, is an irreducible HSD of type II,,.

We also have a general expression for the monodromy group of fa4,7-

Theorem 3.3.26. The monodromy group I'(M,T) < SO*(2m) of a family fa,1 is given by
F(MaT) = {N € Mm(HQ) :MN = M,NTNP = 7'}

Proof. See [Sh, Theorem 2]: two members in the family represented by Z and Z’ in H,,, are isomorphic
if and only if Z and Z’ are in the same I'(M, T )-orbit. O

Therefore the Global Torelli Theorem is true for a family of polarised abelian g-folds with a to-
tally definite quaternion multiplication. Moreover, any discrete subgroup of SO*(2m) acts properly
discontinuously on M by [BL, Proposition 9.7.4]. So

Amr) =TM, TN\ Hm

is a quasi-projective variety by the Baily-Borel Theorem. We call A7) the moduli variety of
polarised abelian g-folds with totally definite quaternion multiplication associated to the
pair (M,T), which is a moduli variety of PEL type. It has the same dimension as H,,, which is
m(m —1)/2, and is a LSV of type II,,.

3.4 Lattice theory

We have seen lattices in the definition of an abelian variety. Let us recall some lattice theory which will
be useful for defining K3 surfaces and their lattices of polarisation.

3.4.1 K3 Lattice

First we will give the basic definitions and examples of lattices in order to define a special lattice called
the K3 lattice. The followings are mainly taken from [Hul Section 14.0].

Definition 3.4.1. A lattice is a pair (A,b) where A is a free Z-module, and b is an integral symmetric
bilinear form on A which we will always assume to be non-degenerate. That is, the pairing b is of full
rank.

By choosing a basis of Ag D A, the lattice A is often characterised by the matrix M of its symmetric
bilinear form b. We define the following invariants of A with respect to any change of bases.

(i) The rank of A, rk(A), the rank of b or equivalently rk(M).

(ii) The pairing b on A induces a pairing on Ag, which can be diagonalised with only +1 on the
diagonal. The signature of A is the pair (ny,n_) where ny is the number of +1 on the diagonal,
and they add up to rk(A).

(iii) The discriminant of A, disc(A), is the determinant of M.
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Here we give some examples of lattices:
Example 3.4.2.

(1) The standard hyperbolic plane U is the rank 2 lattice

0 1
o= (1),

Clearly, it has signature (1,1) and discriminant —1.

(2) Forn =6,7 or8, the E,, lattice is the rank n lattice given by the root lattice of the E,, root system.
It has signature (n,0). In particular, the Eg lattice has discriminant 1.

(8) Similarly for any n > 4, the lattice D, is the rank n lattice given by the root lattice of the Dy, root
system. It has signature (n,0). In particular, the Dy lattice is given by the rank 4 matriz

Mp, =

— o= =N
S O N
SN O =
N OO

(4) For any d € Z\{0}, the lattice denoted by (d) is the lattice given by the rank 1 matriz (d). In
particular, (2) is the Ay lattice given by the root lattice of the Ay root system.

(5) The Nikulin lattice N defined in [Mol, Definition 5.3] is a rank 8 lattice of signature (0, 8).

(6) Let (A,b) be a lattice. Then for any d € Z\{0,1}, we define A(d), the twist of A by d, to be the
lattice (A, d - b). Clearly, tk(A) = rk(A(d)) and disc(A(d)) = d™*M disc(A).

(7) Let (A1,b1) and (A2, b2) be two lattices of signature (ny,n_) and (my,m_) respectively. We define
the orthogonal direct sum of the two lattices to be A = (A1 @ Ag,b), where

b((w1, 1), (22,92)) = b1(z1, 22) + b2(y1, y2)-

Clearly, we have tk(A) = rk(A1) + rk(A2), signature of A is (ny +my,n_ +m_) and disc(A) =
disc(A1)-disc(Ag). Ezxamples (1)-(6) are indecomposible lattices, i.e. none of them can be expressed
as an orthogonal direct sum of two lattices of strictly lower ranks.

Let us define morphisms of lattices. Let (A,b) and (A, V') be two lattices.

Definition 3.4.3. A morphism of lattices ¢: A — A is a linear map that respects the symmetric
bilinear forms b and V', i.e. for all x,y € A,

V(p(x), ¢(y)) = b(x,y).

An embedding is an injective morphism. An embedding is a primitive embedding if its cokernel is
torsion free. An tsometry is a bijective morphism.

One significant structure associated to a lattice A is its discriminant group.

Definition 3.4.4. The dual of the lattice A is the subset of Ag

A :={l€Ag:b(l,m) €Z for allm € A}.
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By definition, there is a natural embedding
s A= AY.

Define the discriminant group of the lattice A to be the cokernel of 1,
Apx =AY/A

which is a finite group of order | disc(A)].
We define the length of the lattice A, denoted I(A), to be the minimal number of generators of its
discriminant group Ap.

We also define the following predicates of a lattice A.
Definition 3.4.5.

(i) Odd or even. A lattice A is called even if for any x € A, 2% := b(x,x) € 27Z; otherwise it is
called odd.

(ii) Definite or indefinite. Let the signature of A be (ny,n_). The lattice A is called definite if ny
or n_ is 0; otherwise it is called indefinite.

(ii) Unimodular, d-elementary. The lattice A is unimodular if the discriminant group Ay is trivial,
or equivalently | disc(A)| = 1, or [(A) = 0. If Ay ~ (Z/dZ)!, we say A is d-elementary.

Remark 3.4.6. In Ezample[3.].3

(i) The hyperbolic plane U, the root lattices E7, Eg, Doy, for n > 2, Ay and the Nikulin lattice N are
even lattices. Orthogonal direct sums of even lattices are even.

(ii) Clearly, the root lattices and N are definite, but U is indefinite. A twist of a definite (resp.
indefinite) lattice is definite (resp. indefinite).

(iii) The lattices U and Eg are unimodular. U(2), E7, Eg(2), Doy, for n > 2, Ay and N, as well as
their twists by —1, are 2-elementary. Orthogonal direct sums of unimodular (resp. d-elementary)
lattices are unimodular (resp. d-elementary).

The following rank 22 lattice called the K3 lattice is significant in the discussion of K3 surfaces:
Ags = U @ FEg(—1)%2,
It is clear that Ags is even, 2-elementary and indefinite of signature (3,19). In fact, it is the unique
lattice with these properties [Moll, Theorem 1.3] up to isometry.

3.4.2 Primitive embeddings of even, indefinite, 2-elementary lattices

We will discuss primitive embeddings of even, indefinite, 2-elementary lattices into the K3 lattices later
when we define a lattice polarisation of K3 surfaces. Let us specifically study the even, 2-elementary
lattices and define more attributes.

Definition 3.4.7. Let (A,b) be an even lattice. The pairing b on A induces a Q-valued pairing on AV,
thus a pairing
bAA: AA X AA — Q/Z

There is a unique associated quadratic form

qa,: Ax — Q/2Z
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such that for any o, 7 € Ay, it satisfies the polarisation formula

qA, (U + T) =4qA, (U) +2ba, (07 T) +qa, (T)

We call ga, the discriminant form of A.
Moreover [CM1, Section 2], if A is 2-elementary, then the discriminant form qa, takes values in
Z)27. We define the parity of A to be

(S(A) _ 0, iquA(T) eZ fOT’ all T € AA;
1, otherwise.

The even, indefinite, 2-elementary lattices are classified by the following.

Theorem 3.4.8. |Ni, Theorem 3.6.2]
An even, indefinite, 2-elementary lattice A is uniquely determined by the triple ((n4,n—_),l(A),d(A))
up to isometry. Moreover, such a lattice exists only if | +ny +n_ =0 mod 2.

Suppose an even, indefinite, 2-elementary lattice A given by the triple ((ny,n-),l,0) primitively

embeds into an even lattice (A, b) of signature (74, 7_). Consider its orthogonal complement AL in A
with respect to b. We have the following general theorem.

Theorem 3.4.9. [Mol, Lemma 2.4] N
Let A — A be a primitive embedding of even lattices. If A is unimodular, then qa, = 9A 1)

If At is also indefinite, then AL is also fully determined by the triple ((ny — ny, n_ —n_),1,0)
applying Theorem [3.4.8

For convenience, here we list the values of the triples ((ny,n_),I(A),d(A)) for each unimodular or
2-elementary indecomposible lattice A in Example These values can be checked using MAGMA.

A (ny,n_)

~
—~
=
SN—
(o)
—
=
N—

O3] 3S| oo —| o —
CIR=IR = R = = =R s
~— | ~— |~ | — [ — | ~— | — | ~—| ~—

O PN NN OO
(=3 N ol ) N e) el Hen) N an)

3
N
Il
o
El
o
o,
N
~
—~| |~ == | ~| —~| —~

Table 4: Lattices and their invariants

3.5 K3 surfaces
3.5.1 Polarised K3 surfaces
We continue to work over the complex numbers. Furthermore, we only consider algebraic K3 surfaces.

Definition 3.5.1. [Hul, Definition 1.1]
An algebraic K3 surface X over C is a complete non-singular variety of dimension 2 such that
Q%(/k ~ Ox and H'(X,0x) = 0.

Here we give a few explicit examples of K3 surfaces.
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Example 3.5.2. [SS, Example 12.2]

(i) Quartic surfaces. A smooth quartic in P3 is a K3 surface. For any quartic surface with isolated
rational double points (i.e. canonical surface singularities), its minimal (crepant) desingularisation
is also a K38 surface.

(ii) Double sextics. A double sextic is a double cover of P? ramified along a smooth sextic curve.

(iii) Kummer surfaces. Let A ~ C?/A be an abelian surface. Blowing up at the 16 ordinary double
points in the quotient of A by the action of —1 € C yields a K3 surface Kum(A) called a Kummer
surface. In particular, there is a rational double cover (A — A/(—1) --» Kum(A)).

Much of the geometry of a K3 surface X can be extracted from its second integral cohomology. Here
we present some properties of H?(X,Z).

Theorem 3.5.3. [SS, Section 12.2]
For any K3 surface X, H*(X,Z) is torsion-free. Moreover, H*(X,7) with its intersection form is an
even unimodular indefinite lattice of rank 22 isomorphic to the K3 lattice Axs. An explicit isomorphism

¢: H*(X,Z) = Aks
is called a marking of the K3 surface X.

The lattice H2(X,Z) has a polarised weight two Hodge structure. By [Hu, Remark 1.2], any complete
smooth algebraic surface, in particular a K3 surface, is projective. That is, for a K3 surface X, there
exists an ample line bundle L in its Picard group Pic(X). The image under the first Chern map
c1(L) € H%*(X,Z) defines a polarisation of the K3 surface. As described in Section a Kahler
form w given by c¢;(L) also determines a polarisation form on the weight two Hodge structure on
H?(X,7).

Remark 3.5.4. [Hu, Theorem 7.3.6]
Choosing a Kdhler form w is also equivalent to choosing the complex structure J of a compler K3
surface and a Kdhler metric g: we may define

wi=g(J (), ).

Given Theorem let us state some facts about the first Chern map specific to K3 surfaces.
Since H'(X,Ox) is trivial, the first Chern map ¢; as part of the long exact sequence in Section

o — HY(X,0x) — HY(X,0%) 2= H*(X,Z) — ---

is injective. Since H?(X,Z) is torsion-free, the Picard group Pic(X), as the source of the first Chern
map, has no torsion. If we denote the intersection form on Pic(X) by b, then Pic(X) is a lattice which
we refer to as the Picard lattice. We call the rank of Pic(X) the Picard rank and denote by p(X).
The Hodge index theorem (see [Hul, Section 1.2.2]) further says that Pic(X) is a lattice of signature

(L, p(X) — 1).

Remark 3.5.5. Since ¢ is injective, we identify the Picard lattice Pic(X) with the Néron-Severi group
NS(X) which we also call the Néron-Severi lattice. We will use these notions interchangeably.

Fix an ample line bundle L € Pic(X). Since H?(X,Z) is an even lattice, c1(L)? := b(c1(L),c1(L)) =
2d for some positive integer d. We say (X, L) is a polarised K3 surface of degree d.

However, we are interested in K3 surfaces with a more general notion of polarisation called a lattice
polarisation. Without a lattice polarisation, it is not possible to give a moduli space of K3 surfaces that
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is Hausdorff [Hul Section 6.3.1]. First we need some definitions concerning R-line bundles on a K3
surface X, which are vectors in Pic(X) ® R.

Note that [GrifH, Chapter 1.1, Line Bundles| for a complex variety X, there is a one-to-one corre-
spondence between Pic(X), the group of isomorphism classes of line bundles on X, and CaCl(X), the
group of Cartier divisors of X modulo linear equivalence. We may extend this correspondence for the
R-line bundles by defining a R-Cartier divisor to be a Weil divisor D such that O(D) is a R-line
bundle.

Suppose L is a R-line bundle on X, and let the global sections {sg,---,s,} be a basis of I'(X, L)
(which do not necessarily generate L). Then there exists a rational map ¢r: X --» P{ given by
or(x) = (so(x), -+, sr(x)) defined away from the base locus of L. Recall that if L is a line bundle, then
L (or its corresponding Cartier divisor) is big if there exists an integer mg such that the rational map
¢rem is birational for all m > my.

Definition 3.5.6. A R-Cartier divisor D of X is big if D can be expressed as a positive R-linear
combination of big Cartier divisors.
A R-Cartier divisor is nef if it has non-negative intersection with any curve in X.

We also need the notion of a very irrational vector in the R-span of a lattice.

Definition 3.5.7. [AE, Section 2.2]
Let A be a lattice. A vector h € A @ R is very irrational if h ¢ A @ R for any proper sublattice
A CA.

We may now define a lattice polarisation for a K3 surface X. Let P be a lattice of signature (1,7 —1)
where 1 < r < p(X) < 20, and fix a very irrational vector h in P ® R.

Definition 3.5.8. [AE, Definition 2.6]
A lattice polarisation of X is a primitive embedding

j: P <= Pic(X)
such that j(h) is big and nef. We say (X,j) is a P-polarised K3 surface.

Remark 3.5.9. In [AE], a lattice polarisation (P,j) in the sense of Definition is called a P-
quasipolarisation, and is distiguished from a (strictly ample) lattice polarisation. The latter requires a
stronger condition: the class j(h) must be ample.

Remark 3.5.10. A primitive ample line bundle on a K38 surface X spans a primitive sub-lattice of
rank 1 in Pic(X). Therefore, a polarised K3 surface is also a lattice polarised K3 surface.

Remark 3.5.11. Let P’ be a sublattice of P of signature (1,7 — 1) for some r € Z>1. If P’ primitively
embeds into N3, then a P-polarised K3 surface is also a P'-polarised K3 surface.

Let us define an isomorphism of lattice polarised K3 surfaces before discussing their moduli spaces.

Definition 3.5.12. [AE] Definition 2.6]
Two P-polarised K3 surfaces (X,j) and (X', j') are isomorphic if there exists an isomorphism of
varieties f: X — X' such that j = f*o 3" and f*(j'(h)) = j(h).
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3.5.2 Moduli of lattice polarised K3 surfaces

We consider moduli spaces of K3 surfaces polarised by the same lattice P. We would like to to obtain
an expression for the moduli space of P-polarised K3 surfaces. The followings are mainly taken from
[AEL Section 2.2], [Dl Section 3] and [DK| Section 9, 10].

Let P be a lattice of signature (1,7 — 1) that can be primitively embedded into the K3 lattice Axs.
Let ¢: P — Ags be such a primitive embedding and identify P with its image ¢(P). Let T be the
orthogonal complement of P in Ags. It is a lattice of signature (2,20 — 7). We denote their associated
symmetric bilinear forms by b, and the quadratic forms that satisfy the polarisation formula by ¢.

Remark 3.5.13.

1. If the lattice P has rank v, then the family fp of P-polarised K3 surfaces is also said to have
Picard rank r. For any member in fp, its Picard rank is at least r by Remark[3.5.11]

2. We say a member in fp is very general if it corresponds to a very general point in the family of
deformations preserving the Picard group. That is, the lattice embedding P — Pic(X) is surjective.
Therefore we abuse notation and say that P is the Néron-Severi lattice associated to the the
family fp. We also call T = PALK3 the transcendental lattice associated to fp.

We first rigidify our family by considering the family of marked P-polarised K3 surfaces instead.

Definition 3.5.14. A marked P-polarised K3 surface is a pair (X, ), where X is a K3 surface
and ¢ is a marking of X such that ¢~'(P) C Pic(X). In particular, jp := ¢~ '|p: P — Pic(X) gives
the lattice polarisation of X.

Two marked P-polarised K3 surfaces (X, ¢), (X', ¢’) are isomorphic if there exists an isomorphism
of varieties f: X — X' such that ¢/ = ¢po f*.

Let f };4 : XM 5 M be the family of marked P-polarised K3 surface. As in Section the base
SM is covered by opens where each admits a holomorphic period map into Dr, the period domain of
weight two Hodge structures on T'. Indeed, the lattice T' carries a Hodge structure: by the Lefschetz
theorem on (1, 1) classes, H*%(X) which determines the weight two Hodge structure on H?(X,Z) is sent
to the C-extension of the transcendental lattice T under ¢. Therefore ¢(H*?(X)) C Tt determines a
weight two Hodge structure on T'.

Before having further discussion on the period maps of the family ffj\/[ , let us derive two explicit
expressions for the period domain Dp: as an analytic subspace of C??>~", and as the quotient of Lie
groups. Note that ¢(H?*°(X)) C T¢ is completely determined by the conditions in Theorem
which translates to the following: for all I € ¢(H?*°(X)),

(i) 1?2 € ¢(H*O(X)) = 0, and
(i) 1-1>0.
Therefore the period domain of the weight two Hodge structures on 7' is
Dr={[]€P(Tc):1*=0, -1>0}.
Lemma 3.5.15. The space Dr is (20 — r)-dimensional.

Proof. The C-vector space T has dimension 22 — r. Its projectivisation has dimension 21 — r. The
closed condition defining D as a subset in P(7¢) further subtracts one from the dimension. O

Again, we can express the period domain as a quotient of Lie groups.
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Theorem 3.5.16.
Dr ~0(2,20 —r)/(SO(2) x O(20 —1)).

Proof. For any [I] € P(1¢), write | = x 41y where z,y are vectors in the (22 —r)-dimensional real vector
space Tr. Then z,y span a positive definite plane II in Tk as [ -1 > 0.

Conversely, given any positive definite plane IT C TR, choose any basis {x, y} such that x-z = y-y = 1
and z-y = 0, and consider [I] = [z+iy] € P(T¢). Suppose another basis that satisfies the same conditions
is given by

ad —bc=A#0
{x/:ax—l—by,y/:cx—l—dy}, where S a2 + 02 =2 +d?=1
ac+bd =0

The system of equations gives a = Ad, b = —Ac and A = +1. The two values of A correspond to the
the choice of orientation of the plane II. Fixing the orientation of II is the same as fixing A = 1, in
which case [I'] := [z + iy'] = [(a — bi)l] = [I]. On the other hand, if A = —1, then [I| = [I]. Therefore,
Dy is the space of oriented positive definite planes in TR.

It is clear that Aut(Tg,q) = O(2,20 —r). By Theorem it acts transitively on Dr. Moreover,
the isotropy group of this action is SO(2) x O(20 — r), where SO(2) gives the condition A = 1. O

With this expression, Dr has two connected components which correspond to either choosing
H?%(X) to be generated by [ or I. Each connected component is given by the orbit space

SO™ (2,20 — 7)/(SO(2) x SO(20 — 7)).

Remark 3.5.17. By comparing to [He, Table X.6.V], SO(2) x SO(20 — r) is the mazimal compact
subgroup of SOT (2,20 — 1), and the quotient is an irreducible HSD of type 1Vao_.

Let us return to considering the period maps for the family f 1];4 . Recall from (3.1.3| that by patching
all the period mappings together, one obtains the global multi-valued mapping P : SM — Dp. In fact:

Theorem 3.5.18. [AE, Theorem 2.8]

The multi-valued map PM : SM — Dy is surjective. Moreover, for each point II € Dr as a plane in
Tr (as described in the proof of Theorem , there is a natural bijection between the fibre P~1(II)
and the group Wii(T'), which is the set of isometries on Axs generated from reflections in vectors from

{eGHJ‘ﬂT:ezz—Q}.

Remark 3.5.19. Suppose Il € Dr is the period point of a marked K3 surface with a strictly ample
polarisation (Remark [3.5.9). Then [D, Corollary 3.2] the group Wu(T) is trivial. Theorem
implies that PM restricted to the set of marked K3 surfaces with a strictly ample polarisation is a
bijection onto its image. That is, the Global Torelli Theorem is satisfied for a family of marked K3
surfaces with a strictly ample polarisation [Hu, Theorem 7.5.3]

Finally, we remove the marking of 3/ to obtain the global period map for the family of (unmarked)
P-polarised K3 surfaces f: X — S. Consider the orthogonal group of Aggs, which is the group of
isometries O(Ag3) = Aut((Axs)r, ¢). It has a subgroup

T(P) := {0 € O(Ak3) : o(p) = p for all p € P}.

Note that if a marked P- polarlsed K3 surface (X, ¢) is isomorphic to another marked P-polarised (X', ¢')
in the sense of Definition 9l then it is also isomorphic to (X', ¢’ o ¢) for any o € I'(P). Denote the
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image of I'(P) under the natural injective homomorphism from I'(P) to O(T) by ['(P). Then I'(P) acts
on Dr, and by Theorem [3.1.18] the global period map for the family f is given by the descent of PM:

L(P)\SM ~ § — T'(P)\Dr.

Since for any I € Dy the group W (7T') is a subgroup of f(P), Theorem implies that the global
period map is a bijection. In particular, the Global Torelli Theorem for a family of P-polarised K3
surfaces is satisfied.

Moreover by [D], Proposition 3.3], I'(P) is a subgroup of finite index in O(7T"), where the latter is an
arithmetic subgroup of O(2,20 — r). So by the Baily-Borel Theorem,

Kp :=T(P)\Dr

is a quasi-projective variety. We call Kp the moduli variety of P-polarised K3 surfaces. It has
at most two irreducible components; each is a LSV of type IVag_,, and has the same dimension as Dr,
which is 20 — r. In fact,

Theorem 3.5.20. [D) Lemma 5.4, 5.6]
Let Kp be the moduli space of P-polarised K3 surfaces. LetT be the associated transcendental lattice.
If T admits the lattice U or U(2) as an orthogonal summand, then the moduli space Kp is irreducible.

3.5.3 Shioda-Inose structure

In this subsection, we introduce the Shioda-Inose structure of a lattice polarised K3 surface associated
to an abelian surface. The main reference is [Moll.

Definition 3.5.21. [Moll, Defintion 5.1, Lemma 5.2]
An involution t on a K3 surface X is a Nikulin involution if 1*(I) =1 for any | € H**(X). Each
Nikulin involution has eight isolated fixzed points.

Definition 3.5.22. [Moll, Definition 6.1]

A K8 surface X is said to admit a Shioda-Inose structure associated to an abelian surface A
if there is a Nikulin involution ¢ on X such that the Kummer surface Y = Kum(A) is the minimal
resolution of X/(t), and if the associated rational double cover mx: X --+Y induces a Hodge isometry
(mx)s: Tx(2) = Ty, where Tx and Ty are the transcendental lattices of X and Y respectively.

If X has a Shioda-Inose structure, then there are rational double covers as in Diagram [I, where

(i) the map m4: A --+ Y is the rational map induced by the blow-up Y — A/(—1) at the 16 isolated
double points in the quotient of an abelian surface A by the group (—1); and

(ii) the map mx: X --» Y is the rational map induced by the blow up ¥ — X/(¢) at the 8 isolated
double points in the quotient of X by the group generated by the Nikulin involution ¢.

X A
77);'\ /'ﬂ'A
pYERT4
Y

Diagram 1: A K3 surface X with a Shioda-Inose structure associated to an abelian surface A.

One can in fact define a transcendental lattice T4 of the abelian surface A, and relate it to Tx
and Ty. For an abelian surface A, the cohomology group H2(A,Z) ~ U®3 is a lattice. Therefore,
the Néron-Severi group NS(A) in H%'(A)N H?(A,Z) is torsion-free. We call NS(A) the Néron-Severi
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lattice of A and its rank p(A) the Picard rank. We call its orthogonal complement T4 in H2(A,Z) the
transcendental lattice of A. The Néron-Severi lattice and the transcendental lattice are of signatures
(1,p(A) — 1) and (2,4 — p(A)) respectively. The transcendental lattice T4 carries a natural weight
two sub-Hodge structure of H?(A,Z) equipped with the intersection form (up to a sign on the Ti’o
component). Moreover, we have the following result that says a sublattice in U®3 of signature (1, -)
or (2,-) determines an abelian surface.

Theorem 3.5.23. [Moll, Corollary 1.9]
Suppose P — U3 (resp. T — U®3) is a primitive sublattice of signature (1,p—1) (resp. (2,4—p)).
Then there exists an abelian surface A and a Hodge isometry NS(A) ~ P (resp. Ty ~T).

Of course by our discussion in Section [3.5.2] Theorem [3.5.23] is also true for K3 surfaces when
replacing U®? by the K3 lattice and using the appropriate signatures.

The Shioda-Inose structure of X described in Diagram [l| induces Hodge homotheties, i.e. Hodge
isometries up to twisting, of the transcendental lattices T'x, Ty and T4 of X, Y and A respectively.

Theorem 3.5.24. [Moll, Remark 6.2]
Let mg: A --» Y be the rational double cover associated to the Kummer surface Y = Kum(A). Then

w4 induces the Hodge isometry
(ma)s: Ta(2) — Ty

If the K3 surface X has a Shioda-Inose structure associated to A, then we have the Hodge isometry
TX ~ TA.

These Hodge isometries give us the exact criteria for a lattice T' of signature (2,20 — p) to be the
transcendental lattice of a K3 surface with a Shioda-Inose structure.

Theorem 3.5.25. [Moll, Corollary 6.3]
A K38 surface X of Picard rank p with transcendental lattice Tx admits a Shioda-Inose structure if
and only if

(i) p=19 or 20; or
(ii) p=18, and Tx =U & T' for some lattice T'; or
(iii) p =17, Tx = U2 T" for some lattice T'.

Proof. From [Moll, Corollary 2.6], we know exactly when a lattice T" of signature (2, k) admits a primitive
embedding into 7' < U®3 for each value of k between 0 and 3. By Theorem this translates to
the criteria for a lattice of signature (2,k = 20 — p) to be the transcendental lattice of a Kummer
surface of Picard rank p satisfying 17 < p < 20. In fact, any Kummer surface has Picard rank at least
17: it has 16 exceptional curves from blowing up the 16 double points in A/(—1), as well as a Kéhler
class. So applying Theorem again gives us the complete set of conditions for a lattice of signature
(2,20 — p) to be the transcendental lattice of a K3 surface admitting a Shioda-Inose structure. t

4 Kuga-Satake construction

The Kuga-Satake construction produces an abelian variety called a Kuga-Satake variety from the Clifford
algebra of a weight two Hodge structure of K3 type. To prepare ourselves for the classical Kuga-Satake
construction, we will first recall the definition of a Clifford algebra and its remarkable subgroup called
the spin group. From now on, we replace the phrase “Kuga-Satake” by the abbreviation “KS”.

