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Abstract

Kuga varieties are a natural generalisation of universal families of abelian varieties. This thesis
describes the candidate’s work on the geometry of some types of Kuga varieties. In Part I, by
considering a special kind of Kuga varieties resulting from the Kuga-Satake construction, we construct
an explicit map from a moduli space of K3 surfaces of Picard rank 14 to a moduli space of polarised
abelian 8-folds with totally definite quaternion multiplication. This is a geometric interpretation of
an exceptional coincidence between locally symmetric spaces of type II4 and type IV6. In Part II,
we study the n-fold Kuga varieties associated to the moduli space of (1, p)-polarised abelian surfaces
with canonical level structure for prime p at least 3, and compute their Kodaira dimensions for all
but 27 possible combinations of (n, p).
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1 Introduction

Moduli spaces, which are geometric spaces parametrising a collection of mathematical objects, have
been a very active area of research. In particular, the notion of Kuga varieties arise naturally in the
study of moduli spaces of abelian varieties. Given an embedding from any moduli variety to a moduli
space of abelian varieties, a Kuga variety is defined as the pullback of the universal family over the
moduli space of abelian varieties by this embedding. Apart from being beneficial for the study of the
Hodge conjecture [HaKu], Kuga varieties are interesting varieties standalone as they generalise universal
families of abelian varieties. There is work on their classification [A] and geometric properties such as
unirationality of special examples [FV].

One special type of Kuga varieties can be constructed with the Kuga-Satake (KS) construction. The
process associates an abelian variety called a Kuga-Satake variety [KS] to a K3 surface. A Kuga variety
can be obtained by associating to each point of a moduli variety of K3 surfaces its corresponding KS
variety. Moreover, the KS construction can be lifted to the level of moduli, whose geometry such as
endomorphism structure and simpleness of a generic member is controlled by the family of K3 surfaces
one starts with [vG1].

Another special type of Kuga varieties is the n-fold Kuga varieties, i.e. varieties over a Siegel modular
variety such that each fibre is a product of n copies of the abelian variety or Kummer variety to which
it corresponds in the base.

In Part I of this thesis, we study the Kuga-Satake construction. Our main result is Theorem 5.1.6,
in which we lift the Kuga-Satake construction and construct a map F from a moduli space of K3
surfaces of Picard rank 14 to a moduli space of polarised abelian 8-folds with totally definite quaternion
multiplication.

Furthermore, we realise F using MAGMA for a few specific families (Table 6) studied in [CM2], and
investigate some special loci. Our main result here is Theorem 6.4.1.

In Part II of the thesis, we focus on the special n-fold Kuga varieties Xn
p , where the fibres are

polarised abelian surfaces of polarisation type (1, p), denoted as Xn
p , with p being an odd prime number

and n ≥ 1. Our main result is Theorem 8.2.11, which shows that the Kodaira dimension of Xn
p is 3

(the maximum possible) for almost every pair (n, p). We do this using modular forms and a special
toroidal compactification of Xn

p . This result has appeared in [Po] and is accepted for publication in the
Tohoku Mathematical Journal. It complements previous works [Ve], [FV] on unirationality of certain
1-fold Kuga varieties, and also [PSMS] where we computed the Kodaira dimension of any Kuga variety
over moduli spaces of principally polarised abelian varieties of dimension g ≥ 2.

The outline for Part I is as follows. In Section 2, we explain the motivation of this work, which comes
from the geometric interpretation of locally symmetric varieties. In Section 3, we give the definitions
of abelian varieties and K3 surfaces, introduce their polarisation and endomorphism structures, and
describe their moduli spaces. In Sections 4 and 5, we recall the classical Kuga-Satake construction,
then explain how it is lifted to the maps F between moduli spaces and F̃ between their Hermitian
symmetric domain overspaces respectively. In Section 6, we focus on six special families of lattice
polarised K3 surfaces and explain some results and observations from our MAGMA realisation of the
map F̃ . Finally in Section 7, we discuss some possible directions for future investigation. The MAGMA
code used is included in the appendix at the end of the thesis.

Part II has the following outline: Section 8 contains definitions concerning Kodaira dimension,
modular forms, and the Kuga varieties Xn

p , their singularities and compactification. We also give the
general strategy of applying S. Ma’s theorem (Theorem 8.2.10), and introduce some necessary tools for
our investigation. In Section 9, we show that the assumptions in Ma’s theorem are satisfied, namely,
for n > 2 and any p, the particular compactification X of Xn

p constructed in [PSMS] has canonical
singularities. In Section 10, we compute the Kodaira dimension of Xn

p for all but 27 combinations of
the indices (n, p), using some results and techniques about modular forms.
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Remark on notations

We will use the following notation throughout the thesis.

• The symbol W usually means a complex vector space, and Λ means a lattice of full rank in W .
The symbol V usually means a real vector space, and Λ′ means a lattice of full rank in V .

• Let L/k be a finite extension of fields. Let G be an algebraic group defined over k. We denote by
G(L) the corresponding algebraic group defined over L.

• Let R be a ring, V be an R-module, and K be a field over R. Then we write K-extension of V as
VK := V ⊗R K.

• Round brackets are used in matrices, and squared brackets are used in block matrices.

• In Part I Section 3.3 and Section 6, we choose most of our notations to match with that in the
main reference [Sh]. In particular, we use Z to denote an element in any Hermitian symmetric
domain, including in a Siegel upper half space. In Part II, we follow the traditional notation to
denote an element in the Siegel upper half space Sg by τ .

Note that some necessary definitions for the work in Part II have already been introduced in Part I. We
hope that the index pages at the very end of the document will be helpful for navigating through the
thesis.
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Part I

Kuga-Satake varieties of moduli spaces of K3
surfaces of Picard rank 14

2 Locally symmetric varieties

In this section we give a classification of locally symmetric varieties, and explain how it motivates our
work in Part I.

A locally symmetric space is an arithmetic quotient of a symmetric space of non-compact type. It
is a locally symmetric variety if and only if the overspace of this quotient is a Hermitian symmetric
domain. We will explain these notions in the following subsections.

2.1 Symmetric spaces and locally symmetric spaces

Locally symmetric varieties are locally symmetric spaces: locally, they look like symmetric spaces, which
are differentiable complex manifolds with extra structure. In some texts e.g. [He], symmetric spaces are
also referred to as Riemannian globally symmetric spaces. In this subsection, we will define symmetric
space and locally symmetric space. First let us recall the definition of a Riemannian manifold.

Definition 2.1.1. [He, Chapter I, Section 9]
Let M be a differentiable complex manifold. A Riemannian structure g on M is a tensor field of

type (0, 2), i.e. an element in Γ((T ∗M)⊗2), such that

(i) g(X,Y ) = g(Y,X) for all X,Y ∈ TM .

(ii) For all p ∈ M , gp is a positive definite bilinear form on TpM × TpM .

The pair (M, g) is called a Riemannian manifold.
A diffeomorphism of Riemannian manifolds s : (M, g) → (N,h) satisfying s∗h = g is called an

isometry. An isometry s of M is involutive if s2 is the identity morphism.

A symmetric space and a locally symmetric space are defined as follows.

Definition 2.1.2. [He, Chapter IV, Section 3 and 5]
A Riemannian manifold M is a symmetric space if every point p ∈ M is an isolated fixed point

of an involutive isometry of M .
A Riemannian manifold M ′ is a locally symmetric space if there exists a symmetric space M

such that for any point p′ ∈ M ′, there is a neighbourhood Np′ of p
′ and an isometry φp′ taking Np′ to

an open neighbourhood of φp′(p
′) in M .

In fact, one can characterise symmetric spaces in terms of Lie groups.

Theorem 2.1.3. [He, Theorem IV.2.5, IV.3.3]
Let M be a symmetric space and p be a point in M . Let G := I0(M) be the identity component of

the group of isometries of M and K be the stabiliser subgroup with respect to p. Then G is a connected
Lie group, K is a compact subgroup of G, and the quotient G/K is diffeomorphic to M .

Moreover, symmetric spaces can be divided into compact type and non-compact type depending on
the Lie groups G, and K. We are interested in the symmetric spaces of non-compact type. They are
homogeneous manifolds i.e. they admit a transitive G-action. In particular, a locally symmetric space is
an arithmetic quotient of a symmetric space of non-compact type. To conclude this subsection, we give
the specific characterisations of symmetric spaces of non-compact type and define a locally symmetric
space using Theorem 2.1.3.
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Definition 2.1.4. [BJ, III.2.1, III.2.5]
A symmetric space of non-compact type is a Lie group quotient G/K, where G is a connected

reductive real Lie group, and K is a maximal compact subgroup of G.
If G is an algebraic group defined over Q, then a subgroup Γ < G(Q) is called an arithmetic

subgroup if it is commensurable with G(Z) i.e. Γ ∩G(Z) has finite index in both Γ and G(Z).
Let G/K be a symmetric space of non-compact type. Let Γ be an arithmetic subgroup of G. Then Γ

acts properly discontinuously on X and the biquotient Γ\G/K is called a locally symmetric space.

Remark 2.1.5.

(i) [K, VII.2] Any semisimple Lie group with finite centre is reductive.

(ii) [He, Theorem VI.2.2] All maximal compact subgroups K of a connected semi-simple Lie group G
are connected, and conjugate under an inner automorphism of G. This gives the quotient G/K
the structure of a homogeneous manifold.

(iii) [BJ, III.2.5] Γ admits a torsion-free subgroup of finite index. When Γ is torsion-free, then the
resulting locally symmetric space is smooth.

2.2 Hermitian symmetric domains

Hermitian symmetric domains form a special class of symmetric spaces of non-compact type, and are
vital in the construction of locally symmetric varieties. In this subsection, we introduce the definition
and a characterisation of Hermitian symmetric domains, and give a classification of these objects.

Definition 2.2.1. [He, Chapter VIII, Section 1 and 4]
Let M be a differentiable complex manifold with tangent bundle TM .
An almost complex structure J on M is a tensor field of (1, 1) type such that J2 = −1.
Suppose M admits both an almost complex structure J and a Riemannian structure g. Then M is

a Hermitian symmetric space if

(i) it admits a Hermitian structure. i.e. g(JX, JY ) = g(X,Y ) for all X,Y ∈ TM ; and

(ii) every point p ∈ M is an isolated fixed point of an involutive holomorphic isometry of M . In
particular, M is a symmetric space.

A Hermitian symmetric space is called a Hermitian symmetric domain if it is a symmetric space
of non-compact type.

Remark 2.2.2. [He, Theorem VIII.7.1]
A Hermitian symmetric domain is a bounded domain. i.e. a bounded open connected subset of Cn

for some positive integer n.

From now on, we use the abbreviation HSD for a Hermitian symmetric domain.
We are interested in irreducible HSDs. Their characterisation in terms of Lie groups is, of course,

more restrictive than the one in Definition 2.1.4.

Theorem 2.2.3. [He, Theorem VIII.6.1]
The irreducible HSDs are exactly the manifolds G/K where G is a connected non-compact simple

Lie group with centre containing only the trivial element; K has a non-discrete centre and is a maximal
compact subgroup of G.

Base on this characterisation, there is a classification of HSDs which depends only on the Lie group G
in the quotient G/K. This separates all HSDs into four classical types I to IV, and two more exceptional
types when G = E6 and E7. See [Lo, Section 3], [He, Table X.6.V].
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Type of HSD G K

Ip,q SU(p, q) S(U(p)×U(q))

IIm SO∗(2m) U(m)

IIIg Sp(2g) U(g)

IVn SO+(2, n) SO(2)× SO(n)

Table 1: Classical types of HSDs

We give the definitions of the Lie groups U(m), Sp(2g), SO+(p, q) and SO∗(2m), where the notations
for the last two are less standard. The definitions of all Lie groups appearing above can be found in
[He, Chapter X, Section 2.1].

Definition 2.2.4. Let 1n be the identity matrix of size n. Define the matrices

Ip,q :=

[
1p 0
0 −1q

]
, Jg :=

[
0 1g

−1g 0

]
(i) The indefinite unitary group U(p, q) is the group of matrices{

M ∈ GLp+q(C) : M tIp,qM = Ip,q
}
.

We call the group U(m) = U(m, 0) = U(0,m) the definite unitary group of degree m.

(ii) The symplectic group Sp(2g) is the group of matrices{
M ∈ GL2g(R) : M tJgM = Jg

}
.

In fact Jg is the matrix associated to a skew-symmetric bilinear form on R2g called the standard
symplectic form.

(iii) The indefinite special orthogonal group SO(p, q) is the group of matrices{
M ∈ SLp+q(R) : M tIp,qM = Ip,q

}
.

The determinant of any member is 1, i.e. it preserves orientation of the entire p+ q-dimensional
vector space.

We call the group SO(n) = SO(n, 0) = SO(0, n) the definite special orthogonal group of
degree n.

The reduced orthogonal group SO+(p, q) is the identity component of the group SO(p, q). It
contains matrices that preserve orientation of the p-dimensional positive definite subspaces.

(iv) The Lie group SO∗(2m) is the group of matrices{
M ∈ M2m(C) : M tJmM = Jm, M tM = 12m

}
.

Equivalently, it is the group of matrices in SO(2m,C) =
{
M ∈ SL2m(C) : M tM = I2m

}
which

leaves invariant the skew Hermitian form

−z1z̄m+1 + zm+1z̄1 − z2z̄m+2 + zm+2z̄2 − · · · − zmz̄2m + z2mz̄m.

9



2.3 Locally symmetric varieties

In general, locally symmetric spaces are not projective. However, a locally symmetric space that is an
arithmetic quotient of a HSD is a quasi-projective variety by the Baily-Borel Theorem [Lo, Section 4].
We call varieties that arise in this way locally symmetric varieties, abbreviated as LSVs. In this
subsection, we will study the geometric interpretation of LSVs as modular varieties.

From Definition 2.1.4, LSVs are exactly the Lie group biquotients Γ\G/K where G/K gives a HSD,
and Γ is an arithmetic subgroup of G. Such a characterisation allows LSVs to inherit a classification
from HSDs: the type of a LSV is the type of its overspace HSD.

It is well known that type III and certain type IV classical types of LSVs are modular varieties.

Definition 2.3.1. [Mi, Section 7]
A moduli problem over a field k is a contravariant functor F from the category of (some class

of) schemes over k to the category of sets. A variety S over k is called a modular variety if it is a
solution to the moduli problem F i.e. there is a natural isomorphism ϕ : F 7→ Homk(•, S).

In this thesis, by a moduli space we always mean a coarse moduli space: a solution to a moduli
problem F such that F(S) is the set of isomorphism classes of the structured algebraic varieties that
belong to a family f : X → S. Some common structures shared by a family of varieties include
polarisation (Sections 3.1.1 and 3.5.1) and endomorphism structures (Section 3.3.2). For those type
III or type IV LSVs that are coarse moduli spaces, the HSD overspace of such a LSV behaves like
a parametrisation space of the structured algebraic varieties (this space is what will be called the
period domain from Section 3 onwards). The quotient of the HSD overspace by the arithmetic group Γ
identifies the isomorphic varieties in the family. In fact the type II LSVs also admit a similar modular
interpretation ([He, Exercise X.D.1], [BL, Section 9.5]). Table 2 gives a summary of the modular
interpretations of LSVs of classical type II, III and IV. Note that the specific structures of the varieties
parametrised by a LSV of one of the above types depend on the group Γ.

Type of LSV G Modular interpretation

IIm SO∗(2m)
Moduli spaces of polarised abelian 2m-folds
with totally definite quaternion multiplication

IIIg Sp(2g) Moduli spaces of polarised abelian g-folds

IVr SO+(2, r)
Moduli spaces of lattice polarised K3 surfaces
of Picard rank (20− r) for 0 ≤ r ≤ 20

Table 2: Some types of LSVs with modular intepertation

We are especially interested in the type IVr series, because for r large, i.e. close to 20, the HSD
overspace of each moduli variety of K3 surfaces of Picard rank r coincides with that of a different
modular variety M:

r M
20 (supersingular) points

19 modular curves

18 Hilbert modular surfaces

17 modular varieties of polarised abelian surfaces with level structure

16 modular varieties of deformation of generalised Kummer varieties

15 modular varieties of deformation of hyperkähler manifolds of type OG6

14 modular varieties of abelian 8-folds with totally definite quaternion multiplication

Table 3: Some modular varieties M with an analytic overspace being a type IVr HSD for r large.
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In particular, upon choosing the suitable group Γ in the biquotient Γ\SO+(2, 20−r)/(SO(2)×SO(r)),
it is possible that the resulting type IVr LSV is isomorphic to M as modular varieties. We will see
(Lemma 3.5.15) that as r decreases, the dimension of the LSV increases, and therefore the difficulty of
finding a type IVr LSV with two modular interpretations also increases. The case r = 14 is the case
with smallest r where an identification of the analytic overspaces of two different modular varieties is
known to the author. In fact, the cases r = 16 and r = 15 are also hard because there is no known
explicit family of generalised Kummer varieties or OG6 varieties.

In fact, there is a necessary condition from classical literature for the existence of an isomorphism

F : Γ1\D1 −→ Γ2\D2

from a LSV of one of the classical types to a LSV of type II or III. Note that F lifts to a holomorphic
isometry F̃ : D1 → D2 that is equivariant with respect to the actions of the groups G1 and G2 on
D1 = G1/K1 and D2 = G2/K2 respectively. Satake studied [Sa] a more general question of when does
D1 holomorphically imbed into D2, i.e. when does an equivariant holomorphic isometry that embeds
D1 into D2 exist. The existence of such a holomorphic imbedding is equivalent to the existence of an
injective homomorphism of the Lie algebras Lie(G1) → Lie(G2) and an extra analytic condition, and
by checking the latter conditions, Satake has come up with a complete classification of the problem.

In particular for the case r = 17, there is an exceptional Lie algebra isomorphism between the
associated Lie algebras of modular varieties of K3 surfaces and abelian surfaces [He, Section X.6.4(iii)]

so+(2, 3) ≃ sp(2).

In [Sa], it is proved that given any HSDs D1 of type IV1 and D2 of type III3, there exists a holomorphic
imbedding F̃ : D1 → D2. So by choosing an arithmetic subgroup Γ of SO+(2, 3), we have a mapping of
LSVs

F : Γ\D1 −→ F̃ (Γ)\D2.

Subject to a suitable choice of Γ, it is possible that F is in fact an isomorphism.
The source [He, Section X.6.4(viii)] states another exceptional Lie algebra isomorphism which cor-

responds to the case r = 14:
so+(2, 6) ≃ so∗(8).

Moreover from [Sa], a type IV6 HSD is always holomorphically imbedded into a type II4 one. These
results further assert the possibility for an isomorphism between a modular variety of K3 surfaces of
Picard rank 14 and a modular variety of abelian 8-folds with totally definite quaternion multiplication
to exist. On top of that, it is hinted in [KSTT] that such an isomorphism comes from the Kuga-Satake
construction [KS] which takes a K3 surface to an abelian variety called the Kuga-Satake variety.

3 Moduli of K3 surfaces and abelian varieties

Before we give the details of the Kuga-Satake construction, let us recall some basic facts about K3
surfaces and abelian varieties, as well as their moduli spaces. Thoughout the thesis, we work over the
complex numbers.

Both an abelian variety and a K3 surface are smooth complex projective varieties. In Section
3.1, we give the notions of polarisations, polarised Hodge structures and period maps related to (a
family of) smooth complex projective varieties. This is essential for the treatment of moduli spaces of
abelian varieties, abelian varieties with totally definite quaternion multiplication and lattice polarised
K3 surfaces in Sections 3.2, 3.3 and 3.5 respectively. In Section 3.4, we recall some classical facts about
lattices, as they encode a lot of information about polarised K3 surfaces.

11



3.1 Smooth complex projective varieties

3.1.1 Polarisation

Before giving the definition of a polarisation, we need to first recall the definition of the first Chern
map [Vo, Section 7.1.3]. Consider the exponential short exact sequence for a smooth complex projective
variety X.

0 −→ Z 2πi−−→ OX
exp−−→ O∗

X −→ 0

It induces a long exact sequence of cohomology groups. We define the first Chern map to be the
connecting homomorphism

c1 : H
1(X,O∗

X) −→ H2(X,Z).

Remark 3.1.1. Concerning the first Chern map, note that

(i) [Hart, Exercise III.4.5] The domain H1(X,O∗
X) can be identified with the Picard group Pic(X),

the group of isomorphism classes of line bundles on X.

(ii) [Vo, Section 7.2.2] We define Pic0(X) to be the kernel of the first Chern map c1. It is also the
subgroup in Pic(X) of line bundles that are algebraically equivalent to 0. The image of c1 is called
the Néron-Severi group NS(X) of X.

Definition 3.1.2. [Vo, Theorem 7.8, 7.10] A polarisation of a projective variety X is given by c1(L),
the first Chern class of a choice of an ample line bundle L on X.

The ample line bundle L realises projectivity of the variety X: there exists an integer m > 0 such
that L⊗m is very ample [Hart, Remark 7.4.3]. The existence of a very ample line bundle is equivalent
to the existence of an embedding of X into a projective space. To be specific,

Theorem 3.1.3. [Hart, Section II. 5, Theorem II.7.1(b)]
Let L be a very ample line bundle on X over C. Let {s0, · · · , sr} ⊂ H0(X,L) be global sections

which generate L. Then there exists an immersion

φ : X −→ Pr
C := Proj C[x0, · · · .xr]

such that L ≃ φ∗(O(1)) and si = φ∗(xi).

Since the polarisation c1(L) is determined by the ample line bundle L, we also say as a shorthand
that the polarisation of X is the line bundle L ∈ Pic(X).

Remark 3.1.4. Note that the Chern map may not be injective. As long as c1(L1) ≃ c1(L2) for the two
ample line bundles L1 and L2, we do not distinguish the polarisations L1 and L2 in our shorthand.

We will explain in details a few alternative definitions of a polarisation on a complex projective
variety X: as the first Chern class of a positive line bundle (Remark 3.1.10); and as certain bilinear
or Hermitian forms when in particular X is an abelian variety (Sections 3.2.1 and 3.2.2). We will also
consider a lattice polarisation, which is a generalisation of a polarisation, for algebraic K3 surfaces
(Section 3.5.1).

3.1.2 Hodge structure

We will recall the definition and some facts about Hodge structures, which are of particular importance
in the study of moduli spaces of K3 surfaces and abelian varieties due to the famous Global Torelli
Theorem.

Let V be a free R-module of finite rank where R = Z,Q or R.

12



Definition 3.1.5. [Hu, Definition 3.1.1], [Mi, Section 5]
A Hodge structure of weight k on V is given by a direct sum decomposition of its complexified

vector space

VC := V ⊗ C =
⊕

p+q=k

V p,q

such that V p,q = V q,p

The Hodge structure is said to be real, rational or integral if V is real, rational or integral
respectively.

The dimensions hp,q of the vector spaces V p,q are called the Hodge numbers.

We will mainly use Definition 3.1.5 as the definition of a Hodge structure, but there is an alternative
definition, which leads to the definition of the Mumford-Tate group and Hodge group of a rational
Hodge structure.

Definition 3.1.6. [vG1, Proposition 1.4]
A Hodge structure of weight k on V can be identified to a real representation of C∗, which is the

group homomorphism
h : C∗ −→ GL(VR)

where for any v ∈ V p,q, h(z) sends v to zpz̄qv.

Remark 3.1.7. [Hu, Section 3.1.4]
The homomorphism h restricted to R∗ is the k-th power map. Therefore, h can be recovered from

its restriction to the kernel of the norm map U := ker(Nm) = {z ∈ C∗ : zz̄ = 1} ≃ C∗/R>0.

Definition 3.1.8. [Hu, Section 3.3.4]
The Mumford-Tate group MT(V ) of a rational Hodge structure h is the smallest algebraic sub-

group of GL(V ) defined over Q satisfying h(C∗) ⊂ MT(V )(R). Similarly, the Hodge group Hdg(V ) of
a rational Hodge structure h is the smallest algebraic subgroup of GL(V ) over Q with h(U) ⊂ Hdg(V )(R).
Equivalently, the Hodge group can be defined by the surjection

Hdg(V )× R∗ −→ MT(V )

(g, µ) 7−→ gµ.

By [Vo, Section 6.1], if X is a smooth complex projective variety of dimension n, then the torsion
free part of its singular cohomology group Hk(X,Z) for 0 ≤ k ≤ 2n has a Hodge structure of weight k

Hk(X,C) = Hk(X,Z)⊗ C =
⊕

p+q=k

Hp,q(X)

where Hp,q(X) is given by the Dolbeault cohomology group Hq(X,Ωp
X).

With the notion of Hodge structure, we can say more about the image of the first Chern map c1.

Theorem 3.1.9 (Lefschetz’ theorem on (1, 1) classes). [Vo, Theorem 11.30]
Let X be a smooth complex projective variety. Then

NS(X) = H1,1(X) ∩H2(X,Z).

Therefore, a polarisation c1(L) of X is a (1, 1)-form. Moreover, it is a Kähler form: it corresponds
to the Kähler metric which gives X the structure of a Kähler manifold (see [Vo, Sections 3.1, 3.3.1] and
Remark 3.5.4). In particular, all complex projective varieties are Kähler manifolds.
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Remark 3.1.10. Any line bundle L on a compact complex manifold X is said to be positive [Vo,
Section 3.3.1] if c1(L) is a Kähler form for X. In fact by the Kodaira embedding theorem [Vo, Theorem
7.3], any positive line bundle on a complex projective variety is ample. This leads to an alternative
definition of a polarisation on a complex projective variety [BL] as the first Chern class of a positive
line bundle.

There is also a notion of polarisation on Hodge structures.

Definition 3.1.11. [Hu, Section 3.1]
Let VC =

⊕
p+q=k V

p,q be a Hodge structure of weight k over R = Z,Q or R.
Define the Weil operator C as the element in GL(VC) which acts on V p,q by multiplication by iq−p.

In particular it preserves the real vector space (V p,q ⊕ V q,p) ∩ VR.
Define the Tate Hodge structure R(m) to be the Hodge structure of the R-submodule/subvector

space (2πi)mR of C of weight −2m, such that R(m)−m,−m is 1-dimensional.
A morphism of Hodge structures of weight l is an R-linear map f : V1 → V2 such that its

C-linear extension fC satisfies fC(V
p,q
1 ) ⊂ V p+l,q+l

2 .
If V1 and V2 are Hodge structures of weight k and l respectively, then the tensor product vector space

V1 ⊗ V2 also has a natural Hodge structure of weight k + l given by

(V1 ⊗ V2)
p,q =

⊕
(V p1,q1

1 ⊗ V p2,q2
2 ) ,

where the direct sum is taken over all pairs (p1, q1) and (p2, q2) such that p1 + p2 = p.
A polarisation of Hodge structure V of weight k is a morphism of Hodge structures of weight 0

Ψ: V ⊗ V −→ R(−k)

such that its real linear extension gives a positive definite symmetric form

q : VR ⊗ VR −→ R
(v, w) 7−→ (2πi)kΨR(v, Cw) ∈ R.

We say the Hodge structure of V is polarised if it admits a polarisation.

From the definition of a polarsation for a Hodge structure, we may derive a set of equivalent condi-
tions.

Theorem 3.1.12. [Mi, Section 5, Polarizations]
Consider an R-module V with a weight k Hodge structure, and let b be an R-bilinear form on V .

Then Ψ := (2πi)−kb is a polarisation of the Hodge structure on V if and only if it satisfies the Hodge-
Riemann relations:

(i) For x ∈ V p1,q1 , y ∈ V p2,q2, ΨC(x, y) ̸= 0 only if (p1, q1) = (q2, p2).

(ii) Ψ(v, w) = (−1)kΨ(w, v) for all v, w ∈ V.

(iii) (2πi)kip−qΨC(x, x) > 0 for all x ∈ V p,q.

Proof. Let us first prove the only if part.
Firstly for part (i): let x ∈ V p1,q1 and y ∈ V p2,q2 . Then (x, y) ∈ (V ⊗ V )p1+p2,q1+q2 . Since Ψ is a

weight 0 morphism of Hodge structures, ΨC(x, y) ̸= 0 only if ΨC(x, y) ∈ R(−k)k,k. That is p1 + p2 = k,
or p2 = q1.

For part (ii): the C-extension of the symmetric form b is also symmetric, so we have

ip−qΨC(x, y) = (2πi)−kb(x, y) = (2πi)−kb(y, x) = iq−pΨC(y, x) = (−1)kip−qΨC(y, x)
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for any x ∈ V p,q and y ∈ V q,p. Now for any general v, w ∈ VR, we may write v =
∑

vp,q and w =
∑

wp,q

summing over p, q, where vp,q, wp,q ∈ V p,q. Then by above,

Ψ(v, w) =
∑

ΨC(v
p,q, wq,p) =

∑
(−1)kΨC(w

q,p, vp,q) = (−1)kΨ(w, v).

Finally for part (iii): let x ∈ V p,q, we have x+ x ∈ VR. So q(v, v) > 0 implies

0 < (2πi)kΨC(x+ x, iq−px+ ip−qx) = (2πi)k(ip−qΨC(x, x) + iq−pΨC(x, x)) = 2 · (2πi)kip−qΨC(x, x)

where the last equality is due to part (i).
We now give the proof for the if part. The image of Ψ lies in (2πi)−kR, which has a Tate Hodge

structure R(−k). For any x ∈ V p1,q1 and y ∈ V p2,q2 such that ΨC(x, y) ∈ R(−k)k,k ̸= 0, part (i) implies
that

(x, y) ∈ (V ⊗ V )p1+q1,p2+q2 = (V ⊗ V )k,k.

Therefore Ψ : V ×V → R(−k) is a morphism of Hodge structures of weight 0. By extending to C, parts
(i) and (ii) imply that for all v, w ∈ VR with v =

∑
vp,q and w =

∑
wp,q summing over vp,q, wp,q ∈ V p,q,

q(v, w) =
∑

(2πi)kip−qΨC(v
p,q, wq,p) =

∑
(2πi)k(−1)kip−qΨC(w

q,p, vp,q) = q(w, v).

Again consider v ∈ VR with v =
∑

vp,q, then vp,q = vq,p. So parts (i) and (iii) imply

q(v, v) =
∑

(2πi)k(i)p−qΦC(v
p,q, vq,p) > 0.

In fact, a polarisation on the rational Hodge structure of the first and second cohomology groups
of a projective variety is induced by the polarisation on the projective variety. Let R = Q. Consider a
polarised variety X of dimension n with a (integral) Kähler form ω. Then for k ≤ n, its kth cohomology
group Hk(X,Q) (up to torsion) is a Hodge structure with the Hodge-Riemann pairing [Hu, Section
3.1, Equation (1.5)]

(u, v) 7−→ (−1)k(k−1)/2

∫
X
u ∧ v ∧ ωn−k ∈ Q.

Note that when Hk(X,Q) is the middle cohomology i.e. n = k, the Hodge-Riemann pairing is just the
intersection form (up to sign), and is independent of ω.

Define the primitive part of the cohomology group Hk(X,Q) to be

Hk(X,Q)p := ker
(
∧ωn−k+1 : Hk(X,Q) −→ H2n−k+2(X,Q)

)
.

Then the Hodge-Riemann pairing twisted by (2πi)−k and restricted to the primitive cohomology satisfies
the Hodge-Riemann relations [GrifH, Section 1.7, The Lefschetz Decomposition]. In other words, it is
a polarisation form Ψ on Hk(X,Q)p.

In particular, when k = 1, we have H1(X,Q) = H1(X,Q)p, so the twisted Hodge-Riemann pairing
gives the polarisation on the first cohomology.

As for k = 2, we have
H2(X,Q) = Q · ω ⊕H2(X,Q)p

by [GrifH, Section 1.7, Hard Lefschetz Theorem]. If we change the sign of the twisted Hodge-Riemann
pairing on Q · ω, then this gives a polarisation form Ψ on the entire cohomology group H2(X,Q).

The Kähler form ω also determines a polarisation on the integral Hodge structure of Hk(X,Z) for
k = 1, 2. By restricting the polarisation form for Hk(X,Q) obtained from the twisted Hodge-Riemann
pairing to Hk(X,Z), we have a bilinear map

Hk(X,Z)×Hk(X,Z) 7−→ Q(−k).

The image in Q(−k) is a Z-module, so the denominators of the fractions in the image are bounded, and
rescaling the bilinear map by a sufficiently large integer gives a polarisation form on Hk(X,Z).
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3.1.3 Period map

We will discuss the period map associated to a family of polarised complex projective varieties.
First, we explain the notion of a period domain, which is the set of polarised Hodge structures of

the same Hodge numbers and polarised by the same bilinear form ([DK, Section 3], [Mi, Section 7]).
This uses the definition of a Hodge filtration, which is equivalent to a polarised Hodge structure.

Definition 3.1.13. [Hu, Section 3.1.1]
A Hodge filtration associated to a Hodge structure V of weight k is the flag of subspaces (F •)

0 ⊂ F kVC ⊂ F k−1VC ⊂ · · · ⊂ F 0VC = VC

where F lVC := ⊕p≥lV
p,q.

The Hodge structure can be recovered from the Hodge filtration by

V p,k−p = F pVC ∩ F k−pVC.

A Hodge filtration can be identified to a point in a Grassmann variety, which is a product of
Grassmannians. To be specific, let (F •) be a Hodge filtration associated to a polarised Hodge structure
(V,Ψ) of weight k. We define f = (f0, · · · , fk) where fl =

∑
p≥l h

p,q = dimF l, which is equivalent to

giving the Hodge numbers. Thus (F •) is a point in the Grassmann variety Grf (VC) := Πk
l=0Gr(fl, VC).

We now restrict ourselves to consider a vector space V over R. Let Ψ be a bilinear form on V . The
set of Hodge filtrations on (V,Ψ) of dimensions f such that Ψ is the polarisation of the Hodge structure
is called the period domain of (V,Ψ) of type f , denoted by Df (V,Ψ).

Theorem 3.1.14. [Mi, Section 7, Period domains]
A flag of subspaces in Grf VC is a polarised Hodge structure of weight k with respect to a bilinear

form Ψ on V if

(i) VC = F l ⊕ F k−l+1 for all l;

(ii) ΨC(F
l, F k−l+1) = 0 for all l;

(iii) Ψ(v, w) = (−1)kΨ(w, v) for all v, w ∈ V ;

(iv) (2πi)ki2l−kΨC(x, x) > 0 for all non zero elements x ∈ F lVC ∩ F k−lVC.

Remark 3.1.15. The first condition is required for a flag to give a Hodge structure. The second to
the fourth conditions come from the Hodge-Riemann relations (Theorem 3.1.12). The last condition
is open. This [Mi, Theorem 7.2] identifies Df (V,Ψ) with an open submanifold of a compact complex
submanifold of Grf (VC) .

One can obtain a specific expression of the period domain associated to (V,Ψ) of type f . Fix a

standard basis in V which identifies (V,Ψ) to (Rf0 ,Ψ0). Then with respect to these bases one can
express a flag of subspaces as a square matrix of size f0. The conditions in Theorem 3.1.14 can be
translated into the language of matrices. Moreover, the following generalisation of Witt’s Theorem
is known.

Theorem 3.1.16. [DK, Section 3]
Let GR be the group Aut(Rf0 ,Ψ0). Then it acts transitively on Df := Df (Rf0 ,Ψ0) with compact

isotropy subgroup K, and
Df ≃ GR/K

is a complex non-compact homogeneous space.
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We will provide more details of this isomorphism for a few specific period domains containing Hodge
structures of weight 1 or 2 in later sections. Those period domains parametrise certain structured
smooth complex projective varieties. More generally, let f : X → S be a family of smooth complex
projective varieties. Let Xs = f−1(s) be its fibre at s ∈ S. For each s ∈ S, consider Vs := Hk(Xs,R) a
real Hodge structure of weight k with polarisation determined by a (1, 1)-form. Let Ψs be the bilinear
form obtained as in Definition 3.1.11. By [DK, Section 3] and [Vo, 10.1.2], the set (Vs,Ψs)s∈S is a
polarised family of real Hodge structures: it is a vector bundle V = {Vs}s∈S together with a
filtration on the associated Hodge bundle V := OS ⊗R V and a polarisation of weight k given by a
bilinear pairing of vector bundles

Ψ : V ×V −→ R(−k)

that give a Hodge filtration and a polarisation form Ψs on Vs at each point s ∈ S. In simpler terms, this
means that S is covered by open connected subsets U ’s on which (Vs,Ψs)s∈U → U is trivial. in particular,
we can fix a kth marking of Xs for each s ∈ U , which is an isomorphism Ps : (V,Ψ) → (Vs,Ψs) where
Ψ is a bilinear form on V . For each s ∈ U , P−1

s ((Vs,Ψs)) is a polarised Hodge structure of weight k on
(V,Ψ) and of the same Hodge numbers f , thus corresponds to a point in the period domain Df . This
gives a map from U to Df called the period map.

Theorem 3.1.17. [Mi, Theorem 7.3]
The period map

PU : U −→ Df

s 7−→ P−1
s ((Vs,Ψs))

is a holomorphic map.

We would like to have a global version of the period map. For a general vector bundle, there is no
canonical way to patch the trivialisation mappings, or the kth markings in our case. There are many
choices of transition functions up to monodromy of S, which give rise to a multi-valued global mapping
P : S → Df . However [DK, Section 3], the vector bundle V is in fact a real local coefficient system.
That is, we can fix a standard basis in each (Vs,Ψs) which varies holomorphically with s ∈ S, such that
V has transition functions given by matrices with constant entries. Specifically if we fix a point s0 ∈ S
and let V := Vs0 and Ψ := Ψs0 , then we have a homomorphism of groups

π1(S, s0) −→ GL(V )

called a monodromy representation. A monodromy representation preserves the polarisation form
Ψ, and the images of the monodromy representations form a subgroup Γ(f) in Aut(V,Ψ) which we call
the monodromy group. We can deduce more information about the monodromy group and define a
global period map if each Xs is a smooth complex projective variety.

Theorem 3.1.18. [DK, Equation 3.4]
Let f : X → S be a family of smooth complex projective varieties. Let f be the dimensions of the

flag of subspaces associated to the real polarised Hodge structure (Hk(Xs,R),Ψs) for any s ∈ S. Fix a
k-th marking (Hk(Xs,R),Ψs) → (V,Ψ) and let Λ be the image of Hk(Xs,Z).

Then the monodromy group Γ(f) is discrete, and is the group Aut(Λ,Ψ|Λ) of automorphisms of the
lattice Λ preserving the bilinear form Ψ|Λ. Furthermore, there is a holomorphic map called the global
period map

S −→ Γ(f)\Df .

Remark 3.1.19. [Mi, Theorem 7.10]
Every HSD arises as a connected component of a period domain This aligns with the existence of a

modular intepretation of some locally symmetric spaces.
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Finally, let us state the Global Torelli Theorem for a family of smooth complex projective varieties.

Theorem 3.1.20. [DK, Section 3]
A family of structured smooth complex projective varieties f : X → S satisfies the Global Torelli

Theorem if for any two points s, s′ ∈ S with the same image under the global period map, there is an
isomorphism of the fibres ϕ : Xs 7→ Xs′ such that f∗([ωs′ ]) = [ωs], where ωs and ω′

s are the Kähler forms
defining the polarisations for Xs and Xs′ respectively.

If a family f : X → S satisfies the Global Torelli Theorem, then the image of S in Γ(f)\D(f) under
the holomorphic map in Theorem 3.1.18 is a coarse moduli space i.e. it parametrises the members
in the family X up to isomorphsm. Moreover, if Df is a HSD, then the quotient is a quasi-projective
variety by the Baily-Borel Theorem. In particular, the quotient is also a LSV.

Remark 3.1.21. We will show that any family of abelian varieties or K3 surfaces to be studied in
this thesis satisfies the Global Torelli Theorem, and that the associated period domain is a (union of)
HSD(s). The base S is therefore a quasi-projective variety, and we say that S is a modular variety.

Conversely if a family f : X → S of complex projective varieties is also a smooth projective map
of complex algebraic varieties, then the associated period domain Df , as a polarised family of Hodge
structures, satisfies Griffiths transversality [Mi, Theorem 5.2]. It is a compatibility condition for a
flat connection on the Hodge bundle V and the filtration on V. Furthermore, this implies that Df is a
HSD ([Mi, Theorem 7.9]).

We will discuss more about polarisations, polarised Hodge structures, period maps and moduli
varieties specific to abelian varieties and K3 surfaces respectively in the following subsections.