43



4.1 Clifford algebra

The main references for Clifford algebras over a field and for spin groups are [Harvl, Part II] (over R),
[LM), Chapter I], [La, Chapter V] and [Hul, Section 4.1]. We will extend their definitions of a Clifford
algebra to one over Z.

Let Rbe Z, Q, R or C. Let V be a R-module of rank n equipped with a non-degenerate symmetric
bilinear form b: V' x V' — R (thus a quadratic form ¢ via the polarisation formula). Suppose V is of
signature (n4,n_) and O(V) is the orthogonal group of V.

Definition 4.1.1. [Hul Section 4.1.1]
The Clifford algebra C1(V') over (V,q) is defined as

Cl(V):=T(V)/I(V)

where T(V) := 372, Q" V is the tensor algebra over V., and 1(V) is the ideal generated by elements
in the form
v®v = qv).

Any element viv - - -vq in CI(V) which is a product of d non-scalar elements in V is called a simple
element of degree d

Remark 4.1.2. [Harvl Equation 9.6] The ideal I(V') determines the rules of Clifford multiplication,
which is the multiplication operation of C1(V'). From the polarisation formula, v®@v—q(v) € I(V) gives
the relation u @ v +vQu—2b(u,v) € I(V). So considering u,v € Cl(V'), we have u-v+v-u = 2b(u,v).

Note that the tensor algebra T'(V') has a natural Z-grading: for any integers k,l > 0,
(V) @ TH(V) ~ T*(V),

where TH(V) := ®" V is the degree k subspace of T(V). Moreover, since any element in the ideal
I(V) < T(V) has even degree, the Clifford multiplication respects parity of degree in T'(V'). Therefore
the Clifford algebra has a Zs-grading

CL(V) = CIH(V) @ CI=(V),

where CI1T (V) is the even part of Cl(V) spanned by the classes of the even degree elements in T(V'),
and Cl™ (V) is the odd part spanned by the classes of the odd degree elements in T(V').

Sometimes we forget the Clifford multiplication and view CI(V') as a vector space/module. By the
following theorem, we may identify the Clifford algebra C1(V) over V of dimension/rank n with the
exterior algebra AV :=>"] | A"V as graded R-vector spaces/modules.

Theorem 4.1.3. [LM| Proposition 1.3]
There is a canonical isomorphism \V — CL(V) of vector spaces/modules such that on each simple
element in \V of degree d, it is given by

VI A Avg —> Z Sigﬂ(O’)’Uo—(l) ©Vo(d)s
oc€Sy

where the sum is over Sq, the symmetric group of degree d.

This isomorphism preserves (the parity of) the degrees of the simple elements, so it respects the
Zo-grading of the Clifford algebra. Therefore, it is clear that

dim(CL(V)) = dim(/\ V) = 2".

There is a universal property for Clifford algebras.
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Lemma 4.1.4 (The Fundamental Lemma for Clifford algebras). [Harv, Lemma 9.7]
Let A be an associative algebra with unit over R. Let p: V. — A be a linear map from V into A.
If for all v € V' we have
p(v)e(v) —q(v) - 14 =0,

then ¢ has a unique extension to an algebra homomorphism of CL(V') into A.

Proof. There is also a universal property for tensor algebra that extends the linear map ¢ on V to an
algebra homomorphism T(V) — A which we also denote by ¢. In particular, for any w,v € V, then
u®wv e T(V), and set

P(u®v) = p(u) @p(v).
By the hypothesis, elements in the form v ® v € T(V) lie in the kernel of ¢, thus ¢ descends to an
algebra homomorphism Cl(V) — A. O

The Fundamental Lemma for Clifford algebras implies that any linear map between two R-modules
that preserves their associated symmetric bilinear forms extends uniquely to an algebra homomorphism
between the respective Clifford algebras. Moreover [Harv, Theorem 9.20], automorphisms of Cl(V') are
exactly those extended from the isometries of V. In this way, a Clifford algebra admits a distinguished
automorphism, the canonical automorphism.

Definition 4.1.5. [LM|, Equation 1.7]
The canonical automorphism (-)~: CI(V) — CI(V) is an involution defined by extending the
isometry v — —v on V to an automorphism on ClL(V).

Note that (-)~ acts trivially on the even part C1" (V). On the odd part CI~(V), (-)~ acts by
multiplication by —1g.
A Clifford algebra also admits a special anti-automorphism.

Definition 4.1.6. [LM, Equation 1.15]
Consider the involution (-)': T(V) — T(V) such that on any simple element vi ® va @ - - - @ vy,

(VM @U® - @ug) =13® - @ s @ vy.

Since (-)t sends the ideal 1(V') to itself, it descends to an involution on CL(V') called the transpose,
which we still denote by (-)*.

Clearly (-)! is an anti-automorphism: for all 2,y € CIT(V), we have (z - y)! = y' - 2. Also, given a
homogeneous element x € Cl(V) of degree d, that is z is the sum of finitely many simple elements of
the same degree d, then

‘ z, ifd=0,1 mod4
xt =
—x, ifd=2,3 mod 4

Note that the above two involutions commute. We denote their composition by
()= (())" = ()" (5)

Like any Zs-graded algebra, a Clifford algebra is equipped with a graded tensor product. For
any Zo-graded algebra A, we denote A = Ay @ A1, where A; is the component of elements of degree i
for i = 0,1. We define the degree function 0 for an element a € A such that d(a) =i if a € A;. We
give the definition of a graded tensor product as follows.
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Definition 4.1.7. [Lal, Section IV.2]
The graded tensor product of two Zs-graded algebras A and B denoted by A® B is also a Zo-graded
algebra, with the component of degree © elements, where ¢ = 0,1 given by

(A®B);:= Y (4;®By).
j+k=i mod 2
The multiplication on A® B is defined by
(a®b)(d @) = (~1)?®gq" @ b/
or any homogeneous elements a,a’ and b,b' in A and B respectively.
Jor any g P y
In particular, the graded tensor product of two Clifford algebras is also a Clifford algebra.

Theorem 4.1.8 (Gluing of Clifford algebras). [La, Lemma 1.7, Theorem 1.8]
Let (V,q) and (V',q') be two R-vector spaces/modules equipped with a quadratic form q and ¢
respectively. Then by the Fundamental lemma for Clifford algebra, the linear map

VeV — ClV)&CL V)
(v, V) —ve1+100
extends to a morphism of Zo-graded algebras
f:C VeV = Cl(V)&CL(V"),
which is in fact an isomorphism.

A Clifford algebra with Clifford multiplication can be identified with (a sum of) matrix algebras
with the usual matrix multiplication as a Zgs-graded algebra. The corresponding Zs-grading for the
matrix algebras is called the checkerboard grading.

Definition 4.1.9. [La, Section IV.2]
The algebra of k-by-k matrices over a Zs-graded algebra A, denoted by My(A), is a Zy graded algebra
with respect to the checkerboard grading. Its degree 0 part and its degree 1 part are respectively given by

A() Al Ao Al AO Al
— A Ay A — Ay A A
Ma(A))o= |00 0 0 | e = |0 )

AO A1 Ao Al AO Al

Remark 4.1.10. When A = R is a ring, then A is concentrated at degree 0, i.e. Ay = 0.

Remark 4.1.11. A matriz algebra My(A) over a Za-graded algebra A admits a graded tensor product
® similar to what is described in Definition . In this case, the tensor product @ in the definition
1s replaced by the Kronecker product introduced in Theorem |3.5.12

Denote by R(™+"-) the R-module of rank n equipped with the standard quadratic form of signature

(ny,n_) given by
U%+"'+U72L+ _UEL++1_"'U?®-

First we restrict ourselves to R = R. Denote CI(R("+"~)) by Cl(n,n_). Then for any vector space
V ~ RM+7-) we have CI(V) ~ Cl(ny,n_). For 0 < n < 2, one can determine an explicit isomorphism
between Cl(n4,n_) and a matrix algebra respecting their respective Zo-gradings for each pair (n4,n_)
by applying [Harvl, Exercise 9.3, 9.4]. For larger n, the corresponding isomorphism of graded algebras for
Cl(n4,n_) can be derived by repeatedly gluing up the Clifford algebras of smaller dimensions, applying
Theorem [£.1.8

Moreover, the following theorem allows the even part of a Clifford algebra to be identified with a
(sum of) matrix algebra.
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Theorem 4.1.12. [Harvl Theorem 9.38, 9.43]
Clt(ny +1,n_) = Cl(ny,n_)
Cl(ng,n_+1)~Cl(n_,ny + 1)

The isomorphisms in Theorem [4.1.12] between Clifford algebras and matrix algebras only respect
the involution (-)~, which is just multiplication by —1 in terms of matrices. They do not respect the
other two involutions introduced above.

For convenience, in Table |5 we list the (sums of) matrix algebras that are isomorphic to Cl(n4,n_)

for 0 < ny,n_ < 6. In fact, there is a pattern for these matrix algebras isomorphic to Cl(ny,n_)
depending on (ny —n_) mod 8: for details, see [Harv, Theorem 11.3, Table 11.5].

- 0 1 2 3 4 5 6
ny
0 0 R®2 M;(R) M;(C) My(H) | My(H)®2 | My(H)
1 C My(R) | Ma(R)®2 | My(R) | My(C) | My(H) | My(H)®?
2 H M,(C) My(R) | My(R)** | Mg(R) Ms(C) M (H)
3 H®? Mo (H) My4(C) Mg(R) | Mg(R)®? | M;g(R) M;6(C)
4 My(H) | My(H)®2 | My (H) Mg(C) | M(R) | Mig(R)®2 | Mas(R)
5 My(C) | My(H) | My(H)®2 | Mg(H) Mi6(C) M3a(R) | Msza(R)®2
6 Mg(R) | Mg(C) MgH Mg(H)®? | Mig(H) M35(C) Mes(R)
Table 5: Matrix algebras isomorphic to Cl(ny,n_) for 0 <ny,n_ <6

By restricting to R = Q, we have a similar isomorphism from Clg(ny,n_) := CI(Q™+"-)) to the
corresponding matrix algebra A in Table |5/ but with entries in Q, Q[¢] or Hg. When we further restrict
to R = 7Z, the image of Clz(ny,n_) := CI(Z("+"-)) under ¢ is contained in a maximal order in the
Q-algebra A.

Definition 4.1.13. [Reinl Section 2.8]

An order in the Q-algebra A is a subring A of A with the same multiplicative identity as A, such
that A is a lattice in A and A spans the vector space A over Q.

An order in A is maximal if it is not properly contained in another order in A.

The notion of maximal orders arises [Rein, Section 4a] as the integral structure in a number field
A in the work of Dedekind: the integral closure of Z in A is the unique maximal order in A, and its
elements are called algebraic integers. An important example [CS| Section 5.1] of a maximal order in
the Q-algebra Hg is the Hurwitz integers
1+i+j5+k
0= Z<h = +Z+2]+zyk‘>

with a quadratic form ¢ given by the norm function z +— zz. The matrix of the associated symmetric
bilinear form b with respect to the generators {h, 1, j, k} is

2 1 1 1
11 2 0 0
211 020
100 2

Moreover |[Rein, Theorem 8.7], My (0) is a maximal order in M, (Hg) for all integer n > 0.
Lastly, when R = C, any non-degenerate quadratic forms are equivalent. See [LM) Chapter I,
Table I] for the corresponding identifications of C1((C", q)) with matrix algebras.
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4.2 Spin group and representations

In this subsection, we consider R = R. Let V be a n-dimensional R-vector space equipped with a
non-degenerate quardratic form ¢q. We define a few groups, including the spin group, contained in the
Clifford algebra C1(V') with representations given by the groups mentioned in Definition [2.2.4|(iii-iv).
In particular, if (V, q) is a quadratic space of signature (2,6), then the Lie groups SO (2, 6) and SO*(8)
associated to LSVs of type [Vg and 114 are involved as two inequivalent representations of the identity
component of the spin group Spin™(2,6) C CI*(2,6). Later in Section [5, we will construct a map
between LSVs of type IVg and of type Il4, and show that the map is locally equivalent to switching
from one representation of Spin™ (2, 6) to another.

Definition 4.2.1. [LM| Section 1.2], [Harv, Section 10], [Hul, Section 4.1.2]
Let CI*(V') be the multiplicative group of units of the Clifford algebra CI(V'). The twisted adjoint
representation of C1*(V) is given by

Ad: CI*(V) —s GL(CI(V))
x — ;‘;ax() =[y— (=7 y- x_l)] :
The Clifford group associated to (V,q) is defined to be
CPin(V) := {:c € CI'(V) : Ady(v) € V for all v € V}.
The special Clifford group (or the classical companion group) is defined to be
CSpin(V) := CPin(V) N CIT(V).
The pin group is a subgroup of the Clifford group

Pin(V) :={z € CPin(V) : © = vy - - - vq such that q(v;) = £1 for alli=1,--- ,d}
= {z € CPin(V) : zz* = 1}

The spin group (or the reduced Clifford group) is a subgroup of the special Clifford group
Spin(V) := Pin(V) N CIT (V).
FEquivalently, the spin group is defined by the short exact sequence
1 — Spin(V) — CSpin(V) — R* — 1.

If CSpin(V) (resp. Spin(V')) is not connected, then its identity component is denoted by CSpin™ (V)
(resp. Spin™(V)).

Remark 4.2.2. To avoid any confusion, we would like to emphasise that the + decoration in CSpin™ (V)
and Spin™t (V') is used in similar sense as the + decoration in SOT(V), rather than as in C1T (V).

By the definition of the Clifford group, it is natural to consider the restriction of the twisted adjoint
representation to the Clifford group and its subgroups. In fact [LM|, Equation 1.2.22], there is a nice
geometric interpretation of the image AVd(Pin(V)): for all v € V, Avd(v) is the element in O(V') that
corresponds to the reflection along v*. Since any element of O(V) is a composition of reflections, we
have Avd(Pin(V)) = O(V). We also know the kernels and the images of Ad restricted to all three groups.
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Theorem 4.2.3. [LM, Proposition 2.4, Theorem 2.9, 2.10], [vG1, Section 6.2]
There are short exact sequences

| — R* — CPin(V) 2% GL(V) — 1

1 — R* — CSpin™ (V) _Ad, SOT(V) — 1
| — {41} — Pin(V) 25 0(v) — 1

1 — {1} — Spin™ (V) 24 50+ (V) — 1,

where GL(V') is the group of invertible linear maps on V' (not necessarily preserving the quadratic form
q); O(V) and SO* (V) are the orthogonal group and the identity component of the special orthogonal
group of (V,q) respectively.

In particular, the twisted adjoint representation restricted to the pin group (resp. spin group) is a
double cover map over the orthogonal group (resp. special orthogonal group). Note that the twisted
adjoint representation restricted to the spin group is simply the adjoint action.

In another direction, notice that the construction of the isomorphisms from Clifford algebras C1(V') ~
Cl(n4,n_) to (sum of) matrix algebras in Section gives a different matrix representation of the
Clifford algebras [LM, Section 1.5]. With reference to the pattern shown in Table |5 (which extends to
all cases of (n4,n_)), we have isomorphisms of algebras

@ : Cl(ny,n_) = Mg(W) if(ngy —n_)#3 mod4
@ : Cl(ny,n_) = Mg(W,) & My(W_) otherwise,
respecting the usual left multiplications [vGIl (6.2)].

In the first case, if (n4 —n_) # 3 mod 4, then ¢ itself is a simple representation i.e. there is no
non-trivial sub-representation. The representation ¢ is called the spin representation of Cl(n4,n_).
The vector space W is called the space of spinors of the spin representation [Harvl, Definition 11.10].
There is only one simple representation of a simple Clifford algebra up to equivalence [LM, Theorem 5.6]:
i.e. if (¢', W) is another simple representation, then there is an R-linear map between W and W' that
respects the representations.

In the second case, when (ny —n_) = 3 mod 4, let 7 and m_ be the projection maps from
Mg(W5) @ Mg(W-) to the first and the second component respectively. Then ¢ := 7 oy and p_ =
m_ o @ are two simple representations of the Clifford algebra called the half-spin representations.
Again, the vector spaces W, and W_ are called the spaces of half-spinors of the two representations
respectively. In fact, the two half-spin representations are inequivalent [LM) Proposition 5.9], and are
sometimes distinguished as the positive and the negative half-spin representation respectively.

A (half-)spin representation restricts to a simple matrix representation on (the identity component
of) the spin group. We also know their kernels.

Theorem 4.2.4. [Harvl, Theorem 13.8]
Consider the spin group Spin(V) C C17(V), where the vector space V =~ R" is of signature (n4,n_).
If (ny —n_) # 0 mod 4, then (by Theorem up to equivalence there is only one simple
representation of the even part of the Clifford algebra CIT(V), which is the spin representation .
Restricting ¢ to Spin™ (V), we have the left exact sequence

1 — {£1} — Spin* (V) =5 GL(W).

Otherwise, if (ny —n_) = 0 mod 4, then there are two inequivalent simple representations of
CI™(V), which are the two half-spin representations ¢y and p_. Restricting to Spint(V), we have the
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following left exact sequences
1 — Zy ~ {1,\} — Spin* (V) 2= GL(W,)
1 — Zo ~ {1,—\} — Spin™ (V) == GL(W_).

Again the (half-)spin representations are degree two maps.

Remark 4.2.5. By Theorem [{.1.13,

Clt(ny,n_) C Cl(ny —1,n_), ifny >0;

Spin(V) C
pin(V) {Cl+(n_,n+) C Cl(n— —1,ny), ifng =0.

It is clear that (ny —1) —n_ =3 mod 4 if and only if ny —n_ =0 mod 4.

Remark 4.2.6. [FH, Exercise 20.36]
The Klein four-group {+1,£\} is the centre of Spin* (V). Therefore, under the identification

CIF (V) —— Ma(Wy) & Ma(W-),

it is clear that p(\) = (D1, D2) where Dy and Dy are two diagonal matrices. Let Dy = diag(x1, -+, zq).
By definition of the spin group, we have Do squares to 14, so xp = £1 forallk =1,--- ,d. In fact, each
xg acts on a copy of W_ (see proof of Theorem , so their actions have to be the same and Do is
either 14 or —14. Similarly D1 = +14. Since the positive half-spin representation is just the projection
w4 on Mg(Wy) @& Mg(W_), we have D1 = 14 and Dy = F14.

Finally, let us consider the special case when (V, q) ~ R*5). We write CPin(2,6) for CPin(V'), and
similarly for all subgroups of CPin(V') defined in Definition Consulting [Harvl, Theorem 13.8],
the image of Spin™(2,6) under each half-spin representation is SO*(8). Therefore we have the exact
sequences in Diagram [2}

Spin™ (2, 6)
Ad P+
SO*(2,6) SO*(8)\
1 1

Diagram 2: Two inequivalent representations of the spin group.

Since both Ad and o+ are degree two maps, the diagram gives local isomorphisms between the groups
SO™(2,6), Spin™(2,6) and SO*(8), thus the Lie algebra isomorphism

507(2,6) ~ 50*(8)

mentioned at the end of Section 2.3
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4.3 KS construction

In this subsection, we explicitly construct a KS variety from a lattice polarised K3 surface. The main
references are [Hul Section 4.2] and [vG1], where the KS construction is given in greater generality: see
Remark 4.3.3

Let (X,j: P — Pic(X)) be a K3 surface polarised by the lattice P of signature (1,7 — 1). Let
T := PI{-KS be the transcendental lattice of X, which is of signature (2,20 — r). The Clifford algebra
CI(T) over T is a lattice of rank 22277, The quotient T := CI™(Tk)/CIT(T) is therefore a torus of real
dimension 2%'~". Moreover, it has a complex structure and a polarisation, so in fact T is an abelian
variety.

We first construct a complex structure for T as in [Hul, Section 4.2.1]. Recall the transcendental
lattice (7, q) inherits a weight two Hodge structure from H?(X,Z) with the intersection form. Pick a
generator o = e + ieg of T>0 such that e, es € T and g(e1) = 1. Since g(e1 +iez) = 0, the vectors e;
and es are orthonormal. Set J = ejes.

Lemma 4.3.1. [vG1, Lemma 5.5, Proposition 6.3.1]
J is an element in the spin group Spin™ (TR) satisfying J = ejea = —eaey and J*> = —1. Moreover,
J is independent of the choice of the orthonormal basis e1, es.

Under the spin representation, J € Spin™(7k) then gives a complex structure on C1*(Tk) by left
multiplication, which is in accordance with Remark This gives a weight one Hodge structure on
CIT (TRr) as the decomposition into the 4 eigenspaces of J.

Next, we give a construction of a polarisation on the complex torus (T, .J). Choose two orthogonal
vectors fi, fo € T with ¢(f;) > 0, and let a« = fy fo . Consider the pairing F with

E: CIT(T) x CI(T) — Z
(v,w) — tr(av*w),

where tr is the trace function for linear maps, and v + v* is the involution on CIT(T) defined in
Section Equation . One can check [vG1l, Proposition 5.9] that Eg, the real extension of E given
in Theorem is an alternating form. The symmetric form Eg(-,J -) is either positive or negative
definite depending on the sign of «.

Therefore, (CI*(Tk)/C1*(T), J, E) is an abelian variety of complex dimension 22°~". We call this
abelian variety a Kuga-Satake variety, and denote it by KS(X, ). We will suppress « in the notation,
especially if it is clear what « is or if the choice of polarisation class is unimportant.

Remark 4.3.2. Note that the vectors ey and ey defining the complex structure J in general do not
belong to T. Still, we can choose f1 and fo in T to be scalar multiples of e1 and es respectively.

Remark 4.3.3. In most literature, the starting ingredient of the KS construction is a Hodge structure
of K3 type, rather than a K8 surface. A weight two Hodge structure on V of dimension n is said to
be a Hodge structure of K3 type if dimV?? = 1 and V is equipped with a quadratic form q of
signature (n — 2,2) which is positive definite on VY1, In particular, the second cohomology of a K3
surface together with the intersection form has a Hodge structure of K38 type. From a Hodge structure of
K3 type V' one arrives at a KS variety replacing T in the above steps by V and negating the quadratic
form q. In fact, it does not matter whether we choose the associated quadratic form to be q or —q,
because C17(ny,n_) ~ Cl*(n_,ny) by Theorem .

If the Hodge structure of K3 type on V is only defined on Q but not Z, then a KS variety is only
defined up to isogenies. On the other hand, our more restrictive approach of starting from the Z-Hodge
structure of the transcendental lattice makes the KS variety an abelian variety, instead of just an isogeny
class of abelian varieties.
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Remark 4.3.4. In fact, one can also define the KS variety from the odd part of the Clifford algebra
Cl~(VR) instead of the even part. Concerning this, [Hu, Remark 4.2.3] says that for any lattice V', fizing
a vector w in 'V gives an isomorphism of R-vector space
CIt (V) = C1™ (k)
VU w
This isomorphism induces an isogeny from the KS variety defined from C1* (V') to the one defined from
Cl= (V).

By Remark given a K3 surface X, we may construct a KS variety from any sublattice T of
H?(X,Z) of signature (2,n — 2) where 2 < n < 22. We denote such a KS variety as KS(7T') (suppressing
the notion of «). Before we end the section, let us give a lemma concerning these more general KS
varieties.

Lemma 4.3.5. [Mo2, Sections 4.4 and 4.7]
(i) Let X be a K3 surface with transcendental lattice T. Let T',T" be lattices such that T C T' C
T" C H*(X,Z), and let d = dimg((T"/T') @ Q). Then

KS(T") ~ KS(T")%".
(ii) Let X be a K3 surface with a Shioda-Inose structure associated to an abelian surface A. Then

KS(H?*(X,7)) ~ A

219

The proof/explanation of Lemma [4.3.5((ii) in [Mo2) Section 4.7] depends on the statement in part
(i), which is explained in [VV] Remark 2.4]. Let us repeat the proof here.

Proof. The isogeny of KS varieties is induced by the following isometries of lattices
CrH(T") = ((CrH(T") @ CrH((T)*) @ (CI7 (T') @ CI~ (T')4))
~ 24=1(CIT(T") @ C17(T"))
~2d. 1t (1.

The second isometry is because (C1*(T”) @ CIT((T")1) is isomorphic to the direct sum of rk(CI*((7")*)
copies of C1*(T"); and the third isometry is due to Remark O

5 KS varieties associated to families of K3 surfaces of Picard rank 14

In Section we will modify the KS construction to give a map F' from a modular variety of K3
surfaces of Picard rank 14 to a modular variety of abelian 8-folds with totally definite quaternion
multiplication. Following this in Section we will further lift the map F to an isomorphism F
between the corresponding HSD overspaces as mentioned in Section

5.1 KS construction on the level of families
5.1.1 General idea

In Section we have constucted a KS variety KS(X, o) = (T, J, E) from a lattice polarised K3 surface
X. We first lift the construction to a non-canonical map from a family of K3 surface to a family of KS
varieties, and from there derive the map F' by making some choices.

Although both T and J depend on the weight two Hodge structure on H?(X,Z), there are a lot of
choices for the polarisation form FE. In fact, the number of polarisation classes (unique up to scalar)
depends on the size of Endg)(A), the set of symmetric idempotents in Endg(A).
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Theorem 5.1.1. [BL, Proposition 5.2.1]
Let A be an abelian variety. Then there is an isomorphism of Q-vector spaces

NSg(A) ~ Endj(A).

To make a consistent choice of a KS variety associated to each K3 surface in a family, we may
choose the same o € CIT(T) for every member X to give the same alternating form E. Although
the corresponding polarisation class in NSg(KS(X)) also depends on the Weil operator which is the
positive complex structure J of X, the polarisation type remains constant as J varies in the family
by the same argument in Lemma So by fixing « (up to sign) in the KS construction, the KS
varieties associated to the family of K3 surfaces share the same polarisation type, thus they form a
family of KS varieties which lies in a family of polarised abelian varieties.

As explained in Section we hope to construct a map from a LSV of type IVg to a LSV of type
II4. That is, a map from a modular variety of K3 surfaces of Picard rank 14 to a modular variety of
polarised abelian 8-folds with totally definite quaternion multiplication. We will show that such a map
can be obtained by modifying the above KS construction.

Let p be a modular variety of K3 surfaces with a rank 14 polarisation lattice P, and let T" be
the transcendental lattice of the family which has signature (2,6). We fix a choice of a € C17(T), and
associate to each K3 surface X in Kp the KS variety KS(X) with polarisation determined by a. The
following theorem shows how we derive an abelian 8-fold with totally definite quaternion multiplication
from the KS variety associated to a very general K3 surface in the family.

Theorem 5.1.2. For a very general K3 surface X in the family Kp, there is a simple decomposition
of KS(X) given by
KS(X) ~ A% x A%,

where Ay and A_ are non-isogenous simple abelian 8-folds. Moreover,
Endg(A4) ~ Hg ~ Endg(A-).