3.2 Abelian varieties

3.2.1 Polarised abelian varieties

We start with the definition of a complex abelian variety.

Definition 3.2.1. [BL, Section 4.1]
An abelian variety A of dimension g is a pair (T = W/Λ, c1(L)) where W ≃ Cg, Λ is a lattice

of rank 2g (full rank) in W , and c1(L), the first Chern class of an ample line bundle L on the complex
torus T, is the polarisation of A.

For a detailed definition of lattices, see Theorem 3.4.1. In particular, a lattice is a Z-module, and
can be described by a basis. The expression of a basis of Λ embedded in W depends on the choice of a
basis of W .

Definition 3.2.2. [BL, Section 1.1]
Let W/Λ be a complex torus. Fix a basis e1, · · · , eg of W and a basis λ1, · · · , λ2g of Λ. Write each

λi in terms of the basis e1, · · · , eg

λi =

g∑
j=1

λj,iej .

We call the g × 2g complex matrix

Π =

λ1,1 · · · λ1,2g
...

...
λg,1 · · · λg,2g


the period matrix of the torus.
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The polarisation of an abelian variety only depends on the choice of an ample line bundle L, so we
also write A := (W/Λ, L). We can also consider a polarisation on A as an alternating form that satisfies
the following conditions.

Theorem 3.2.3. [BL, Theorems 2.1.6]
Let T = W/Λ be a complex torus. Let E : W ×W → R be an alternating form. Then E represents

the first Chern class c1(L) of an ample line bundle L on T if and only if the following conditions are
satisfied

(i) E(Λ,Λ) ⊂ Z;

(ii) E(ix, iy) = E(x, y) for all x, y ∈ W ; and

(iii) E(x, ix) > 0 for all x ∈ W .

Remark 3.2.4. In Lemma 3.2.12, we will show how these conditions are related to the Hodge-Riemann
relations.

This gives rise to two more equivalent expressions for a polarisation of an abelian variety; by a
Hermitian symmetric form or by a symmetric form.

Theorem 3.2.5. [BL, Theorem 2.1.7], [Harv, Lemma 2.63]
Let W be a C-vector space. Let H be an arbitrary Hermitian symmetric form on W , i.e. a bilinear

form H : W ×W → C which is C-linear in the first component and satisfies H(x, y) = H(y, x) for all
x, y ∈ W. Then there exists a real-valued alternating form E on W satisfying E(ix, iy) = E(x, y) such
that

Im(H(x, y)) = E(x, y) and H(x, y) = E(x, iy) + iE(x, y).

Moreover, if H has signature (p, q), then the symmetric form

Q := Re(H) : (x, y) 7−→ E(x, iy)

has signature (2p, 2q).

Clearly, any one of the three forms H, Q = Re(H), and E = Im(H) recovers the other two forms.
Moreover, if E corresponds to the first Chern class of an ample line bundle on a complex torus, then
Theorem 3.2.3(iii) implies that both Q and H are positive definite.

By considering a polarisation of an abelian variety as an alternating form, one can define the type
of polarisation.

Definition 3.2.6. [BL, Section 3.1]
Let A = (Cg/Λ, E) be an abelian variety of dimension g where its polarisation is given by the

alternating form E. Then there exits a basis of the lattice Λ with respect to which E is given by the
matrix [

0 D
−D 0

]
where D is the g-by-g diagonal matrix diag(d1, · · · , dg) with di > 0, satisfying di|di+1 for i = 1, · · · , g−1.
Such basis of Λ is called a symplectic basis for the associated Hermitian form H. The polarisation
type of A is the vector (d1, · · · , dg), which is uniquely determined by E. We say that A is principally
polarised if A has polarisation type (1, · · · , 1).

Remark 3.2.7. There exists a basis of R2g such that this alternating form E is the standard symplectic
form i.e. given by the matrix Jg.
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Remark 3.2.8. [BL, Section 8.3.1]
For any abelian variety A = (W/Λ, E) of type D = (d1, · · · , dg), there are choices of a canonical

level structure which describes the chosen symplectic basis. To be specific, we define

Λ(E) := {w ∈ W : E(w,Λ) ⊂ Z}
K(E) := Λ(E)/Λ.

The group K(E) has a pairing that depends on E. On the other hand, we define the group

K(D) := Zg/DZg ⊕ Zg/DZg with Zg/DZg :=

g∏
i=1

Z/diZ

which also has a pairing that depends on D. As groups, K(E) ≃ K(D). A canonical level structure of
A is a choice of group isomorphism K(E) → K(D) that preserves the respective pairings. It is possible
to futher rigidify an abelian variety by imposing a level n structure for some positive integer n (see
[BL, Section 8.3.2]).

3.2.2 Complex structure

The complex torus Cg/Λ structure of an abelian g-fold A can be seen [DK, Section 4] as a real torus
V/Λ′ where V = Λ′

R ≃ R2g, with a complex structure J on V . A real torus is a manifold with an additive
group structure. In particular, any real torus V/Λ′ of dimension 2g is diffeomorphic to (S1)2g = R2g/Z2g.

Definition 3.2.9. A complex structure J on a real vector space V is a linear operator satisfying
J2 = −1.

The pair (V, J) can be identified to Cg by

V
ι−→ VC ≃ W ⊕W

π−→ W ≃ Cg

where ι is the natural inclusion map, W and W are the +i and −i eigenspaces of J in V respectively
with i being the imaginary unit in C, and π is the projection map onto W . In fact, the above map is a
R-linear isomorphism given by

µ : V −→ W

v 7−→ 1

2
(v − iJ(v)).

The decomposition VC ≃ W ⊕W is a weight one Hodge structure of V . Setting V 0,1 = W , then J is the
Weil operator of the Hodge structure. Furthermore, if Ψ is the polarisation of this weight one Hodge
structure, then in particular we have

2πiΨ(v, J(v)) > 0

for all v ∈ V , and we also call J the positive complex structure with respect to Ψ. Let us give a
precise description of this equivalence between a polarised Hodge structure of weight one and a positive
complex structure.

Lemma 3.2.10. [DK, Theorem 4.1]
There is a natural bijection between the set of Hodge structures of weight one on V with polarisation

form Ψ and the set of positive complex structures on V with respect to Ψ.
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Proof. Given a positive complex structure J on V , we can define the R-linear map µ as above and
obtain the decomposition VC = µ(V )⊕ µ(V ). Indeed for any x ∈ V 0,1 = µ(V ), there exists v ∈ V such
that µ(v) = x, and

0 < 2πi · (−i) ·ΨC(x, x) =
−i

4
· 2πi ·ΨC(v − iJ(v), v + iJ(v))

=
−i

4
· 2πi · (Ψ(v, v) + Ψ(J(v), J(v)) + iΨ(v, J(v))− iΨ(J(v), v))

=
1

2
· 2πi ·Ψ(v, J(v)).

The last equality is due to Theorem 3.1.12(ii).
On the other hand, given a weight one Hodge structure VC ≃ V 1,0⊕V 0,1, then for all v ∈ V , we can

write v = x + x where x ∈ V 0,1. We can define a complex structure J by J(v) = ix − ix. This is also
a positive complex structure with respect to the polarisation form Ψ of V due to the same equations
above.

Remark 3.2.11. With respect to Definition 3.1.6, the weight one Hodge structure on V that corresponds
to the complex structure J is given by the group homomorphism

h : C∗ −→ GL(VR)

a+ bi 7−→ a+ bJ.

Lemma 3.2.12. [DK, Section 5] The polarisation form Ψ of the weight one Hodge structure on (V, J)
determines a polarisation of the abelian variety A.

Proof. Define a real bilinear form E on W such that E(x, y) = 2πiΨ(u, v) for all x = µ(u) and y = µ(v)
in W . From Theorem 3.1.12(ii), it is clear that E is an alternating form. We will show that E satisfies
all three conditions in Theorem 3.2.3.

First, (Λ′,Ψ|Λ′) is a Z-sub Hodge structure of (V,Ψ), so 2πiΨ (resp. E) is integral with respect to
Λ′ (resp. Λ), which is the statement of 3.2.3(i). Let x, y ∈ W with x = µ(u) and y = µ(v) for some
u, v ∈ V . Note that u = x+ x and v = y + y, and so

Ψ(J(u), J(v)) = ΨC(ix− ix, iy − iy) = ΨC(x, y) + ΨC(x, y) = Ψ(u, v).

Since

µ(J(w)) =
1

2
(J(w) + iw) = iµ(w)

for any w ∈ V , we have 3.2.3(ii):

E(ix, iy) = 2πiΨ(J(u), J(v)) = 2πiΨ(u, v) = E(x, y).

Also,
E(x, ix) = 2πiΨ(u, J(u)) > 0

by the definition of a polarisation form. This gives 3.2.3(iii).

Remark 3.2.13. From now on, we will interchangeably use an ample line bundle L, or one of the
forms Ψ, q on V ≃ R2g, or one of the forms H,E,Q on W ≃ Cg to denote the polarisation of an abelian
variety or that of its weight one Hodge structure.

Remark 3.2.14.
An almost complex structure of a differentiable complex manifold M as in Definition 2.2.1 gives a
complex structure on the tangent space Tp(M) that varies continuously with the point p ∈ M . In fact
the almost complex structure of an abelian variety A is invariant with respect to translation in the
torus [DK, Section 5], so the holomorphic tangent bundle is isomorphic to the trivial bundle with fibre
(V ≃ T0(A), J). In particular, any abelian variety has a translation invariant Hermitian structure,
which is given by the positive definite symmetric form q = 2πiΨ(·, J ·).
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3.2.3 Homomorphisms of abelian varieties

A homomorphism of abelian varieties is a homomorphism of complex tori compatible with the respective
polarisations.

Definition 3.2.15. [BL, Section 1.4, 4.1]
A homomorphism of complex tori f : T1 → T2 is a holomorphic map that preserves the respective

group structure.
A homomorphism of abelian varieties f : (T1, L1) → (T2, L2) is a homomorphism of complex

tori f : T1 → T2 such that f∗c1(L2) = c1(L1).

A homomorphism of complex tori f : T1 → T2 is an isomorphism if there exists another homomor-
phism of complex tori g : T2 → T1 such that f ◦ g = 1T2 and g ◦ f = 1T1 . Similarly, a homomorphism
of abelian varieties f : A1 → A2 is an isomorphism if there exists another homomorphism of abelian
varieties g : A2 → A1 such that f ◦ g = 1A2 and g ◦ f = 1A1 .

Under addition, the set of homomorphisms of abelian varieties from A1 to A2 forms an abelian
group Hom(A1, A2). An endomorphism of an abelian variety A is a homomorphism of A into
itself. Denote the set of endomorphisms of an abelian variety A by End(A). Under addition and
composition, the set of Q-endomorphisms EndQ(A) := End(A)⊗Z Q forms an algebra.

We would like to focus on a special kind of homomorphisms of abelian varieties.

Definition 3.2.16. [BL, Section 1.2, Section 4.1]
An isogeny of complex tori is a surjective homomorphism of complex tori with finite kernel.
An isogeny of abelian varieties is an isogeny between the underlying complex tori.

Remark 3.2.17. [BL, Corollary 3.2.7]
Isogenies of abelian varieties define an equivalence relation. We say two abelian varieties are isoge-
nous if there is an isogeny between them. If A1 and A2 are non-isogenous abelian varieties, then
Hom(A1, A2) = 0.

Remark 3.2.18. An isogeny of abelian varieties does not preserve the polarisation type. Zarhin’s trick
shows that for all abelian g-fold A, and g-tuple D = (d1, · · · , dg) such that di|di+1, there exists an
isogeny f such that f(A) has polarisation type D.

3.2.4 Moduli of polarised abelian varieties

Let f : X → S be a family of polarised abelian g-folds over a connected complex variety S. By
Theorem 3.1.18, the set of polarised weight one Hodge structures of the first cohomology groups
H1(f−1(s),R) ≃ R2g forms the associated period domain for the family f . In this section, we
will give more details of this period domain which leads to the expression of a coarse moduli space for
the family.

Lemma 3.2.19. The type of polarisation of the abelian variety As = f−1(s) is independent of s.

Proof. The variable s varies in S continuously, while the type of polarisation is discrete.

Let us describe the period domain that locally parametrises a family of polarised abelian g-folds
f : X → S of polarisation type D up to isomorphism.

Since the fibre As at any point s ∈ S is diffeomorphic to a product of S1, it is clear that its first
cohomology group H1(As,R) is torsion free. One can compute the weight one Hodge structure on
H1(As,R) using the de Rham cohomology [BL, Section 1.1.4], and associate it to a Hodge filtration
of degrees f = (2g, g). The period domain Df is the set of 2g × 2g complex matrices which represent
bilinear forms that satisfy the Hodge-Riemann relations. But since it is possible to recover the entire
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Hodge decomposition from H1,0(As), one can consider elements of D(2g,g) as 2g × g complex matrices.
Moreover [DK, Equation 4.9, 4.10], under the symplectic basis of Λs in As = (R2g,Λs), the corresponding
element Π ∈ Df is a 2g × g matrix

Πs =

[
Z
D

]
where Z is a square complex matrix of degree g, and D is the polarisation type of As independent of s
by Lemma 3.2.19. The conditions in Theorem 3.1.14 are equivalent to the two conditions in terms of Z

Zt = Z, Im(Z) =
1

2i
(Z − Z) > 0.

Therefore we have

Theorem 3.2.20. The period domain D(2g,g) is isomorphic to the Siegel upper half space of degree g

Sg :=
{
Z ∈ Mg(C) : Zt = Z, Im(Z) > 0

}
.

Given the above expression of the period domain D(2g,g), we can deduce that D(2g,g) parametrises a
family of polarised abelian varieties.

Theorem 3.2.21. [BL, Proposition 8.1.2]
There exists a complete family f : X → S of abelian varieties of some polarisation type D; i.e.

such that under the multi-valued period map

P : S −→ Sg,

every element in Sg has non-empty preimage.

Proof. Let As = (Cg/Λs, Es) be the abelian g-fold corresponding to s ∈ S. Let λ1, · · · , λg, µ1, · · · , µg be
the symplectic basis of Λs, and D = diag(d1, · · · , dg) be the polarisation type of As. Then with respect
to the basis λ1, · · · , λg, µ1/d1, · · · , µg/dg of R2g, the basis of Λs is given by the rows of

Πs =

[
Z
D

]
where Z = P(s). That is Πs is a period matrix of As. Moreover, the matrix Im(Z)−1 gives a Hermitian
form Hz with respect to the basis µ1/d1, · · · , µg/dg of Cg, which is a polarisation of As of type D by
Theorem 3.2.5. Therefore, given any Z ∈ Sg, we have an abelian variety AZ := Cg/

(
(Z,D)Z2g

)
whose

polarisation is HZ . So AZ belongs to the family of polarised abelian g-folds of type D with symplectic
basis.

In another direction, the period domain D(2g,g) = Sg can be identified with the quotient of a Lie
group by a compact subgroup as in Theorem 3.1.16.

Theorem 3.2.22.
Sg ≃ Sp(2g)/U(g).

Proof. The symplectic group Sp(2g) acts on Sg by [BL, Proposition 8.2.2]

Sp(2g)× Sg −→ Sg(
M =

[
A B
C D

]
, Z

)
7−→ (A · Z +B)(C · Z +D)−1.

By [BL, Proposition 8.2.3], every Z ∈ Sg lies on the Sp(2g)-orbit of i1g ∈ Sg. Moreover, the stabiliser
group of the action [BL, Proposition 8.2.3] is the compact subgroup

Sp(2g) ∩O(2g) ≃ U(g).
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Remark 3.2.23. We can also prove transitivity of the action by applying Theorem 3.1.16. By Remark
3.2.7, each polarised Hodge structure of weight one on H1(As,R) is equivalent to the pair (R2g, Jg),
where Jg is the matrix associated to the standard symplectic form. From Definition 2.2.4, Sp(2g) =
Aut(R2g, Jg). So Sp(2g) preserves the polarisation form of a Hodge filtration in D(2g,g), and therefore
acts on Sg transitively.

Remark 3.2.24. [HKW2, Chapter I.1]
The action of Sp(2g) on Sg is an analogue of the linear fractional transformation.
On the other hand, note that for any integer k ≥ g, the Grassmannian Gr(g,Ck) is isomorphic to

the orbit space Mk×g(C)/GL(g,C) of all k × g matrices modulo right multiplication by GL(g,C). The
Siegel upper half space Sg can be identified with a subset of Gr(g,C2g) by sending an element Z to the
GL(g,C)-equivalence class of block matrices:

Z 7→
[
Z
1g

]
.

With respect to this alternative expression of elements in Sg, the group Sp(2g) acts by left multiplication:

γ · Z =

[
γ ·
[
Z
1g

]]
, γ ∈ Sp(2g), Z ∈ Sg.

Remark 3.2.25. By comparing to [He, Table X.6.V], the unitary group U(g) is the maximal compact
subgroup of Sp(2g), and Sg is an irreducible HSD of type IIIg.

Moreover, we have the expression for the monodromy group Γ(f) < Sp(2g) for a complete family f
which leads to the holomorphic map

S −→ Γ(f)\D(2g,g)

as in Theorem 3.1.18. The group Γ(f) is an arithmetic subgroup of the symplectic group, and is called
a modular group .

Theorem 3.2.26. The monodromy group Γ(f) for a family of polarised abelian varieties f : X → S of
polarisation type D depends on D, and is given by

ΓD =
{
M ∈ Sp(2g,Q) : M t · ΛD ⊂ ΛD

}
< Sp(2g)

where

ΛD =

[
1g 0
0 D

]
Z2g.

Proof. By [BL, Proposition 8.1,3], two polarised abelian varieties (AZ , HZ) and (AZ′ , HZ′) parametrised
by Sg are isomorphic if Z and Z ′ lie in the same ΓD-orbit.

In particular, we have verified that a family of polarised abelian varieties of type D satisfies the
Global Torelli Theorem.

The quotient AD := ΓD\Sg is a normal complex analytic space as Γ(f) acts properly discontinuously
on Sg by [BL, Proposition 8.2.5], and is quasi-projective by the Baily-Borel theorem. We call AD the
moduli variety of polarised abelian varieties of type D. It has dimension g(g + 1)/2 as Sg is of
the same dimension, and it is a LSV of type III.

3.3 Abelian varieties with totally definite quaternion multiplication

In Table 2, we mentioned moduli space of abelian varieties with totally definite quaternion multiplica-
tion. In fact, a totally definite quaternion multiplication is a special type of endomorphism structure
admitted by an abelian variety. Before studying this special moduli space, we first consider the endo-
morphism structure of simple abelian varieties.
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3.3.1 Simple abelian subvarieties

In this subsection we will give a characterisation of simple abelian subvarieties.
Let A := (T, L) be an abelian variety. The polarisation L induces an anti-involution ρ on EndQ(A),

i.e. a self-inverse anti-homomorphism on EndQ(A):

ρ2 = 1EndQ(A), and (f ◦ g)ρ = gρ ◦ fρ for all f, g ∈ EndQ(A).

This special anti-involution is called the Rosati involution (see [BL, Section 5.1]).
For an element f in EndQ(A), we say f is symmetric if it is stable under the Rosati involution of

EndQ(A); f is an idempotent if f2 = f . We denote the set of symmetric idempotents in EndQ(A) as
EndsQ(A).

Any abelian subvariety of A corresponds to a symmetric idempotent in EndQ(A).

Theorem 3.3.1. [BL, Theorem 5.3.2]
There is a bijection between the set of abelian subvarieties of an abelian variety A and the set of

symmetric idempotents in EndQ(A)
To be specific, if ε is an element in EndsQ(A), and d is the smallest positive integer such that

dε ∈ End(A), then under the above bijection, ε corresponds to the abelian subvarity Aε := Im(dε) in A.

An abelian variety is called simple if it does not contain any abelian subvariety apart from itself
and 0. There is a simple decomposition of any abelian variety, unique up to isogeny.

Theorem 3.3.2 (Poincaré’s Complete Reducibility Theorem). [BL, Theorem 5.3.7]
Given an abelian variety A, there is an isogeny

A ∼ An1
1 ×An2

2 × · · · ×Ank
k

where A1, · · · , Ak are non-isogenous simple abelian varieties. Moreover, the abelian varieties Ai and
the integers ni are unique up to isogenies and permutations.

Note that any non-zero endomorphism of a simple abelian variety A is an isogeny, thus a unit in
EndQ(A). Therefore EndQ(A) is a division ring of finite dimension over Q. In fact, for any (non-simple)
abelian variety A, its Q-endomorphism algebra EndQ(A) is semisimple.

Corollary 3.3.3. [BL, Corollary 5.3.8]
Suppose A ∼ An1

1 ×An2
2 × · · · ×Ank

k is an isogeny decomposing the abelian variety A into a product
of simple subvarieties. Then

EndQ(A) ≃ Mn1(F1)⊕Mn2(F2)⊕ · · · ⊕Mnr(Fr)

where Fi = EndQ(Ai) are division rings of finite dimension over Q, and Mni(Fi) are the rings of ni×ni

matrices with entries in Fi.

3.3.2 Endomorphism structure of abelian varieties

In this subsection, we will introduce the possible endomorphism structures of an abelian variety. We
will first focus on simple abelian varieties and give a classification of division rings that arise as their
endomorphism algebras.

Let (F, ρ) be a division ring of finite dimension over Q with an anti-involution ρ. Let K be the
centre of F , and K0 be the fixed part in K by ρ.

One can define a quadratic form associated to (F, ρ) which we will describe as below [BL, Section
5.5]. The degree [F : K] of F over K is a square d2. Any element f in F has reduced characteristic
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polynomial of f over K, which is the dth power of a polynomial td − a1t
d−1 + · · ·+ (−1)da0 ∈ K[t].

The reduced trace of f over K is defined as

tr F |K(f) = a1.

For any subfield k ≤ K, the reduced trace of f over k is defined as

tr F |k(f) = trK|k(tr F |K(f))

where trK|k denotes the usual trace for field extension k ⊆ K. Finally we define a quadratic form on F
by f 7→ trF |Q(f

ρ · f).
Before we proceed, we give a list of definitions.

Definition 3.3.4. [BL, Section 5.5]
Let F be a division ring of finite dimension over Q with an anti-involution ρ.

(i) F is a quaternion algebra if its degree over its centre K is 4, and it has a canonical anti-
involution

f 7→ f := tr F |K(f)− f.

(ii) ρ is positive if the quadratic form f 7→ trF |Q(f
ρ · f) is positive definite.

Definition 3.3.5. [BL, Section 5.5]
Let Q be a number field.

(i) Q is a totally complex number field if there is no embedding Q ↪→ C that factors via R.

(ii) Q is a totally real number field if every embedding Q ↪→ C factors via R.

(iii) If Q is totally real, then an element a ∈ Q is totally positive (resp. totally negative) if
σ(a) > 0 (resp. σ(a) < 0) for every embedding σ : Q ↪→ R.

If (F, ρ) is the endomorphism algebra of a simple abelian variety, then more can be said about the
pair.

Proposition 3.3.6. [BL, Theorem 5.1.8, Lemma 5.5.2]
Let A = (T, L) be a simple abelian variety. Consider F = EndQ(A), which is a division ring of finite

dimension over Q. Let ρ be the Rosati involution on F induced by the polarisation L. Then

(i) ρ is positive.

(ii) The fixed part K0 of K by ρ is a totally real number field.

There is a classification of endomorphism algebras of simple abelian varieties:

Theorem 3.3.7. [BL, Theorem 5.5.3]
Let F be the endomorphism algebra over Q of a simple abelian variety and ρ be its Rosati involution.

Let K,K0 ⊂ F be as defined at the beginning of the section. Then F falls into one of the following
cases:

1. F is of the first kind: K = K0. In particular, F can be a

i. totally real number field: F = K and fρ = f for all f ∈ F .
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ii. totally indefinite quaternion algebra: F is a quaternion algebra over K and every em-
bedding σ : K ↪→ R satisfies

σ(F )⊗ R ≃ M2(R).

Moreover, there exists an element a ∈ F with a2 ∈ K totally negative such that fρ = a−1fa
for all f ∈ F .

iii. totally definite quaternion algebra: F is a quaternion algebra over K and every embed-
ding σ : K ↪→ R satisfies

σ(F )⊗ R ≃ H

where H is the Hamilton quaternions ⟨−1,−1⟩R. Moreover, fρ = f for all f ∈ F .

2. F is of the second kind: K ̸= K0. In particular, K is a totally complex number field [BL,
Lemma 5.5.4].

More generally, for any (possibly non-simple) polarised abelian variety, we can describe its endo-
morphism structure as a division ring (F, ρ) of one of the above types together with a representation
Φ of F , subject to satisfying some compatibility conditions.

Definition 3.3.8. [BL, Section 9.1]
Let (F, ρ) be a division ring of finite dimension over Q and ρ a positive anti-involution. Let Φ be a

representation of F by g-by-g complex matrices

Φ: F −→ Mg(C).

Then a polarised abelian variety with endomorphism structure (F, ρ,Φ) is a triplet (A,E, ι)
where A ≃ (Cg/Λ) is an abelian variety, E is an alternating form on Cg defining a polarisation on X,
and ι is an embedding

ι : F ↪→ EndQ(A) ⊂ Mg(C)

such that

(i) Φ and ι are equivalent representations, i.e. there is a C-linear map G on Cg such that ι(f) ◦G =
G ◦ Φ(f) for all f ∈ F , and

(ii) (Rosati condition) the Rosati involution on EndQ(A) extends the anti-involution ρ on F via ι.

For the obvious reason, an abelian variety is said to admit a real multiplication, a totally in-
definite quaternion multiplication, a totally definite quaternion multiplication or a complex
multiplication if there is respectively an embedding of a totally real number field, a totally indefinite
quaternion algebra, a totally definite quaternion algebra or a division ring of the second kind into its
endomorphism algebra over Q.

Remark 3.3.9. The representation Φ of F realises Cg as a F -module.

Remark 3.3.10. Let (F, ρ) be a division ring with positive anti-involution ρ. Then for any integer
n, by putting Mρ = (mρ

ij)
t for any M = (mij) ∈ Mn(F ), the Rosati involution ρ extends to a positive

anti-involution on Mn(F ) which we also call ρ. Under this notation, the Rosati condition then translates
to: for any a ∈ F ,

ι(aρ) = ι(a)ρ.

Moreover [BL, Proposition 5.1.1], if F = EndQ(A) for some abelian g-fold A, then the Rosati
involution on EndQ(A) is the adjoint operator with respect to the alternating form E associated to the
polarisation of A: for all x, y ∈ Cg and a ∈ F ,

E(x, ι(a)y) = E(ι(aρ)x, y).
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We will discuss coarse moduli spaces of polarised abelian varieties with certain endomorphism struc-
ture in the next subsection. Recall a moduli space parametrises objects in a family up to isomorphisms.

Definition 3.3.11. Two polarised abelian varieties (A,E, ι) and (A′, E′, ι′) with endomorphism struc-
ture (F, ρ,Φ) are isomorphic if there is an isomorphism of polarised abelian varieties

f : (A,E) −→ (A′, E′)

such that for all a ∈ F ,
f ◦ ι(a) = ι′(a) ◦ f.

3.3.3 Moduli of polarised abelian varieties with totally definite quaternion multiplication

Referencing [Sh, Section 2.2], we construct the moduli space for a family of polarised abelian varieties
with totally definite quaternion multiplication given by (F, ρ,Φ). For simplicity, we will restrict our
discussion to the case F ≃ HQ := ⟨−1,−1⟩Q, and in particular, K = Q. One can refer to [Sh] for
the more general argument with respect to a totally definite quaternion algebra F ≃ (HQ)

e with index
e := [K : Q] ≥ 1.

Similar to Section 3.2.4, we would like to obtain an expression of the period domain of the weight
one Hodge structures on the first cohomology groups. We will first introduce some attributes associated
with any polarised abelian g-fold A = (T = Cg/Λ, E, ι) with totally definite quaternion multiplication
(F, ρ,Φ), which describe the abelian g-fold as a member in a family. These attributes depend on an
explicit expression of the representation Φ. Following [Sh], we will fix the representation Φ of F to
appear in a standard form Φstd.

Theorem 3.3.12. [Sh, Section 2.1]
Let χ be the representation of HQ by 2-by-2 complex matrices

χ : HQ −→ M2(C)

a+ bj 7−→
(

a b
−b̄ ā

)
with a, b ∈ Q⟨1, i⟩,

where Q⟨1, i⟩ is the Q-algebra generated by 1 and the imaginary unit i.
Let m := g/2. Then for any representation Φ of HQ by g-by-g complex matrices such that (F, ρ,Φ)

is the endomorphism structure of an abelian g-fold, Φ is equivalent to a m-multiple of the representation
χ. That is, there exists G ∈ GLg(C) such that

GΦ(x)G−1 = Φstd(x) := χ(x)⊗ 1m

for any x in HQ, where ⊗ is the Kronecker product of matrices: given any positive integers m,n, r, s
and K a field, define

⊗ : Mm,n(K)×Mr,s(K) −→ Mmr,ns(K)

(A = {aij}i,j , B = {bkl}k,l) 7−→ {aijbkl}r(i−1)+k,s(j−1)+l =

a11B · · · a1nB
...

...
am1B · · · amnB

 .

Remark 3.3.13. The representation χ extends to a representation of Md(HQ), which we still denote
as χ:

χ : Md(HQ) −→ M2d(C)

A+Bj 7−→
[
A B
−B̄ Ā

]
, where A,B ∈ Md(Q⟨1, i⟩).
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In the rest of the subsection, we will fix the representation Φ to be the standard representation Φstd.
By picking the right coordinate system for Cg, the matrix ι(x) is represented by Φ(x) for all x ∈ F , so
ΛQ = Λ⊗Q can be considered as a left F -module, as F ↪→ EndQ(A).

Remark 3.3.14. [BL, Section 9.9]
In our case (m > 2 and F = HQ), we have ι(F ) = EndQ(A) for most members A in the moduli

space, i.e. A is in the complement of the union of at most countably many proper subvarieties of the
moduli space. We call such a member A a very general member of the family.

The first attribute associated to A is a set of m vectors {x1, · · · , xm} in Cg ⊃ Λ, such that

ΛQ =
m∑
i=1

Φ(F )xi. (1)

The second attribute is a free Z-module M of rank 4m in Fm such that when restricting the equation
(1) to the lattice Λ, we have

Λ =

{
m∑
i=1

Φ(ai)xi : (a1, · · · , am) ∈ M

}
. (2)

The third attribute is a non-degenerate matrix T ∈ Mm(F ) which determines the alternating form
E on Cg, indexed with respect to {x1, · · · , xm}. Note that for each index i and j, the mapping

F −→ Q
a 7−→ E(Φ(a)xi, xj)

is Q-linear. Therefore, there exists an element tij ∈ F such that E(Φ(a)xi, xj) = trF |Q(atij). Combining
with Remark 3.3.10, for all x, y ∈ ΛQ we have

E(x, y) = E

 m∑
i=1

Φ(ai)xi,
m∑
j=1

Φ(bj)xj

 = trF |Q

 m∑
i,j=1

aitijb
ρ
j

 (3)

for some suitable ai’s and bj ’s. Thus T := (tij) is the matrix for E|ΛQ , which extends R-linearly to E.
Note that T reflects the properties of E as in Theorem 3.2.3: (T ρ)t = −T for E is skew symmetric,
and trF |Q(MT Mρ) ⊂ Z for E is Z-valued on Λ.

Before we show the significance of these three attributes in the next theorem, let us derive another
matrix H out of the present data. Extend equation (1) linearly to R. Then any x ∈ Cg can be
expressed as a sum

∑m
i=1Φ(ai)xi for some a1, · · · , am in FR := F ⊗ R. Therefore, the map sending

x 7→ (a1, · · · , am) gives an isomorphism Cg → Fm
R . In particular, if we denote by

√
−1 the push forward

µ∗(J), where µ : R2g → Cg is the isomorphism in Definition 3.2.9 and J is the positive complex structure
J associated to A, then there exists a unique matrix H = (hij) ∈ Mm(FR) such that

√
−1xi =

m∑
i=1

Φ(hij)xj (4)

Remark 3.3.15. In Section 3.2.2, we used the imaginary unit i ∈ C to represent the action of J
on the C-vector space Cg. But here, we deliberately choose a different symbol

√
−1 for the action

of J (or equivalently h(i) if we use the alternative definition for Hodge structure in Remark 3.2.11).
This is to avoid confusion with the purely imaginary elements i, j and k in the endomorphism algebra
EndQ(A) ⊃ HQ which also act on Cg: we now deem Cg as an HQ-module by Remark 3.3.9 .
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Indeed, by definition any endomorphism f ∈ EndQ(A) preserves the complex structure J of A. In
other words, the action of J commutes with the action of f . This further implies that for any simple
abelian g-fold A with a division ring F := EndQ(A), the action of any element f ∈ F is on the right. To
see this, let

√
−1 be a general complex structure of A. It acts on the left as a complex structure is a linear

operator by definition. By Poincaré’s Complete Reducibility Theorem, we have EndQ(A×A) ≃ M2(F ).
In order for g ∈ EndQ(A × A) to commute with the action of

√
−1 ⊕

√
−1, the matrix g ∈ M2(F )

must act by right multiplication. In particular, an endomorphism f ∈ EndQ(A) induces an element
f ⊕ f ∈ EndQ(A×A) which is equivalent to a scalar matrix in M2(F ). Projection from M2(F ) onto F
in the (1, 1)th-entry implies F also acts from the right.

However, under the representation Φ (equivalent to ι) which identifies f ∈ F to an element in
Mg(C) as in Definition 3.3.8, the matrix Φ(f) ∈ Mg(C) = End(Cg) has the usual action on Cg by left
multiplication.

Upon satisfying some conditions, the above three attributes uniquely determine an abelian variety
with endomorphism structure.

Theorem 3.3.16. Let (F, ρ,Φ) as defined in Definition 3.3.8. Let M be a free Z-module in Fm of
rank 4m, and T a non-degenerate matrix in Mm(F ) such that T ρ = −T and trF |Q(MT Mρ) ⊂ Z.
Then M and T , together with a set of C-linearly independent vectors {x1, · · · , xm} ⊂ Cg, completely
determine a polarised abelian g-fold (T, E, ι) with endomorphism structure (F, ρ,Φ) if and only if both
of the following conditions are satisfied:

(a) ΛR =
∑m

i=1Φ(FR)xi; and

(b) If H ∈ Mm(FR) is derived from (a) and satisfies Equation (4), then T Hρ is ρ-symmetric and
ρ-positive, i.e. (T Hρ)ρ = T Hρ and trF |Q(x(T Hρ)xρ) > 0 for all x ∈ Fm

R \ {0}.

Proof. (⇒) Condition (a) was shown in the derivation of Equation (4). Condition (b) is immediate
because of our construction of the alternating form E from the polarisation form Ψ on H1(A,R)..

(⇐) It is clear that T is determined and ι is equivalent to Φ as representations. We can define E
by the R-linear extension of equation (3). It remains to show that E defines a polarisation on T as in
Theorem 3.2.3, and the Rosati condition in Definition 3.3.8.

Theorem 3.2.3(i) is a result of the assumption trF |Q(MT Mρ) ⊂ Z.
Combining equations (3) and (4), then we can represent the form (x, y) 7→ E(x,

√
−1y) by the

matrix T Hρ. Then Theorem 3.2.3(iii) follows from condition (b). So by Remark 3.3.10, the form
(x, y) 7→ E(

√
−1x,

√
−1y) is given by the matrix HT Hρ. Condition (b) and T ρ = −T give us

T Hρ = (T Hρ)ρ = −HT

so the matrix HT Hρ is in fact −H2T . Moreover, by multiplying equation (4) by
√
−1, we know

H2 = −1. So Theorem 3.2.3(ii) is also satisfied.
Finally as in [BL, Proposition 9.5.3], for all c ∈ F and x, y ∈ Cg such that x =

∑m
i=1Φ(ai)xi and

y =
∑m

j=1Φ(bj)xj , we have

E(Φ(c)x, y) = tr F |Q

 m∑
i,j=1

caitijb
ρ
j

 = tr F |Q

 m∑
i,j=1

aitij(c
ρbj)

ρ

 = E(x,Φ(cρ)y).

Again by Remark 3.3.10, the extension of the anti-involution ρ on F via Φ is the Rosati involution as
it is the adjoint operator with respect to E.
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Given a pair (M, T ) satisfying T ρ = −T and trF |Q(MT Mρ) ⊂ Z, the abelian g-folds with the
attributes (M, T ) then form a family fM,T which we call a family of polarised abelian g-folds
with endomorphism structure (F, ρ,Φ) associated to (M, T ). Clearly the remaining attribute
{x1, · · · , xm} ⊂ Cg distinguishes isomorphic abelian varieties. It is therefore natural to consider the set
of {x1, · · · , xm} as the period domain associated to fM,T .

Remark 3.3.17. In fact the only important information that the attribute {x1, · · · , xm} ⊂ Cg associated
to a member A of the family fM,T encode, is the complex structure J of A. We will later see in the
explicit calculations in Section 6.2.3 that we may choose a set of real vectors {(xR)1, · · · , (xR)m} ⊂ R16

shared by all members in the fM,T , such that the attribute {x1, · · · , xm} of a member A can be recovered
from this set and the complex structure J of A. Moreover, there are “real” versions of Equations (2)
and (3) that only depend on the set of real vectors. Therefore, the parameter of the family fM,T is
effectively the complex structure of the members.

One can in fact standardise the attribute {x1, · · · , xm} by associating it to a period matrix X ∈
Mg(C). Write each vector xi in the form [

ui
vi

]
where ui, vi ∈ Mm×1(C) and put U = (u1, · · · , um) , V = (v1, · · · , vm). Define a matrix

X :=

[
U V

V −U

]
.

Upon choosing a suitable basis of Fm
R such that T −1 is given by

√
−1 · 1m with respect to M, or

equivalently the complex matrix
√
−1χ(T )−1 is in the form diag(−1m,1m), then the m-by-m complex

matrix Z := −V −1U satisfies Zt = −Z and 1 − ZZ
t
> 0. Furthermore by change of basis of Cg, that

is by the left multiplication action of GLg(C), we can assume that V = 1m, and the period matrix X
is in the standardised normalised form [

−Z 1m
1m Z̄

]
which is unique to the attribute {x1, · · · , xm}. Therefore, we have the following theorem analogous to
Theorem 3.2.21.

Theorem 3.3.18. There exists a complete family f : X → S of polarised abelian g folds with endomor-
phism structure (F, ρ,Φ) associated to (M, T ), that is, the association of a normalised period matrix
to a member in the family which is determined by the attribute {x1, · · · , xm} ⊂ Cg gives a multi-valued
map

S −→ Hm :=
{
Z ∈ Mm(C) : −Z = Zt, 1− ZZ

t
> 0
}

such that the preimage of any Z ∈ Hm is non-empty.

As in Section 3.2.4, Hm is a period domain for some polarised weight 1 Hodge structures.

Corollary 3.3.19. In a family fM,T of polarised abelian g-folds with endomorphism structure (F, ρ,Φ)
associated to a pair (M, T ), the analytic manifold Hm is the period domain of the weight 1 Hodge
structures on R2g = Λ′

R of the abelian varieties as real tori R2g/Λ′.

Proof. It can be seen that the standardised normalised period matrix X of any abelian variety A in
fM,T depends only on

√
−1, which is the action of the positive complex structure J of A: it gives the

generators of Λ = µ(Λ′) in terms of a suitable basis of Cg such that T −1 =
√
−1 · 1m.

In particular, if we replace Φ by ΦR, a representation of F by 2g-by-2g real matrices, then there
exists a set of m vectors {(xR)1, · · · , (xR)m} ⊂ R2g such that Λ′ =

∑m
i=1ΦR(F )(xR)i. This set of real
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vectors of length 2g is invariant in the family. So Hm parametrises the positive complex structures on
R2g/Λ′ whose action commutes with that of F , which are equivalent to the weight one Hodge structures
of the first cohomology of the members in fM,T .

With this interpretation of Hm, we can derive another expression of Hm as a quotient of Lie groups
similar to Theorem 3.2.22.

Theorem 3.3.20.
Hm ≃ SO∗(2m)/U(m).

To prove the statement, first we derive another expression of the Lie group SO∗(2m). Similar to χ

in Remark 3.3.13, there is natural embedding

χR := M2m(C) ↪→ M4m(R)

A+Bi 7→
[
A B
−B A

]
, where A,B ∈ M2m(R).