Proof. Recall in Corollary that a simple decomposition of an abelian variety A and the endomor-
phism algebra of each simple factor can be read off from Endg(A) as a sum of some simple matrix
algebras over a division ring. Denote by Endpoqge(V') the Q-vector space of endomorphisms of Hodge
structures on V. An endomorphism of an abelian variety is an endomorphism of its Hodge structure,
i.e. we have

Endg(KS(X)) ~ Endpodge(C17 (T)).
From [vG1], Corollary 3.6], we have

EndHodge (ClJr (TQ> ) ~ Endyr (Cl+ (T@> )s

where for any rational Hodge structure on V', Endyr (V) are the vector space endomorphisms that
commute with the action of the Mumford-Tate group MT(V):

Endyr(V) ={M € End(V) : Mg = gM for all g € MT(V)}.
On the other hand, [vGI Lemma 6.5] we have
C1+ (T@) = EndCSpinJr (C1+ (T@)),

where
Endcspin+(Cl+(TQ)) = {M € End(Ty) : Mg = gM for all g € CSpin* (T)} .
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If MT(C1™(Tp)) = CSpin™ (1), then by considering Table |5 which says
CI™ (Tyy) ~ Ma(Hg) & M (Hg),

so we are done: KS(X) ~ A4 x A* with dimc(A44) = dimc(A_) = 8. Indeed by a result of Zarhin [Hul,
Theorem 3.3.9, 6.4.9], for a very general K3 surface X, we have

MT(Tp) = MT(H*(X,Q)) = O(Tg).
Therefore by [vG1l, Proposition 6.3], we have MT(C1*(Tp)) = CSpin™ (Tg). O

Remark 5.1.3. [vG1], Proposition 6.3]
In fact, MT(Tg) C O(Tg) and MT(CI*(Ty)) € CSpint(Ty) for all K3 surfaces in the family.
Therefore the corresponding Hodge groups satisfy Hdg(Ty) € SO™ (1) and Hdg(Cl* (Ty)) C Spin™ (Tgp).

We can fix a representation ® of Hg to be ®4q for all z € Hg as in Theorem such that the
Rosati condition is satisfied. By doing so, we give the abelian 8-folds A4 and A_ a unique endomorphism
structure.

Therefore, to associate an abelian 8-fold with definite quaternion multiplication to a very general
K3 surface X, we may choose an isogeny f: KS(X) ~ A; x -+ x Ag which gives a simple decomposition
of KS(X), and then project to down to one of the simple factors Aj. This is again not a canonical
construction, but we can make the choices of f and k consistently for all very general X in Kp as
described in the following section.

5.1.2 Explicit construction

We start with exploring all possibilities of the isogeny f for X very general. By [vGI, Lemma 6.5],
the action of C17(Tq) ~ My(Hg) & My (Hg) on itself is by term-wise right multiplication, which is in
accordance with Remark [3.3.15] Therefore we have the following isomorphism of vector spaces,

Cl+(TQ) ~Wi - B Wg,

where each W; is a 16-dimensional Q-vector space spanned by the i-th column in My(Hg) & Ms(Hg).
Note that each W; for ¢ = 1,---,4 (resp. for i = 5,---8) is the space of positive (resp. negative)
half-spinors. By restricting the above isomorphism of vector spaces to the lattice C1*(T"), we have

CIN(T) = (W) @ - @ (W),

where each WiZ is a rank 16 lattice. For each 7 = 1,---,8, this gives the complex torus T; :=
((Wi)r/WE, J;), where J; is the complex structure on the real torus (W;)r/W7 obtained by restricting
the complex structure J on KS(X). Therefore, by Theorem if KS(X) ~ Ay x -+ x Ag is a simple
decomposition of KS(X), then we have A; isogenous to T; as complex tori (up to re-ordering). In
particular, knowing the lattices I/VzZ is enough to recover the complex torus structures for the A;. Based
on this fact, we have the following recipe to obtain a simple decomposition of KS(X) up to isogenies.

It is enough to
(1) fix an explicit algebra isomorphism ¢: CI*(Tp) ~ My(Hg) & My (Hg);

(2) find eight symmetric idempotents e1,--- ,es of CIT(Tp) such that for the integers dy,--- ,ds as
described in Theorem [3.3.1} the images A’ := d;e;(C17(T')) are rank 16 lattices, and together these
lattices span Cl*(Tg) over Q .
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After making the above choices, then for each real torus (A})r/A; for i = 1,---,8, we can define a
complex structure J; as the restriction of J on it. This gives a complex torus T; := ((A})r/AL, J;).
The polarisation E of KS(X) also restricts to a polarisation E; for T;, and it has to be the unique
one up to scalar multiples by Theorem and Theorem Therefore we have the abelian 8-fold
A; ~ (T;, J;, E;). We also have an isogeny f that gives the simple decomposition of KS(X), which as
an isogeny of complex tori is given by

f! KS(X) —> Ty x--- xTg
] — (e1@)]; -+ [esP)]) -

Moreover, we know for which 4’s the complex torus T; is isogenous to Ay. This is because p(A})
can only be non-zero in exactly one copy of My (H) but not both, otherwise T; is a non-simple torus.

Remark 5.1.4. If A; ~ A, and if we consider J as the image of the imaginary unit i under h where
h: C* — CSpin™ (Tk) C GL(CI"(TR)), then the complex structure J; as a linear operator on the positive
half-spin representation (Wi )g is given by (¢4 o h) (7).

Remark 5.1.5. Since there is a unique polarisation class up to scalars for each simple factor A; of
KS(X) = KS(X,a) by Theorem the choice of a we made is unimportant: for any polarisation
form Q of the KS variety we started with, it has to restrict to the same polarisation form Q; of A; up
to scalars.

In fact, the only substantial choice to be made in the recipe is the isomorphism ¢. There is an
obvious choice of the symmetric idempotents ¢;’s given ¢. Let E; ; € My(Hg) be the matrix with 1 at
the (i, j)-th entry as the only non-zero entry. The elements in My (Hg) & M4(Hg) in the form of

(E1,1,0),- -+, (E44,0),(0,E11), -+, (0, E44)

are symmetric idempotents. Pulling back to CIT (Tp) via ¢ gives a set of ¢;’s satisfying (2). Moreover,
o only depends on the transcendental lattice T, but not the particular member in p we started from.
Therefore, fixing the isomorphism ¢ alone gives a uniform choice of isogeny f across all very general
members in the family K as in Diagram [3] Furthermore, the order of the simple factors A;’s in the
simple decomposition of KS(X) is also fixed by the order of ¢;’s, thus the choice of ¢. So we may always
choose the first simple factor A; in the decomposition f(KS(X)) to be assigned to each very general
K3 surface X in Kp. All such A;’s, as abelian 8-folds with totally definite quaternion multiplication,
have the same attributes M and 7T as in Section [3.3.3] This is because both attributes only depend on
the representation ®gq, the real torus (A])r/A] and the polarisation form Fj, which are the same for
every A; obtained from our modified KS construction.

Away from the very general members, the same choice of ¢ still leads us to the same choice of the
e’s, and therefore an isogeny from KS(X) to a product of eight abelian 8-folds. However, these abelian
8-folds are not very general, and they show exceptional behaviours. For example they may be no longer
simple, or all of them belong to the same isogeny class. This completes our proof for the following
theorem.

Theorem 5.1.6. An isomorphism of algebras
p: CIT (Tg) ~ My(Hg) & My (Ho)

induces a map F' from Kp to a modular variety Ay 7 of polarised abelian 8-folds with totally definite
quaternion multiplication (Diagram @
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F:Kp AT X Ao, 1 X - X A o
w w
X b—> KS(X) I—;—> Ay x Ag--- XAg\l

\ AmT
2

Ay

Diagram 3: A modification of the KS construction inducing a map F' from a modular variety Kp of
P-polarised K3 surfaces to a modular variety Axq 7 of abelian 8 folds with totally definite quaternion
multiplication.

5.2 Lie groups and KS construction

Recall that Diagram [2| induces a Lie algebra isomorphism so*(2,6) — s0*(8), which corresponds to
an isomorphism between a type IVg HSD and a type Iy HSD [He, X.6.4(viii)]. We will show that our
map F' constructed in Section lifts to this isomorphism F' of HSDs.

Let Kp be the modular variety of K3 surfaces with a rank 14 polarisation lattice P and let T be
the associated transcendental lattice of signature (2,6). Let Axq 7 be the modular variety of polarised
abelian 8-folds with totally definite quaternion multiplication. Recall

’CP =~ FT\DT and -AM,T >~ FM,T\DM,Ta

where Dy ~ 07(2,6)/ (SO(2) x O(6)) and Dag 7 ~ SO*(8)/U(4) are the HSD overspaces of the two
moduli varieties respectively. Let DF ~ SO™(2,6)/ (SO(2) x SO(6)) be a connected component of Dr.

Theorem 5.2.1. The map F: Kp — Anm,71 lifts to a map
ﬁ: D;’: — DM,T~

With reference to the diagram

Spin™ (2, 6)
Ad %
SO*(2,6) SO*(8)

the map F applied to an element g € SO (2,6) corresponds to choosing an element g inside the preimage

~ 1
of the twisted adjoint representation Ad (g), and then mapping g to SO*(8) via the positive half-spin
representation o .

Proof. Recall that Dr is the period domain for polarised weight two integral Hodge structures of K3
type on the transcendental lattice T'. By Remarks and the identity component D of Dy is
a set containing representations h of U that factor through SO™ (Tx) described in Deﬁnition

On the other hand, D 7 is the period domain for polarised integral weight one Hodge structures
on Ap, where A’ is a rank 16 lattice and a H-module (see Corollary and Remark [3.3.23). It can
be identified to a set containing representations h: U — GL(Ag) such that h(+1) act by multiplication
on Ag = p(A")r. Each representation is uniquely determined by the Weil operator J := h(7).

Let us also denote by Dyt 1y the period domain of weight one Hodge structures on C17(T). Again by
Remark it is the set of all representations h: U — Spin™ (Tg) such that h(+1) act by multiplication,
or equivalently the set of Weil operators J = h(i) € Spin™(Tk) € GL(CIT(TR)).
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Our map F' takes any K3 surface X in Kp first to a KS variety KS(X, ) then to an abelian 8-fold
Ay, solely by mapping the underlying Hodge structures of the objects up to isomorphisms. The lifted
map F' therefore should factor through D¢+ (1)’

ﬁ‘: Drl—t — DCPL(T) — D'/\/LT

The first arrow, which is just the KS construction, corresponds [Hul, Remark 4.2.1] to the lift of rep-
resentations of U with respect to the twisted adjoint representation Ad requiring h(il) to act by
multiplication.

Spin™ (2, 6)
h —
Ad
U — SO™(2,6)

This lift of representations is not unique. The only substantial information encoded by any rep-
resentation h as a _weight one Hodge structure on CI™(TR) is the Weil operator h( ) in Spin™ (2, 6).
Suppose h lifts to h and let J := h(i) € Spin™(2,6). The preimage of h(i) under Ad is exactly {+J},
and 1/ determined by h'(i) = —J also descends to h by Ad. However, only one of J and —J can satisfy
the Hodge-Riemann relations as in Theorem B:2.3} if the polarisation of the KS variety is given by the
alternating form F, then either E(-, J ) >0or E(-,—J -) > 0. Therefore, there is a unique choice for
the lift by further requlrlng h to be the complex structure of a polarised abelian variety with polarisation
given by « (see Sectlon , and the first arrow is injective.

By Remark |5 the second arrow in F is the positive half-spin representation. It sends any
J := h(i) € Spin™ (2 6) to 4 (J) € SO*(8). O

In [Hel, Exercise X.D.1, X.D.2(b)], an explicit holomorphic diffeomorphism between a HSD of type
IVg and a HSD of type Il is given. Without showing F' is equivalent to this explicit map, we will show
that

Theorem 5.2.2. The map F: D;C — D1 15 a differentiable bijection between the two HSDs.

Proof. Let us denote by (D7, )KS C Dey+ 7y the set of weight one Hodge structures on CI™(T) obtained
from the lift of representatlons described in the proof of Theorem [5.2.1} Furthermore, we denote by
(D+) the subset of (D+) requiring the members to be the positive complex structure of a KS
variety KS(7T', o) with respect to its polarisation. Note that (D;)Ijs ~ (D;)KS /Zs, where Zo = {£1}.
The map F' is therefore given by

F:Df —=— (D})"°

N 2 D1 (6)

where the first arrow is now by definition a bijection.

It is clear that I is differentiable: the second arrow is effectively a projection map and the choice of
the lift in the first arrow is continuous. This choice is equivalent to the choice of the sign of o described
in Section Since the period point in the connected component D; varies continuously, the sign of
o, which is discrete, is fixed. In fact, locally F is just the Lie algebra isomorphism so™(2,6) — s0*(8)
induced by Diagram [2]

To prove the second arrow is bijective, we will need to show that the representations Ad and o
are equivariant with respect to the suitable actions of the groups SO™(2,6), Spin™(2,6) and SO*(8) on

D;C, (D+)KS and Dy 1 respectively.
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We may identify D;C with a set of representations of U, or with the set of positively oriented positive
definite plane P C Tk (see proof of Theorem [3.5.16)). By [vG1, Remark 4.6], SO (2,6) ~ SO (TR) acts
naturally on both sets but in different ways:

e On D; as the set of representations h : U — SOT(TR), the group SOT(TR) acts by conjugation.
i.e. for any g € SO*(TR),
g: h+— h9 = ghg™!.

e On D‘TF as the set of planes, the group SOT(Tk) acts by left multiplication. i.e. for any g €
SO (),
g: P— gP.

Moreover, the two actions are compatible under the identification of the two sets given in [vGIl proof
of Lemma 4.4]. By definition, the left multiplication action of SO"(2,6) on Dr is transitive, so the
conjugation action of SO'(2,6) is also transitive with SO(2) x SO(6) being the stabliser group. The
period domain Dj. can therefore be identified to the SOT (2, 6)-orbit SOT(2,6)/ (SO(2) x SO(6)) with
respect to the conjugation action.

Similarly, the period domain Dp4 7 as a set of representations of U can be identified with the set of

normalised period matrices
| =2 14

which parametrises the lattice A C C9 of the abelian varieties C9/A in Apq 7 (see Theorem [3.3.18]).
The group SO*(8) ~ X(Uy(H)) acts naturally on the two sets (see Remark |3.3.24)):

e On Dpq7 which is a set of representations h: U — GL(Ag), any subgroup of O(Ag), and in
particular Xg (X(U4(H)), acts by conjugation. Equivalently by Remark [3.2.11] D 7 is the set of
complex structures J = h(i), and Xg(X(U4(H)) also acts by conjugation.

e On Dy 7 as a set of normalised period matrices, the group X(U4(H)) acts by left multiplication.

A bijection of the two sets is given in Section any complex structure J on A corresponds to
a R-linear isomorphism g that sends any v € Ap to 1/2(v —iJ(v)). For any g € Xg(X(Us(H))), the
complex structure gJg~! corresponds to the isomorphism g(1/2(1 —4.J))g~!, which is equivalent to a
change of basis in R?9 by left multiplication of g. So the two actions are compatible. Together with
Remark we know that the conjugation action of SO*(8) on Dy 7 is also transitive with U(4)
being the stabiliser group. So D7 can be identified to the SO*(8)-orbit SO*(8)/ U(4) with respect to
the conjugation action.

By the same argument, any subgroup of C1™(Tk) ~ GL(CIT(TRk)) acts on (D;)KS C Dey+(ry by

conjugation when (D; )KS is identified to a set of representations of U; and by left multiplication when
KS
(o)
T

With the above set up, we will now give an explicit expression of the space (D; )ES Note that for

is identified to a set of period matrices.

any g,g' € Spin*(2,6), Avd(gg’) = (Avd(g’))g. So the KS construction is equivariant with respect to the
conjugation action of SO (2,6) on DJ and the left multiplication action of Spin™(2,6) on (D} )KS.

Under the twisted adjoint representation, Df ~ SO1(2,6)/(SO(2) x SO(6)) as a quotient group
pulls back to the group Spin™(2,6) /K, where

Kt := (Spin(2) x Spin(6)) / {£(1,1)} < Spin™(2,6).

To see this, let (V,q) = Vo @ Vi, where Vo ~ R? and Vi ~ R® are two orthogonal real vector spaces. As
in Section we may consider SO(V2) x SO(Vg) C SOT(V) as the group containing the composition
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of even number of reflections along v for v’s either all in V5 or all in V. Since uv = —vu for any
u€ Vo C CIT(V) and v € Vg C CIT(V), we have

SO(V2) x SO(Vs) = {u1 -+ - uggvy -+~ vy 2 uy € Va, vy € Ve, q(wi) = q(vj) = +1}.
Its preimage under Ad is

{Fur - ugpvr -+ vyt uy € Vo, vy € Vi, q(us) = q(vy) = £1}
={(Fur - ugp)(Fvr---vy) tu; € Vo, v; € Vg, qlug) = q(vj) = £1} /{(1,1),(-1,-1)}

which is the group K. This group is the maximal compact subgroup of Spin™ (2, 6), and is connected:
fix e1,e92 € V5 and eg € Vg with g(e1) = q(e2) = q(e3) = 1. Then any element w := g - - - ugvy - - - Uy
with g(w) = 1 in Ky is path connected to 1 as each u; is path connected to e; and each v; is path
connected to eg. On the other hand, 1 and —1 in K, are also path connected by

vt — y(t) := cos(mt) — sin(wt)ereq for t € [0,1].

Indeed, one can check that —ejeg is path connected to —1, and the image of + is contained in Spin(2) <
Kmult' - ~

Since —1 € Spin™(2,6), the element —h is contained in the Spin™(2, 6)-orbit of h € (D)
the left multiplication action of Spin™(2,6) on (D;)KS is also transitive, and the connected maximal
compact subgroup Ky1s is the stabiliser subgroup. So we have

KS
, SO

(D)™ ~ Spin* (2, 6) /K,
(D) = (Spin* (2,6)/ {£1}) /Kuue = Spin* (2,6)/ (Spin(2) x Spin(6)).

In the other direction, the positive half-spin representation ¢ = 74 o @ is equivariant with respect
to the conjugation actions of Spin™(2,6) and SO*(8) on (D'TF)KS and D 7 respectively. Since the two
actions of Spin™(2,6) on (D:,JC )KS by conjugation and by left multiplication are equivalent, both actions
are transitive, and the stabiliser subgroup Keonj < Spin™(2,6) of the conjugation action is isomorphic
to Kt It is clear that

(10+)+: Spin™(2,6)/Keon; — SO*(8)/ U(4)

is surjective with kernel {1, A} = ker(¢). In fact, only one of J and AJ belongs to (D;)Ijs Assume
otherwise, and let J be ga_(j ) the image of J under the negative half-spin representation ¢_. Then by
Remark w_(AJ) = —J. This is a contradiction to our construction because only one of J and —J
can define the positive complex structure of a member in Ap¢ 7 by the same reasoning as in the proof

of Theorem [5.2.1{ Therefore ¢ : (D;)ES — D, 7 is bijective. O

Remark 5.2.3. It is clear that the stabiliser Keonj s in fact the group
(Spin(2) x Spin(6)) / {1, A} < Spin*(2,6).

The argument in the proof above is also consistent with the fact that Keonj ~ U(4) as in [Harv, Equa-

tion 14.44).

Remark 5.2.4. By the Inverse Function Theorem, Theorem implies that F' is a diffeomorphism.
Surjectivity of the second arrow of F implies that the Hodge group of W is SO*(8) for a very general

member in Apq 7. Note that the dimensions of Kp and A7 are both 6. So if Kp is irreducible, for

example in the case of Theorem [3.5.20] then our map F' is dominant on to an irreducible component of
A, 7. However, it is not known to us whether Axq 7 is irreducible or not.
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6 Application to examples

We have shown that the map F' defined in Section indeed lifts to an isomorphism F between a type
IVg HSD and a type 114 HSD induced by Diagram [2| In this section, we will apply the construction on
a few special modular varieties Kp,, - - -, Kp, of K3 surfaces of Picard rank 14, and work out the explicit
properties of the resulting modular varieties of polarised abelian 8-folds with totally definite quaternion
multiplication. In Section we discuss the six special families of K3 surfaces polarised by an even,
indefinite, 2-elementary lattice of rank 14; In Section [6.2.2] and [6.2.3] we will compute the attributes
introduced in Section [3.3.3] associated to the image of F* for each special family; in Section [6.3] and [6.4]
we will perform computations of the map F for these families in MAGMA, and study a special locus
on which F' exhibits exceptional behaviour.

6.1 Special families of K3 surfaces of Picard rank 14

We consider families of K3 surfaces with even, indefinite, 2-elementary polarisation lattices of rank 14.
The polarisation lattices and their complements in the K3 lattice Axs can be classified by the triple
(rk,1,9) as in Theorem We can exhaust all such lattices: let X be a P-polarised K3 surface where
P is 2-elementary with rank 14, and let T" be its transcendental lattice. Then 7" has signature (2,6),
and is 2-elementary. i.e. Ar ~ (Z/27)!, where | = 2,4,6 or 8 by Theorem With reference to
Table 4] we list in Table @] all such transcendental lattices for each possible pair of (I,6), as well as their
corresponding polarisation lattices with the same attributes.

S| T P
T :=U6%® U@D4(—1) P = U@D12( 1)
Ty:=UaUoq (-2)% Py:=U @ Eg(—1) @ (—2)%*

(1)
T3 =U® U(2) & D4(—1) P3 =U® Dg( 1)
T, :=UaU2)® (—2)% Py :=U @ Dg(—1)
(-1)
(=1)*°

®
® D (1)
@ (—2)%4

T5 =U2)®U(2)® Da(—1) | P5:=U ® Da(—1)%
Ts:=U2)aU2) @ (-2)% | Ps:=U® D4

CO| O O] H=| | D] =~
= O = O = O

1)®? e (—2)*

Table 6: All even, indefinite, 2-elementary transcendental lattices (7') and polarisation lattices (P) for
a family of K3 surfaces of Picard rank 14 by their length (1) and parity (9).

The modular varieties Kp, of K3 surfaces polarised by the lattices FP; for i = 1,--- ,6 are families
of Jacobian elliptic K3 surfaces: each K3 surface X in the family admits an elliptic fibration, which
is a projection X — P! whose fibres are elliptic curves, as well as a section. The Jacobian elliptic
fibrations with finite Mordell-Weil group admitted by these families are classified in [CMI]. If the
elliptic fibration of X has a 2-torsion section S, then there is a canonical involution on X called the
van Geemen-Sarti involution ¢ given by the fibre-wise translation that identifies the zero-section
with S. By resolving the 8 singular points in X/¢, we obtain another K3 surface Y and the induced
rational double cover X --» Y. In [CM2] by the same authors, it is shown that the family Kp, is a
van Geemen-Sarti dual of the family Kp,, i.e. there is a van Geemen-Sarti involution on any X5 € Kp,
which induces rational double cover from X5 to some X5 in Kp,, and a van Geemen-Sarti involution
on X, which induces a rational double cover from X5 back to X5. In the same sense, the family Kp, is
self-dual. Moreover, the family Kp, of double sextics is studied in [KSTT].

Let P and T be one of the above pairs P; and T;. We will give an explicit construction of the map
F: Kp — Am,7 sending a K3 surface X to an abelian 8-fold Ay = (T, J;,@Q1) as in Diagram |3| Note
that by Theorem Kp is irreducible, and therefore F'is dominant to an irreducible component of
A, 7. In the following subsections, we will explain how one may obtain the attributes M and 7 which
determine the modular variety A 7 of abelian 8-folds of PEL type starting from each of the six Kp’s
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listed above, as well as how the image of the lift F changes as we vary our input in the HSD D;C. For
this purpose, we use the computation system MAGMA which allows computation over integers as well
as number fields. Specifically, we will work out the details for the family Kp,. One may refer to the
variables and functions in the two MAGMA files pre-T3.m and T3.m in the appendix.

6.2 Realise map between modular varieties
6.2.1 Compute simple decomposition of a generic KS variety

Fixing any « as in Section the original KS construction gives us a family of KS varieties, from
which we derive the family of the abelian subvarieties A;. Recall from Section that given a KS
variety KS(X) in the family, both the complex structure J; and the polarisation form @; of the abelian
subvariety A; depend on the 16-dimensional real torus (A})r/A}, which can be obtained by fixing an
isomorphism of algebras

p: CI* (Tp) =~ My(Hg) & My(Hg).

We would like to obtain the abelian 8-fold A;. Since we may glue up Clifford algebras by applying
Theorem and since P and T are orthogonal direct sums of the 2-elementary indecomposible
lattices, it suffices to fix a map ¢ from the Clifford algebra over each indecomposible lattice component
to the corresponding matrix algebra listed in Table 5 which extends Q-linearly to an isomorphism, and
then put them together. In fact from Table |§|7 it is enough to consider U, U(2), D4(—1) and (—2)®*.

Let us first consider the lattice U(n) for n = 1,2. Let {f1, f2} be generators of the lattice U(n) such
that the associated symmetric bilinear form b is given by the matrix

0 n
My = (n O>

Consider U(n) < CI(U(n)), where Cl(U(n)g) =~ Clg(1,1) ~ M>(Q) . Then the Clifford multiplication
is determined by the relations

o f7=0;
o f2=0;

o fifo=2n— fafi,s0 (fif2)> =2n- fifo.
Thus a choice of the map ¢: Cl(U(n)) — M2(Q) which preserves the Clifford multiplication is given by

=1 ¢ = (g o) et =[5 o)
Observe that ¢(f1),¢(f2) span the Z-algebra

d+2na b\
{( 3 d).a,b,c,d,a,,@EZ}

This is well defined as one can check that the integral structure is preserved: any element in the above
set is the image of
d-1+a-fifa+b-fi+ B f2 € CIT(U(n)).
So ¢ is a Z-algebra isomorphism onto its image.
Secondly, let us consider the case of D4(—1). Let {h1,ha, hs, ha} be the generators of the lattice
Dy(—1) such that the associated symmetric bilinear form b is given by the matrix

2 1 -1 -1
-1 -2 0 0
“Mp,=1_1 ¢ 5 o

-1 0 0 =2
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We will obtain a map ¢: Cl(D4(—1)) — Mz(Hg) by applying the Fundamental Lemma for Clifford
algebras (Lemma [4.1.4). From our discussion towards the end of Section the lattice Dy(—1) is in
fact the order o(—2) < Hg, where 0 = Z(h, i, j, k) is the Hurwitz integers. An explicit isometry between
the two lattices is given by

hy — —2h, hgw— —2i, hzw— —2j, hg— —2k.
One can construct a Z-module homomorphism

@ 0(=2) — M3(o)
—2 (—%z g)

with ¢(—22)%2 = —2¢(z) - 1. Therefore ¢ extends uniquely to an algebra homomorphism
@: Cl(D4(—1)) — M>s(o0).

Lastly, let us consider the lattice (—2)®%. Let (—2)®* be generated by hy,--- ,hys such that the
associated symmetric bilinear form b is given by the matrix —2 - 14. Again we apply the Fundamental
Lemma for Clifford algebras: define a Z-module homomorphism ¢: (—2)%* — My(Hg) by defining

p(h) = <_02 (1)> plha) = <2oz é) plhs) = (2(;‘ é) plha) = <20’“ g>

and extend Z-linearly. It is easy to check that (v)? = g(v)-1, so ¢ extends to an algebra homomorphism
@i C1({(—2)®%) — My(Hg) as desired.