We will show that

Theorem 3.3.21.
χR (SO∗(2m)) = χR (M2m(C)) ∩AutH(R4m) ∩ Sp(J̃).

where
AutH(R4m) := {M ∈ GL4m(R) : Mh = hM for all h ∈ H}

is the automorphism group of R4m as a H-module, and

Sp(J̃) :=
{
M ∈ M4m(R) : M tJ̃M = J̃

}
with J̃ =

[
Jm 0
0 Jm

]
.

Proof. Recall from Definition 2.2.4(iv)

SO∗(2m) =
{
M ∈ M2m(C) : M tJmM = Jm, M tM = 12m

}
Write M ∈ SO∗(2m) = A+Bi, where A,B ∈ M2m(C). Then the condition M tM = 12m translates to{

AtA−BtB = 12m

AtB +BtA = 02m.
(*)

Moreover, M tM = 12m is equivalent to M t = M−1. So the condition M tJmM = Jm is equivalent to
saying JmM = MJm, which translates to{

JmA = AJm

JmB = −BJm.
(**)

On the other hand, to give an explicit expression of the group AutH(R4m), let us realise R4m as a
H-module using a specific representation Φ̂ : H → M4m(R) determined by

i 7−→ ı̂ := J2m

j 7−→ ȷ̂ :=

[
Jm 0
0 −Jm

]
.

One can check that indeed ı̂2 = ȷ̂2 = −1 and ı̂ȷ̂ = −ȷ̂̂ı. This gives

AutH(R2m) = {M ∈ GL4m(R) : Mı̂ = ı̂M and Mȷ̂ = ȷ̂M} .
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So for M = χR(A + Bi) where A,B ∈ M2m(C), then M ∈ AutH(R4m) if and only if A and B satisfy
(**). Moreover, M tJ̃M = J̃ if and only if[

AtJmA+BtJmB AtJmB −BtJmA
BtJmA−AtJmB BtJmB +AtJmA

]
=

by (∗∗)

[
AtA−BtB −AtB −BtA
BtA+AtB −BtB +AtA

]
J̃ = J̃ ,

i.e. if and only if (*) is satisfied.

Remark 3.3.22. By Corollary 3.3.19, the group SO∗(8) is the automorphism group of the period domain
for weight one Hodge structures on Λ′

R associated to the family fM,T .

We are ready to prove Theorem 3.3.20.

Proof. As in [BL, Chapter 9.7], consider the group

Um(H) :=
{
M ∈ Mm(H) : M t(i1m)M = i1m

}
where M is the canonical involution of the quaternion algebra on M as defined in Definition 3.3.4.
The representation Φ̂ in the proof of Theorem 3.3.21 identifies χ(Um(H)) < GL2m(C) to a subgroup
of AutH(R4m). Moreover, if we denote by ϵ the standard H-Hermitian skew form represented by the
matrix i1m

ϵ(x, y) = x1iy1 + · · ·+ xmiym,

then iϵ is a H-Hermitian symmetric form. Therefore χ(Um(H)) also leaves the Hermitian form χ∗(iϵ)
invariant.

On the other hand, note that the symplectic form represented by J̃ is equivalent to the standard
symplectic form represented by J2m by reordering the chosen basis of R4m. By the same argument
as in the proof of Theorem 3.2.22, preserving J2m is equivalent to preserving an alternating form E
associated to the polarisation of a weight 1 Hodge structure on R4m. Note that the Rosati condition
for E is automatically satisfied. Since E uniquely determines a Hermitian symmetric form by Theorem
3.2.5, the group χ(Um(H)) is isomorphic to SO∗(2m).

By [BL, Proposition 9.7.2], the group χ(Um(H)) acts on Hm by

χ(Um(H))×Hm −→ Hm([
A B

−B A

]
, Z

)
7−→ (A · Z +B)(−B · Z +A)−1.

Furthermore, [BL, Proposition 9.7.2] says this action is transitive, and the stabliser subgroup

χ(Um(H)) ∩U(2m) =

{[
A 0

0 A

]
∈ M2m(C) : AtA = 1m

}
≃ U(m)

is compact.

Remark 3.3.23. Again, we can apply Theorem 3.1.16 to show transitivity of the action of SO∗(2m) on
Hm: let g = 2m, then by Theorem 3.3.21, χR(SO

∗(2m)) is the automorphism group of R2g, preserving
its H-module structure and the polarisation E of its weight 1 Hodge structure.

Remark 3.3.24. When working with Shimura’s construction of the family fM,T which we have just
introduced above, the preferred definition for the group SO∗(8) is χ(Um(H)). i.e. we may consider
χR(χ(Um(H))) ⊂ Aut(Λ′

R) which preserves the real torus structure R2g/Λ′ shared by every abelian g-
fold in the family. Indeed, left multiplication by χR(χ(Um(H))) preserves the H-module structure of ΛR
(given by M), as well as the matrix i1m (which is exactly the matrix T −1 when X is in the standardised
normalised form).
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As in Remark 3.2.24, we may identify any element Z in Hm with a GL(g,C)-equivalence class of
block matrices [

Z
1g

]
,

and the action of χ(Um(H)) on Hm in [BL, Proposition 9.7.2] can be thought of as left multiplication
on these classes.

Remark 3.3.25. Referencing [He, Table X.6.V], the unitary group U(m) is the maximal compact
subgroup of SO∗(2m), and Hm is an irreducible HSD of type IIm.

We also have a general expression for the monodromy group of fM,T .

Theorem 3.3.26. The monodromy group Γ(M, T ) < SO∗(2m) of a family fM,T is given by

Γ(M, T ) = {N ∈ Mm(HQ) : MN = M, NT Nρ = T .}

Proof. See [Sh, Theorem 2]: two members in the family represented by Z and Z ′ in Hm are isomorphic
if and only if Z and Z ′ are in the same Γ(M, T )-orbit.

Therefore the Global Torelli Theorem is true for a family of polarised abelian g-folds with a to-
tally definite quaternion multiplication. Moreover, any discrete subgroup of SO∗(2m) acts properly
discontinuously on M by [BL, Proposition 9.7.4]. So

A(M,T ) := Γ(M, T )\Hm

is a quasi-projective variety by the Baily-Borel Theorem. We call A(M,T ) the moduli variety of
polarised abelian g-folds with totally definite quaternion multiplication associated to the
pair (M, T ), which is a moduli variety of PEL type. It has the same dimension as Hm, which is
m(m− 1)/2, and is a LSV of type IIm.

3.4 Lattice theory

We have seen lattices in the definition of an abelian variety. Let us recall some lattice theory which will
be useful for defining K3 surfaces and their lattices of polarisation.

3.4.1 K3 Lattice

First we will give the basic definitions and examples of lattices in order to define a special lattice called
the K3 lattice. The followings are mainly taken from [Hu, Section 14.0].

Definition 3.4.1. A lattice is a pair (Λ, b) where Λ is a free Z-module, and b is an integral symmetric
bilinear form on Λ which we will always assume to be non-degenerate. That is, the pairing b is of full
rank.

By choosing a basis of ΛR ⊃ Λ, the lattice Λ is often characterised by the matrix M of its symmetric
bilinear form b. We define the following invariants of Λ with respect to any change of bases.

(i) The rank of Λ, rk(Λ), the rank of b or equivalently rk(M).

(ii) The pairing b on Λ induces a pairing on ΛR, which can be diagonalised with only ±1 on the
diagonal. The signature of Λ is the pair (n+, n−) where n± is the number of ±1 on the diagonal,
and they add up to rk(Λ).

(iii) The discriminant of Λ, disc(Λ), is the determinant of M .
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Here we give some examples of lattices:

Example 3.4.2.

(1) The standard hyperbolic plane U is the rank 2 lattice

MU :=

(
0 1
1 0

)
.

Clearly, it has signature (1, 1) and discriminant −1.

(2) For n = 6, 7 or 8, the En lattice is the rank n lattice given by the root lattice of the En root system.
It has signature (n, 0). In particular, the E8 lattice has discriminant 1.

(3) Similarly for any n ≥ 4, the lattice Dn is the rank n lattice given by the root lattice of the Dn root
system. It has signature (n, 0). In particular, the D4 lattice is given by the rank 4 matrix

MD4 :=


2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

 .

(4) For any d ∈ Z\{0}, the lattice denoted by ⟨d⟩ is the lattice given by the rank 1 matrix
(
d
)
. In

particular, ⟨2⟩ is the A1 lattice given by the root lattice of the A1 root system.

(5) The Nikulin lattice N defined in [Mo1, Definition 5.3] is a rank 8 lattice of signature (0, 8).

(6) Let (Λ, b) be a lattice. Then for any d ∈ Z\{0, 1}, we define Λ(d), the twist of Λ by d, to be the
lattice (Λ, d · b). Clearly, rk(Λ) = rk(Λ(d)) and disc(Λ(d)) = drk(Λ) disc(Λ).

(7) Let (Λ1, b1) and (Λ2, b2) be two lattices of signature (n+, n−) and (m+,m−) respectively. We define
the orthogonal direct sum of the two lattices to be Λ = (Λ1 ⊕ Λ2, b), where

b((x1, y1), (x2, y2)) := b1(x1, x2) + b2(y1, y2).

Clearly, we have rk(Λ) = rk(Λ1) + rk(Λ2), signature of Λ is (n+ + m+, n− + m−) and disc(Λ) =
disc(Λ1)·disc(Λ2). Examples (1)–(6) are indecomposible lattices, i.e. none of them can be expressed
as an orthogonal direct sum of two lattices of strictly lower ranks.

Let us define morphisms of lattices. Let (Λ, b) and (Λ′, b′) be two lattices.

Definition 3.4.3. A morphism of lattices ϕ : Λ → Λ′ is a linear map that respects the symmetric
bilinear forms b and b′, i.e. for all x, y ∈ Λ,

b′(ϕ(x), ϕ(y)) = b(x, y).

An embedding is an injective morphism. An embedding is a primitive embedding if its cokernel is
torsion free. An isometry is a bijective morphism.

One significant structure associated to a lattice Λ is its discriminant group.

Definition 3.4.4. The dual of the lattice Λ is the subset of ΛQ

Λ∨ := {l ∈ ΛQ : b(l,m) ∈ Z for all m ∈ Λ} .
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By definition, there is a natural embedding

ιΛ : Λ ↪→ Λ∨.

Define the discriminant group of the lattice Λ to be the cokernel of ιΛ,

AΛ = Λ∨/Λ

which is a finite group of order |disc(Λ)|.
We define the length of the lattice Λ, denoted l(Λ), to be the minimal number of generators of its

discriminant group AΛ.

We also define the following predicates of a lattice Λ.

Definition 3.4.5.

(i) Odd or even. A lattice Λ is called even if for any x ∈ Λ, x2 := b(x, x) ∈ 2Z; otherwise it is
called odd.

(ii) Definite or indefinite. Let the signature of Λ be (n+, n−). The lattice Λ is called definite if n+

or n− is 0; otherwise it is called indefinite.

(iii) Unimodular, d-elementary. The lattice Λ is unimodular if the discriminant group AΛ is trivial,
or equivalently |disc(A)| = 1, or l(Λ) = 0. If AΛ ≃ (Z/dZ)l, we say Λ is d-elementary.

Remark 3.4.6. In Example 3.4.2,

(i) The hyperbolic plane U , the root lattices E7, E8, D2n for n ≥ 2, A1 and the Nikulin lattice N are
even lattices. Orthogonal direct sums of even lattices are even.

(ii) Clearly, the root lattices and N are definite, but U is indefinite. A twist of a definite (resp.
indefinite) lattice is definite (resp. indefinite).

(iii) The lattices U and E8 are unimodular. U(2), E7, E8(2), D2n for n ≥ 2, A1 and N , as well as
their twists by −1, are 2-elementary. Orthogonal direct sums of unimodular (resp. d-elementary)
lattices are unimodular (resp. d-elementary).

The following rank 22 lattice called the K3 lattice is significant in the discussion of K3 surfaces:

ΛK3 := U⊕3 ⊕ E8(−1)⊕2.

It is clear that ΛK3 is even, 2-elementary and indefinite of signature (3, 19). In fact, it is the unique
lattice with these properties [Mo1, Theorem 1.3] up to isometry.

3.4.2 Primitive embeddings of even, indefinite, 2-elementary lattices

We will discuss primitive embeddings of even, indefinite, 2-elementary lattices into the K3 lattices later
when we define a lattice polarisation of K3 surfaces. Let us specifically study the even, 2-elementary
lattices and define more attributes.

Definition 3.4.7. Let (Λ, b) be an even lattice. The pairing b on Λ induces a Q-valued pairing on Λ∨,
thus a pairing

bAΛ
: AΛ ×AΛ −→ Q/Z.

There is a unique associated quadratic form

qAΛ
: AΛ −→ Q/2Z
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such that for any σ, τ ∈ AΛ, it satisfies the polarisation formula

qAΛ
(σ + τ) = qAΛ

(σ) + 2bAΛ
(σ, τ) + qAΛ

(τ).

We call qAΛ
the discriminant form of Λ.

Moreover [CM1, Section 2], if Λ is 2-elementary, then the discriminant form qAΛ
takes values in

Z/2Z. We define the parity of Λ to be

δ(Λ) =

{
0, if qAΛ

(τ) ∈ Z for all τ ∈ AΛ;

1, otherwise.

The even, indefinite, 2-elementary lattices are classified by the following.

Theorem 3.4.8. [Ni, Theorem 3.6.2]
An even, indefinite, 2-elementary lattice Λ is uniquely determined by the triple ((n+, n−), l(Λ), δ(Λ))

up to isometry. Moreover, such a lattice exists only if l + n+ + n− ≡ 0 mod 2.

Suppose an even, indefinite, 2-elementary lattice Λ given by the triple ((n+, n−), l, δ) primitively
embeds into an even lattice (Λ̃, b̃) of signature (ñ+, ñ−). Consider its orthogonal complement Λ⊥ in Λ̃
with respect to b̃. We have the following general theorem.

Theorem 3.4.9. [Mo1, Lemma 2.4]
Let Λ ↪→ Λ̃ be a primitive embedding of even lattices. If Λ̃ is unimodular, then qAΛ

= qA
(Λ⊥)

.

If Λ⊥ is also indefinite, then Λ⊥ is also fully determined by the triple ((ñ+ − n+, ñ− − n−), l, δ)
applying Theorem 3.4.8.

For convenience, here we list the values of the triples ((n+, n−), l(Λ), δ(Λ)) for each unimodular or
2-elementary indecomposible lattice Λ in Example 3.4.2. These values can be checked using MAGMA.

Λ (n+, n−) l(Λ) δ(Λ)

U (1, 1) 0 0

E8 (8, 0) 0 0

U(2) (1, 1) 2 0

E8(2) (8, 0) 8 0

Dn, n ≡ 0 (mod 4) (n, 0) 2 0

Dn, n ≡ 2 (mod 4) (n, 0) 2 1

⟨2⟩ (1, 0) 1 1

E7 (7, 0) 1 1

N (0, 8) 6 0

Table 4: Lattices and their invariants

3.5 K3 surfaces

3.5.1 Polarised K3 surfaces

We continue to work over the complex numbers. Furthermore, we only consider algebraic K3 surfaces.

Definition 3.5.1. [Hu, Definition 1.1]
An algebraic K3 surface X over C is a complete non-singular variety of dimension 2 such that

Ω2
X/k ≃ OX and H1(X,OX) = 0.

Here we give a few explicit examples of K3 surfaces.
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Example 3.5.2. [SS, Example 12.2]

(i) Quartic surfaces. A smooth quartic in P3 is a K3 surface. For any quartic surface with isolated
rational double points (i.e. canonical surface singularities), its minimal (crepant) desingularisation
is also a K3 surface.

(ii) Double sextics. A double sextic is a double cover of P2 ramified along a smooth sextic curve.

(iii) Kummer surfaces. Let A ≃ C2/Λ be an abelian surface. Blowing up at the 16 ordinary double
points in the quotient of A by the action of −1 ∈ C yields a K3 surface Kum(A) called a Kummer
surface. In particular, there is a rational double cover (A → A/⟨−1⟩ 99K Kum(A)).

Much of the geometry of a K3 surface X can be extracted from its second integral cohomology. Here
we present some properties of H2(X,Z).

Theorem 3.5.3. [SS, Section 12.2]
For any K3 surface X, H2(X,Z) is torsion-free. Moreover, H2(X,Z) with its intersection form is an

even unimodular indefinite lattice of rank 22 isomorphic to the K3 lattice ΛK3. An explicit isomorphism

ϕ : H2(X,Z) ≃−→ ΛK3

is called a marking of the K3 surface X.

The latticeH2(X,Z) has a polarised weight two Hodge structure. By [Hu, Remark 1.2], any complete
smooth algebraic surface, in particular a K3 surface, is projective. That is, for a K3 surface X, there
exists an ample line bundle L in its Picard group Pic(X). The image under the first Chern map
c1(L) ∈ H2(X,Z) defines a polarisation of the K3 surface. As described in Section 3.1.2, a Kähler
form ω given by c1(L) also determines a polarisation form on the weight two Hodge structure on
H2(X,Z).

Remark 3.5.4. [Hu, Theorem 7.3.6]
Choosing a Kähler form ω is also equivalent to choosing the complex structure J of a complex K3

surface and a Kähler metric g: we may define

ω := g(J(·), ·).

Given Theorem 3.5.3, let us state some facts about the first Chern map specific to K3 surfaces.
Since H1(X,OX) is trivial, the first Chern map c1 as part of the long exact sequence in Section 3.1.1

· · · −→ H1(X,OX) −→ H1(X,O∗
X)

c1−−−→ H2(X,Z) −→ · · ·

is injective. Since H2(X,Z) is torsion-free, the Picard group Pic(X), as the source of the first Chern
map, has no torsion. If we denote the intersection form on Pic(X) by b, then Pic(X) is a lattice which
we refer to as the Picard lattice. We call the rank of Pic(X) the Picard rank and denote by ρ(X).
The Hodge index theorem (see [Hu, Section 1.2.2]) further says that Pic(X) is a lattice of signature
(1, ρ(X)− 1).

Remark 3.5.5. Since c1 is injective, we identify the Picard lattice Pic(X) with the Néron-Severi group
NS(X) which we also call the Néron-Severi lattice. We will use these notions interchangeably.

Fix an ample line bundle L ∈ Pic(X). Since H2(X,Z) is an even lattice, c1(L)
2 := b(c1(L), c1(L)) =

2d for some positive integer d. We say (X,L) is a polarised K3 surface of degree d.
However, we are interested in K3 surfaces with a more general notion of polarisation called a lattice

polarisation. Without a lattice polarisation, it is not possible to give a moduli space of K3 surfaces that
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is Hausdorff [Hu, Section 6.3.1]. First we need some definitions concerning R-line bundles on a K3
surface X, which are vectors in Pic(X)⊗ R.

Note that [GrifH, Chapter 1.1, Line Bundles] for a complex variety X, there is a one-to-one corre-
spondence between Pic(X), the group of isomorphism classes of line bundles on X, and CaCl(X), the
group of Cartier divisors of X modulo linear equivalence. We may extend this correspondence for the
R-line bundles by defining a R-Cartier divisor to be a Weil divisor D such that O(D) is a R-line
bundle.

Suppose L is a R-line bundle on X, and let the global sections {s0, · · · , sr} be a basis of Γ(X,L)
(which do not necessarily generate L). Then there exists a rational map φL : X 99K Pr

C given by
φL(x) = (s0(x), · · · , sr(x)) defined away from the base locus of L. Recall that if L is a line bundle, then
L (or its corresponding Cartier divisor) is big if there exists an integer m0 such that the rational map
ϕL⊗m is birational for all m ≥ m0.

Definition 3.5.6. A R-Cartier divisor D of X is big if D can be expressed as a positive R-linear
combination of big Cartier divisors.

A R-Cartier divisor is nef if it has non-negative intersection with any curve in X.

We also need the notion of a very irrational vector in the R-span of a lattice.

Definition 3.5.7. [AE, Section 2.2]
Let Λ be a lattice. A vector h ∈ Λ ⊗ R is very irrational if h /∈ Λ′ ⊗ R for any proper sublattice

Λ′ ⊊ Λ.

We may now define a lattice polarisation for a K3 surface X. Let P be a lattice of signature (1, r−1)
where 1 ≤ r ≤ ρ(X) ≤ 20, and fix a very irrational vector h in P ⊗ R.