By applying Remark we may put together any two of the homomorphisms of graded algebras
© in the following way:

CI(L1) ® CL(La) = My, (F) @ My, (F) — My,ony (F) = CL(Ly @ La)
({aijtigs {01} k) = {@iibki b ro(i—1)+k,n2(i—1)+1-

This gives us a homomorphism (which we still call ) from the lattice C1(T") to Mg(Hg) for the family of
K3 surfaces with transcendental lattice T. With reference to Remark the image of any element
x in the even part CIT(T) under ¢ is in the form

mi1 0 0 miq 0 mie Mi7 0

0 mo2 me3 0 mos O 0 mog

0 ms3zg 133 0 mss 0 0 mas3s
o(z) = mq1 0O 0 mg O muye mgr O € My (Hg)
0 ms2 153 0 mss 0 0 mss Qs

mer 0 0 mes 0O mgg mer O

mri 0 0 mr4 0 mre My 0

0 mg2 mgg 0 mgs O 0 msgg

which can be identified to an element in My (Hq) @ My (Hg) by extracting the two obvious 4-by-4 blocks:

mir M4 Mie M7 M2z Ma23 M25 M2y
0 (az) _ mga1 M4q4 My 47 , m32 M3z M35 71138
me1 Me4 Mee  Me7 M52 Ms53 M55 M58
mr1 Mr74 M7e M77 mg2 Mgz MMg5 1188
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Extending linearly by Q, this gives us the isomorphism ¢ identifying C1*(Tg) with My(Hg) @& M4 (Hg)
as required.

From the discussion following Theorem the rank 16 lattice A} is the image of CIT(T") under
d-e1 € CIT(T), where ;C1T (Tp) is the preimage of the matrix (Fj 1,0) under ¢. By Remark it
is clear that the matrices (Ej;;,0) and (0, Ej ;) for j =1,--- ,4 belong to the even part of the Clifford
algebra over Tg. By patching the two homomorphisms ¢ together, each €; can be written as a product
of z; and yj, where z; is the preimage of some E; ; under ¢: CI(U & U(n)) — M4(Q); and yj, is the
preimage of diag(1,0) or diag(0,1) under ¢: CI(T’) — Ms(0). In the following example we give the
idempotents ¢;’s for i = 1,---,8 explicitly for the family Kp,, and obtain the lattices A} C RS using
MAGMA.

Example 6.2.1. (See file [pre-T3.m]) Consider Ts = U @ U(2) ® Dy(—1). Let {f1, fo},{fs, fa} and
{h1, ha, h3, ha} be the sets of generators of the indecomposible sublattices U, U(2) and D4(—1) such that
the matrices associated to the symmetric bilinear forms with respect to those generators are My, My (o)
and —Mp, respectively.

Notice that we have the following pseudo-idempotents in CI(U ® U(2)), i.e. primitive elements in
Cl(U @ U(2)) that are integral multiples of idempotents in C1((U & U(2))q):

r1:= f3fifofa
ry:=4f1fa —m

T3 :=2f3fs — a1

T4 ::8‘1—:1:1—352—:63.

Their images under ¢: Cl(U & U(2)) — M4(Q) are 8Eq 1, ,8E44. By considering the element
H := hihohshg + haohs + hshy + hyha € Cl(Dy(—1)),
we also have pseudo-idempotents in Cl(Dy(—1))

y1:=2—H
Yy =2+ H

whose images under ¢: Cl(D4(—1)) — Mas(0) are the diagonal matrices diag(4,0) and diag(0,4) respec-
tively.
Therefore in Cl(T3) we have eight pseudo-idempotents

[32e1,- -+, 32es] = [w1y1, T2y2, T3y2, Tay1, T1Y2, Tay1, TaY1, Tayo]
whose respective images under ¢: Cl(T3) — My(Hg) @ My(Hg) are
[(32E1,1,0),---,(32FE44,0),(0,32E1 1), -, (0,32E4.4)].

Since the sub-sublattices U @ U(2) and Dy(—1) are orthogonal to each other, the actions of the x;’s
commute with that of the yy’s. Therefore, for the pseudo-idempotent 32e; = x;yi, the lattice A, is given
by the set

CI"(T)-32e;={L-K e CI"(T): L e (CUU D U(2)) - x;), K € (CL(D4(-1)) - yr)} .

Note that the image of the multiplication by a pseudo-idempotent x; in CL({U @ U(—2)) is the kernel
of the multiplication by 8 -1 — x; in CLl(U @ U(—2)). By writing out the matriz associated to the map
of multiplication by 8 - 1 — xj, one can obtain primitive generators of the lattice CI(U ® U(2)) - x; by
applying the MAGMA built-in function KernelMatrixz. There are four such gemerators Li,--- , Ly,
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two of them are in the even degree part C1T(U @ U(2)), and the other two are in the odd degree part
Cl" (U@ U(2)) (See function “L_CUp”). Similarly, one can obtain eight generators Ki,--- , Kg
for the lattice C1(Dy(—1)) - yx where four of them are in the even degree part C1t(Dy(—1)), and the
other four are in the odd degree part C1~(D4(—1)) (See function “L_CDp?”). There are only 16
combinations of the Ls’s and the K, ’s such that their product lies in C17(T). These 16 vectors form
the 16 generators of the lattice A, C RS,

Finally, the complex structure J; and the polarisation F; of A; are obtained by restricting J and
E of KS(X) to (A})r.

Remark 6.2.2. By Theorem [5.1.9, for a very general X € Kp, the A; := ((A))r/A}, Ji, E;) obtained
from above satisfy Ay ~ -~ Aq and A5 ~ --- ~ Ag, but Ay £ As.

6.2.2 Compute representation of endomorphism algebra

Recall the attributes {z1,--- ,24}, M, T and H associated to the abelian 8-fold A; as a member of the
target family Aaq7, which were introduced in Section assuming that the representation homo-
morphism @ of Hg = Endg(A4;) is the standard one ®g4. However our expression of A} obtained from
Section already determines a basis of the real ambient space R'®. Therefore we will first compute
a real representation ®g out of J; and A} with respect to the current basis of R!6, and then transform
to a complex representation @, and finally to the standard representation ®yq.

Each of the six families in Table |§| has a transcendental lattice in the form 7' = U & U(n) & T",
where T” is either Dy(—1) ~ o(—2) or (—2)®*. For any very general KS variety associated to one of
the families, and for A; the simple abelian subvariety in the KS variety as defined in Section let
F = Endg(A;) ~ Hg, and let R = End(A;) which is an order in F'. As a Z-submodule of F, R is of
rank 4. On the other hand, recall from [vG1, Lemma 6.5] we have

CI* (Tg) = Endggy+ (CIF (To)).

Since A] is a primitive sublattice in C17(T'), the algebra R is generated by the action of some elements
in the integral part C17(T) on A)j. However, R is not a free subalgebra of CIT(T): two elements in
CIT(T) may act differently on C17(T') even though they have the same action restricted to Aj.

In the following we will show how to obtain the representation ® from the algebra isomorphism

¢: Cl(T") — M2 (Hg)

given in Section It is enough to define ® on a set of four generators {ri,---,r4} C R < Hpg.
The strategy is to first obtain a set of elements {hy,--- ,hs} C CIT(T) whose actions on Ay < CIT(T)
generate R < Hg. Then we can compute matrices N;’s in Mi4(Z) (with usual action on R ~ (A))g
by left multiplication) which represent the right actions of the hi’s on (Mg < CI"(Tg). Then by
identifying ((A})r,J1) with (A1)r = Wy where Ay = p(A}) (see Definition [3.2.9), each matrix N; is
taken to a complex matrix M; € Mg(C). Finally, based on the multiplication rules satisfied by the M;’s,
we choose the r; € R that can be mapped to the M;’s under the algebra homomorphism .

Suppose an element r € R is given by the action of € CIT(T) on A.. Then by Remark the
matrix () acts by multiplication from the left. On the other hand, there is a natural action of C1T(T)
on A} coming from its CI™(T)-module structure. The pushforward of this action under ¢ is also given
by matrix multiplication from the left (Remark . Any endomorphism of A; should commute with
the action of ¢(CIT(T)), which implies that o(z) is a diagonal matrix. Conveniently, we know some
diagonal matrices in the image ¢(CI1*(T)): for example

14 ® (p(t1) - (t2)) = 14 @ p(t1t2) € M4(Q) ® M2 (Hg)
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for t1,t2 € T'. These matrices together with the identity matrix span a Z-module of rank 4. Thus R
contains the Z-algebra generated by matrices in this form. In fact by studying our construction of ¢’s,
we can obtain a set of hy’s in CI*(T) which have the same actions as a set of four primitive generators
of R, as well as their actions on W; as matrices My, --- , My € Mg(C). Let us first explain this in detail
for T" = D4(—1), which includes the case when T' = Tj.

Example 6.2.3. (See variable “tith-mat_8” in file [T3.m]) Continue from Ezample[6.2.1 Define
h(—gy = 2h1 — ha — h3 — hy € C(T). The reason for the notation h(_y is that, under the identifica-
tion of Dy(—1) with the order o(—2) < Hg, the element h(_y) € D4(—1) is mapped to —2 € o(-2).
Let 1 represent the identity element in the any Clifford algebras. Then the images of the elements
(h—oyh1), (h—pha), (h—ah3) and (h(_gyha) in CI*(T) under @ are diagonal matrices. By definition,
the identity 1 € CIT(T) must also belong to R. The element h(_g)h4 is Z-linearly dependent on the
other four elements, and the elements

by =1, hy = (h_pyh1), hs = (h(_ah2), ha:= (h_a)hs)

together span a primitive lattice of rank 4 in C11(T). So the set is also the set of actions of the primitive
generators of R as a (non-free) Z-algebra.

The built-in function Solution in MAGMA allows one to solve a system of equations over Z. In
particular, one can obtain matrices N;’s in Myg(Z) (with left multiplication on R ~ (A])r) that cor-
respond to the right actions of the elements h;’s on (A})r < C17(Tg) (See function “Get_r_action”
in file [T3.m]). One can also check that the N;’s span a primitive lattice in Mig(Z) with the lattices
machinery in MAGMA.

Finally, to obtain the matrices M; € Mg(C), we introduce the complex structure Jy of Ay as in
Definition [3.2.9. Let Wy be the +i-eigenspace of J1. One may use Solution to find +i-eigenvectors of
Jiin (A))r. Applying Solution again, one may transform the Ny,--- Ny to My, -+, My € Mg(C),
such that they respectively represent the actions of Ez s on Wy ~ C® with respect to the eight +i-
eigenvectors (See function “Get_CC8_bas” in file [T3.m]).

Similarly, we explain how to identify h; with M; in the case T' = (—2)®4,

Example 6.2.4. Let T' = (—2)%* be generated by hy,- - - , hq such that the associated symmetric bilinear
form is given by the matrix —2 - 14. Again, denote by 1 the identity element of any Clifford algebra.
Then the elements (hih1), (hsha), (haho) and (hohs) in CIT(T) under ¢ are diagonal matrices. The
identity element 1 € CIT(T) is again contained in R and (hihy) is an integral multiple of 1. One can
check that the elements B B B B

hi:=1, hg := hghy, hs := hghs, hg := hohg

together span a primitive lattice in C1T(T). Using Solution, one can obtain the actions of the ﬁz
as matrices N; in Myg(Z). These 16-by-16 matrices associated to the h; can be transformed into the
matrices M; by considering the +i-eigenvectors of the complex structure Jy in (A})r.

The final step is to choose and match generators r; of R < Hg to the matrices M;’s such that they
satisfy the same set of multiplication rules. Although the map

Ty — Ez — (p(}VLZ)

does not necessarily preserve multiplication, it does preserve addition and scalar multiplication, which
hints at some good choices of the ;.
Let us start with the case when 7" = Dg(—1).
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Example 6.2.5. (See variable “bas_R” in file [T8.m]) Continue from Ezample[6.2.3 Note that

o) =12, o) = (7o )0 el = (5 5) wi=(4 )

A good guess of R as an order would be (1,0(—2)). It is easy to identify some sets of primitive generators
{r1,---,r4}. For example r := {1,—2h, —2i, —2j} and 7 := {1, —2h, —2i,—2j} are some obvious ones.
By comparing the multiplication rules within each set of primitive generators R and that of the M;’s, one
can select one appropriate set of r;’s such that r; — M; defines an algebra isomorphism ®: F — Mg(C).

Let us consider the specific case of T = Ts. It is easy to check that in the abelian 8-fold Ay <
KS(X), for k = 1,4,6,7 (resp. k = 2,3,5,8), the set of generators T (resp. 1) would define an
anti-homomorphism of algebras F — Mg(C). Anti-homomorphisms instead of homomorphisms arise
naturally because the map ii — M; is an anti-homomorphism itself: the action of Eﬁj from the right
corresponds to the action of M;M; from the left. To obtain a homomorphism instead, we precompose
the anti-homomorphism by an anti-isomorphism v of F:

v: Ho — Hg
1,7,7 — 1,4, respectively
k— —k.
In particular, for Ay, the required real representation ®r of F' = Endg(A1) is defined by
1= Ny =116, (—1+i+j—k)— No, 2i+— N3, 2j— Ny,
and the complex representation ® is defined by
1= M =1g, (=1+i+j—k)— My, 2i+ M3, 2j+— My.
The case for T" = (—2)®* is simpler.

Example 6.2.6. Continue from Example[6.2.4, We have

s — (2 0 — . (2j 0 — (2 0
A good guess of R as an order would be (1,2i,235,2k). One can check that in fact the map r; — hi — go(i;,)
also preserves multiplication, so the choice of the generators {ri,---,r4} = {1,2i,2j,2k} defines an

anti-homomorphism F — Mg(C). Precomposing by the anti-isomorphism v in Ezample gives the
desired representation Pr and P.

Before we move on to the next subsection where we compute the attributes associated to the abelian
8-fold Ay, we will show how to transform the representation ® to the standard one ®4q by a change of
basis of C® (See function “Phi2Chi” in file [T3.m]). Precisely, we hope to find an 8-by-8 change
of basis matrix @ € Mg(C), such that

Q -O(ri) =X(r;)) ®1y)-Qforali=1,--- 4.

Consider the C-vector space isomorphism ()~ described in [BL, p.252] which identifies a d-by-d
matrix to a horizontal vector of length d?

(-)™: My(C) — C¥
{aij} — a” = (a11, @12, -+ , aga)-
For each r;, we find matrices A and B such that for all 8-by-8 matrix M, we have
(M- @(ry))” = M- A,
(X(ri)) ®14) - M)y =M - B.

Using the KernelMatrix function in MAGMA, one can build (non-unique) 8-by-8 non-singular matrix
out of the kernel space of A — B to be the desired matrix Q.
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6.2.3 Compute attributes

In this subsection, we will compute the attributes {z1, - ,24}, M and T determining the moduli space
of abelian 8-folds with totally definite quaternion multiplication Axq 7 as the target space of the map
F and any abelian 8-fold A; in the image of F. Suppose A; is isomorphic to the complex torus Wy /A;.
First, we will compute the attribute {z1,--- , 24} C C® associated to A; satisfying Equation :

4
(A)g =) Pua(F);.
i=1
Moreover, we will show that the attribute {zj,---,z4} associated to a particular member A; ~

((A))r/AY, J1) is determined by its complex structure J;.

Lemma 6.2.7. The real representation ®g: Hy — Mis(Z) sending each generator r; to the matric
N; € Mi6(Z) obtained in the same fashion as in Ezamples|(6.2.5 and |6.2.4| has image in the subset of
block diagonal matrices

{diag(./\fl, s ,N4) ./\fJ € M4(Z)}
with respect to a suitable order of the generators of the lattice A} defining A;.

Proof. Recall from Section that the algebra homomorphism ¢: CI(T') ~ My(Hg) & Mi(Hg) is
obtained from combining the two homomorphisms

Cl(U @ U(n)) — My(Q) and CUT") — My(Hg).

It can be observed that the CDR(E)’S, hence the image of ®g, are pairs of diagonal matrices in My(Hg) @
My(Hg) for both T" = D4(—1) and (—2)®4.

On the other hand, recall from Example that each generator of the lattice A} is a product of
Ls € Cl{U®U(n)) and K,, € CI(T”). In particular when fixing s = s, the rank 4 sub-lattice generated
by {LsyKw : w = 1,---,4} corresponds to one of the four entries in the first column of p(CIT(T)).
Since the action of ¢((h1,- -+, hs)) on the first column of (C1*(T)) is equivalent to that of O (Hg) on
R ~ A} = (LK, : s,w=1,---,4), it is clear that under suitable order of the generators LsK,, the

image ®g(Hg) lies in the claimed subset of block diagonal matrices. O

We first choose {(ar)1,- -, (xr)a} C M16(Z) that satisfy

4

(ADg =Y Pr(F)(@=)i.

i=1

We fix the order of the set of generators A such that the image ®g(Hg) are block diagonal matrices of 4-
by-4 blocks. Then it is clear that the attributes {(xgr)1,- -, (xr)4} can be chosen to be {e1,es, €9, €13},
where e; = (0,---,0,1,0,---,0) is the vector with 1 as its j*" entry. The complex vectors x; that
distinguish the members in A7 can then be obtained by multiplying the change of basis ) obtained
at the end of Section to their images in the +i-eigenspace of the complex structure J; (See
function “Get_xs” in file [T3.m]). It can be checked that they do satisfy the original equation

Next, we will compute the attributes M such that Equation is satisfied:

4
A1 = {Z @Std(ai)xi: (al,- . ,CL4) c M}
i=1
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As explained in Remark [3.3.17] it is more intuitive to solve M from a real version of the equation that
does not depend on the complex vectors z; (or equivalently the complex structure of each member Ay).
We will instead solve

4
All = {Z (I)R(CLZ‘)(ZR)Z‘: (al,--' ,a4) € M}
=1

In other words, we will identify A} to a Z-submodule M of F*, where F' = Hg. Note that from
we may decompose A} into

4
A ~ GB L;,
i—1

where each £; := {®Pr(a;)(zr); : (a1, -+ ,a4) € M} is a Z-module of rank 4 that corresponds to the
ith diagonal block of the elements in ®g(F). Let us first focus on one of the blocks £;. We will prove
that £; is isomorphic to a Z-submodule M; of R, where R = End(A;) = (r1,--- ,r4) is the order in F
we obtained in Section Consider the Z-submodule R(xr); < Z* of L; generated by the vectors
Pr(ri)er = e, -, Pr(ra)ers after removing unnecessary zeros. Let (di,--- ,ds) with dj|dj;1 be the
elementary divisors of the matrix

<61 ’ (I)R(T‘Q)Qr) | (I)R(Tg)eg | (I)R(T4)€13> S M4(]R),

and let d = dy4. Then £; is isomorphic to the Z-module d£; < R(xgr);. We can therefore obtain a R-
module M; by multiplying d£; by (zgr); ' on the right (See function “Get_calMkk” in file [T3.m]).
Furthermore, M; is torsion free and is isomorphic to £;.

1

d- (zR),;

L; M; <R

This gives us

4
A/IE@MZ‘<R4<F4.
=1

We may even identify some of these M;’s if they are isomorphic R-modules.

Lemma 6.2.8. Two R-modules M and N are isomorphic if and only if there exists h € Hg such that
N = Mh. The isomorphism preserves the number of minimal vectors (i.e. vectors of smallest norm) in
the isomorphic modules.

Proof. The reverse implication for the first statement is clear as R is torsion free. For the forward
implication: suppose f: M — N is an R-module isomorphism. Fix any m € M, so we have Rm < M.
Similar to the above, by considering the elementary divisors of Xg(Rm) in M, we can find an integer d
such that any = € M may be written as = rm/d for some r € R. Now

rf(m) rm-m~!- f(m)

flay = S T I g f(m)

where m™! - f(m) € Hyg.
Norm in R is defined as Nm(r) = r7 for all » € R. So if x € M is a minimal vector, then zh € N is
a minimal vector with norm Nm(z)Nm(h). O
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With the function ShortestVectors in MAGMA, one may obtain a list of minimal vectors in each
R-module M;. Then it can be tested whether those M;’s with equal number of minimal vectors are
isomorphic by brute force. To be specific, suppose M; and M; have minimal vectors wuy,--- ,u, and
v1,- -+, U, respectively. For any k,l € 1,--- ,n with k <, let hy := u,;lvl. Then M; ~ M; if and only
if there exists hy; € Hg such that right multiplication by hy; is a bijection between the set of generators
of M; and that of M;. Note that if n > 4, then the set of minimal vectors in the module M; generates
M; Moreover, if we let U; be the 4-by-4 matrix representing the right multiplication of hg on M;,
then U := diag(Uy,---,Us) is a matrix taking any element in A} with respect to the generators e;’s
to its image in M := M; @ - -+ @ My, where each M, is with respect to the basis {r1,---,r4} of R.
By identifying each M; with a submodule in H, then there is a 4-by-16 matrix U’ over H such that
U’(ej) < H* represents the same element as U (e;).

We will compute the M;’s for the example T" = T5.

Example 6.2.9. (See function “calMkk_2_Ikk” in file [T3.m]) Continue from Example .
Recall that R = (1,0(—2)). Up to reordering the index i for the modules M;, it can be shown that My
and Mz have 6 minimal vectors, while Mgz and My have 12. On the other hand, the R-modules in Hg

Is :=(h+i,h+j,i—j,k)
112 =0= <h7l,],]€>

have 6 and 12 minimal vectors respectively. By brute force, one can show that M1 ~ Mgy ~ Ig, and
Mz ~ My ~ Is. Therefore Ay is isomorphic to the Z-module in F*

M=1s& I & L12® L.
Next we calculate the matrix 7 = {t;;} that satisfies Equation [3.3.3|(3)):

4

4 4
E > ®gala)zs, Y Paalbj)a; | =trpyg | D aitidh
=1

j=1 i,j=1

where F is the alternating form associated to the polarisation of the abelian 8-fold Ay, and a;,b; € H.
Again, we solve the “real” version of the equation by considering E as a pairing on (A])gr =~ R given
in Section by

(v, w) — tr(av*w)

for a suitable choice of a € C17(T). Let Mg be the corresponding 16-by-16 real matrix with respect to
the basis {e1, -+ ,e16} of A]. Then T is the unique 4-by-4 matrix such that

(U)'TU] = (MEg)ny,

where U; and U] are the h-th and the I-th columns of U’. From Lemma if h =4(s—1) +w with
0 < w < 4, then the s-th entry on the column Uj is the only non-zero entry. The vast number of zeros
greatly reduces the difficulties of solving for 7.

Let us calculate T for the main example.

Example 6.2.10. (See function “Get_calT” in file [T3.m]) LetT = Ts. Let {f1, -+, fa,h1, -+, ha}
be the set of generators for the lattice T' as in Example|6.2.1. Clearly fi+ fo and fs+ fi are two positive
orthogonal vectors. Choosing for example o = (f1 + f2)(fs + fa), then the matriz Mg is in the form

0 « 0 O
* 0 0 O
Me=10 0 0 «
00 % 0
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where each asterisk represents a non-zero 4-by-4 block. This implies that the matriz T only has four
non-zero entries: t12,t21,t34 andty 3. Note that we have an over-determined system of linear equations.
To solve for any of these non-zero entries, say t12, it is enough to consider the four equations

U{’l “t1o- Ué74+k = (MEg)1,44r where k=1,--- 4.

The calculation gives
0 256 0 0
—-256 0 0 0
0 0 0 =512
0 0 512 0

T:

In fact, the matriz T is the same for all A} fori=1,--- 8 up to switching the two copies of Is (and/or
the two copies of I12) in M = I ® Ig @ L2 ® I15.

Remark 6.2.11. We may also compute the attribute H = (hij) € My(H) which is determined by the
other three attributes (See function “Get_calH” in file [T3.m]). We again consider the “real”

version of Equation satisfied by H:

Vi) = 3 Or(hy) @);,

=1

where \/—1 represents the action of the complex structure Ji of Ai. By writing each hi; as a linear
combination of the basis = {ry,---,r4} we used in Example this is then equivalent to solving
for a;j € R such that

4 4
V=T(ar)i =YY af Ox(re)(zr);-
j=1k=1
We can easily solve the system consisting of the four equations when ¢ = 1,--- ;4 using the function

Solution.

6.3 Realise map between period domains

We have computed the attributes M and 7 which determine the target Aa¢ 7 in the map F: Kp —
AmT, as well as the attribute {z1,--- , 24} C C®, associated to an abelian 8-fold A; in the image of
F, that is isomorphic to the complex torus ((A})r/A}, Ji). Recall from Theorem that the map F

lifts to the map F': Dr}' — D, 1, where

D} = {w € P(T¢) : w? = 0,ww > 0}
Dy ={Z € My(C): —Z = Z',1— ZZ' > 0}

are the HSD overspaces of the modular varieties Kp and A 7. We would like to realise the map F
and compute F (w) € D7 for any w € D, which allows us to study the image of an infinitesimal
deformation of D} under the map F'.

As discussed in Section and a K3 surface X € Kp lifts to a point w € D; which gives the
complex structure J € CIT(T) of the corresponding KS variety KS(X,a). Its restriction to A} gives
the complex structure J; of A; = F(X). We have shown that J; gives the attribute {z1,--- , 24} C C&.
Carefully following the proof of Theorem and [Sh, Section 2.3-2.5], we can then obtain the
standard normalised form of this attribute which is an element in D4, 7.

We shall explain the steps in greater detail for our main example.
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Example 6.3.1. (See function “Get_z” in file [T3.m]) Let T = T3 and fiz w which gives the
complex structure J € C17(T). We define the matriz X

-l %

from the attribute x as in the proof of Theorem (See function “Get_Xmat” in file [T3.m]).
The next step is to find a suitable basis of H such that T ' is the matriz ily, or equivalently to find
a matric W € My(H) which satisfies
WT WP =ily,

where the positive anti-involution p acts on the matriz W by transpose of conjugation. Given the

expression of T in Example|6.2.10, it is easy to see that if

=256 —¢ 0 O
=256 ¢+ 0 O
0 0 —i 512’
0 0 ¢ 512

W' =

then W'T—Y(W')? = diag(—2i,2i,—2i,2i). Thus we may take

W = diag(—35/V2,1/V2,—j/V2,1/V2) - W',

If we perform change of basis of X by X(W) 1, i.e. replace X by X - X(W) 1, then X € Mg(C) s
still a block matriz in the form
v Vv
v )

and the matriz Z == —V U is an element in Dm,1-

In particular, we may compute the image under F for the point wo := {(fi+f2)/V2—i(f3+f1)/2)c],
which clearly belongs to DF as (fi + f2)/v/2 and (f3 + f1)/2 are orthonormal vectors in Tk.

Then with by the above calculations, we have

0 a 0 0
~ —a 0 0 0
Fw=149 0 0o o
0 0 —=b 0
where
8193 —128v2 | 524289 — 102412
- 8191 T 524287

Remark 6.3.2. As a sanity check, one can check that Zt! = —Z and 1 — Z7Z' > 0. To check the
inequality, it is enough to check that all the eigenvalues of Z are positive, as Z is Hermitian. Note that
the Eigenvalues function in MAGMA can only find eigenvalues over the same field as the entries of
Z are defined over. So to erhaust all the eigenvalues, we must first convert Z to a complexr matriz,
paying the price of floating point errors. Since the eigenvalues are always real, the check is the same as
checking the real parts of the eigenvalues are all positive.

In practice, it is hard to determine if the initial choice of w belongs to D; or the other connected
component D, of the period domain. The above check therefore serves as a flag for this potential

mistake: if the resulting Z does not satisfy 1 — 77" > 0, then w € Dy. To fix the problem, we replace
w by w, and J by —J.
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6.3.1 Local deformation

Having understood the map ﬁ, we would like to vary the input w € D; to see how the image of

F' changes accordingly. Recall from the proof of Theorem that F is locally the Lie algebra
isomorphism so™(2,6) — s0*(8). More specifically, we have

50%(2,6) —=  507(2,6)/t;0+(26) ~ TwD} —> TxKp

lf: l dF, l dFx
50*(8) - 50*(8)/350*(8) ~ TF(UJ)DMT - TF(X)AMT
where €5+ (2,6) = Lie (SO(2) x SO(6)), €5,+(3) = Lie (U(4)), and all horizontal arrows are quotient maps
by the suitable objects. This shows that perturbing the point X € Kp, which is the same as choosing a
tangent vector in the 6-dimensional vector space Tx Kp, is equivalent to picking an element in so™(2,6)
followed by some identification. In the following we will discuss how this allows us to study the image

under F' of the local deformation of a point w € D}.
From [Hel, Section X.2.1] the Lie algebra s0(2,6) is a real vector space

50(2,6) := My M) All M; real; Mo arbitrary;
T [ MY Ms| My, My skew-symmetric of order 2 and 6 resp. |

Thus a basis of s0(2,6) can be given by the folowing 28 elements

Mos e Mi;::EZ--—Ej fori=1, j=2;0ri>3, j>i
1] T
’ M} :=E;+Ej fori=12 j>3.

where Ej;; has 1 at the (4, j)-th entry being the only non-zero entry in the matrix. These generators
correspond to tangent vectors of SO (2,6) in 28 directions via the exponential map exp:

exp: 507(2,6) — SOT(2,6)

On the other hand, recall in the proof of Theorem that any element N € SOT(Tg, q) ~ SO™(2,6)
acts on D;C by left multiplication:

my: Df — D7,
[(e1 +ie2)c] — [(N - e1 +iN - e2)c],

where eq, eo are orthonomal vectors in (7, q). Therefore, for any
N = exp (t : ZaijMij> € 507 (2,6)
(]

for a small ¢t € R- and some coefficients a;; € R, the perturbation of point w & D“TL by the vector N is
given by my(w) (See function “Perturb” in file [T3.m]).

Remark 6.3.3. It is clear that the cardinality (without multiplicity) of the set {ﬁ (mMZ.]. (w))} s at
most 6.

72



6.3.2 Evaluate exponential map

To compute exp, it is enough to obtain the values of exp(tMi';) and exp(tMi;) for some small ¢. We
will first evaluate exp at tM;f. Note that (MZ?)2 =0, so

a—y 252k’+1 o t2k
exp(tM;}) = 18+Z T +Z

t2k+1

where > "7 R and )7, (21;)! are the Taylor series for sinh(¢) and cosh(t) respectively. So eXp(tMJ)
is the matrlx with each of the (h, k)-th entry being

1 ifh=Fk¢/{ij}
cosh(t) if h=ke {i,j};
sinh(t) ifh=14, k=j;or h=7j, k=7;

0 otherwise.

. . — . — 4 _
Similarly for ¢M;;, since (M;;)* =0,

)

N 0k 0 pAk+2 ,
M)y =1 — M (M=
> t4k+3 e t4k
(M) 1
2 g Ma) X gy e
k=0 k=1
1 1
=1g+ §(sinh(t) +sin(t)) - M; + §(cosh(t) — cos(t)) - (—1g)
1 1
+ g(sinh(t) —sin(t)) - (=M;;) + §(cosh(t) + cos(t) — 2) - 13
So exp(tM;;) is the matrix with each of the (h, k)-th entry being
i it h =k ¢ {i, 7}

cos(t) ifh=ke{ij}
sin(t) ifth=ik=j
—sin(t) if h=j,k=1;

0 otherwise.

In MAGMA, it is not ideal to use real data type for the values of the trigometric or hyperbolic
functions as floating point errors are significant when ¢ is small. In order to work over the rationals, we
choose t such that the values of the above trigonometric/hyperbolic functions are rational.

In the case of tM;:, we would like to obtain rational values of cosh(t) and sinh(t) for small ¢ € Qxo.
Setting x(t) := cosh(t), y(t) := sinh(¢), this is equivalent to finding a rational point close to the point
(1,0) on the hyperbola 22 — 4% = 1. Since (—1,0) is another obvious rational point on the hyperbola,
any line with rational slope m through (—1,0) must intersect the hyperbola at another rational point,
whose coordinates can be calculated from solving the system of equations

$2 _ y2 =1
y=mx+m
Therefore a rational point close to (1,0) on the hyperbola has coordinates
14+m? 2m
1—-m2"1—m?2
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for some small m € Q~¢. Similarly for evaluating exp(tMi;) for ¢ small, we have

(cos(t),sin(t)) = (:nzfi mgri 1>

for suitable small m € Qxgq.

Example 6.3.4. Continue from Example . Let m = 1072 and t = sinh~*(2m/(1 — m?)) = 0. Let
w(, be the perturbation of wy by the vector tM 13 €S07(2,6). Then

0 o 0 0
~ -a 0 0 0
0 0 b 0

where

o 8209390193 — 127999872+1/2 Y — 525338098289 — 1023998976+/2
B T 525336102287 '

8207394191

6.4 A special locus

In this subsection we will focus on our main example when 7' = T3. As seen in Example [6.3.1 and [6.3.4]
F(wp) and F(wo) are in a particularly nice form Z(a,b) € M4(C) where

Z(a,b)lgz Z(a,b) a;
Z(a,b)sa = —Z(a,b)az =b;
Z(a, b)u = 0if (4,5) ¢ {(1,2),(2,1),(3,4), (4,3)}.
Furthermore, the condition 1 — ZZ! > 0 tells us that |a] < 1 and |b] < 1.
Consider the sublattice 7" = (f1, fo, f3, fa) = U & U(2) of (T,q) and let P’ be its complement in

the K3 lattice Axs. By consulting Table {4} the lattice P’ is given by U @ Eg(—1) @ Dg(—1). Then for
any w in the identity component DEF, of the period domain of weight two Hodge structures on 7", the

image F(w) is in this nice form Z(a,b) with |a[,|b] < 1. This gives an inclusion of the 2-dimensional
subdomain F(DJ,) of F(DJ}) into S x Sy, the product of two Siegel upper-half spaces of degree 1:

F(D},) — D1 x D1 — 81 x &
Z(a,b) —  (a,b) = (f(a), f(b))
where f is the conformal map taking a disc Dy to S1 by

i(1+x)
1—x

Recall that S; is the parametrisation space for arbitrary elliptic curves. So we may consider DT, as
a subset of the parametrisation space of a pair of elliptic curves, which aligns with the row of r = 18
in Table [3] This observation can be explained by the geometry of the abelian 8-folds parametrised by
the special locus E(D;,) We will denote by X’ a K3 surface in Kp polarised by P’ O P, and use the
notation KS(X’) = KS(T') and KS(T”) to differentiate between KS varieties constructed from different
lattices.

Theorem 6.4.1. Suppose X' € Kp is polarised by P' O P. Let Ay = F(X') < KS(X'). If X' is
very general, that is if Pic(X') = P, then A is isogenous to Ef x Ej, where Ey and Ey are two
non-isogenous elliptic curves.
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We will prove this statement using properties of Clifford algebras only. The first step is to prove the
following lemma.

Lemma 6.4.2. Suppose X' € Kp is very general. Let KS(X') = KS(T) ~ Ay x --- x Ag be the
decomposition of the KS variety as obtained in Example|6.2.1,. If Pic(X') = P’ then for alli=1,--- 8,
there exist elliptic curves E1, Es and an integer k satisfying 0 < k < 8 such that

A; ~ EY x ESF,

Proof. Let X’ be a K3 surface whose transcendental lattice is exactly the rank 4 lattice T/ C T C Ags.
By Lemma i), we have KS(T) ~ KS(T")%".

On the other hand, by Theorem [3.5.25, the K3 surface X’ has a Shioda-Inose structure associated
to an abelian surface A’. From Lem(i), we have KS(T")2" ~ KS(H%(X',Z)), and from Lemma
4.3.5(1i), we have KS(H?(X',Z)) ~ (A")?". By the Poincare’s Complete Reducibility Theorem, we have
KS(T") ~ (A")2.

Finally, from Table [5, we have CIT(T") ~ M(R)®2. By Theorem this implies KS(T") ~
(E1 x E2)2, where F; and FEs are non-isogenous elliptic curves. Combining all statements, this gives
A; ~ EF x E5*. Moreover, four subvarieties in the decomposition of KS(X’) described in Theorem
m are isogeneous to EF x Eg_k , and the other four are isogeneous to Ef_k x E%. O

Remark 6.4.3. Since A’ has transcendental lattice U & U(2), its Picard lattice is given by U(2) con-
sulting Table [, which suggests that

A/ ~ (E1 X EQ)/{(P, Q)} ~ E1 X EQ,
where P € E1[2] and Q € E3[2] are 2-torsion points in the elliptic curves Ey and Ea respectively.

To prove Theorem [6.4.1}, it remains to show k = 4 in the above statement.

Proof of Theorem[6.4.1. Let (T')* be the sublattice in T such that T = T' @ (T")*. i.e. Let (T")* =
Dy(—1). We recall in Example that pulling back each pseudo-idempotent 32¢; along the gluing
map

CIT(T") ® CIT((T")+) — CIT(T)
is the tensor product x; ® y;. Then by the same reasoning as in the proof of Lemma m(l) we have

AL~ CIH(T) - (32¢)) ~ ((01+(T') L) ® (cﬁ((:r')L) yk> & (CI(T") - ;) ® (cr((T’)L) yk))
~4 ((CIH(T") - z5) & (C17(T7) - z5)) -

The second isomorphism comes from the fact that under the algebra isomorphism ¢: CI((Tg)1) — My (H),
the images of both (CI*((T")*) - yi) and (C1=((T")*) - yx) are rank 4 lattices over Z.

On the other hand, x1, - - - , x4 are pseudo-idempotents of C17(7") by definition. Similarly by study-
ing the algebra isomorphism ¢: Cl(T%) — Ma(R)®2, the lattices C17(T”) - 2; and C1™(T”) - z; are both
of rank 1 over Z. Therefore, they respectively correspond to an elliptic curve Ef and F; in the simple
decomposition of KS(7”). This implies k =4 or k = 8.

Assume for contradiction that & = 8, that is, A; ~ (EZ+ )® for all i. From the decomposition
of a KS variety associated to a very general member X € Kp in Example Ay, -+, Ay (resp.
As, .-+, Ag) are isogenous abelian 8-folds, so E;,--- ,Ef (resp. EJ,---,Eg) are isogenous elliptic
curves. Also, 32z and 32¢5 pulls back to 1 ® y; and 1 ® yo respectively, so E1+ ~ E;r . This implies
KS(X")2" ~ KS(X) ~ (E;)%*. However, for a very general X’ with Pic(X’) = P’, we have shown in
the proof of Lemma that KS(X') ~ (Ey x E2)?, where E; and F» are non-isogenous. O
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Theorem implies that DEF, cuts out a special locus in D;C whose image under F corresponds to
non-simple abelian 8-folds which are products in the form of Ef x E3, where E1 and E» are generically
non-isogenous. Also, we have A ~ --- ~ Ag. This is an example of the exceptional behaviour described
at the end of Section (.11

We can similarly find a 2-dimensional locus in D;CZ, for all s = 1,---,6. If X’ has transcendental
lattice T/ = U @ U or U & U(2), then X’ has a Shioda-Inose structure (Theorem [3.5.25). Otherwise
if X’ has transcendental lattice T/ = U(2) & U(2), then X' = Kum(A) is a Kummer surface with
NS(A) = U by [Moll, Corollary 4.4], and KS(X) ~ (A x AY)2' ~ A% by [Mo2, Corollary 4.6] and
Lemma i). Then in both cases, it is easy to check that all the arguments in the proof of Lemmam
apply, as they only depend on the rank and the signature of the sublattice 77 in T. The proof of
Theorem also works nicely: by choosing pseudo-idempotents x1, - - , x4 in CI(T”) such that their
images under ¢ : CI(T") — M4(Q) are some integral multiples of Ej 1 up to Es4 (see Example ,
then C1T(T")-x; and C1™(T") - z; are both of rank 1 over Z and correspond to two non-isogenous elliptic
curves By and Ey. And by choosing pseudo-idempotents y1,y2 € CI((T”)*) such that their images
under ¢ : C1((T")*) — Mz(o) are some integral multiples of diag(1,0) and diag(0, 1), we can rule out
the possibility that A; ~ EY. So in both cases, for all A; parametrised by F (D;,), we again have
Ay ~ Ef x E3.

7 Future investigations

7.1 Degeneration problem

We may continue to explore the connections between our special families p of K3 surfaces and the
resulting moduli spaces Axq 7 of abelian 8-folds by means of degeneration.

In Section [6.4] we have already applied one method of degenerations, which is to study specialisation
of families. We are in a collaboration with A. Malmendier and A. Clingher to describe the loci of
specialisation Kp; in Kp, (See Section where the K3 surfaces also admit polarisation by the rank
18 lattice

Py =U & Es(—1) & Dg(-1).

More specifically, we also consider the family Kgm(s) of Kummer surfaces Kum(S) associated to the
product of two elliptic curves S = Ey x E, as well as the family Kgym(ay of Kummer surfaces Kum(A')
associated to the abelian surface A’ with Picard lattice U(2) as described in Remark The family
Kkum(s) of Kum(S) is in fact [CMI] a family of K3 surfaces polarised by the 2-elementary rank 18
lattice

U® Es(—l) D 2D4(—1).

Any element Kum(S) in Kium(s) has 11 types of elliptic fibrations J1,---, J11 as classified in [KuS],
and the fibration Jg induces a van Geemen-Sarti duality between the families Kyym(s) and Kp;. On the
other hand, the quotient of S by the diagonal action of (P, Q) where P € E;[2] and Q € E»[2], induces
two 2-isogenies

Kum(S) — Kum(A')
Kum(A") — Kum(S"),

where SV is the dual of of S. We believe this is the specialisation of the 2-isogenies between Kummer
surfaces of the Jacobian of a special double sextic curve and Kummer surfaces of a (1,2)-polarised
abelian surface, mentioned in [BCMS]. Therefore for any K3 surface X in the family K Pl there exist
three other K3 surfaces Kum(S), Kum(S") € Kgym(s) and Kum(A') € Kgymary that fit into the a
diagram (Diagram [4]) of 2-isogenies of K3 surfaces. Our goal is to understand the dashed arrow in
Diagram [4, which is the 2-isogeny from X to Kum(A’) that describes the Shioda-Inose Structure of X,
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through understanding all other arrows. We also hope to compute the modular forms that cut out the

specialisation locus Kp; from Kp,.

X-=====-=--- > Kum(A’)

Kum(S)

Kum (SV)

Diagram 4: Some 2-isogenies among K3 surfaces belong to three families of K3 surfaces of Picard
rank 18.

Another special locus to study is the ramification locus if the degree of the map from D; to Daq,7 is
different from 1. Specialising to these loci gives information about extra structure carried by the simple
abelian 8-folds in A 7, which should hint at the correct choice of the arithmetic subgroup in the LSV
biquotient of Anq,7 for F' to be an isomorphism.

The other method is to degenerate the parametrised varieties into singular ones, which occurs at
the cusps of the compactified moduli space. Compactification methods and configuration of cusps for
modular varieties of K3 surfaces and abelian varieties are well studied. For certain semi-toroidal com-
pactifications of these modular varieties, it is known which semi-stable K3 surfaces or abelian varieties
correspond to each point in the boundary of the modular varieties. One may explore different compact-
ification methods of the moduli spaces Kp and Axq,7, and study how their boundaries correspond to
each other under the map F'.

7.2 Special cases of the Hodge conjecture

There have been recent advances in proving special cases of the Hodge conjecture by the study of KS
varieties: in [vG2|, B. van Geemen has shown that E. Markman’s proof of a partial case of the Hodge
conjecture for abelian 4-folds of Weil type is related to the KS construction for K3 surfaces of Picard
rank 16. We may ask whether the KS construction has similar implications for the other cases of the
Hodge conjecture.

Another interesting question is the Kuga-Satake Hodge conjecture [vG1], concerning a certain cycle
class of the product of a projective hyperkéahler variety with the square of its associated KS variety.
The conjecture is proved for a special family of K3 surfaces of Picard rank 16 studied in [Pal], and its
specialisation to families of higher Picard ranks [VV]. We may examine the conjecture on the special
families of K3 surfaces of Picard rank 14 studied in the thesis.

7.3 Connections with mirror symmetry

Mirror symmetry is an area that lies in the intersection of algebraic geometry and physics, which
describes a relation between Calabi-Yau manifolds. In particular Calabi-Yau 2-folds are K3 surfaces,
and by the work of I.V. Dolgachev [D], one can create a mirror family of K3 surfaces by associating a
rank r lattice polarisation to a rank 20 — r polarisation.

A possible direction of research is to study the KS construction for families of K3 surfaces that are
Dolgachev mirror duals to the special families of K3 surfaces we have studied. Such a family of mirror
duals K}, parametrising K3 surfaces of Picard rank 6 is a type IVy4 LSV, while the original family Kp
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of K3 surfaces of Picard rank 14 is a type IVg one. With I. Satake’s result [Sa], it is expected that
one can obtain a map from a type IVi4 LSV to a type Ilgy LSV, which is a moduli space .AVMJ- of
polarised abelian 128-fold with totally definite quaternion multiplication. Remarkably, a simple factor
of a generic KS variety associated to a K3 surface of Picard rank 6 is also an abelian 128-fold with the
expected endomorphism structure. Thus one may construct a map FY: KY — AX/I,T in the same way
as the map F': p — An7 was constructed via the KS construction, and proceed with comparing the
geometric properties of AX/I,T and A 7.

Moreover, when restricting ourselves to consider Kp of K3 surfaces polarised by a 2-elementary
lattice, the existence of a Dolgachev mirror family Cpv is equivalent to the existence of mirror symmetry
[Y] between any member X in Kp and a log del Pezzo surface of index 2. This might provide insights
of how to match up members of the Dolgachev mirror families, or a way to relate the maps F and FV.
We hope to develop this idea in another collaboration with A. Malmendier.
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Part 11
Kuga varieties of polarised abelian surfaces

8 Definitions

In this section, we will give all necessary definitions for our work in Part II.

8.1 Kuga varieties

We introduce our object of interest, a Kuga variety, in greater generality than how it was first introduced
in [K].

To begin with, let us first give the definition of a universal family of abelian varieties. Let A’ ~ 729
be a real lattice with an alternating form E. Recall from Section that Dy 4) is the period domain
of (Ag, E) of type (2¢,9), and that it is biholomorphic to Sy, the Siegel upper half space of degree g.
Moreover, each point in the period domain Dy, ) is a Hodge filtration (F'*) for A7, which is equivalent
to a complex structure J on Af, or a R-linear map g from Ap to the +i-eigenspace of J.

Definition 8.1.1. [Mal, Section 2.1]
A universal family of abelian varieties is a fibred manifold X — D(yq ), such that the fibre

over the Hodge filtration (F*) € D(yy 4) is the abelian g-fold A pey given by the complex torus

F/(Frap ()
with polarisation E. For any positive integer n, we denote by X its n-fold self fibre product
X ><D(2979) o XD(2g,g) x.

In particular, the fibre of X" — D(94,9) over (F'*) is the n-fold product of the abelian variety A pe).

Remark 8.1.2. We follow Ma’s convention to call X a universal family instead of a tautological family,
but no universality of X is to be expected: the base Doy 4 is not a moduli space and the fibres are not
distinct.

Remark 8.1.3. Consider the following families over D(gq gy

Then we have XM ~ W) /A(),

Remark 8.1.4. Let E be the vector subbundle F'V of the Hodge bundle V with respect to its filtration
(F*) [Vd, Section 10.2.1]. It is dual to WY @ O 4 under the polarisation form, and both are called a
Hodge subbundle. In some literature e.g. [Madl] and [vdG|, the vector bundle B instead of V is called the
Hodge bundle.

Let f: X - A~ T\S, be a family of structured abelian g-folds, where the action of I' := I'(f) <
Sp(2g) on S, is given in Remark We will construct an n-fold Kuga variety associated to the
family f by defining an extension I of T and a left action of it on W™ ~ C x S, which descends to
that of I' on S, with reference to [HKW2|, Chapter I.1] and [Nal (2.7)].
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First, by identifying C™9 with the set of n x g complex matrices, we can identify C"? x S, with a
subset of Gr(g, C"*29) by sending an element (Z,7) to a GL(g, C)-equivalence class of block matrices:

Z
(Z,7)— | T
1,
We define the integral affine symplectic group as the semi-direct product My, »x24(Z) x I', brought
to the form

"= {(l”Y) = (1()” i) € Mytog(Z):v €T, 1 € Mnng(Z)} -

The group I acts on C" x Sy by left multiplication on the GL(g,C)-equivalence classes of block
matrices. Explicitly, if 7 = (I,7) € " and 7 = (Z,7) € C" x S, then

Z Z+1l-7 (Z+1-7)-N
:\YJ.%{: (17’1 l)- T = T = ’Y.T (7)
07/ \a i <1 > 1
g g g
for some N € GL(g,C).
Finally, we define an n-fold Kuga variety.

Definition 8.1.5. [Mal, Section 2.2]
An n-fold Kuga variety associated to a family of structured abelian g-folds f, is the quotient

%én) = fn\%(").

The projection C" x §; — S, induces a map 7: %l(ﬂn) — A. We are interested in the particular kind
of n-fold Kuga varieties where the base A is a modular variety A, of abelian surfaces of polarisation
type (1,p) for prime p > 3 with a choice of canonical level structure (see Remark . We denote
this n-fold Kuga variety by Xj). The modular group I', associated to A, given in Theorem can
be written explicitly [HKW?2, Proposition 1.20] as

Z 7 7 T
_ o pZ pZ pL p*Z
Ip=<~v€Sp4,Z) :v—14 € 7 7 7 oz
Z 7 7 T

We denote the associated integral affine symplectic group by fg“

Remark 8.1.6. According to Equation @, the fibre in X over T is C" modulo the lattice given by
l-7. When p # 2, this fibre is isomorphic to the product of n copies of the torus C9/(t, D)Z?9 (see
[HKW?2, Proof of Proposition 2.16]). The (1-fold) Kuga variety i}, for prime p > 3 is more commonly
known as the universal family of (1,p)-polarised abelian surfaces: any other family of (1,p)-polarised
abelian varieties is a pullback of %;, up to a base change.

In the special situation when p = 2, so that —1 € Iy, the fibre over T is isomorphic to the nt™ power
of the associated Kummer surface.

Remark 8.1.7. We may also construct the modular variety of (1, p)-polarised abelian surfaces without
any choice of canonical level structure of the abelian surfaces, as the quotient T'[p|\Sa2, where [HKW2,
Proposition 1.20]

7Z 7 7 pZ

B . pZ 7. pZ p*7

F[p] - Y € Sp(47(@) el € Z Z Z pZ
Z %Z Z Z
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is called the paramodular group. Similarly, we can construct the associated integral affine symplectic

group I‘[p]n and the n-fold Kuga variety.

Remark 8.1.8. Kuga varieties can be defined even more generally. For example in [A], an n-fold Kuga
variety is a pullback of %%n) — A, an n-fold Kuga variety in the sense of Definition along an
embedding M — A of locally symmetric varieties (see Section up to base change.

Let us see an example: recall that the type Ily LSV Apnm,7 constructed in Section 1s a modular
variety of abelian 8-folds with polarisation type D and totally definite quaternion multiplication. Upon
base change by a cover of high enough degree for An T, there exists an embedding of A7 into the
modular variety Ap of abelian 8-folds with polarisation type D. Then the pullback of the universal
family of D-polarised abelian 8-folds along this embedding is a Kuga variety over A 1.

8.2 Kodaira dimension

In this section, we will give an introduction to Kodaira dimension of a complex variety, and state S. Ma’s
theorem (Theorem which bounds the Kodaira dimension of a n-fold Kuga variety.

Let X be a normal compact complex variety (irreducible but not necessarily smooth). Recall that
a line bundle is an invertible Ox-module. Similar to the definitions given in Section we say that
an Ox-module L is a Q-line bundle if there exists an integer m > 0 such that L&™ is a line bundle.
And again, a basis of I'(X, L) of a Q-line bundle L gives a rational map ¢r: X --» P{ defined away
from the base locus of L.

Definition 8.2.1. [U, Definition 5.1]
Let L be a Q-line bundle on a normal complex variety X. Define

N(L) := {m > 0:h"(X,L¥™) > 1} .
Then the L-dimension of L is defined to be

—00 if N(L) = o,
MaX,,eN(L) {dim cp(L®m)(X)} otherwise.

K(X,L) = {

Remark 8.2.2. It is clear that the L-dimension of any Q-line bundle L on X is at most dim(X). If L
is a very ample line bundle, then @y, is the embedding described in Theorem[3.1.3. So the L-dimension
of an ample line bundle on X is dim(X) ([U, Ezample 5.4]). In fact [HaKo, Section 2B], a Q-line
bundle L on X satisfies k(L) = dim(X) if and only if it is big. On the other hand, K(O(—D)) = —cc

if D is an effective divisor.

Alternatively, the L-dimension can be considered as the rate of growth of h?(X, L®™) with respect
to m.

Lemma 8.2.3. [HaKo, Section 2C]
Let L be a Q-line bundle on a normal compact complex variety X. If N(L) # &, then

RO(X, L®™

k(X, L) = max {k : lim sup 7
m

Similar to Section we have a correspondence between Q-line bundles and Q-Cartier divisors.
Therefore, we can easily define the D-dimension [U, Definition 5.1] of a Q-Cartier divisor D replacing
L®™ by mD and h°(X, L) by h°(X, O(mD)). We will use the notions of L-dimension for Q-line bundles
and D-dimension for Q-Cartier divisors interchangeably.

Now let us require X to be smooth. Recall [GrifH, Chapter 1.1 Chern Classes of Line Bundles] the
canonical bundle wx of a smooth complex variety X is the top exterior power of its cotangent bundle
T%, or equivalently the bundle of differential n-forms. Let Kx be the canonical divisor, defined up
to linear equivalence, the associated divisor of wy.
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Definition 8.2.4. The Kodaira dimension x(X) of a smooth complex variety X is the D-dimension
k(Kx) = k(X,Kx) of its canonical divisor Kx.

For a singular normal complex variety X with smooth locus Xy, one may also define [Reid, Section

1.5] its canonical sheaf to be
WX = Jx (on) )

which is the pushforward of the sheaf of regular dim(X)-forms on Xy by the inclusion j: Xy — X.
Similarly, we define its r*P-tensor power to be w?}r = J4 (w}e}w for any integer r > 0. If wy is a Q-line
bundle, then we define the canonical divisor Kx to be its corresponding Q-Cartier divisor. With the
following theorem which shows that the Kodaira dimension is a birational invariant, we may also define
the Kodaira dimension of a singular complex variety to be the Kodaira dimension of any of its smooth
birational models.