Definition 3.5.8. [AE, Definition 2.6]
A lattice polarisation of X is a primitive embedding

j : P ↪→ Pic(X)

such that j(h) is big and nef. We say (X, j) is a P -polarised K3 surface.

Remark 3.5.9. In [AE], a lattice polarisation (P, j) in the sense of Definition 3.5.8 is called a P -
quasipolarisation, and is distiguished from a (strictly ample) lattice polarisation. The latter requires a
stronger condition: the class j(h) must be ample.

Remark 3.5.10. A primitive ample line bundle on a K3 surface X spans a primitive sub-lattice of
rank 1 in Pic(X). Therefore, a polarised K3 surface is also a lattice polarised K3 surface.

Remark 3.5.11. Let P ′ be a sublattice of P of signature (1, r′− 1) for some r ∈ Z≥1. If P ′ primitively
embeds into ΛK3, then a P -polarised K3 surface is also a P ′-polarised K3 surface.

Let us define an isomorphism of lattice polarised K3 surfaces before discussing their moduli spaces.

Definition 3.5.12. [AE, Definition 2.6]
Two P -polarised K3 surfaces (X, j) and (X ′, j′) are isomorphic if there exists an isomorphism of

varieties f : X → X ′ such that j = f∗ ◦ j′ and f∗(j′(h)) = j(h).
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3.5.2 Moduli of lattice polarised K3 surfaces

We consider moduli spaces of K3 surfaces polarised by the same lattice P . We would like to to obtain
an expression for the moduli space of P -polarised K3 surfaces. The followings are mainly taken from
[AE, Section 2.2], [D, Section 3] and [DK, Section 9, 10].

Let P be a lattice of signature (1, r− 1) that can be primitively embedded into the K3 lattice ΛK3.
Let ι : P ↪→ ΛK3 be such a primitive embedding and identify P with its image ι(P ). Let T be the
orthogonal complement of P in ΛK3. It is a lattice of signature (2, 20− r). We denote their associated
symmetric bilinear forms by b, and the quadratic forms that satisfy the polarisation formula by q.

Remark 3.5.13.

1. If the lattice P has rank r, then the family fP of P -polarised K3 surfaces is also said to have
Picard rank r. For any member in fP , its Picard rank is at least r by Remark 3.5.11.

2. We say a member in fP is very general if it corresponds to a very general point in the family of
deformations preserving the Picard group. That is, the lattice embedding P ↪→ Pic(X) is surjective.
Therefore we abuse notation and say that P is the Néron-Severi lattice associated to the the
family fP . We also call T = P⊥

ΛK3
the transcendental lattice associated to fP .

We first rigidify our family by considering the family of marked P -polarised K3 surfaces instead.

Definition 3.5.14. A marked P -polarised K3 surface is a pair (X,ϕ), where X is a K3 surface
and ϕ is a marking of X such that ϕ−1(P ) ⊂ Pic(X). In particular, jP := ϕ−1|P : P → Pic(X) gives
the lattice polarisation of X.

Two marked P -polarised K3 surfaces (X,ϕ), (X ′, ϕ′) are isomorphic if there exists an isomorphism
of varieties f : X → X ′ such that ϕ′ = ϕ ◦ f∗.

Let fM
P : XM → SM be the family of marked P -polarised K3 surface. As in Section 3.1.3, the base

SM is covered by opens where each admits a holomorphic period map into DT , the period domain of
weight two Hodge structures on T . Indeed, the lattice T carries a Hodge structure: by the Lefschetz
theorem on (1, 1) classes, H2,0(X) which determines the weight two Hodge structure on H2(X,Z) is sent
to the C-extension of the transcendental lattice TC under ϕ. Therefore ϕ(H2,0(X)) ⊂ TC determines a
weight two Hodge structure on T .

Before having further discussion on the period maps of the family fM
P , let us derive two explicit

expressions for the period domain DT : as an analytic subspace of C22−r, and as the quotient of Lie
groups. Note that ϕ(H2,0(X)) ⊂ TC is completely determined by the conditions in Theorem 3.1.14,
which translates to the following: for all l ∈ ϕ(H2,0(X)),

(i) l2 ∈ ϕ(H4,0(X)) = 0, and

(ii) l · l > 0.

Therefore the period domain of the weight two Hodge structures on T is

DT =
{
[l] ∈ P(TC) : l

2 = 0, l · l > 0
}
.

Lemma 3.5.15. The space DT is (20− r)-dimensional.

Proof. The C-vector space TC has dimension 22 − r. Its projectivisation has dimension 21 − r. The
closed condition defining DT as a subset in P(TC) further subtracts one from the dimension.

Again, we can express the period domain as a quotient of Lie groups.
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Theorem 3.5.16.
DT ≃ O(2, 20− r)/(SO(2)×O(20− r)).

Proof. For any [l] ∈ P(TC), write l = x+ iy where x, y are vectors in the (22−r)-dimensional real vector
space TR. Then x, y span a positive definite plane Π in TR as l · l > 0.

Conversely, given any positive definite plane Π ⊂ TR, choose any basis {x, y} such that x·x = y·y = 1
and x·y = 0, and consider [l] = [x+iy] ∈ P(TC). Suppose another basis that satisfies the same conditions
is given by

{
x′ = ax+ by, y′ = cx+ dy

}
, where


ad− bc = ∆ ̸= 0

a2 + b2 = c2 + d2 = 1

ac+ bd = 0

.

The system of equations gives a = ∆d, b = −∆c and ∆ = ±1. The two values of ∆ correspond to the
the choice of orientation of the plane Π. Fixing the orientation of Π is the same as fixing ∆ = 1, in
which case [l′] := [x′ + iy′] = [(a− bi)l] = [l]. On the other hand, if ∆ = −1, then [l′] = [l]. Therefore,
DT is the space of oriented positive definite planes in TR.

It is clear that Aut(TR, q) = O(2, 20− r). By Theorem 3.1.16, it acts transitively on DT . Moreover,
the isotropy group of this action is SO(2)×O(20− r), where SO(2) gives the condition ∆ = 1.

With this expression, DT has two connected components which correspond to either choosing
H2,0(X) to be generated by l or l. Each connected component is given by the orbit space

SO+(2, 20− r)/(SO(2)× SO(20− r)).

Remark 3.5.17. By comparing to [He, Table X.6.V], SO(2) × SO(20 − r) is the maximal compact
subgroup of SO+(2, 20− r), and the quotient is an irreducible HSD of type IV20−r.

Let us return to considering the period maps for the family fM
P . Recall from 3.1.3 that by patching

all the period mappings together, one obtains the global multi-valued mapping PM : SM → DT . In fact:

Theorem 3.5.18. [AE, Theorem 2.8]
The multi-valued map PM : SM → DT is surjective. Moreover, for each point Π ∈ DT as a plane in

TR (as described in the proof of Theorem 3.5.16), there is a natural bijection between the fibre P−1(Π)
and the group WΠ(T ), which is the set of isometries on ΛK3 generated from reflections in vectors from{

e ∈ Π⊥ ∩ T : e2 = −2
}
.

Remark 3.5.19. Suppose Π ∈ DT is the period point of a marked K3 surface with a strictly ample
polarisation (Remark 3.5.9). Then [D, Corollary 3.2] the group WΠ(T ) is trivial. Theorem 3.5.18
implies that PM restricted to the set of marked K3 surfaces with a strictly ample polarisation is a
bijection onto its image. That is, the Global Torelli Theorem is satisfied for a family of marked K3
surfaces with a strictly ample polarisation [Hu, Theorem 7.5.3]

Finally, we remove the marking of fM
P to obtain the global period map for the family of (unmarked)

P -polarised K3 surfaces f : X → S. Consider the orthogonal group of ΛK3, which is the group of
isometries O(ΛK3) = Aut((ΛK3)R, q). It has a subgroup

Γ̃(P ) := {σ ∈ O(ΛK3) : σ(p) = p for all p ∈ P} .

Note that if a marked P -polarised K3 surface (X,ϕ) is isomorphic to another marked P -polarised (X ′, ϕ′)
in the sense of Definition 3.5.12, then it is also isomorphic to (X ′, ϕ′ ◦ σ) for any σ ∈ Γ̃(P ). Denote the
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image of Γ̃(P ) under the natural injective homomorphism from Γ̃(P ) to O(T ) by Γ(P ). Then Γ(P ) acts
on DT , and by Theorem 3.1.18, the global period map for the family f is given by the descent of PM :

Γ̃(P )\SM ≃ S −→ Γ(P )\DT .

Since for any Π ∈ DT the group WΠ(T ) is a subgroup of Γ̃(P ), Theorem 3.5.18 implies that the global
period map is a bijection. In particular, the Global Torelli Theorem for a family of P -polarised K3
surfaces is satisfied.

Moreover by [D, Proposition 3.3], Γ(P ) is a subgroup of finite index in O(T ), where the latter is an
arithmetic subgroup of O(2, 20− r). So by the Baily-Borel Theorem,

KP := Γ(P )\DT

is a quasi-projective variety. We call KP the moduli variety of P -polarised K3 surfaces. It has
at most two irreducible components; each is a LSV of type IV20−r, and has the same dimension as DT ,
which is 20− r. In fact,

Theorem 3.5.20. [D, Lemma 5.4, 5.6]
Let KP be the moduli space of P -polarised K3 surfaces. Let T be the associated transcendental lattice.

If T admits the lattice U or U(2) as an orthogonal summand, then the moduli space KP is irreducible.

3.5.3 Shioda-Inose structure

In this subsection, we introduce the Shioda-Inose structure of a lattice polarised K3 surface associated
to an abelian surface. The main reference is [Mo1].

Definition 3.5.21. [Mo1, Defintion 5.1, Lemma 5.2]
An involution ι on a K3 surface X is a Nikulin involution if ι∗(l) = l for any l ∈ H2,0(X). Each

Nikulin involution has eight isolated fixed points.

Definition 3.5.22. [Mo1, Definition 6.1]
A K3 surface X is said to admit a Shioda-Inose structure associated to an abelian surface A

if there is a Nikulin involution ι on X such that the Kummer surface Y = Kum(A) is the minimal
resolution of X/⟨ι⟩, and if the associated rational double cover πX : X 99K Y induces a Hodge isometry
(πX)∗ : TX(2) → TY , where TX and TY are the transcendental lattices of X and Y respectively.

If X has a Shioda-Inose structure, then there are rational double covers as in Diagram 1, where

(i) the map πA : A 99K Y is the rational map induced by the blow-up Y → A/⟨−1⟩ at the 16 isolated
double points in the quotient of an abelian surface A by the group ⟨−1⟩; and

(ii) the map πX : X 99K Y is the rational map induced by the blow up Y → X/⟨ι⟩ at the 8 isolated
double points in the quotient of X by the group generated by the Nikulin involution ι.

AX
πX πA

Y

Diagram 1: A K3 surface X with a Shioda-Inose structure associated to an abelian surface A.

One can in fact define a transcendental lattice TA of the abelian surface A, and relate it to TX

and TY . For an abelian surface A, the cohomology group H2(A,Z) ≃ U⊕3 is a lattice. Therefore,
the Néron-Severi group NS(A) in H1,1(A)∩H2(A,Z) is torsion-free. We call NS(A) the Néron-Severi
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lattice of A and its rank ρ(A) the Picard rank. We call its orthogonal complement TA in H2(A,Z) the
transcendental lattice of A. The Néron-Severi lattice and the transcendental lattice are of signatures
(1, ρ(A) − 1) and (2, 4 − ρ(A)) respectively. The transcendental lattice TA carries a natural weight
two sub-Hodge structure of H2(A,Z) equipped with the intersection form (up to a sign on the T 2,0

A

component). Moreover, we have the following result that says a sublattice in U⊕3 of signature (1, ·)
or (2, ·) determines an abelian surface.

Theorem 3.5.23. [Mo1, Corollary 1.9]
Suppose P ↪→ U⊕3 (resp. T ↪→ U⊕3) is a primitive sublattice of signature (1, ρ−1) (resp. (2, 4−ρ)).

Then there exists an abelian surface A and a Hodge isometry NS(A) ≃ P (resp. TA ≃ T ).

Of course by our discussion in Section 3.5.2, Theorem 3.5.23 is also true for K3 surfaces when
replacing U⊕3 by the K3 lattice and using the appropriate signatures.

The Shioda-Inose structure of X described in Diagram 1 induces Hodge homotheties, i.e. Hodge
isometries up to twisting, of the transcendental lattices TX , TY and TA of X, Y and A respectively.

Theorem 3.5.24. [Mo1, Remark 6.2]
Let πA : A 99K Y be the rational double cover associated to the Kummer surface Y = Kum(A). Then

πA induces the Hodge isometry
(πA)∗ : TA(2)

≃−−→ TY .

If the K3 surface X has a Shioda-Inose structure associated to A, then we have the Hodge isometry

TX ≃ TA.

These Hodge isometries give us the exact criteria for a lattice T of signature (2, 20 − ρ) to be the
transcendental lattice of a K3 surface with a Shioda-Inose structure.

Theorem 3.5.25. [Mo1, Corollary 6.3]
A K3 surface X of Picard rank ρ with transcendental lattice TX admits a Shioda-Inose structure if

and only if

(i) ρ = 19 or 20; or

(ii) ρ = 18, and TX = U ⊕ T ′ for some lattice T ′; or

(iii) ρ = 17, TX = U⊕2 ⊕ T ′ for some lattice T ′.

Proof. From [Mo1, Corollary 2.6], we know exactly when a lattice T of signature (2, k) admits a primitive
embedding into T ↪→ U⊕3 for each value of k between 0 and 3. By Theorem 3.5.24, this translates to
the criteria for a lattice of signature (2, k = 20 − ρ) to be the transcendental lattice of a Kummer
surface of Picard rank ρ satisfying 17 ≤ ρ ≤ 20. In fact, any Kummer surface has Picard rank at least
17: it has 16 exceptional curves from blowing up the 16 double points in A/⟨−1⟩, as well as a Kähler
class. So applying Theorem 3.5.24 again gives us the complete set of conditions for a lattice of signature
(2, 20− ρ) to be the transcendental lattice of a K3 surface admitting a Shioda-Inose structure.

4 Kuga-Satake construction

The Kuga-Satake construction produces an abelian variety called a Kuga-Satake variety from the Clifford
algebra of a weight two Hodge structure of K3 type. To prepare ourselves for the classical Kuga-Satake
construction, we will first recall the definition of a Clifford algebra and its remarkable subgroup called
the spin group. From now on, we replace the phrase “Kuga-Satake” by the abbreviation “KS”.
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4.1 Clifford algebra

The main references for Clifford algebras over a field and for spin groups are [Harv, Part II] (over R),
[LM, Chapter I], [La, Chapter V] and [Hu, Section 4.1]. We will extend their definitions of a Clifford
algebra to one over Z.

Let R be Z, Q, R or C. Let V be a R-module of rank n equipped with a non-degenerate symmetric
bilinear form b : V × V → R (thus a quadratic form q via the polarisation formula). Suppose V is of
signature (n+, n−) and O(V ) is the orthogonal group of V .

Definition 4.1.1. [Hu, Section 4.1.1]
The Clifford algebra Cl(V ) over (V, q) is defined as

Cl(V ) := T(V )/I(V )

where T(V ) :=
∑∞

k=0

⊗k V is the tensor algebra over V , and I(V ) is the ideal generated by elements
in the form

v ⊗ v − q(v).

Any element v1v2 · · · vd in Cl(V ) which is a product of d non-scalar elements in V is called a simple
element of degree d

Remark 4.1.2. [Harv, Equation 9.6] The ideal I(V ) determines the rules of Clifford multiplication,
which is the multiplication operation of Cl(V ). From the polarisation formula, v⊗v− q(v) ∈ I(V ) gives
the relation u⊗ v+ v⊗u− 2b(u, v) ∈ I(V ). So considering u, v ∈ Cl(V ), we have u · v+ v ·u = 2b(u, v).

Note that the tensor algebra T (V ) has a natural Z-grading: for any integers k, l ≥ 0,

T k(V )⊗ T l(V ) ≃ T k+l(V ),

where T k(V ) :=
⊗k V is the degree k subspace of T (V ). Moreover, since any element in the ideal

I(V ) < T (V ) has even degree, the Clifford multiplication respects parity of degree in T (V ). Therefore
the Clifford algebra has a Z2-grading

Cl(V ) = Cl+(V )⊕ Cl−(V ),

where Cl+(V ) is the even part of Cl(V ) spanned by the classes of the even degree elements in T(V ),
and Cl−(V ) is the odd part spanned by the classes of the odd degree elements in T(V ).

Sometimes we forget the Clifford multiplication and view Cl(V ) as a vector space/module. By the
following theorem, we may identify the Clifford algebra Cl(V ) over V of dimension/rank n with the
exterior algebra

∧
V :=

∑n
k=0

∧k V as graded R-vector spaces/modules.

Theorem 4.1.3. [LM, Proposition 1.3]
There is a canonical isomorphism

∧
V → Cl(V ) of vector spaces/modules such that on each simple

element in
∧
V of degree d, it is given by

v1 ∧ · · · ∧ vd 7−→
∑
σ∈Sd

sign(σ)vσ(1) · · · vσ(d),

where the sum is over Sd, the symmetric group of degree d.

This isomorphism preserves (the parity of) the degrees of the simple elements, so it respects the
Z2-grading of the Clifford algebra. Therefore, it is clear that

dim(Cl(V )) = dim(
∧

V ) = 2n.

There is a universal property for Clifford algebras.
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Lemma 4.1.4 (The Fundamental Lemma for Clifford algebras). [Harv, Lemma 9.7]
Let A be an associative algebra with unit over R. Let φ : V −→ A be a linear map from V into A.

If for all v ∈ V we have
φ(v)φ(v)− q(v) · 1A = 0,

then φ has a unique extension to an algebra homomorphism of Cl(V ) into A.

Proof. There is also a universal property for tensor algebra that extends the linear map φ on V to an
algebra homomorphism T(V ) → A which we also denote by φ. In particular, for any u, v ∈ V , then
u⊗ v ∈ T(V ), and set

φ(u⊗ v) := φ(u)⊗ φ(v).

By the hypothesis, elements in the form v ⊗ v ∈ T(V ) lie in the kernel of φ, thus φ descends to an
algebra homomorphism Cl(V ) → A.

The Fundamental Lemma for Clifford algebras implies that any linear map between two R-modules
that preserves their associated symmetric bilinear forms extends uniquely to an algebra homomorphism
between the respective Clifford algebras. Moreover [Harv, Theorem 9.20], automorphisms of Cl(V ) are
exactly those extended from the isometries of V . In this way, a Clifford algebra admits a distinguished
automorphism, the canonical automorphism.

Definition 4.1.5. [LM, Equation 1.7]
The canonical automorphism (·)− : Cl(V ) −→ Cl(V ) is an involution defined by extending the

isometry v 7→ −v on V to an automorphism on Cl(V ).

Note that (·)− acts trivially on the even part Cl+(V ). On the odd part Cl−(V ), (·)− acts by
multiplication by −1R.

A Clifford algebra also admits a special anti-automorphism.

Definition 4.1.6. [LM, Equation 1.15]
Consider the involution (·)t : T(V ) → T(V ) such that on any simple element v1 ⊗ v2 ⊗ · · · ⊗ vd,

(v1 ⊗ v2 ⊗ · · · ⊗ vd)
t = vd ⊗ · · · ⊗ v2 ⊗ v1.

Since (·)t sends the ideal I(V ) to itself, it descends to an involution on Cl(V ) called the transpose,
which we still denote by (·)t.

Clearly (·)t is an anti-automorphism: for all x, y ∈ Cl+(V ), we have (x · y)t = yt · xt. Also, given a
homogeneous element x ∈ Cl(V ) of degree d, that is x is the sum of finitely many simple elements of
the same degree d, then

xt :=

{
x, if d ≡ 0, 1 mod 4

−x, if d ≡ 2, 3 mod 4

Note that the above two involutions commute. We denote their composition by

(·)∗ := ((·)t)− = ((·)−)t. (5)

Like any Z2-graded algebra, a Clifford algebra is equipped with a graded tensor product. For
any Z2-graded algebra A, we denote A = A0 ⊕ A1, where Ai is the component of elements of degree i
for i = 0, 1. We define the degree function ∂ for an element a ∈ A such that ∂(a) = i if a ∈ Ai. We
give the definition of a graded tensor product as follows.
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Definition 4.1.7. [La, Section IV.2]
The graded tensor product of two Z2-graded algebras A and B denoted by A ⊗̂B is also a Z2-graded

algebra, with the component of degree i elements, where i = 0, 1 given by

(A ⊗̂B)i :=
∑

j+k≡i mod 2

(Aj ⊗Bk).

The multiplication on A ⊗̂B is defined by

(a⊗ b)(a′ ⊗ b′) = (−1)∂(b)∂(a
′)aa′ ⊗ bb′

for any homogeneous elements a, a′ and b, b′ in A and B respectively.

In particular, the graded tensor product of two Clifford algebras is also a Clifford algebra.

Theorem 4.1.8 (Gluing of Clifford algebras). [La, Lemma 1.7, Theorem 1.8]
Let (V, q) and (V ′, q′) be two R-vector spaces/modules equipped with a quadratic form q and q′

respectively. Then by the Fundamental lemma for Clifford algebra, the linear map

V ⊕ V ′ −→ Cl(V ) ⊗̂Cl(V ′)

(v, v′) 7−→ v ⊗ 1+ 1⊗ v′

extends to a morphism of Z2-graded algebras

f : Cl(V ⊕ V ′)
≃−−→ Cl(V ) ⊗̂Cl(V ′),

which is in fact an isomorphism.

A Clifford algebra with Clifford multiplication can be identified with (a sum of) matrix algebras
with the usual matrix multiplication as a Z2-graded algebra. The corresponding Z2-grading for the
matrix algebras is called the checkerboard grading.

Definition 4.1.9. [La, Section IV.2]

The algebra of k-by-k matrices over a Z2-graded algebra A, denoted by M̂d(A), is a Z2 graded algebra
with respect to the checkerboard grading. Its degree 0 part and its degree 1 part are respectively given by

(M̂d(A))0 =


A0 A1 A0

A1 A0 A1

A0 A1 A0
. . .

 , (M̂d(A))1 =


A1 A0 A1

A0 A1 A0

A1 A0 A1
. . .

 .

Remark 4.1.10. When A = R is a ring, then A is concentrated at degree 0, i.e. A1 = 0.

Remark 4.1.11. A matrix algebra Md(A) over a Z2-graded algebra A admits a graded tensor product
⊗̂ similar to what is described in Definition 4.1.7. In this case, the tensor product ⊗ in the definition
is replaced by the Kronecker product introduced in Theorem 3.3.12.

Denote by R(n+,n−) the R-module of rank n equipped with the standard quadratic form of signature
(n+, n−) given by

v21 + · · ·+ v2n+
− v2n++1 − · · · v2n.

First we restrict ourselves to R = R. Denote Cl(R(n+,n−)) by Cl(n+, n−). Then for any vector space
V ≃ R(n+,n−), we have Cl(V ) ≃ Cl(n+, n−). For 0 ≤ n ≤ 2, one can determine an explicit isomorphism
between Cl(n+, n−) and a matrix algebra respecting their respective Z2-gradings for each pair (n+, n−)
by applying [Harv, Exercise 9.3, 9.4]. For larger n, the corresponding isomorphism of graded algebras for
Cl(n+, n−) can be derived by repeatedly gluing up the Clifford algebras of smaller dimensions, applying
Theorem 4.1.8.

Moreover, the following theorem allows the even part of a Clifford algebra to be identified with a
(sum of) matrix algebra.
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Theorem 4.1.12. [Harv, Theorem 9.38, 9.43]

Cl+(n+ + 1, n−) ≃ Cl(n+, n−)

Cl(n+, n− + 1) ≃ Cl(n−, n+ + 1)

The isomorphisms in Theorem 4.1.12 between Clifford algebras and matrix algebras only respect
the involution (·)−, which is just multiplication by −1 in terms of matrices. They do not respect the
other two involutions introduced above.

For convenience, in Table 5 we list the (sums of) matrix algebras that are isomorphic to Cl(n+, n−)
for 0 ≤ n+, n− ≤ 6. In fact, there is a pattern for these matrix algebras isomorphic to Cl(n+, n−)
depending on (n+ − n−) mod 8: for details, see [Harv, Theorem 11.3, Table 11.5].

n+

n− 0 1 2 3 4 5 6

0 0 R⊕2 M2(R) M2(C) M2(H) M2(H)⊕2 M4(H)

1 C M2(R) M2(R)⊕2 M4(R) M4(C) M4(H) M4(H)⊕2

2 H M2(C) M4(R) M4(R)⊕2 M8(R) M8(C) M8(H)

3 H⊕2 M2(H) M4(C) M8(R) M8(R)⊕2 M8(R) M16(C)

4 M2(H) M2(H)⊕2 M4(H) M8(C) M16(R) M16(R)⊕2 M32(R)

5 M4(C) M4(H) M4(H)⊕2 M8(H) M16(C) M32(R) M32(R)⊕2

6 M8(R) M8(C) M8H M8(H)⊕2 M16(H) M32(C) M64(R)

Table 5: Matrix algebras isomorphic to Cl(n+, n−) for 0 ≤ n+, n− ≤ 6

By restricting to R = Q, we have a similar isomorphism from ClQ(n+, n−) := Cl(Q(n+,n−)) to the
corresponding matrix algebra A in Table 5 but with entries in Q,Q[i] or HQ. When we further restrict
to R = Z, the image of ClZ(n+, n−) := Cl(Z(n+.n−)) under φ is contained in a maximal order in the
Q-algebra A.

Definition 4.1.13. [Rein, Section 2.8]
An order in the Q-algebra A is a subring Λ of A with the same multiplicative identity as A, such

that Λ is a lattice in A and Λ spans the vector space A over Q.
An order in A is maximal if it is not properly contained in another order in A.

The notion of maximal orders arises [Rein, Section 4a] as the integral structure in a number field
A in the work of Dedekind: the integral closure of Z in A is the unique maximal order in A, and its
elements are called algebraic integers. An important example [CS, Section 5.1] of a maximal order in
the Q-algebra HQ is the Hurwitz integers

o := Z
〈
h :=

1 + i+ j + k

2
, i, j, k

〉
with a quadratic form q given by the norm function z 7→ zz̄. The matrix of the associated symmetric
bilinear form b with respect to the generators {h, i, j, k} is

1

2


2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

 .

Moreover [Rein, Theorem 8.7], Mn(o) is a maximal order in Mn(HQ) for all integer n > 0.
Lastly, when R = C, any non-degenerate quadratic forms are equivalent. See [LM, Chapter I,

Table I] for the corresponding identifications of Cl((Cn, q)) with matrix algebras.
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4.2 Spin group and representations

In this subsection, we consider R = R. Let V be a n-dimensional R-vector space equipped with a
non-degenerate quardratic form q. We define a few groups, including the spin group, contained in the
Clifford algebra Cl(V ) with representations given by the groups mentioned in Definition 2.2.4(iii–iv).
In particular, if (V, q) is a quadratic space of signature (2, 6), then the Lie groups SO+(2, 6) and SO∗(8)
associated to LSVs of type IV6 and II4 are involved as two inequivalent representations of the identity
component of the spin group Spin+(2, 6) ⊂ Cl+(2, 6). Later in Section 5, we will construct a map
between LSVs of type IV6 and of type II4, and show that the map is locally equivalent to switching
from one representation of Spin+(2, 6) to another.

Definition 4.2.1. [LM, Section I.2], [Harv, Section 10], [Hu, Section 4.1.2]
Let Cl∗(V ) be the multiplicative group of units of the Clifford algebra Cl(V ). The twisted adjoint

representation of Cl∗(V ) is given by

Ãd: Cl∗(V ) −→ GL(Cl(V ))

x 7−→ Ãdx(·) :=
[
y 7→

(
x− · y · x−1

)]
.

The Clifford group associated to (V, q) is defined to be

CPin(V ) :=
{
x ∈ Cl∗(V ) : Ãdx(v) ∈ V for all v ∈ V

}
.

The special Clifford group (or the classical companion group) is defined to be

CSpin(V ) := CPin(V ) ∩ Cl+(V ).

The pin group is a subgroup of the Clifford group

Pin(V ) := {x ∈ CPin(V ) : x = v1 · · · vd such that q(vi) = ±1 for all i = 1, · · · , d}
= {x ∈ CPin(V ) : xx∗ = 1}

The spin group (or the reduced Clifford group) is a subgroup of the special Clifford group

Spin(V ) := Pin(V ) ∩ Cl+(V ).

Equivalently, the spin group is defined by the short exact sequence

1 −→ Spin(V ) −→ CSpin(V ) −→ R∗ −→ 1.

If CSpin(V ) (resp. Spin(V )) is not connected, then its identity component is denoted by CSpin+(V )
(resp. Spin+(V )).

Remark 4.2.2. To avoid any confusion, we would like to emphasise that the + decoration in CSpin+(V )
and Spin+(V ) is used in similar sense as the + decoration in SO+(V ), rather than as in Cl+(V ).

By the definition of the Clifford group, it is natural to consider the restriction of the twisted adjoint
representation to the Clifford group and its subgroups. In fact [LM, Equation I.2.22], there is a nice

geometric interpretation of the image Ãd(Pin(V )): for all v ∈ V , Ãd(v) is the element in O(V ) that
corresponds to the reflection along v⊥. Since any element of O(V ) is a composition of reflections, we

have Ãd(Pin(V )) = O(V ). We also know the kernels and the images of Ãd restricted to all three groups.
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Theorem 4.2.3. [LM, Proposition 2.4, Theorem 2.9, 2.10], [vG1, Section 6.2]
There are short exact sequences

1 −→ R∗ −→ CPin(V )
Ãd−−−→ GL(V ) −→ 1

1 −→ R∗ −→ CSpin+(V )
Ãd−−−→ SO+(V ) −→ 1

1 −→ {±1} −→ Pin(V )
Ãd−−−→ O(V ) −→ 1

1 −→ {±1} −→ Spin+(V )
Ãd−−−→ SO+(V ) −→ 1,

where GL(V ) is the group of invertible linear maps on V (not necessarily preserving the quadratic form
q); O(V ) and SO+(V ) are the orthogonal group and the identity component of the special orthogonal
group of (V, q) respectively.

In particular, the twisted adjoint representation restricted to the pin group (resp. spin group) is a
double cover map over the orthogonal group (resp. special orthogonal group). Note that the twisted
adjoint representation restricted to the spin group is simply the adjoint action.

In another direction, notice that the construction of the isomorphisms from Clifford algebras Cl(V ) ≃
Cl(n+, n−) to (sum of) matrix algebras in Section 4.1 gives a different matrix representation of the
Clifford algebras [LM, Section I.5]. With reference to the pattern shown in Table 5 (which extends to
all cases of (n+, n−)), we have isomorphisms of algebras{

φ : Cl(n+, n−)
≃−→ Md(W ) if (n+ − n−) ̸≡ 3 mod 4

φ : Cl(n+, n−)
≃−→ Md(W+)⊕Md(W−) otherwise,

respecting the usual left multiplications [vG1, (6.2)].
In the first case, if (n+ − n−) ̸≡ 3 mod 4, then φ itself is a simple representation i.e. there is no

non-trivial sub-representation. The representation φ is called the spin representation of Cl(n+, n−).
The vector space W is called the space of spinors of the spin representation [Harv, Definition 11.10].
There is only one simple representation of a simple Clifford algebra up to equivalence [LM, Theorem 5.6]:
i.e. if (φ′,W ′) is another simple representation, then there is an R-linear map between W and W ′ that
respects the representations.

In the second case, when (n+ − n−) ≡ 3 mod 4, let π+ and π− be the projection maps from
Md(W+)⊕Md(W−) to the first and the second component respectively. Then φ+ := π+ ◦φ and φ− :=
π− ◦ φ are two simple representations of the Clifford algebra called the half-spin representations.
Again, the vector spaces W+ and W− are called the spaces of half-spinors of the two representations
respectively. In fact, the two half-spin representations are inequivalent [LM, Proposition 5.9], and are
sometimes distinguished as the positive and the negative half-spin representation respectively.

A (half-)spin representation restricts to a simple matrix representation on (the identity component
of) the spin group. We also know their kernels.

Theorem 4.2.4. [Harv, Theorem 13.8]
Consider the spin group Spin(V ) ⊂ Cl+(V ), where the vector space V ≃ Rn is of signature (n+, n−).
If (n+ − n−) ̸≡ 0 mod 4, then (by Theorem 4.1.12) up to equivalence there is only one simple

representation of the even part of the Clifford algebra Cl+(V ), which is the spin representation φ.
Restricting φ to Spin+(V ), we have the left exact sequence

1 −→ {±1} −→ Spin+(V )
φ−−→ GL(W ).

Otherwise, if (n+ − n−) ≡ 0 mod 4, then there are two inequivalent simple representations of
Cl+(V ), which are the two half-spin representations φ+ and φ−. Restricting to Spin+(V ), we have the

49



following left exact sequences

1 −→ Z2 ≃ {1, λ} −→ Spin+(V )
φ+−−−→ GL(W+)

1 −→ Z2 ≃ {1,−λ} −→ Spin+(V )
φ−−−−→ GL(W−).

Again the (half-)spin representations are degree two maps.

Remark 4.2.5. By Theorem 4.1.12,

Spin(V ) ⊂

{
Cl+(n+, n−) ⊂ Cl(n+ − 1, n−), if n+ > 0;

Cl+(n−, n+) ⊂ Cl(n− − 1, n+), if n+ = 0.

It is clear that (n+ − 1)− n− ≡ 3 mod 4 if and only if n+ − n− ≡ 0 mod 4.

Remark 4.2.6. [FH, Exercise 20.36]
The Klein four-group {±1,±λ} is the centre of Spin+(V ). Therefore, under the identification

Cl+(V )
φ−−−→
≃

Md(W+)⊕Md(W−),

it is clear that φ(λ) = (D1, D2) where D1 and D2 are two diagonal matrices. Let D2 = diag(x1, · · · , xd).
By definition of the spin group, we have D2 squares to 1d, so xk = ±1 for all k = 1, · · · , d. In fact, each
xk acts on a copy of W− (see proof of Theorem 5.1.6), so their actions have to be the same and D2 is
either 1d or −1d. Similarly D1 = ±1d. Since the positive half-spin representation is just the projection
π+ on Md(W+)⊕Md(W−), we have D1 = ±1d and D2 = ∓1d.

Finally, let us consider the special case when (V, q) ≃ R(2,6). We write CPin(2, 6) for CPin(V ), and
similarly for all subgroups of CPin(V ) defined in Definition 4.2.1. Consulting [Harv, Theorem 13.8],
the image of Spin+(2, 6) under each half-spin representation is SO∗(8). Therefore we have the exact
sequences in Diagram 2.

Spin+(2, 6)

SO+(2, 6) SO∗(8)

{±1}{1, λ}

1

1

1

1

Ãd φ+

Diagram 2: Two inequivalent representations of the spin group.

Since both Ãd and φ+ are degree two maps, the diagram gives local isomorphisms between the groups
SO+(2, 6), Spin+(2, 6) and SO∗(8), thus the Lie algebra isomorphism

so+(2, 6) ≃ so∗(8)

mentioned at the end of Section 2.3.
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4.3 KS construction

In this subsection, we explicitly construct a KS variety from a lattice polarised K3 surface. The main
references are [Hu, Section 4.2] and [vG1], where the KS construction is given in greater generality: see
Remark 4.3.3.

Let (X, j : P ↪→ Pic(X)) be a K3 surface polarised by the lattice P of signature (1, r − 1). Let
T := P⊥

ΛK3
be the transcendental lattice of X, which is of signature (2, 20 − r). The Clifford algebra

Cl(T ) over T is a lattice of rank 222−r. The quotient T := Cl+(TR)/Cl
+(T ) is therefore a torus of real

dimension 221−r. Moreover, it has a complex structure and a polarisation, so in fact T is an abelian
variety.

We first construct a complex structure for T as in [Hu, Section 4.2.1]. Recall the transcendental
lattice (T, q) inherits a weight two Hodge structure from H2(X,Z) with the intersection form. Pick a
generator σ = e1 + ie2 of T 2,0 such that e1, e2 ∈ TR and q(e1) = 1. Since q(e1 + ie2) = 0, the vectors e1
and e2 are orthonormal. Set J = e1e2.

Lemma 4.3.1. [vG1, Lemma 5.5, Proposition 6.3.1]
J is an element in the spin group Spin+(TR) satisfying J = e1e2 = −e2e1 and J2 = −1. Moreover,

J is independent of the choice of the orthonormal basis e1, e2.

Under the spin representation, J ∈ Spin+(TR) then gives a complex structure on Cl+(TR) by left
multiplication, which is in accordance with Remark 3.3.15. This gives a weight one Hodge structure on
Cl+(TR) as the decomposition into the ±i eigenspaces of J .

Next, we give a construction of a polarisation on the complex torus (T, J). Choose two orthogonal
vectors f1, f2 ∈ T with q(fi) > 0, and let α = f1f2 . Consider the pairing E with

E : Cl+(T )× Cl+(T ) −→ Z
(v, w) 7−→ tr(αv∗w),

where tr is the trace function for linear maps, and v 7→ v∗ is the involution on Cl+(T ) defined in
Section 4.1 Equation (5). One can check [vG1, Proposition 5.9] that ER, the real extension of E given
in Theorem 3.1.11, is an alternating form. The symmetric form ER(·, J ·) is either positive or negative
definite depending on the sign of α.

Therefore, (Cl+(TR)/Cl
+(T ), J, E) is an abelian variety of complex dimension 220−r. We call this

abelian variety aKuga-Satake variety, and denote it by KS(X,α). We will suppress α in the notation,
especially if it is clear what α is or if the choice of polarisation class is unimportant.

Remark 4.3.2. Note that the vectors e1 and e2 defining the complex structure J in general do not
belong to T . Still, we can choose f1 and f2 in T to be scalar multiples of e1 and e2 respectively.

Remark 4.3.3. In most literature, the starting ingredient of the KS construction is a Hodge structure
of K3 type, rather than a K3 surface. A weight two Hodge structure on V of dimension n is said to
be a Hodge structure of K3 type if dimV 2,0 = 1 and V is equipped with a quadratic form q of
signature (n − 2, 2) which is positive definite on V 1,1. In particular, the second cohomology of a K3
surface together with the intersection form has a Hodge structure of K3 type. From a Hodge structure of
K3 type V one arrives at a KS variety replacing T in the above steps by V and negating the quadratic
form q. In fact, it does not matter whether we choose the associated quadratic form to be q or −q,
because Cl+(n+, n−) ≃ Cl+(n−, n+) by Theorem 4.1.12.

If the Hodge structure of K3 type on V is only defined on Q but not Z, then a KS variety is only
defined up to isogenies. On the other hand, our more restrictive approach of starting from the Z-Hodge
structure of the transcendental lattice makes the KS variety an abelian variety, instead of just an isogeny
class of abelian varieties.
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Remark 4.3.4. In fact, one can also define the KS variety from the odd part of the Clifford algebra
Cl−(VR) instead of the even part. Concerning this, [Hu, Remark 4.2.3] says that for any lattice V , fixing
a vector w in V gives an isomorphism of R-vector space

Cl+(VR)
≃−→ Cl−(VR)

v 7−→ v · w

This isomorphism induces an isogeny from the KS variety defined from Cl+(V ) to the one defined from
Cl−(V ).

By Remark 4.3.3, given a K3 surface X, we may construct a KS variety from any sublattice T of
H2(X,Z) of signature (2, n− 2) where 2 ≤ n ≤ 22. We denote such a KS variety as KS(T ) (suppressing
the notion of α). Before we end the section, let us give a lemma concerning these more general KS
varieties.

Lemma 4.3.5. [Mo2, Sections 4.4 and 4.7]
(i) Let X be a K3 surface with transcendental lattice T . Let T ′, T ′′ be lattices such that T ⊂ T ′ ⊂

T ′′ ⊂ H2(X,Z), and let d = dimQ((T
′′/T ′)⊗Q). Then

KS(T ′′) ∼ KS(T ′)2
d
.

(ii) Let X be a K3 surface with a Shioda-Inose structure associated to an abelian surface A. Then

KS(H2(X,Z)) ∼ A219 .