Theorem 8.2.5. [U, Lemma 6.3]
Let f: X — Y be a birational morphism of smooth complex varieties. Then there is a natural
isomorphism of C-vector spaces

5 HY(Y,0(mKy)) — H°(X,0(mKx)).

Remark 8.2.6. Again, k(X) of a complex variety X is at most dim(X). If k(X) = dim(X), then
we say X is of general type [HaKd, Section 2C]. On the other end of the spectrum lie varieties with
Kodaira dimension —oo, such as rational varieties. Indeed, the canonical bundle of P is O(—n — 1)
and any positive power of it has no global section [Hart, Example 8.20.1].

Remark 8.2.7. The number h°(X,w$™) is called [1, Section 2] the m'-plurigenus of X and, by
Lemma[8.2.3, the Kodaira dimension is the measure of the rate of growth of the plurigenera with respect
to m.

The aim of this work in Part II is to calculate the Kodaira dimension x(X}). Since X — A, has
connected fibres, the following theorem, which is a generalisation of S. litaka’s fundamental theorem of
the pluricanonical fibrations, applies.

Theorem 8.2.8. [U, Theorem 6.12]
Let f: X — Y be a surjective morphism of complex varieties with connected fibres. Then there exists
a dense open subset W of Y such that for all w € W, we have

K(X) < k(Xy) + dim(Y),
where X,, denotes the fibre f~(w).

This implies that the Kodaira dimension of any (n-fold) Kuga variety over a modular variety Y is
at most dimY: the general fibre is the n'® power of an abelian variety, and an abelian variety always
has Kodaira dimension 0 because it has trivial canonical bundle.

Definition 8.2.9. We say that an n-fold Kuga variety 3‘:%”) — A is of relative general type if
k(X)) = dim(A).

In the case of X7, it is of relative general type when (X)) equals the dimension of A, which is 3
(see Section [3.2.4)).

Part IT of the thesis is based on the work [Ma] of S. Ma where a connection between Siegel modular
forms and differential forms on arbitrary Kuga varieties is established. In particular, he gives [Mal,
Theorem 1.3] a lower bound of the Kodaira dimension of a Kuga variety, assuming the existence of a
specific compactification for the Kuga variety, which is referred to as a Namikawa compactification (see
Definition in [PSMS|. In terms of X7, this result translates to:
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Theorem 8.2.10. Let X be a Namikawa compactification of X};. Then
K(Ap, (n+3)L — Ag) < K(Kx) <3

where A, is a toroidal compactification of A,, L is the Q-line bundle of weight 1 modular forms of T,
and A4 is the boundary divisor of A,.

Note that by [PSMS, Theorem 1.2], X is Q-Gorenstein, so its canonical sheaf is a Q-line bundle,
and Kx is indeed a Q-Cartier divisor. We will see that x(X) = k(Kx) if every singularity on X is a
canonical singularity (Lemma . Therefore, if we have a Namikawa compactification X of X} with
canonical singularities, then Theorem gives us a lower bound for £(X}). Such a compactification
is constructed in [PSMS]. Now, we would like to find out for which n and p the lower bound r(A,, (n +
3)L — Ay) is equal to 3, or equivalently when X7 is of relative general type. Our main theorem is the

following;:

Theorem 8.2.11. A Kuga variety X}, is of relative general type if
e p>3andn >4; or
e p>5andn > 3.

Before moving on to the explicit computations, we will give the necessary definitions and known
results about toroidal compactifications and Namikawa compactifications (Section ; singularities on
a Namikawa compactification, and when are they canonical (Section ; and Siegel modular forms and
cusp forms (Section [8.5)).

8.3 Compactification of Kuga varieties

The Namikawa compactification mentioned in Theorem [8.2.10] can be constructed as a toroidal com-
pactification [Na], which is a common method of compactification for LSVs and universal families over
a LSV. For the purpose of Section [0 we will give a brief description of the cusps of an n-fold Kuga
variety and the main steps involved in its toroidal compactification. We will specifically describe the
Namikawa compactification X of X7.

8.3.1 Boundary components and cusps

Let us first describe the cusps on an n-fold Kuga variety, which is the locus to be added in the com-
pactification process. Consider the Siegel upper half space S, of degree g.

Definition 8.3.1. [Na2l (4.1)], [HKW2| Definition 3.5]
The Siegel upper half space Sy is isomorphic to the bounded symmetric domain

Dy ={Z € Sym(9,C):1,— ZZ > 0},
whose closure s
Dy ={Z € Sym(g,C):1,— ZZ > 0}.

Define an equivalence relation ~ on S, := Dy: for two points p,q € S,, we say p ~ q if and only
if they can be connected by finitely many holomorphic curves. The equivalence classes of points in S
with respect to ~ are called boundary components on S,. Boundary components in Sg\Sy are called
proper.

We can [HKW2, Proposition 3.6] associate to a boundary component of S, an isotropic subspace of
R29. A subspace V C R is isotropic if for all u,v € V, we have uJ;v = 0 with J, being the symplectic
form of degree g.
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Proposition 8.3.2. [HKW2, Proposition 3.12]

There is a one-to-one correspondence between the set of boundary components of S, and the set of
isotropic subspaces in R?9 with respect to J. Moreover, this correspondence is Sp(2g)-equivariant: it
respects the action of v € Sp(2g) on Sy given in Remark and the action of v~ on R by left
multiplication.

Under this correspondence, we may translate the usual properties of real vector spaces into properties
of boundary components.

e A boundary component F' of S, is said to be of corank ¢g” < g if its corresponding isotropic
subspace in R?9 has rank ¢”. The symplectic group Sp(2g) acts transitively on the set of boundary
components of the same corank.

e A boundary component F is said to be adjacent to a second boundary component F' or F' = F,
if F# F'and ' D F. If V' and V are the corresponding isotropic subspaces of F’ and F in R?9,
then F’ > F if and only if V! C V.

Remark 8.3.3. In fact, S, is a boundary component of corank 0 of itself. Every proper boundary
component of Sy is adjacent to S,.

Let A be a LSV of type III, i.e. it is an arithmetic quotient of S, by the arithmetic subgroup I'. We
are interested in the I'-orbits of the rational boundary components of S;.

Definition 8.3.4. [HKW2, Definition 3.17]
A rational boundary component F' is a boundary component whose stabiliser subgroup

P(F) ={v €Sp(29) : v(F) = F}

is defined over Q. That is, there exists an algebraic subgroup Pgo(F) C Sp(2g,Q) such that P(F) =
(Po(F))(R), the R-valued points of the algebraic group Po(F).

The modular group I' sends a rational boundary component to a rational boundary component. If
V C R is the isotropic subspace that corresponds to a rational boundary component F, then the
integral points X := V(Z) form a lattice in V, satisfying V = X ®7 R. We call X the isotropic lattice
associated to F. Moreover, the action of the integral group P(F) NT on R2Y preserves X.

We are now ready to define a cusp in A.

Definition 8.3.5. Let F' be a proper rational boundary component of Sy. Then the cusp in A =T\S,
associated to F' is given by the quotient (I' NP (F)) \F.

Before moving on to defining the cusps in Kuga varieties, let us give a geometrical description of the
cusps of A, with p > 3 prime [HKW?2| Section 3B]. The closure of each I'j,-orbit of corank 1 boundary
components is a modular curve. There are a total of (1 + (p? — 1)/2) such modular curves in A,, and
their configuration is given in Diagram
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Diagram 5: Configuration of the cusps in A,.

There are p+ 1 nodes in the diagram: each corresponds to a I',-orbit of corank 2 boundary components.
Every node is the intersection of (1 + (p — 1)/2) modular curves, which indicates adjacency of the
corresponding boundary components. The action of the group Sp(2,F,) ~ T'[p]/I', permutes those
modular curves with only one node on them: they are all isomorphic to X (1), the modular curve of
elliptic curves. The remaining curve X (p) with p + 1 nodes is the modular curve of elliptic curves of
level p. In particular,

X(p) =T(P)\S1,

where & is the usual upper half space, and
[(p) := {(Z Z) € SL(2,Z) : a,d =1 mod p; b,c =0 mod p}

is the principal congruence subgroup. A cusp isomorphic to X (1) is called a peripheral boundary
component of A,. The cusp X(p) is called the central boundary component of A,,.

We give similar definitions of cusps for a Kuga variety. Let I be the integral affine symplectic
group extension of I'. Consider the n-fold Kuga variety

£ =T\ (€ x S,).

A rational boundary component of C"9 x S, is in the form F ~ Cn9 x F', where F' is a rational
boundary component of S;. The corank of F is defined to be the corank of F. The cusp of .’{(Fn)
associated to F' is given by the quotient of F by its stabiliser subgroup in I. Since we can separately
describe the action of I' on the two components S, and on C™ (see Equation ), a cusp of %1@) projects
down to a cusp of A.

8.3.2 Toroidal compactification

A toroidal compactification for a type III LSV is a modification of a natural compactification called
Satake compactification. The intuitive idea behind Satake compactification is to add in the cusps of
the LSV. This compactification is unique, but it has some undesirable properties such as being highly
singular and having boundary components with codimension strictly greater than 1. A toroidal com-
pactification of a type III LSV is obtained by blowing up the Satake compactification in the boundary.
It is normal, has purely 1-codimensional boundaries and it can be chosen to have at worst finite quotient
singularities, i.e. singularities that arise from fixed points of the action of a finite group on an affine
space (to be discussed in Section . As we will explain below, one can also extend the method of
toroidal compactification to Kuga varieties.

We start by describing a partial toroidal compactification for a cusp F=C"YxF on %iﬂn) (or A,
substituting n = 0). Suppose the cusp F has corank g" < g. We think of F as given by its corresponding
isotropic lattice X ~ Z¢” in R29. Let P(F) be the stabiliser subgroup of F in R2" x Sp(2g), which
can be embedded in GL,24(R). Then we choose a small neighbourhood N(F) of the cusp F' in S,
satisfying

(P : N(ﬁ)) NN(F) 42

for all P € P(F) where N(F) = C" x N(F). We also define the following subgroups of P(F) (sce [Na
(2.5)] and [Na2, (7.1)] for more details):

P/(F) := the centre of the unipotent radical of P
T = ﬁ/(ﬁ) nr™

P"(F) := (P(F)nT") /1"
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Note that the groups T™ and P"(F (F) both inherit the action of I"™ on C™ x Sy. The reason to introduce

these subgroups is that we can separate out a factor of N (F ) where the action of 73( ) L™ is given by
that of Y™.

Definition 8.3.6. [T, Section 5]
Let ¢’ :== g — ¢". Identify C" x S, with

7w MeC, NeC,
([M N, [wt T,,]) T eSSy, e Sy,
w e Mg/xg//(C)

Then the Siegel domain realisation for C"9 x S, associated to F is the embedding

C" X Sy = (C" x C™") x (S X Myycgn(C) x M3 ,(C))
™ w
([M N, [wt TD o ((MLN), (70,7

This has the property that the action of ﬁ(ﬁ) on C" x S, preserves the factors of the Siegel domain
realisation.

Remark 8.3.7. When n = 0, the embedding of Sy into Sy X My g (C) x Mgs,}filg,, (C) described in
Deﬁnition is called a tube domain realisation assoczated to a corank g" cusp. The image in the
factor MS,}fI:g,, (C) is the cone of positive semi-definite forms on CY9". Its product with the vector space

Sg X My g1 (C) realises the image of the embedding as a tube domain.

The action of the group 75(1?’ )N I on C™ x S, can also be described independently on each of
the factors in the Siegel domain realisation. In particular, we will describe the action of its subgroup
T" for the factor C"9" x M (C). This factor can be identified to (Xg)" x SymZ(XY), which is the
set of n-tuple of C-linear forms and a bilinear symmetric form over X¢. This is a vector space in the
boundary C"" x (Dyr \ Dyr) of the domain C™" x Dy

Proposition 8.3.8. [Na2, Section 3], [PSMS, Section 1]
The group Y™ is isomorphic to (X¥)" x Sym?(XY), and it acts on C" x S, by real translation in
the imaginary direction of the factor C"9" x Msxr: +(C) of the Siegel domain realisation.
We consider the partial quotient of N (F ) by YT". Then by Proposition we can embed the
partial quotient into ~
T(F)=C" x (C)™ xSy x CI* x (C)m9 . (8)

sym

This is a torus bundle i.e. a fibre space over the smooth complex manifold C" x Sy X C9'*9" where
each fibre is isomorphic to the torus (C*)9I9H+9H(9”+1)/2. The image of the partial quotient in T'(F) is
highly singular. By choosing a fan Y(F) (see [HKW2, Section 2A]) for (Xy)" x Sym%(X"), we may
extend the torus part in T(ﬁ) to a smooth torus embedding Temb(E(ﬁ)). In particular, we obtain

torus bundle

X(F) := Sy X C99" x C"' x Temb(S(F)).
Moreover if the cone decomposition E(ﬁ) chosen is admissible (see [Na2, Definition 7.3(i)]), then the
action of P(F) on the torus part of T'(F ) can be extended to an action on Temb(X(F F)). By taking the
interior of the closure of T™\ N ( ~) in X(F) and quotienting it by P", we arrive at the partial toroidal
compactification at the cusp F. If in addition X(F') is simplicial (see [HKW2| Definition 3.61(c)]),

the partial toroidal compactification has finite quotient singularities which arise from fixed points by
the action of P"( F).
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Finally, if the fans chosen for the partial compactification at each cusp are compatible, i.e. they form
an admissible family (see [Na2 Definition 7.3(ii)]), then we can obtain a toroidal compactification

of the n-fold Kuga variety %%n) by gluing the partial toroidal compactification for each cusp F to ff%n)
along (P(F)NI™)\N.

8.3.3 Namikawa compactification

An explicit construction of a Namikawa compactification X (of a special kind) for an n-fold Kuga variety
is the main purpose of Section 1 in [PSMS]. Here we briefly introduce the definition and the idea of
construction of a Namikawa compactification X of X} over A,

Definition 8.3.9. A Namikawa compactification of X is an irreducible normal projective variety
X containing X)) as an open subset, together with a projective toroidal compactification A, of A, for
which the following conditions hold.

1 om: X)) — A, extends to a projective morphism w: X — Ip,'

2. every irreducible component of Ax = X ~\ X} dominates an irreducible component of A :=

Ay A,

Therefore X sits inside the commutative diagram
X, — X
[
Ap —— Ay

and 7 does not contract any divisor.

Namikawa compactifications are constructed by toroidal methods in [Na]. For the Kuga variety
X)), every rational boundary component F is of corank ¢” < g = 2, which corresponds to a rank g”
isotropic lattice in R2. We may construct a partial toroidal compactification at a cusp F which leads to a
Namikawa compactification X, by choosing a suitable cone decomposition X (F) in (Xg)"xSym% (XY). In
[PSMS], the cone decomposition is chosen to be the perfect cone decomposition [HKW2|, Remark 3.127].
Briefly, when n = 0, i.e. X} = A, the perfect cone decomposition of the cone of positive semi-definite
symmetric bilinear forms with rational radical in Sym%(XV) is given by the convex hull of the rank
one 1-forms on the faces. When n > 0, in [PSMS| we extend the perfect cone decomposition to the
Siegel domain realisation. Moreover, X(F ) satisfies the conditions as listed in [PSMS|, Proposition 1.4],
which ensures that the local uniformising space X (F) of X has canonical singularities (Definition .

We complete the construction of a Namikawa compactification X for X} by gluing up the the partial
toroidal compactifications coming from the special choice of cone decomposition for each cusp F as
described in Section [R.3.2

We will prove in the Section E] that for any p and n > 2, this Namikawa compactification X of X}
has canonical singularities.

8.4 Canonical singularities and the RST criterion

In this section, we will discuss canonical singularities on normal complex varieties, and the Reid—
Shepherd-Barron—Tai (RST) criterion for checking if a finite quotient singularity is canonical. The
main reference in this section is [Reid].

First, we will give the definition of a normal variety with canonical singularities.
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Definition 8.4.1. [Reid, Definitions 1.1]
A normal variety X has canonical singularities if it satisfies the following two conditions:

(i) the canonical divisor Kx is Q-Cartier (or Q-Gorenstein), i.e. the Weil divisor rKx is Cartier for
some integer r > 1.

(ii) if f: Y — X is a resolution of X and {E;} the set of all exceptional prime divisors of f, then
rKy = f*(rKx) + Z a; F;
with a; > 0.

Part (i) in Definition says [Reid, Section 1.7] that O(rKx) = w%" extends to a line bundle
over X. Part (ii) says [Reid, Section 1.9] that any regular canonical r-form in w%" is still regular when
considered as a rational canonical r-form on the resolution Y of X: it has no poles along the exceptional
divisors of f. Therefore, the r*P-plurigenera of X and Y agree. In particular, we have the following

lemma.

Lemma 8.4.2. If X is a normal variety with canonical singularities, and f:Y — X 1is a resolution,
then
k(Kx) = k(Ky).

By choosing a simplicial cone decomposition, we may construct a toroidal compactification of a
universal family over a type III LSV that locally looks like a quotient of an affine space by the action
of a finite group everywhere: away from the cusps, it agrees with the universal family itself; and near
the cusp, it is given by the partial toroidal compactification. Singularities on such a quotient arise
from fixed points of the action of the finite group: these are called finite quotient singularities.
The Reid—Shepherd-Barron—Tai (RST) criterion is a simple tool for checking if a finite quotient
singularity is canonical.

We will need the following set-up to state the RST criterion [Reid, Section 4]. Suppose G is a finite
group acting on the complex vector space C™ linearly. For a non-trivial element v € G of order k, the
eigenvalues of its action on C™ can be expressed as an m-tuple (£*1,...,£%), with £ being a primitive
k-th root of unity and «; being a non-negative integer less than k for any j. We define, with dependence
on the choice of £, the type of v to be

1
%(al, ceey Q)
and its associated RST sum to be .
RST(y) = %
i=1

Furthermore, we say that 7 is a quasi-reflection if all but one «; are 0, or equivalently v preserves a
divisor.
The RST criterion is then given by the following:

Theorem 8.4.3. [Reid, 4.11]
Let G be a finite group which acts on C™ as above. Then C™/G has a canonical singularity if G
contains no quasi-reflection and every non-trivial element v € G satisfies the inequality

RST(y) = 1.

Note that, since we need to check the above inequality involving the RST sum for every element in
G, it does not matter which root of unity £ was chosen to give the type of a generator v of G.

88



Remark 8.4.4. One may visualise the inequality in Theorem [8.4.3. For a non-trivial element v € G
with type 1/k(a1, -+, ), its RST sum is at least 1 if and only if the point (a1 /k,--- , am/k) € [0, 1]™
lies on or above the hyperplane > y; = 1. For example when m = 3, the point in [0,1]> corresponding
to v € G that satisfies the inquality, has to lie in the shaded area in Diagram [6]

(1,1,1)

(0,0,0)

Diagram 6: Pictorial description of the RST inequality when m = 3.

Notice that as m increases, the volume below the hyperplane Y y; = 1 inside the hypercube decreases.
Thus finite quotient singularities are more likely to be canonical when the dimension m of the variety
imncreases.

8.5 Modular forms

In this section, we give the minimal definitions and explanations of some terminologies related to
modular forms for use in Section [10l

8.5.1 Siegel modular forms

We begin by introducing Siegel modular forms associated to an arithmetic subgroup I" of Sp(2g, Z).

We first give an analytic definition of Siegel modular forms. Consider the modular variety A :=I'\S,
of structured abelian g-folds with modular group I'. Let k be a positive integer. A weight k Siegel
modular form of I' is a holomorphic function on S, that satisfies certain rules with respect to the I'
action.

Definition 8.5.1. [E| Definition I.3.1]
A holomorphic function f: Sq — C for g > 1 is a Siegel modular form of a finite index subgroup
I' < Sp(2g,Z) of weight k if it satisfies the automorphy condition:
k A B
f(y(7)) =det(CT + D)* f(r) for all v = c p|E I.

In the case of g = 1, f is a Siegel modular form if it satisfies both the automorphy condition and
the growth condition: for all projective rational matrices v € Sp(2,R), i.e. ry € Sp(2,Q) for some
r € R*, we have

(et +d) "% f(y(7)) is bounded as Im(7) — oo if y = <CCL Z) € Sp(2,R).

We denote by My (I") the vector space of weight k Siegel modular forms of T

The automorphy condition is simply a transformation rule for f with respect to the action of I' on S,.
The group of projective rational matrices in Sp(2,R) acts transitively on the set of rational boundary
components in S, so the growth condition is checking whether f exhibits controlled behaviour near the
cusps in A, that is, whether f is holomorphic at the cusps.

89



Remark 8.5.2. The automorphy condition implies that f is holomorphic near the cusps when g > 1
by the Koecher principle [udG, Theorem 2/]. Also due to the automorphy condition, it is in fact enough
to check the growth condition for one v in each coset of I' in the group of projective rational matrices
in Sp(2,R) for the case g = 1.

Remark 8.5.3. When g = 2, we have Sp(2,Z) ~ SL(2,Z), and a modular form in My(SL(2,2Z)) is

called a weight k elliptic modular form.

Remark 8.5.4. The vector spaces My(I') for k > 0 form a graded ring @, My(I') under multiplication:
if f1 € My, (T') and fa € My, (T') for some ki,ka >0, then fifo € My, 41, (I).

From now on, we will just write modular forms for Siegel modular forms. Modular forms for I' are
closely related to differential forms of the Siegel modular variety A. Let A° be the unramified part of
A. Recall that a canonical form on A is a section on H?(K 40).

Proposition 8.5.5. [vdG| Section 11]

Let {7;;} for 1 < i,5,< g be a set of coordinates for S C My(C). Consider the volume form
w = Ni<icjcg dTij on Sg. If f is a weight k(g + 1) modular form of I', then fw®k € H(kKs,) is a
I-invariant canonical k-form on S;, which descends to a canonical k-form on A, This describes an
isomorphism of graded rings

P M4y (L) — P HO (K 10),
k k

where multiplication in @, H(kK 40) is the tensor product.

The above isomorphism allows us to give an alternative definition of a modular form from the
geometrical perspective. Recall that the Hodge subbundle E defined in Remark is isomorphic to
HO(A, Q).

Definition 8.5.6. The Q-line bundle L := w/(g+ 1) = det(E) is called the line bundle of weight 1
modular forms of T'.

In particular, a weight k¥ modular form of T is a section of kL regular on .A°.

Remark 8.5.7. [vdGl Theorem 7]

To end this subsection, let us discuss more about the geometry of A in relation to this line bundle L.
Recall the Baily-Borel Theorem says that A is a quasi-projective variety. In fact, the embedding of A
into the projective space comes from the ample Q-line bundle L. Moreover, the Satake compactification
of A is the closure of the image of A under this embedding, and is given by Proj (@, My(T")).

8.5.2 Siegel cusp forms

Let us move on to define a Siegel cusp form. One considers the Siegel operator ®: roughly, ®(f)(7)
for f € Mp(T') and 7 € S, is the limit of f(7) as 7 approaches some standard corank 1 boundary
component. Then a weight k& Siegel cusp form of I' is defined to be a modular form f € M (T") with
®(f)(N(-)) =0 on S, for every projective rational matrix N € Sp(2g,R). For the precise definition of
a Siegel operator or a Siegel cusp form, see [El Section 1.3, Definition 11.6.9]. We denote by Si(I") the
vector space of weight k Siegel cusp forms of I'. From now on, we write cusp forms instead of Siegel
cusp forms.

Remark 8.5.8. As in remark[8.5.3, a cusp form is a modular form that vanishes at every cusp that
comes from a corank 1 boundary component, and it is enough to check that ®(f)(N(-)) vanishes for
one N in each coset of ' in the group of projective rational matrices in Sp(2g,R) because of the auto-
morphy condition. Since for each boundary component of corank greater than 1 there exists a boundary
component of corank 1 that is adjacent to it, a cusp form in fact vanishes at every cusp of A.
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By considering a cusp form as a modular form that vanishes at every (corank 1) cusp, we have an
alternative definition of a cusp form involving the line bundle £. Consider the Mumford compactifi-
cation [AMRT] where we take the union of A with the corank 1 boundary components in the boundary
of the Satake compactification, and then blow up the boundary. The Mumford compactification is
canonical: to construct the partial compactification of a corank 1 boundary component F' of S,, the
only way to compactify the partial quotient T'(F’) of the associated tube domain (see Equation , is to
add the point 0 to the C* factor.

Remark 8.5.9. The Mumford compactification is the common open part in all toroidal compactifica-
tions. Despite its name, the Mumford compactification is not compact.

If A% is the Mumford compactification of A, then A% \ A is a divisor A4 which we call the the
boundary divisor of A. A cusp form of I' of weight k£ can then be considered as a global section of
the divisor kL — A 4.

In fact, if f € My(g41)(I') is a cusp form, then the canonical k-form fw® on A° mentioned in
Proposition extends to a canonical k-form on the Mumford compactification A% .

Theorem 8.5.10. [AMRT, Section IV.1.2] Let A ~ T'\S, be a moduli space of structured abelian g-folds,
and let A* be the Mumford compactification of A. Then there is an isomorphism of vector spaces

S(g+1)(T) = HO(K 4).

Remark 8.5.11. The lower bound for k(Kx) = k(K xo) in Ma’s theorem (Theorem |8.2.10) is deter-
mined by proving extended versions of Theorem[8.5.5 and Theorem[8.5.10 for a Namikawa compactifica-

tion of Kuga families [Ma, Theorem 1.2]: for any Namikawa compactification X of %%n) which projects
to a toroidal compactification A of A, we have an isomorphism of graded rings

P HO(X, kK x + kAx)) = @D Mygus g1y (D),
k>0 k>0

where Ax is the boundary divisor X \ .’{(F"). Moreover for every positive integer k, there an injection
HO(k(n+ g+ 1)L — Ax) = Synigs1) = HY(EKx + (k — 1)Ax),
which results in the injection
H(k(n+g+ 1)L —kAx) — H(kKx).
By Lemma[8.2.3, we have k((n+ g+ 1)L — Ax) < k(Kx).

8.5.3 Jacobi cusp forms

In this section, we will define Jacobi forms and Jacobi cusp forms. The standard reference for the topic
is [EZ].

The notion of Jacobi forms arises from the modular forms of a special parabolic subgroup I's of
Sp(4,7Z). For this we consider S as its image under the tube domain realisation for a corank 1 boundary
component F

7 (7w, ) e8 xCxC.

Definition 8.5.12. [Grit]
The group T's is the set of matrices in Sp(4,Z) in the form

O ¥ ¥ ¥
S O x O
O ¥ ¥ ¥
* X X X
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The group I's, preserves the C factor in the tube domain realisation of Sy associated to F, i.e. I'o
acts on C by translation. In particular, the action of I', on the tube domain can be interpreted as the
extended action of the stabiliser subgroup P(F) on the torus bundle X (F) ~ &, x C x Temb(X(F)),
where Temb(X(F')) ~ C is the unique smooth torus embedding of C* mentioned in Section For
more details of Ty, see [Grit] and [vdGl Section 11].

Definition 8.5.13. [Grit]
Let k and m be positive integers. A holomorphic function ¢ on S1 X C is a Jacobi form of weight
k and index m if the function on So given by

7 o7, w) exp(2mimt")

is a weight k modular form for I'«
We denote by Jj m the vector space of Jacobi forms of weight k and index m.

A Jacobi form ¢ € J, , can also be characterised by its Fourier expansion

Z Z c(n,r)exp (27 (n7’ + rw))

= rEL
2<4mn

together with a list of transformation rules with respect to the (restricted) action of I's, on S x C (see
[vdGl Section 8]). The Jacobi form ¢ is therefore [vdG, Section 11] a local section of a certain Q-line
bundle J on the Kuga variety

) =T\ (C x 8)).

This Kuga variety is the boundary divisor in the Mumford compactification A%, and J = 3kL + mN,
where L is the line bundle of weight 1 modular forms of I',, and A is the normal bundle of :{%lo)o in A%,
To end this section, we give the definition of a Jacobi cusp form.

Definition 8.5.14. [Grit, Section 1]

A Jacobi form ¢ of weight k and index m is a Jacobi cusp form of the same weight and index if
in its Fourier expansion, a summand is non-zero only if r < 4mn. We denote the vector space of Jacobi
cusp form of weight k and index m by JP(k,m).

9 Canonical singularities

In this section, we will show that the L-dimension (A, (n+ 3)L — A4) is a lower bound for x(X]}) for
any n > 3 and for any p, by showing that any Namikawa compactification X of X} as constructed in
[PSMS]| has canonical singularities.

9.1 Strategy

We will separately examine the singularities in the interior and the boundary of X, and check if they
are canonical by applying the RST criterion.

9.1.1 Strategy in the interior

In the interior X} of X, a singularity corresponds to a point 7 = (Z, 7) in C?" x S, fixed by f;} We can
apply the RST criterion to check if 7 corresponds to a canonical singularity: suppose 7 is an element
in the isotropy group iso(7) < fﬁ of 7. i.e. ¥ fixes 7. Equation in Section [§ shows the action
of ¥ separately as the action of v on the Sy factor and that of ¥ on the C?" factor. Also, 7 fixes 7
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only if v fixes 7. The isotropy group iso(7) of 7 in fg is finite, so any nontrivial element ¥ = (I,7)
in iso(7) is a torsion element and [ = 0. As a result of [T}, Theorem 4.1], the induced action of any
element v € iso(7) < I', of order k on the tangent space T-(S2) can be diagonalised under suitable
local coordinates. It will be shown that 5 also acts diagonally on Tz(C2?"). This gives us the finite
dimensional representation of iso(7) required for the application of the RST criterion.

Note that it suffices to apply the RST criterion at a limited number of singularities in X}:

Lemma 9.1.1. Let 7 = (Z,7) be a point in C*" x Sy that corresponds to a canonical singularity in X5

Then either T corresponds to a canonical singularity in A,, oriso(7) = (¢ := (0,—14)) < fg In the
latter case, T corresponds to a smooth point.

Proof. The isotropy group of 7, iso(7), cannot contain a quasi-reflection: according to [Mal, Lemma 7.1],
a non-trivial element 7 € iso(7) does not fix any divisor in X7.

Consider any nontrivial 7 := (0,~) € iso(7T). If v acts tr1v1ally on Sg, then v = —14.

Moreover, by the definition of RST sums, we have

RST(7) > RST(y)

So T corresponds to a canonical singularity in X} if 7 corresponds to a canonical singularity in A,. [

9.1.2 Strategy in the boundary

A singularity in the boundary of X correspond to a point 7 in X (F ) fixed by P'(F (F ) near a proper
boundary component F' of corank ¢’. Again, the RST criterion can be applied to check if 7 corresponds
to a canonical singularity: Let 7 := (Z,7), where Z € C*" and 7 € Sy x Temb(3(F)). As mentioned
in Definition m ]Bv”(f) preserves the decomposition of X(F), so 5 acts on each factors of X (F)
separately. A calculation similar to Section |8 Equation shows that locally at 7, ¥ = (I,7) € p (F)
fixes 7 only if v fixes 7. However, different from what we had in Section 4 may not be a torsion
element, i.e. [ could be non-zero. Nevertheless, the action of 7 on the tangent space of a resolution of
X (ﬁ ) at T at T is of finite order, so the RST criterion can be applied there.
The following observations are useful for checking whether these singularities are canonical:

1. [PSMS, Lemma 1.3]: Let (X (F))* be a smooth ﬁ(F) -equivariant resolution of X(F). If ﬁ(ﬁ)
has no quasireflection, then the partial compactification P'(F (F)\X (F) has canonical singularities
if P (F)\(X(F))* has canonical singularities. In particular, this implies that we can apply the
RST criterion at the singularities in P” (F)\(X (F))* instead.

2. Let 7 = (Z,7) correspond to a canonical singularity near F. Then either 7 Corresponds to a
canonical singularity in the boundary of A,, or iso(7) = (7 := (I, —14)) < P”( F) for some [ € L.
In the latter case, 7 corresponds to a smooth point. The proof is similar to that in Lemma
Again, this implies that we only need to apply the RST criterion at a limited number of
singularities.

9.2 Singularities in the interior of compactification

In this section, we will identify the singularities in X} and show that for n > 2, they are all canonical.

First we identify singularities that project to non-canonical singularities in \A,. It is given in the
proof of [HKW1, Theorem 1.8] that for any odd prime p, the singular points in A, are exactly the points
that lie on two disjoint curves which we call C; and Cs. Any point on one of these curves corresponds
to a point 7 in S, whose isotropy group in I', is generated by a single generator. Its induced action on
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the tangent space of Sy at 7 is also given there: one can write any point in the tangent space 7;(S2) in

the form

T1txr T2ty

To+y m3+2/)°
So the tuple (z,y, z) can be considered as the local coordinates for T:.A,, and the respective action of
a generator of iso(7) on T (Sz) with these coordinates is given by

(x,y,2) = (—z, —iy, z) along Cy;
(I’, Y, Z) = (pra —PY, Z) along 027 where p = 627ri/3.

Therefore, the chosen generators are of types i(2, 3,0) and %(4, 5,0) when the root of unity £ is chosen
to be i and 27m/6 respectively on each curve Cy and Cs.

Note that both cyclic groups generated by i and by €27/ contain a reflection. However as mentioned
in the proof of [HKWI| Proposition 1.8], quotients by reflections are smooth. On C}, dividing the
isotropy group by the reflection group gives an order 2 cyclic group with a generator of type %(1, 1,0);
whereas on (5, the quotient gives us an order 3 cyclic group with a generator of type %(1, 1,0). By
applying the RST criterion on these cyclic groups of order 2 and 3, it is clear that the singularities on
(4 are canonical, whereas those on Cy are not.

Let 7 := (Z,7) € C?" x Sy such that 7 corresponds to a point in Cy. Let & := (0,—14) and
~ := (0,7), where ~ is the generator of iso(7) with the action on T,(S2) described above. Then either
iso(T) = (7,0) or iso(T) = (7).

_ We shall first compute the type of 7. We only need to understand the action of 5 at a point
Y = (Z+Y,7) on the tangent space Tx(C?" x {7}) ~ T»(C?") to complete the type of 7. To do this, we
need the explicit expressions of the set Co and its isotropy group iso(7) from [HKWI, Definition 1.5]:

Following Equation in Section [8] the action of 5 at ¥ in T=(C2" x {r}) is given by

N (Z4+Y)-N -1
v-Y = T ,WhereN:<(p+1) 0).
1, 0 1

Since 7 fixes (Z,7), Z- N = Z and 7 acts on Tz(C?") diagonally by sending the set of local coordinates
YtoY - N.

Note that (p+1)~! = €27(5/6), So by choosing the primitive root of unity to be e2™/¢, which is the
same as that for the Sy factor, we have an extra n copies of 5/6’s and n copies of 0’s in the RST sum
of 7. In other words, the type of ¥ is %(4, 5,0,5,...,5,0,...,0).

As for the type of 7, since ¢ acts trivially on T, ({Z} x S2), the first entries in the type of ¢ which
correspond to the S factor are all 0’s. On the other hand, the calculation in Equation shows
that & acts on the set of local coordinates in 77(C?") diagonally by X + —X. So the type of 7 is
%(0, 0,0,1,...,1) when the primitive root of unity & is chosen to be —1.

Since ¢ commutes with 7, we can draw the following table which shows the type of a non-trivial
element 7*1G*2 € iso(7), where 0 < k; < 5 and 0 < ky < 1.
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& 0 1
k1
0 N/A £(0,0,0,1,...,1,1,...,1)
1 | £(4,5,0,5,...,5,0,...,0) | £(4,5,0,2,...,2,3,...,3)
2 | $(2,4,0,4,...,4,0,...,0) | £(2,4,0,1,...,1,3,...,3)
3 |4(0,3,0,3,...,3,0,...,0) | £(0,3,0,0,...,0,3,...,3)
4 | 3(4,2,0,2,...,2,0,...,0) | £(4,2,0,5,...,5,3,...,3)
5 | $(2,1,0,1,...,1,0,...,0) | £(2,1,0,4,...,4,3,...,3)

The types of all non-trivial elements in (7) are given by the first column of the table, while that in
(7,0) are given by the entire table. Notice the RST criterion only fails when n < 2:

RST(F) < 1.

We conclude that for n > 2, both (7) and (7, c) satisfy the RST criterion, and therefore 7 is a canonical
singularity in X7}, no matter iso(7) = (¥, ) or iso(7) = (7).

Finally, for any singularity that corresponds to a point in C?* x Sy whose isotropy group is (5),
we only need to study the first row of the table: there is no quasi-reflection and the RST inequality is
satisfied for any n. Therefore such singularity is always canonical.

9.3 Singularities in the boundary of compactification

In this section we will check that every singularity in the boundary of X is canonical.

First, we identify all the non-canonical singularities in A,. Consider the compact curves C} and
C3 containing C; and C in A,. Then from [HKWI], Propositions 2.15 and 3.4], for any odd prime p,
the complement A, \. (C; U C}) contains only isolated singularities. The types of a generator in the
respective isotropy groups are given as %(1, 1,1) or %(1, 2,1). So both isotropy groups satisfy the RST
criterion, and these singularities in X are canonical. Therefore, any non-canonical singularity in X has
to project down to C7 ~\ Cy or U3 ~\ (.

From the same source above, each set C7 \. C1 and C3 ~. O3 consists of (p? — 1)/2 points, one in
each of the corank 1 peripheral boundary components. [HKW1), Proposition 2.8] further says that near
one of these boundary component F, the singularities in C| and C§ are represented by Q1 = (4,0,0)
and Q2 = (p,0,0) as points in S; x C x C, the tube domain realisation of &y, with p = e2mi/3,

First consider the singularity in X associated to Q2: let 7 := (Z,7) € X(F') such that 7 = Q2. From
[HKWT, Propositions 2.5 and 2.8], the stabiliser subgroup of 7 in P”(F) is generated by the order 6
element

-1

o= O O
o O = O
— O O O

0
1
0

Let 7 := (l,) be the corresponding generator in iso(7), and let ¢ := (I, —14) for some | € L. Then
again iso(T) = () or iso(T) = (¥,0). To find the types of elements in iso(7T), we consider their actions
on each factor of X(F)*, a P (F)-equivariant resolution of X (F). [T, Lemmas 5.1 and 5.2] describes
such a resolution of singularities for the moduli space of principally polarised abelian g-folds whose
modular group is Sp(2g,7Z), as well as a formula for the RST sum of a generator «y in the isotropy group.
This result applies to our work as I' < Sp(2¢g,7Z). Explicitly when g = 2, there are three factors in the
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resolution of Ss: Sg/,(Cglgu and a torus at infinity. The following submatrices are extracted from the

entries vy;; of 7:
/ Y11 713
= y U = .
7 <731 733) (722)

Suppose v has eigenvalues A*! and U has eigenvalue p. Then the eigenvalues of the action of v on the
tangent space of the Sy factor, the C9'9" factor and the torus at infinity in the resolution of Sy are \,
A and 0 respectively.

In our case, 7' has eigenvalues e and U has eigenvalue 1. Therefore, when e is chosen to
be the primitive root of unity, the Sy, C9'9" and the torus at infinity factors contribute %, % and 0 to
the RST sum respectively.

For the RST sum over the remaining C" x (C*)" factor of 7, follow Section [8] Equation and
consider the action of ¥ on Y := (Z + Y, 7) in the tangent space at Z of the resolved C?" factor:

+27i/6 2mi /6

B (Z/+Y)-N 1 0
y-Y = T where 2/ = Z +1- (] ) and N = ( P11 :
1, 1, 0 1

Again 7 fixes 7, so Z'- N = Z and 7 acts on the tangent space diagonally by sending the local coordinates
Y to Y - N. The eigenvalues of the action are the eigenvalues of N, which are ¢2™(5/6) and 1. When
we choose 2™/ to be the primitive root of unity for 7, which is the same choice as the other factors,
they contribute n copies of % and n copies of 0 to the RST sum.

Do the same for & to find RST(c): write 0 = —14 and consider the submatrices o’ and U extracted
from o in the same way as above. Their eigenvalues are {—1, —1} and —1 respectively, which contribute
0 to the RST sum for all 3 factors of the solution of Sy after resolving. Following Equation , the
action of ¢ on the tangent space of the resolved C™ x (C*)™ factor at Z is again multiplication by —1
to the local coordinates Y.

Therefore, we can draw a similar table as in the previous subsection for each element 7*15%2 € iso(7),
where 0 < k; <5 and 0 < ky <1:

& 0 1
k1

0 N/A £(0,0,0,1,...,1,1,...,1)
1 | £(2,1,0,5,...,5,0,...,0) | £(2,1,0,2,...,2,3,...,3)
2 | $(4,2,0,4,...,4,0,...,0) | £(4,2,0,1,...,1,3,...,3)
3 |340,3,0,3,...,3,0,...,0) | £(0,3,0,0,...,0,3,...,3)
4 | £(2,4,0,2,...,2,0,...,0) | $(2,4,0,5,...,5,3,...,3)
5 | $(4,5,0,1,...,1,0,...,0) | £(4,5,0,4,...,4,3,...,3)

One can check that there is no quasi-reflection, and the RST sum is at least 1 everywhere on the table.
So the RST criterion is satisfied for both (¥) and (¥,5). Thus for all n > 1, the singularity in X that
corresponds to (Z,Q2) is canonical.

Now we replace @2 by @)1 everywhere in the above to check whether the other singularity in the
boundary component F is canonical or not. Again, let 7 = (Z,7) such that 7 = @;. The stabiliser
subgroup of 7 = Q1 in P”(F) is generated by the order 4 element

-1

O = O O
O O = O
— o O O

0
0
0



First we caluclate RST(v). Extract the submatrices 7 and U as before. The eigenvalues of 7/ are +i
and the eigenalue of U is 1. When i is the chosen primitive root of unity, the S, factor, the C9'9" factor
and the torus at infinity in the resolution of Sy contribute a %, a i and a 0 to the RST sum respectively.

Consider the action of 7 at ¥ = (Z +Y,7). Then Equation (7)) gives:

(Z+Y)-N

v-Y = T WhereZ':Z—i—l-(T) andN:<—Z 0).
1, 1, 0 1

Once more Z' - N = Z and ¥ acts on the tangent space diagonally by sending the local coordinates Y
to Y - N. This action has eigenvalues e2™(3/4) and 1, which contribute n copies of % and n copies of 0
to the RST sum over the resolved C"™ x (C*)™ factor when the primitive root of unity chosen is i.

The RST sums of & restricted to each factor is the same as the case of Qs.

Therefore we can draw the table for the type of Y¥15%2 € iso(7T), where 0 < k; <3 and 0 < ky < 1:

ks
k1

0,0,0,1,...,1,1,...,
2,1,0,1,...,1,2, ...,
0,2,0,0,...,0,2, ...,
2,3,0,3,...,3,2, ...,

—_

0 N/A
1 | 1(2,1,0,3,...,3,0,...,0)
2 | 1(0,2,0,2,...,2,0,...,0)
3 11(23,01,...,1,0,...,0)

NN

~— ~— ~— —

(
(
(
(

LIS N e ST

\]

The RST criterion is satisfied for both (y) and (7,0), so for all n > 1, the singularity in X that
corresponds to (Z, Q1) is canonical.
We summarise our findings in the following theorem:

Theorem 9.3.1. Singularities in the Namikawa compactification X of X)) are canonical for n > 3. For
n =1,2, the set of non-canonical singularities in X is exactly the preimage under T of the curve Cy in
%11) and }Ig respectively.

10 Low weight cusp form trick

In this section, we will prove the following theorem:

Theorem 10.0.1. The equality k(A,, (n+ 3)L — A4) = 3 holds for the following values of n and p:
e p>3andn > 4;
e p>5andn > 3.

To find a lower bound for x((n + 3)L — A 4), which is the rate of growth with respect to m of the
dimension of the space of weight m(n + 3)-cusp forms of I';, we use the “low weight cusp form trick”,
which has been used in this context in [GritH] and [GritS], and more widely thereafter.

Suppose n > N and there exists a non-zero weight 3 + N cusp form F' of I',, that is, there is a
non-zero F € H°((3+ N)L — Ay). For any non-zero F’ € H(m(n — N)L),

FEF' € H'(m((n+3)L — Ay)).

Fixing F, the space of cusp forms in the form of FF’ then grows at the same rate as H%(m(n — N)L)
with respect to m, which is known to be O(m?) (See [GritHS, proof of Theorem 1.1]). So we have
k((n+3)L—Ay) > 3.
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Therefore, X)) is of relative general type if
h:=dim H°((3+ N)L — Ay4) > 0.

To find a lower bound for h, we apply Gritsenko’s lifting of Jacobi cusp forms mentioned in [Grit]
Theorem 3], which states the existence of an injective lifting

SRk, p) = Sk(T[p])

where JP(k, p) is the space of Jacobi cusp forms of weight k and index p > 1, and Si(T'[p]) is the
space of weight k cusps forms of I'[p], with the paramodular group I'[p] defining the moduli space of
(1, p)-polarised abelian surfaces without level structure as I'[p]\H. But since I', < I'[p], the image of
the lifting is also contained in S ().
From [EZ, Equation (8) in Introduction|, dim J"P(k,p) > j(k,p) (equality holds when k& > p),
where
p .
S (dim My iaj — (L%J n 1))  ifkis even
. =0
) (dim Miosaj-1 — (VTPJ n 1)) . if k is odd
]:
with M, being the space of modular forms of weight r for SL(2,Z).
It is a general fact that

ER if =2 mod 12

dim M, = - ]
LEJ + 1, otherwise.

By a simple computation, it can be found that the first prime p such that j(k,p) > 0 for k =5 and
6 are p = 5 and 3 respectively. Note:

1. dim(Sk(T'p)) > j(k,p) for any k,p;
2. j(k,p) increases with p;

3. From [U2], x(X}) is non-decreasing with respect to n.

By letting k = 3 + N = 2 4 n, this shows that for the values of n and p stated in Theorem
dim(Sk(I'y)) > j(k,p) > 1. This concludes our proof for Theorem

Combining the results of |GrifH] and [HS], which say %2 = A, is of general type for p > 37, we
can mark on the (p,n)-plane a region for which the Kuga varieties are of relative general type as in
Diagram

n
51

4+ of relative general type

3+ e §

N |
e L
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Diagram 7: The pairs (p,n) for which the Kuga variety X} is of relative general type.

Lastly, we discuss some possible improvements for Theorem By following [HS] and applying
the Riemann-Roch theorem on the exceptional divisor E of a blow-up at a non-canonical singularity
in X}D, we may be able to improve our boundary at n = 1 by finding two consecutive primes p’ and p”
with p’ < p” such that /{(f{;,) < /43(.'{11;,,). However, that would involve understanding the intersection
behaviour of divisors on the 4-fold E, which is expected to be complicated. The low density of prime
numbers near 37 makes the quest less promising: the estimate for p’ we find by this method may not
be smaller than 31.

There are a few more questions that can be asked: for example, whether the boundary we have
drawn can be improved for p = 5 and p = 3. The image of Gritsenko’s lift is not the entire Si(I'y) or
even Sy (I'[p]), so we might be able to find a weight 4 cusp form with respect to I', or I'[p] through other
means which improves the bound at p = 5, and likewise for p = 3. Another question is to calculate ﬁ(%ﬁ)
for other X} not of relative general type by considering the slope of Siegel cusp forms of I';,, which is the
ratio between weight and vanishing order at oo, and to draw a boundary on the (p, n)-plane separating
the regions with x(X}) = —co and x(X};) > 0. We can also extend the problem by considering p = 2,
non-prime p, or abelian surfaces without level structure.
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pre-T3.m

W oo NGOV WNPR

oo OOV UVuUuUuVuunu TUDDBEDMNDEDNMNDEDNDREDWWWWWWWWWWNRNNNNNNNNNRRRPRPRREPRREREPR
NRPR OUOVUOMNIAOAOTUVDRWNROOVONOANDUDWNROOVOUONOONTUVUDR WNROUOUONODTUD WNROUOUONGOONUUDNAWNIERO®

//Set up T = T_3

U := Matrix(K, 2, 2, [0, 1, 1, 0]);

D4 := Matrix(K, 4, 4, [2, 1, 1, 1, 1, 2, 0, 0, 1, 0, 2, 0, 1 ,0 ,0, 2]);
T:= DiagonalJoin(Diagonalloin(U, U*2), D4*(-1));

//CU: \CL(U+U(2))

Cu<f1,f2,f3,f4>, VU, fU := CliffordAlgebra(Diagonalloin(U, U*2));
//CUp: \C1™+(U+U(2))

CUp, gU := EvenSubalgebra(CU);

iU := MainInvolution(CU);

//CD: C1(D_4(-1))

CD<h1,h2,h3,h4>, VD, fD := CliffordAlgebra(D4*(-1));

//CDp: \C1*+(D_4(-1))

CDp, gD := EvenSubalgebra(CD);

iD := MainInvolution(CD);

//Idpt: pseudo-idempotents 32\epsilon_i
x1 := f3*f1*f2%f4;

X2 = 4*F1*f2 - x1;

X3 = 2*f3*f4 - x1;

x4 := 8*0One(CU) - x1 - x2 - x3;

X:=[x1, x2, x3, x4];

temp := h1*h2*h3*h4 + h2*h3 + h3*h4 + h4*h2;
yl:= 2*0One(CD)-temp;

y2:= 2*0One(CD)+temp;

Y:=[yl,y2];

//Get_lambda_U: Calculate lattice \Lambda_i associated to abelian 8-fold A_i " “restricted
//input:

//pseudo-idempotent x

//output:

//even degree generators and odd degree generators of \Lambda_i in CU
function Get_lambda_U(x)

I := 8*One(CU) - x;

M := Matrix(K, 16, 16, [Eltseq(Basis(CU)[ii]*I):ii in [1 .. 16]]);

KM := KernelMatrix(Matrix(Integers(),M));

L_CUp := [];

L_Cui :=[];

for ii in [1..NumberOfRows(KM)] do

if iU(CU!KM[ii]) eq CU!KM[ii] then L_CUp := L_CUp cat [CU!KM[ii]];
else L_CUi := L_CUi cat [CU!KM[ii]];

end if;

end for;

return L_CUp, L_CUi;

end function;

function Get_lambda_D(y)

I := 4*0One(CD) - y;

M := Matrix(K, 16, 16, [Eltseq(Basis(CD)[ii]*I):ii in [1 .. 16]]);
KM := KernelMatrix(Matrix(Integers(),M));

L_CDp := [];

L CDi :=[];

for ii in [1..NumberOfRows(KM)] do

if iD(CD!KM[ii]) eq CD!KM[ii] then L_CDp := L_CDp cat [CD!KM[ii]];
else L_CDi := L_CDi cat [CD!KM[ii]];

end if;

end for;

return L_CDp, L_CDi;

end function;
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63 Idpt := [[1,1],[2,2],[3,21,[4,11,[1,2],[2,11,[3,11,[4,211;
64

65 for n in [1..8] do

66

67 L_CUp, L_CUi := Get_lambda U(X[Idpt[n][1]1]);
68 L_CDp, L_CDi := Get_lambda_D(Y[Idpt[n][2]]);
69

70 /*

71 printf "[";

72 for ii in [1..#L_CUp] do

73 AsPolynomial(L_CUp[ii]);

74 if ii ne #L_CUp then printf ",";
75 end if;

76| end for;

77 if n ne 8 then printf "],";

78 else printf "]";

79 end if;

80| */

81

82| /*

83 printf "[";

84 for ii in [1..#L_CUi] do

85 AsPolynomial(L_CUi[ii]);

86 if ii ne #L_CUi then printf ",";
87 end if;

88 end for;

89 if n ne 8 then printf "],";

90 else printf "]";

91 end if;

92| */

93

94 printf "[";

95 for ii in [1..#L_CDp] do

96 AsPolynomial(L_CDp[ii]);

97 if ii ne #L_CDp then printf ",";
98 end if;

99 | end for;

100 if n ne 8 then printf "],";

101 else printf "]";

102 end if;

103

104 /*

105 printf "[";

106 for ii in [1..#L_CDi] do

107  AsPolynomial(L_CDi[ii]);

108 if ii ne #L_CDi then printf ",";
109 end if;

110 end for;

111 if n ne 8 then printf "],";

112 else printf "]";

113 end if;

114 */

115 end for;
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w
W oo NGOV WNPR '3

oo OOV UVuUuUuVuunu TUDDBEDMNDEDNMNDEDNDREDWWWWWWWWWWNRNNNNNNNNNRRRPRPRREPRREREPR
NRPR OUOVUOMNIAOAOTUVDRWNROOVONOANDUDWNROOVOUONOONTUVUDR WNROUOUONODTUD WNROUOUONGOONUUDNAWNIERO®

//T_3 =U + U(2) + D_4(-1)

//field K = \QQ[\sqrt(-1), \sqrt(2)] \subset \CC
P<X> := PolynomialRing(Rationals());
K<x,s> := NumberField([X"2+1, X7*2-2]:Abs := true);

//Conj: complex conjugate in K
Conj := hom<K -> K|-x,s>;

//Conj_mat: complex conjugate for matrices/K
//input:

//M = matrix over K

//output:

//complex conjugate of M

function Conj_mat(M)

return Matrix(K,Nrows(M),Ncols(M),[Conj(M[i,j]):j in [1..Ncols(M)],i in [1

end function;

//Set up T = T_3
U := Matrix(K, 2, 2, [0, 1, 1, 0]);

D4 := Matrix(K, 4, 4, [2, 1, 1, 1, 1, 2, 0, @, 1, 0, 2, 0, 1 ,0 ,0, 2]);

T:= DiagonalJoin(DiagonalJoin(U, U*2), D4*(-1));

//C: Clifford algebra \CL(T)
C<f1,f2,f3,f4,h1,h2,h3,h4>, V, £ := CliffordAlgebra(T);
basCv := [f1,f2,f3,f4,h1,h2,h3,h4];

//Cp: \C17+(T)
Cp, g := EvenSubalgebra(C);

//H: \HH_\QQ
H<i,j,k>:=QuaternionAlgebra< K | -1, -1 >;
h:=(@+1+3+Kk)/2;

//Gives conjugation of matrices with entries in \HH

function Conj_H_mat(M)

return Matrix(H,Nrows(M),Ncols(M), [Conjugate(M[i,j]):j in [1
end function;

//Quadratic form in H
function quadform(u)
return u*Conjugate(u);
end function;

//Bilinear form in H

function bilform(u,v)

if u eq v then return quadform(u);

else return 1/2*(quadform(u+v)-quadform(u)-quadform(v));
end if;

end function;

..Ncols(M)],i in [1

//\alpha: product of two orthogonal positive definite vectors in T

alpha:= Cp! ((F1+F2)*(F3+F4));

//A: change of basis matrix such that A*t*T*A is Diag([1,1,-1,...,-1])
Al := Transpose(Matrix(K,4,4,[1/s,1/s,0,0,0,0,1/2,1/2,1/s,-1/s,0,0,0,0,1/2,-1/2]));
A2 := Transpose(Matrix(K,4,4,[s,-1/s,-1/s,-1/s,0,1/s,0,0,0,0,1/5,0,0,0,0,1/s]));

A := DiagonalJoin([A1,A2]);

//3
el := ColumnSubmatrix(A,1,1);
e2 := ColumnSubmatrix(A,2,1); 102

..Nrows(M)11);

..Nrows(M)11);

(f1+f2)/s * (f34f4)/2: complex structure of KS variety, product of two +ve def vectors



63

64 //Perturb \omega = <e_1 + ie_2> in the direction of M_{a,b}
65 //input: m~0

66 function Perturb(m,a,b)

67 ct := (1-m"2)/(m"2+1);

68 st := 2*m/(m"2+1);

69 cht := (2+42*m"2)/(2-2*m"2);
70 sht := 2*m/(1-m"2);

71 SOt := IdentityMatrix(K,8);
72 if a 1t 3 and b gt 2 then
73 SOt[a,b] := sht;

74 SOt[b,a] := sht;

75 SOt[a,a] := cht;

76 SOt[b,b] := cht;

77  else
78 SOt[a,b] := st;
79 SOt[b,a] := -st;

80 SOt[a,a] := ct;

81 SOt[b,b] := ct;

82 end if;

83| //SOV in SO(V)

84 SOV :=A*SOt*An(-1);

85 return SOV*el, SOV*e2;
86 end function;

87

88 //el, e2 := Perturb(10~(-3), 1,3);

89

90 J := -&+[Eltseq(el)[ii]*basCV[ii]: ii in [1..8]]*&+[Eltseq(e2)[ii]*basCV[ii]: ii in [1..8]];

91

92 L_CUp :=

93 [

94 [f1*f2*£3*f4,f2*f4],

95 [-f1*f2*f3*f4 + 4*%f1*f2, f2*f3],

9% [-FL*f2*f3%f4 + 2%f3*f4, f1*f4],

97 [f1*f2*f3*f4 - A*f1*f2 - 2*%f3*f4 + 8, f1*f3],

98 [f1*f2*f3*f4, f2*f4],

99 [-FL*F2%F3*%f4 + 4%F1%F2, f2%f3],

100 [-f1*f2*f3*f4 + 2%f3*f4, f1*f4],

101 [f1*f2*f3*f4 - 4*¥f1*f2 - 2*f3*f4 + 8, f1*f3]

102 1;

103

104 L_CUi :=

105 [

106 [f2*£3*f4, f1*f2*f4],

107 [f1*f2*f3, f2*f3*f4 - 4*f2],

108 [f1*f3*f4, f1*f2*f4 - 2*f4],

109 [FL*F2*F3 - 2%f3, f1*f3*f4 - 4%f1],

110 [f2*f3*f4, f1*f2*f4],

111 [f1*f2*f3, f2*f3*f4 - 4*f2],

112 [fL*f3*f4, f1*f2*f4 - 2%f4],

113 [f1*F2*f3 - 2*%f3,f1¥f3*f4 - 4*f1]

114 1;

115

116 L_CDp :=[

117 [h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,
hi*h2 + h1*h4 + h2*h3 + 2],

118 [h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3 - h2*h3 + h3*h4,h1*h2 + h1*h3 + h2*h4 + 2,
hi*h3 + hl*h4 - h2*h3 + 2],

119 [h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3 - h2*h3 + h3*h4,h1*h2 + h1*h3 + h2*h4 + 2,
hi*h3 + hl*h4 - h2*h3 + 2],

120 [h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,
hi*h2 + h1*h4 + h2*h3 + 2],

121 [h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3 - h2*h3 + h3*h4,h1*h2 + hl*h3 + h2*h4 + 2,
hi*h3 + hl1*h4 - h2*h3 + 2],

122 [h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,

h1*h2 + hl1*h4 + h2*h3 + 2], 103
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145
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[h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,

hi*h2 + h1*h4 + h2*h3 + 2],

[h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3
hi*h3 + h1*h4 - h2*h3 + 2]
15

L_CDi := [

[-h1*h3*h4 - 2*h1l + 2*h2 + 2*h3,h1*h2*h3 + h1*h3*h4
+ 2*h4,h1*h2*h4 + 2*h1 + h2*h3*h4 - 2*h2],

[-h1*h3*h4 - 2*h1 + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*hl
2*h4,h1*h2*h4 - h1*h3*h4 + h2*h3*h4 - 2*h2],

[-h1*h3*h4 - 2*h1l + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*hl
2*h4,h1*h2*h4 - h1*h3*h4 + h2*h3*h4 - 2*h2],

[-h1*h3*h4 - 2*h1l + 2*h2 + 2*h3,h1*h2*h3 + hl*h3*h4
+ 2*h4,h1*h2*h4 + 2*h1l + h2*h3*h4 - 2*h2],

[-h1*h3*h4 - 2*h1l + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*h1l
2*h4,h1*h2*h4 - h1*h3*h4 + h2*h3*h4 - 2*h2],

[-h1*h3*h4 - 2*h1 + 2*h2 + 2*h3,h1*h2*h3 + h1*h3*h4
+ 2*h4,h1*h2*h4 + 2*hl + h2*h3*h4 - 2*h2],

[-h1*h3*h4 - 2*h1 + 2*h2 + 2*h3,h1*h2*h3 + h1*h3*h4
+ 2*h4,h1*h2*h4 + 2*hl + h2*h3*h4 - 2*h2],

[-h1*h3*h4 - 2*h1 + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*hl
2*h4,h1*h2*h4 - h1l*h3*h4 + h2*h3*h4 - 2*h2]

15

I 6 H:=[h-i, h+j, i-j, kJ;
I_12 H := [h, i, j, k];

function Get_lambda(L_CUp, L_CUi, L_CDp, L_CDi)

Mpp := Matrix(Integers(), 8, 128, [Eltseq(Cp!(L_CUp[ii]*L_CDp[jjl)):jj in [1

[1..#L_CUp]1D);

Mii := Matrix(Integers(), 8, 128, [Eltseq(Cp!(L_CUi[ii]*L_CDi[jj])):jj in [1

[1..#L_CUil]);

M := Verticalloin(Mpp, Mii);
L_matK := Matrix(K,M);

L Cp := [Cp!M[ii]:ii in [1..16]];
return L_matK, L_Cp;

end function;

h2*h3 + h3*h4,h1*h2 + h1*h3 + h2*hd + 2,

h2*h3*h4

h2*h3*h4

h2*h3*h4

h2*h3*h4

h2*h3*h4

h2*h3*h4

h2*h3*h4

h2*h3*h4

//Get_r_action: Get matrix of right action of Cp on L_Cp < Cp

//input:

//xx in Cp, L_Cp, L_matK

//output:

//16x16 matrix/K

function Get_r_action(xx, L_Cp, L_matkK)

Lxx := Matrix(K,16,128,[Eltseq(L_Cp[ii]*xx) : ii in [1..16]]);

return Transpose(Solution(L_matK,Lxx));
end function;

//Get_1_action: Get matrix of left action of Cp on L_Cp
function Get_l_action(xx, L_Cp, L_matkK)

xxL := Matrix(K,16,128,[Eltseq(xx*L_Cp[ii]) : ii in [1..16]1]);

return Transpose(Solution(L_matK,xxL));
end function;

2%h2,h1*h3*h4
2*h2,h1*h3*ha
2*h2,h1*h3*h4
2*h2,h1*h3*ha
2*h2,h1*h3*ha
2*h2,h1*h3*ha
2*h2,h1*h3*ha

2*h2, h1*h3*h4

//Get_CC8_bas: Obtain a basis for the \pm sqrt(-1)-eigenspaces for J in \RR"16

//input:

//3: complex structure in \C1(T), L_Cp, L_matK
//output:

//two 16x8 matrix/K with respect to Lambda_i<Cp
function Get_CC8_bas(J, L_Cp, L_matk)

J_mat := Get_1 action(Cp!J, L_Cp, L_matK);

//C8p: matrix whose columns span +\sqrt(-1)-eigenspace

2*h1

2*h1

2*h1

2*h1

2*h1

2*h1

2*h1

2*h1

..#L_CDp], ii in

..#L_CDi], ii in

h2*h3*h4

2*h2 +

2*h2 +

h2*h3*h4

2*h2 +

h2*h3*h4

h2*h3*h4

2*h2 +

CC8p := KernelMatrix(Transpose(J_mat) - DiagonalMatrix(K,[x:ii in [1..16]]));//+ve eigenspace

CC8p := Transpose(CC8p); 104
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//C8n: matrix whose columns span -\sqrt(-1)-eigenspace

CC8n := KernelMatrix(Transpose(J_mat) + DiagonalMatrix(K,[x:ii in [1..16]]));
CC8n := Transpose(CC8n);

return CC8p,CC8n;

end function;

//Get_coeff: get coefficients when xx is written as linear comb. of basis bas / \HH
//input:

//XX, bas

//output:

//seq /K

function Get_coeff(bas,xx)

xx_seq:=Eltseq(xx);

bas_seq:=Transpose(Matrix(K,4,4,[Eltseq(xx):xx in bas]))~(-1)*Matrix(K,4,1,xx_seq);
return Eltseq(bas_seq);

end function;

//Dot_product: product between sequences v, w
function Dot_prod(v,w)

n := #v;

return &+[v[ii]*w[ii]: ii in [1..n]];

end function;

//Chi: M -> \rchi(M): Representation M_d(\HH_\QQ) -> M_2d(\CC)
function Chi(M)

n := NumberOfRows(M);

Ac:=11

B :=[];

M_seq := Eltseq(M);

for ii in [1..#M_seq] do

z := M_seq[ii];

z_seq := Eltseq(z);

A := A cat [z_seq[1]+x*z_seq[2]];

B := B cat [z_seq[3]+x*z_seq[4]];

end for;

AM := Matrix(n,n,A);

BM := Matrix(n,n,B);

return BlockMatrix(2,2,[AM,BM, -Conj_mat(BM),Conj_mat(AM)]);
end function;

//Chi_R: M -> \rchi_ \RR(M): Representation M_d(\CC) -> M_2d(\RR)
function Chi_R(M)

nn := NumberOfRows(M);

A= 1[];

B :=[];

M _seq := Eltseq(M);

for ii in [1..#M_seq] do

z := M_seq[ii];

z_seq := Eltseq(z);

A := A cat [z_seq[1]];

B := B cat [z_seq[2]];

end for;

AM := Matrix(K, nn,nn,A);

BM := Matrix(K, nn,nn,B);

return BlockMatrix(2,2,[AM,BM,-BM,AM]);
end function;

//Phi_std: r -> \rchi(r) \otimes Id_4
//input:
//r in \HH_\QQ
//output:
//8x8 matrix/K
function Phi_std(r)
temp := Eltseq(Chi(Matrix(1,1,[r])));
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return BlockMatrix(2,2,[temp[jj]*IdentityMatrix(K,4):jj in [1..4]]1);

end function;

//Phi2Chi: find 8x8 change of basis matrix Q, such that Q*Phi(x)*Q"(-1)

function Phi2Chi(tih_mat_8,bas_R)

AminB := ZeroMatrix(K,0,64);
for ii in [1..4] do

//Define A such that Q*Phi(x) given by Eltseq(Q)*A
A := DiagonalJoin([Transpose(tih_mat_8[ii]):jj in [1..8]1);
//Similarly define B such that (Chi(x)\otimes id_4)*Q is Eltseq(Q)*B

temp := Eltseq(Phi_std(bas_R[ii]));

B := BlockMatrix(8,8,[temp[jj]*IdentityMatrix(K,8):jj in [1..64]]);

AminB := VerticalJoin(AminB, A-B);

end for;

//KM: the space Eltseq(Q) such that Q*Phi(x) =
KM := KernelMatrix(Transpose(AminB));

Qs := [1;
for ii in [1..NumberOfRows(KM)] do

//transform the length 64 vector back to a square matrix

Q_temp := Matrix(K,8,8,Eltseq(KM[ii]));
//sanity check

(Chi(x)\otimes id_4)*Q

= Chi(x) \otimes id_4

//&and[Q_temp*tih_mat_8[kk] eq BlockMatrix(2,2, [Eltseq(chl(Matrlx(l 1,[bas_R[kk]]1)))[11]

*IdentltyMatrlx(K 4):11 in [1..4]])*Q_temp: kk in [1..

Qs := Qs cat [Q_temp];
end for;

//Create a non-singular matrix Q from the kernel space spanned by KM

Q := ZeroMatrix(K,8,8);

ii = 1;

while Determinant(Q) eq © and ii le #Qs do
Q := Q + ii*Qs[ii];

ii = ii + 1;

end while;

//sanity check

)

//&nd[Q*tih_mat_8[kk]*Q"(-1) eq BlockMatrix(2,2,[Eltseq(Chi(Matrix(1,1,[bas_R[kk]])))[11]

*IdentityMatrix(K,4):11 in [1..4]]): kk in [1. 4]]

return Q;
end function;

//Get_xs: find image of el, e5, e9, el3 in CC"8 wrt \Phi_{std}

//input:

//Q: change of basis matrix to use \Phi_std
//output:

//8x4 matrix whose columns are the x_i's
function Get_xs(CC8p, CC8n, L_matK, Q)

S := Solution(Transpose(HorizontalJoin(CC8p,CC8n)), Verticalldoin([IdentityMatrix(K,16)[jj]: jj in

[1,5,9,13]11));

return Matrix(H,Q*Transpose(ColumnSubmatrix(S,8)));

end function;

//Get_calM: obtain generators of \calM
//input:

//m: index of x_m

//output:

//4x4 matrix whose columns are generators of calM with respect to bas_R

function Get_calMkk(kk, tih_mat_16)
ii := 4%(kk-1)+1;

Rx_kk :=[[M[ii+jj,ii]:jj in [0..3]]:M in tih_mat_16];

Rx_kk := Transpose(Matrix(Integers(),Rx_kk));
S, P, T := SmithForm(Rx_kk);
n := LeastCommonMultiple(Diagonal(S));

return Transpose(Matrix(Rationals(),Rx_kk)~(-1)*n);

end function;
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//Mult_H: compute xx*dl*yy~d2 in \HH with respect to bas_R
//input:

//xx, yy coefficients wrt bas_R; di1, d2 in \Zz

//output:

//sequence of length 4/K: coefficients of product wrt bas_R
function Mult_H(bas_R, xx, di, yy, d2)

xX_R := &+[xx[jj]*bas_R[jj]: jj in [1..4]];

yy_R := &[yy[jjl*bas_R[j]j]: jj in [1..4]];

prod := xx_R~d1*yy R"d2;

return Get_coeff(bas_R,prod);

end function;

//calMkk_2_ Tkk: change of basis matrix from calM_kk to I_kk

//Input:

//Shortest_calMkk, Shortest_Ikk: shortest vectors in respective lattices
//bilform_mat: quadratic form associated to the lattice generated by bas_R
//calMkk: generators of calM _kk in terms of bas_R

//output:

//4-by-4 matrix

function calMkk_2_TIkk(bas_R, Shortest_calMkk, Shortest_Ikk, bilform_mat, calMkk)
calMkkhh := 0;

L_Id := Lattice(IdentityMatrix(Rationals(),4), bilform_mat);

xx := Shortest_calMkk[1];

//Norm(xx) eq Norm(Shortest I m[1]);

for yy in Shortest_Ikk do

hh := Mult_H(bas_R, xx, -1, yy, 1);

if {L_Id!Mult_H(bas_R, zz, 1, hh, 1): zz in Shortest_calMkk} eq Seqset(Shortest_Ikk)
then calMkkhh := Transpose(Matrix([Mult_H(bas_R, calMkk[ii], 1, hh,1): ii in [1..4]1));
break;

end if;

end for;

return calMkkhh;

end function;

//E: to calculate each entry in the matrix of polarisation
function E(xx, yy, L_Cp, L_matkK)

zz := alpha * MainAntiautomorphism(C)(xx) * yy;

zzL_Cp := Matrix(K,16,128,[Eltseq(Cp!zz*L_Cp[i]) : i in [1..16]]);
T := Transpose(Solution(L_matK, zzL _Cp));

return Trace(T);

end function;

//Get_calT: calculate matrix calT as imaginary part of polarisation
function Get_calT(calM2I, bas_R, L_Cp, L_matkK)
mm := [1, 5, 9, 13];

//mE: matrix of imaginary part of polarisation with respect to L_Cp

mE := Matrix(K,16,16,[E(xx,yy, L_Cp, L_matK):xx,yy in L_Cp]);

bas_4R := Matrix(H,1,16,[bas_R cat bas_R cat bas_R cat bas_R]);

//LmatK_2_I: matrix taking each column in L_matK to a vector in I in terms of 1, i, j, k
LmatKk_2_TI := bas_4R * Matrix(H,calM2I);

calT := ZeroMatrix(H,4,4);

1l seq := [2, 1, 4, 3];

//the (hh, 11)-th block in Emat is non-zero, corresponds to a non-zero entry calT_hl in calT
for hh in [1..4] do

11 := 1 _seq[hh];

mE_hl := Submatrix(mE, mm[hh], mm[11], 4, 4);

//find calT_hl

vectra:=[mE_hl[1,ii]:ii in [1..4]];

genI_h := [LmatK_2_I[1,mm[hh]+kk]:kk in [©..3]];

genI 1 := [LmatK_2_I[1,mm[11l]+kk]:kk in [©..3]];

traces:= Matrix(K,4,4,[Trace(xx*yy):xx in bas_§67yy in [Conjugate(zz)*genI_h[1]:zz in genI_1]]);
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seqT_hl:= Eltseq(traces”(-1)*Matrix(K,4,1,vectra));
calT_hl:= &+[seqT_hl[i]*bas_R[i]:i in [1..4]];
//checking

//matEthl:=Matrix(K,4,4,[Trace(genI_h[ii]*calT_hl*Conjugate(genI_1[jj])):ii,jj in [1..4]1]);
//matEthl eq mE_hl; //TRUE !!!!

//update T

calT[hh,11] := calT_hl;
end for; //hh

return calT;

end function;

//Get_calH: to obtain the matrix \calH

function Get_calH(J, L_Cp, L_matK, tih_mat_16, bas_R, calM2I)
mm := [1, 5, 9, 13];

J_mat := Get_1l_ action(Cp!J, L_Cp, L_matK);

calM2I_inv := Matrix(K,calM2I)~(-1);

calH := ZeroMatrix(H,4,4);
//solve sqrt(-1)*x_i = sum_{j=1}"4( sum_{k=1}"4( a_jk * Phi(bas_R[k]) ) * x_j )
for ii in [1..4] do
Phi_kj := ZeroMatrix(K,16,0);
for jj in [1..4] do
for kk in [1..4] do
//the i-th column of IIcalMinv is bas_R[i] in terms of the e_j's
Phi_kj := HorizontalJoin(Phi_kj, tih_mat_16[kk]*ColumnSubmatrix(calM2I_inv,mm[jj],1));
end for;//kk
end for; //jj
h_ii := Solution(Transpose(Phi_kj),Transpose(J_mat*ColumnSubmatrix(calM2I_inv,mm[ii],1)));
h_ii := Matrix(H,16,1,Eltseq(h_ii));
for jj in [1..4] do
calH[ii,jj] := &+[h_ii[mm[jj]l+kk-1][1]*bas_R[kk]: kk in [1..4]];
end for; //jj
end for;//ii
return calH;
end function;

//Transform a matrix over K = \QQ<\sqrt(-1), \sqrt(2)> to one over \CC
function K2CC_mat(M)

n := NumberOfRows(M);

M_seq := Eltseq(M);

MCC_seq := [];

for ii in [1..#Eltseq(M)] do

z := M_seq[ii];

z_seq := Eltseq(z);

MCC_seq := MCC_seq cat [z_seq[1l] + z_seq[2]*Sqrt(-1) + z_seq[3]*Sqrt(2) + z_seq[4]*Sqrt(-1)*Sqrt(2)]
B

end for;

return Matrix(n,n,MCC_seq);

end function;

//Get_Xmat: To obtain the square matrix associated to the attribute x_i's
function Get_Xmat(xs)

U := RowSubmatrix(xs,1,4);

V := RowSubmatrix(xs,5,4);

return BlockMatrix(2,2,[U,V,Conj_mat(V),-Conj_mat(U)]);

end function;

//obtain the image z in period domain \calD_\calA given J
function Get_z(calT, calH, xs)
X_mat := Get_Xmat(xs);

//0T, oH: \rchi(T) and \rchi(H)
oT := Chi(calT); 108
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oH := Chi(calH);

//find oW : \rchi(W)

A:= Matrix(H,4,4,[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1]);
temp:=A*calT~(-1)*Transpose(Conj_H_mat(A));

W1l := Matrix(H,2,2,[-i, Conjugate(temp[1,2])~(-1), i, Conjugate(temp[1,2])~(-1)]);
W2 := Matrix(H,2,2,[-1i, Conjugate(temp[3,4])~(-1), i, Conjugate(temp[3,4])*(-1)]);
W := DiagonalMatrix([-j/s,1/s,-j/s,1/s])*Diagonalloin(W1,W2)*A;
//W*¥calT~(-1)*Transpose(Conj_H_mat(W)) eq DiagonalMatrix([i,i,i,i]); //true

oW := Chi(W);

//x*oW*oT~(-1)*Transpose(Conj_mat(oW)) eq DiagonalJoin(-IdentityMatrix(K,4), IdentityMatrix(K,4));

//true

temp := X_mat*Conj_mat(oW)~(-1);

U := Submatrix(temp,1,1,4,4);

V := Submatrix(temp,1,5,4,4);

z 1= -VA(-1)*U;

//check z is indeed an element in the period domain \DMT
/*

Transpose(z) eq -z; //true

//IE: contains the set of eigenvalues (over CC, without multiplicity)

z_CC := K2CC_mat(Matrix(K,z));

conj_z_CC := Matrix(4,4,[Conjugate(zz): zz in Eltseq(z_CC)]);

IE := Eigenvalues(1l-z_CC*Transpose(conj_z_CC));

&and[Real (IE[jjI[1]) gt © : jj in [1..#IE]], //true: 1-zz~* is positive definite
//if false, take -3 as the complex structure

*/

return z;

end function;

//================================================================================
//Consider A n, n = 1.
n :=1;

//L_matK, L_Cp := Get_lambda(n);

L_matK, L_Cp := Get_lambda(L_CUp[n], L_CUi[n], L_CDp[n], L_CDi[n]);
//tih: \ti{h}_i \in \C1™+(T) for i in [1..4]

hm2 := 2*h1-h2-h3-h4;

tih := [1, hm2*h1, hm2*h2, hm2*h3];

//Check tih spans a primitive lattice in \C17+(T)

/*

tih_Lat := Lattice(Matrix(Integers(),4,128,[Eltseq(Cp!tih[ii]): ii in [1..4]1));
Id_Lat := Lattice(IdentityMatrix(Integers(), 128));

Id_Lat/tih_Lat; //\zz"124

*/

//tih_mat_16: action of tih as 16x16 matrices

tih_mat_16 := [Get_r_action(Cp!tih[ii], L_Cp, L_matK): ii in [1..4]];

//tih_mat_8: action of tih as 8x8 matrices over CC8p
CC8p, CC8n:= Get_CC8_bas(J, L_Cp, L_matK);
tih_mat_8 :

//bas_R := basis of R

if n in [1,4,6,7] then

bas R := [1, -1+i+j-k, 2*i, 2*j];
else

bas R := [1, -1-i-j+k, -2*i, -2*j];
end if;

//Check Phi: bas_R[ii] -> tih_mat_8[i] is a homomorphism (preserves multiplication)

//[[Dot_prod(Get_coeff(bas_R, bas R[ii]*bas_R[jj]),tih_mat_8) eq tih_mat_8[ii]*tih_mat_8[jj]:

[1..4]]7 ii in [1..4]];

Q := Phi2Chi(tih_mat_8,bas_R);
//Xs: x_i's satisfying equation 3.3.3(1) 109

[Transpose(Solution(Transpose(CC8p), Transpose(tih_mat_16[ii]*CC8p))): ii in [1..4]];

jj in



495 xs := Get_xs(CC8p, CC8n, L_matK, Q);

496

497 | //bilform_mat: inner product matrix for R wrt bas_R

498 ?ilfog?STat := Matrix(Rationals(), 4,4, Eltseq([[bilform(bas_R[i],bas_R[j]): i in [1..4]]: j in
1..4 H

499 //I_6 = I_6_H wrt bas_R

500 I 6 := 2*VerticalJoin([Matrix(Rationals(),1,4,Get_coeff(bas_R, I_6_H[jj])): jj in [1..4]]);

501 I_12 := 2*VerticalJoin([Matrix(Rationals(),1,4,Get_coeff(bas_R, I_12 H[jj]1)): jj in [1..4]1]);

502 L_I 6 := Lattice(I_6, bilform_mat);

503 L_I 12 := Lattice(I_12, bilform_mat);

504 | //Shortest_I_6: Shortest vectors in lattice

505 Shortest_I 6 := ShortestVectors(L_I_6);

506 Shortest_I_6 := Shortest_I_6 cat [-1*xx : xx in Shortest_I_6];

507 Shortest_I_12 := ShortestVectors(L_I_12);

508 Shortest I 12 := Shortest_I_ 12 cat [-1*xx : xx in Shortest_I 12];

509

510 I := [I.6, I.6, I 12, I 12];

511 Shortest I := [Shortest I 6, Shortest I 6, Shortest I 12, Shortest I 12];;

512

513 //calM2I: change of basis matrix from calM to I

514 calM2I := ZeroMatrix(K,90,0);

515 for kk in [1..4] do

516 calMkk := Get_calMkk(kk, tih_mat_16);

517 L_calMkk := Lattice(calMkk, bilform_mat);

518 Shortest_calMkk := ShortestVectors(L_calMkk);

519 Shortest_calMkk := Shortest_calMkk cat [-1*xx : xx in Shortest_calMkk];

520 calM2I := DiagonalJoin(calM2I, calMkk_2_Tkk(bas_R, Shortest_calMkk, Shortest_I[kk], bilform_mat,
calMkk));

521 end for;

522 | //\calT satisfying equation 3.3.3(3)

523 calT := Get_calT(calM2I, bas_R, L_Cp, L_matK);
524

525| //\calH satisfying equation 3.3.3(4)

526 calH := Get_calH(J, L_Cp, L_matK, tih_mat_16, bas_R, calM2I);
527

528 //Z = \ti{F}(J) \in \DMT

529 Get_z(calT, calH, xs);

530

531
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