The proof/explanation of Lemma 4.3.5(ii) in [Mo2, Section 4.7] depends on the statement in part
(i), which is explained in [VV, Remark 2.4]. Let us repeat the proof here.

Proof. The isogeny of KS varieties is induced by the following isometries of lattices

Cl+(T ′′) ≃
(
(Cl+(T ′)⊗ Cl+((T ′)⊥)⊕ (Cl−(T ′)⊗ Cl−((T ′)⊥)

)
≃ 2d−1(Cl+(T ′)⊕ Cl−(T ′))

≃ 2d · Cl+(T ′).

The second isometry is because (Cl+(T ′)⊗Cl+((T ′)⊥) is isomorphic to the direct sum of rk(Cl+((T ′)⊥)
copies of Cl+(T ′); and the third isometry is due to Remark 4.3.4.

5 KS varieties associated to families of K3 surfaces of Picard rank 14

In Section 5.1, we will modify the KS construction to give a map F from a modular variety of K3
surfaces of Picard rank 14 to a modular variety of abelian 8-folds with totally definite quaternion
multiplication. Following this in Section 5.2, we will further lift the map F to an isomorphism F̃
between the corresponding HSD overspaces as mentioned in Section 2.3.

5.1 KS construction on the level of families

5.1.1 General idea

In Section 4.3, we have constucted a KS variety KS(X,α) = (T, J, E) from a lattice polarised K3 surface
X. We first lift the construction to a non-canonical map from a family of K3 surface to a family of KS
varieties, and from there derive the map F by making some choices.

Although both T and J depend on the weight two Hodge structure on H2(X,Z), there are a lot of
choices for the polarisation form E. In fact, the number of polarisation classes (unique up to scalar)
depends on the size of EndsQ(A), the set of symmetric idempotents in EndQ(A).
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Theorem 5.1.1. [BL, Proposition 5.2.1]
Let A be an abelian variety. Then there is an isomorphism of Q-vector spaces

NSQ(A) ≃ EndsQ(A).

To make a consistent choice of a KS variety associated to each K3 surface in a family, we may
choose the same α ∈ Cl+(T ) for every member X to give the same alternating form E. Although
the corresponding polarisation class in NSQ(KS(X)) also depends on the Weil operator which is the
positive complex structure J of X, the polarisation type remains constant as J varies in the family
by the same argument in Lemma 3.2.19. So by fixing α (up to sign) in the KS construction, the KS
varieties associated to the family of K3 surfaces share the same polarisation type, thus they form a
family of KS varieties which lies in a family of polarised abelian varieties.

As explained in Section 2.3, we hope to construct a map from a LSV of type IV6 to a LSV of type
II4. That is, a map from a modular variety of K3 surfaces of Picard rank 14 to a modular variety of
polarised abelian 8-folds with totally definite quaternion multiplication. We will show that such a map
can be obtained by modifying the above KS construction.

Let KP be a modular variety of K3 surfaces with a rank 14 polarisation lattice P , and let T be
the transcendental lattice of the family which has signature (2, 6). We fix a choice of α ∈ Cl+(T ), and
associate to each K3 surface X in KP the KS variety KS(X) with polarisation determined by α. The
following theorem shows how we derive an abelian 8-fold with totally definite quaternion multiplication
from the KS variety associated to a very general K3 surface in the family.

Theorem 5.1.2. For a very general K3 surface X in the family KP , there is a simple decomposition
of KS(X) given by

KS(X) ∼ A4
+ ×A4

−,

where A+ and A− are non-isogenous simple abelian 8-folds. Moreover,

EndQ(A+) ≃ HQ ≃ EndQ(A−).

Proof. Recall in Corollary 3.3.3 that a simple decomposition of an abelian variety A and the endomor-
phism algebra of each simple factor can be read off from EndQ(A) as a sum of some simple matrix
algebras over a division ring. Denote by EndHodge(V ) the Q-vector space of endomorphisms of Hodge
structures on V . An endomorphism of an abelian variety is an endomorphism of its Hodge structure,
i.e. we have

EndQ(KS(X)) ≃ EndHodge(Cl
+(TQ)).

From [vG1, Corollary 3.6], we have

EndHodge(Cl
+(TQ)) ≃ EndMT(Cl

+(TQ)),

where for any rational Hodge structure on V , EndMT(V ) are the vector space endomorphisms that
commute with the action of the Mumford-Tate group MT(V ):

EndMT(V ) = {M ∈ End(V ) : Mg = gM for all g ∈ MT(V )} .

On the other hand, [vG1, Lemma 6.5] we have

Cl+(TQ) ≃ EndCSpin+(Cl
+(TQ)),

where
EndCSpin+(Cl

+(TQ)) =
{
M ∈ End(TQ) : Mg = gM for all g ∈ CSpin+(TQ)

}
.
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If MT(Cl+(TQ)) = CSpin+(TQ), then by considering Table 5 which says

Cl+(TQ) ≃ M4(HQ)⊕M4(HQ),

so we are done: KS(X) ∼ A4
+×A4

− with dimC(A+) = dimC(A−) = 8. Indeed by a result of Zarhin [Hu,
Theorem 3.3.9, 6.4.9], for a very general K3 surface X, we have

MT(TQ) = MT(H2(X,Q)) = O(TQ).

Therefore by [vG1, Proposition 6.3], we have MT(Cl+(TQ)) = CSpin+(TQ).

Remark 5.1.3. [vG1, Proposition 6.3]
In fact, MT(TQ) ⊆ O(TQ) and MT(Cl+(TQ)) ⊆ CSpin+(TQ) for all K3 surfaces in the family.

Therefore the corresponding Hodge groups satisfy Hdg(TQ) ⊆ SO+(TQ) and Hdg(Cl+(TQ)) ⊆ Spin+(TQ).

We can fix a representation Φ of HQ to be Φstd for all x ∈ HQ as in Theorem 3.3.12 such that the
Rosati condition is satisfied. By doing so, we give the abelian 8-folds A+ and A− a unique endomorphism
structure.

Therefore, to associate an abelian 8-fold with definite quaternion multiplication to a very general
K3 surface X, we may choose an isogeny f : KS(X) ∼ A1×· · ·×A8 which gives a simple decomposition
of KS(X), and then project to down to one of the simple factors Ak. This is again not a canonical
construction, but we can make the choices of f and k consistently for all very general X in KP as
described in the following section.

5.1.2 Explicit construction

We start with exploring all possibilities of the isogeny f for X very general. By [vG1, Lemma 6.5],
the action of Cl+(TQ) ≃ M4(HQ) ⊕M4(HQ) on itself is by term-wise right multiplication, which is in
accordance with Remark 3.3.15. Therefore we have the following isomorphism of vector spaces,

Cl+(TQ) ≃ W1 ⊕ · · · ⊕W8,

where each Wi is a 16-dimensional Q-vector space spanned by the i-th column in M4(HQ) ⊕M4(HQ).
Note that each Wi for i = 1, · · · , 4 (resp. for i = 5, · · · 8) is the space of positive (resp. negative)
half-spinors. By restricting the above isomorphism of vector spaces to the lattice Cl+(T ), we have

Cl+(T ) ≃ (WZ
1 )⊕ · · · ⊕ (WZ

8 ),

where each WZ
i is a rank 16 lattice. For each i = 1, · · · , 8, this gives the complex torus Ti :=(

(Wi)R/W
Z
i , Ji

)
, where Ji is the complex structure on the real torus (Wi)R/W

Z
i obtained by restricting

the complex structure J on KS(X). Therefore, by Theorem 3.3.2, if KS(X) ≃ A1 × · · · ×A8 is a simple
decomposition of KS(X), then we have Ai isogenous to Ti as complex tori (up to re-ordering). In
particular, knowing the lattices WZ

i is enough to recover the complex torus structures for the Ai. Based
on this fact, we have the following recipe to obtain a simple decomposition of KS(X) up to isogenies.
It is enough to

(1) fix an explicit algebra isomorphism φ : Cl+(TQ) ≃ M4(HQ)⊕M4(HQ);

(2) find eight symmetric idempotents ε1, · · · , ε8 of Cl+(TQ) such that for the integers d1, · · · , d8 as
described in Theorem 3.3.1, the images Λ′

i := diεi(Cl
+(T )) are rank 16 lattices, and together these

lattices span Cl+(TQ) over Q .
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After making the above choices, then for each real torus (Λ′
i)R/Λ

′
i for i = 1, · · · , 8, we can define a

complex structure Ji as the restriction of J on it. This gives a complex torus Ti := ((Λ′
i)R/Λ

′
i, Ji).

The polarisation E of KS(X) also restricts to a polarisation Ei for Ti, and it has to be the unique
one up to scalar multiples by Theorem 5.1.1 and Theorem 3.3.1. Therefore we have the abelian 8-fold
Ai ∼ (Ti, Ji, Ei). We also have an isogeny f that gives the simple decomposition of KS(X), which as
an isogeny of complex tori is given by

f : KS(X) −→ T1 × · · · × T8

[p] 7−→ ([ε1(p)], · · · , [ε8(p)]) .

Moreover, we know for which i’s the complex torus Ti is isogenous to A+. This is because φ(Λ′
i)

can only be non-zero in exactly one copy of M4(H) but not both, otherwise Ti is a non-simple torus.

Remark 5.1.4. If Ai ∼ A+, and if we consider J as the image of the imaginary unit i under h where
h : C∗ → CSpin+(TR) ⊂ GL(Cl+(TR)), then the complex structure Ji as a linear operator on the positive
half-spin representation (W+)R is given by (φ+ ◦ h) (i).

Remark 5.1.5. Since there is a unique polarisation class up to scalars for each simple factor Ai of
KS(X) = KS(X,α) by Theorem 5.1.1, the choice of α we made is unimportant: for any polarisation
form Q of the KS variety we started with, it has to restrict to the same polarisation form Qi of Ai up
to scalars.

In fact, the only substantial choice to be made in the recipe is the isomorphism φ. There is an
obvious choice of the symmetric idempotents εi’s given φ. Let Ei,j ∈ M4(HQ) be the matrix with 1 at
the (i, j)-th entry as the only non-zero entry. The elements in M4(HQ)⊕M4(HQ) in the form of

(E1,1, 0), · · · , (E4,4, 0), (0, E1,1), · · · , (0, E4,4)

are symmetric idempotents. Pulling back to Cl+(TQ) via φ gives a set of εi’s satisfying (2). Moreover,
φ only depends on the transcendental lattice T , but not the particular member in KP we started from.
Therefore, fixing the isomorphism φ alone gives a uniform choice of isogeny f across all very general
members in the family K as in Diagram 3. Furthermore, the order of the simple factors Ai’s in the
simple decomposition of KS(X) is also fixed by the order of εi’s, thus the choice of φ. So we may always
choose the first simple factor A1 in the decomposition f(KS(X)) to be assigned to each very general
K3 surface X in KP . All such A1’s, as abelian 8-folds with totally definite quaternion multiplication,
have the same attributes M and T as in Section 3.3.3. This is because both attributes only depend on
the representation Φstd, the real torus (Λ′

1)R/Λ
′
1 and the polarisation form E1, which are the same for

every A1 obtained from our modified KS construction.
Away from the very general members, the same choice of φ still leads us to the same choice of the

ε’s, and therefore an isogeny from KS(X) to a product of eight abelian 8-folds. However, these abelian
8-folds are not very general, and they show exceptional behaviours. For example they may be no longer
simple, or all of them belong to the same isogeny class. This completes our proof for the following
theorem.

Theorem 5.1.6. An isomorphism of algebras

φ : Cl+(TQ) ≃ M4(HQ)⊕M4(HQ)

induces a map F from KP to a modular variety AM,T of polarised abelian 8-folds with totally definite
quaternion multiplication (Diagram 3).
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F : KP

∈ ∈

∈

AM,T ×AM2,T2 × · · · × AM8,T8

AM,T

X A1 ×A2 · · · ×A8

A1

π1KS(X)
f

∼

Diagram 3: A modification of the KS construction inducing a map F from a modular variety KP of
P -polarised K3 surfaces to a modular variety AM,T of abelian 8 folds with totally definite quaternion
multiplication.

5.2 Lie groups and KS construction

Recall that Diagram 2 induces a Lie algebra isomorphism so+(2, 6) −→ so∗(8), which corresponds to
an isomorphism between a type IV6 HSD and a type II4 HSD [He, X.6.4(viii)]. We will show that our
map F constructed in Section 5.1 lifts to this isomorphism F̃ of HSDs.

Let KP be the modular variety of K3 surfaces with a rank 14 polarisation lattice P and let T be
the associated transcendental lattice of signature (2,6). Let AM,T be the modular variety of polarised
abelian 8-folds with totally definite quaternion multiplication. Recall

KP ≃ ΓT \DT and AM,T ≃ ΓM,T \DM,T ,

where DT ≃ O+(2, 6)/ (SO(2)×O(6)) and DM,T ≃ SO∗(8)/U(4) are the HSD overspaces of the two
moduli varieties respectively. Let D+

T ≃ SO+(2, 6)/ (SO(2)× SO(6)) be a connected component of DT .

Theorem 5.2.1. The map F : KP → AM,T lifts to a map

F̃ : D+
T −→ DM,T .

With reference to the diagram

Spin+(2, 6)

SO+(2, 6) SO∗(8)

Ãd φ+

the map F̃ applied to an element g ∈ SO+(2, 6) corresponds to choosing an element g̃ inside the preimage

of the twisted adjoint representation Ãd
−1

(g), and then mapping g̃ to SO∗(8) via the positive half-spin
representation φ+.

Proof. Recall that DT is the period domain for polarised weight two integral Hodge structures of K3
type on the transcendental lattice T . By Remarks 3.1.7 and 5.1.3, the identity component D+

T of DT is
a set containing representations h of U that factor through SO+(TR) described in Definition 3.1.8.

On the other hand, DM,T is the period domain for polarised integral weight one Hodge structures
on Λ′

R, where Λ′ is a rank 16 lattice and a H-module (see Corollary 3.3.19 and Remark 3.3.23). It can
be identified to a set containing representations h : U → GL(ΛR) such that h(±1) act by multiplication
on ΛR = µ(Λ′)R. Each representation is uniquely determined by the Weil operator J := h(i).

Let us also denote by DCl+(T ) the period domain of weight one Hodge structures on Cl+(T ). Again by

Remark 5.1.3, it is the set of all representations h : U → Spin+(TR) such that h(±1) act by multiplication,
or equivalently the set of Weil operators J = h(i) ∈ Spin+(TR) ⊂ GL(Cl+(TR)).
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Our map F takes any K3 surface X in KP first to a KS variety KS(X,α) then to an abelian 8-fold
A1, solely by mapping the underlying Hodge structures of the objects up to isomorphisms. The lifted
map F̃ therefore should factor through DCl+(T ):

F̃ : D+
T −→ DCl+(T ) −→ DM,T

The first arrow, which is just the KS construction, corresponds [Hu, Remark 4.2.1] to the lift of rep-

resentations of U with respect to the twisted adjoint representation Ãd, requiring h̃(±1) to act by
multiplication.

U SO+(2, 6)

Spin+(2, 6)

Ãd
h̃

h

This lift of representations is not unique. The only substantial information encoded by any rep-
resentation h̃ as a weight one Hodge structure on Cl+(TR) is the Weil operator h̃(i) in Spin+(2, 6).

Suppose h lifts to h̃ and let J̃ := h̃(i) ∈ Spin+(2, 6). The preimage of h(i) under Ãd is exactly {±J̃},
and h̃′ determined by h′(i) = −J̃ also descends to h by Ãd. However, only one of J̃ and −J̃ can satisfy
the Hodge-Riemann relations as in Theorem 3.2.3: if the polarisation of the KS variety is given by the
alternating form E, then either E(·, J̃ ·) > 0 or E(·,−J̃ ·) > 0. Therefore, there is a unique choice for
the lift by further requiring h̃ to be the complex structure of a polarised abelian variety with polarisation
given by α (see Section 5.1), and the first arrow is injective.

By Remark 5.1.4, the second arrow in F̃ is the positive half-spin representation. It sends any
J̃ := h̃(i) ∈ Spin+(2, 6) to φ+(J̃) ∈ SO∗(8).

In [He, Exercise X.D.1, X.D.2(b)], an explicit holomorphic diffeomorphism between a HSD of type
IV6 and a HSD of type II4 is given. Without showing F̃ is equivalent to this explicit map, we will show
that

Theorem 5.2.2. The map F̃ : D+
T −→ DM,T is a differentiable bijection between the two HSDs.

Proof. Let us denote by
(
D+

T

)KS ⊂ DCl+(T ) the set of weight one Hodge structures on Cl+(T ) obtained
from the lift of representations described in the proof of Theorem 5.2.1. Furthermore, we denote by(
D+

T

)KS

+
the subset of

(
D+

T

)KS
requiring the members to be the positive complex structure of a KS

variety KS(T, α) with respect to its polarisation. Note that
(
D+

T

)KS

+
≃
(
D+

T

)KS
/Z2, where Z2 = {±1}.

The map F̃ is therefore given by

F̃ : D+
T

≃−−−→
(
D+

T

)KS

+

φ+−−−−→ DM,T , (6)

where the first arrow is now by definition a bijection.
It is clear that F̃ is differentiable: the second arrow is effectively a projection map and the choice of

the lift in the first arrow is continuous. This choice is equivalent to the choice of the sign of α described
in Section 5.1. Since the period point in the connected component D+

T varies continuously, the sign of

α, which is discrete, is fixed. In fact, locally F̃ is just the Lie algebra isomorphism so+(2, 6) → so∗(8)
induced by Diagram 2.

To prove the second arrow is bijective, we will need to show that the representations Ãd and φ+

are equivariant with respect to the suitable actions of the groups SO+(2, 6), Spin+(2, 6) and SO∗(8) on

D+
T ,
(
D+

T

)KS

+
and DM,T respectively.
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We may identify D+
T with a set of representations of U, or with the set of positively oriented positive

definite plane P ⊂ TR (see proof of Theorem 3.5.16). By [vG1, Remark 4.6], SO+(2, 6) ≃ SO+(TR) acts
naturally on both sets but in different ways:

• On D+
T as the set of representations h : U → SO+(TR), the group SO+(TR) acts by conjugation.

i.e. for any g ∈ SO+(TR),
g : h 7−→ hg := ghg−1.

• On D+
T as the set of planes, the group SO+(TR) acts by left multiplication. i.e. for any g ∈

SO+(TR),
g : P 7−→ gP.

Moreover, the two actions are compatible under the identification of the two sets given in [vG1, proof
of Lemma 4.4]. By definition, the left multiplication action of SO+(2, 6) on DT is transitive, so the
conjugation action of SO+(2, 6) is also transitive with SO(2) × SO(6) being the stabliser group. The
period domain D+

T can therefore be identified to the SO+(2, 6)-orbit SO+(2, 6)/ (SO(2)× SO(6)) with
respect to the conjugation action.

Similarly, the period domain DM,T as a set of representations of U can be identified with the set of
normalised period matrices {

X =

[
−Z 14
14 Z̄

]
: Z ∈ H4

}
which parametrises the lattice Λ ⊂ Cg of the abelian varieties Cg/Λ in AM,T (see Theorem 3.3.18).
The group SO∗(8) ≃ χ(U4(H)) acts naturally on the two sets (see Remark 3.3.24):

• On DM,T which is a set of representations h : U → GL(ΛR), any subgroup of O(ΛR), and in
particular χR(χ(U4(H)), acts by conjugation. Equivalently by Remark 3.2.11, DM,T is the set of
complex structures J = h(i), and χR(χ(U4(H)) also acts by conjugation.

• On DM,T as a set of normalised period matrices, the group χ(U4(H)) acts by left multiplication.

A bijection of the two sets is given in Section 3.2.2: any complex structure J on Λ′
R corresponds to

a R-linear isomorphism µ that sends any v ∈ Λ′
R to 1/2(v − iJ(v)). For any g ∈ χR(χ(U4(H))), the

complex structure gJg−1 corresponds to the isomorphism g(1/2(1 − iJ))g−1, which is equivalent to a
change of basis in R2g by left multiplication of g. So the two actions are compatible. Together with
Remark 3.3.23, we know that the conjugation action of SO∗(8) on DM,T is also transitive with U(4)
being the stabiliser group. So DM,T can be identified to the SO∗(8)-orbit SO∗(8)/U(4) with respect to
the conjugation action.

By the same argument, any subgroup of Cl+(TR) ≃ GL(Cl+(TR)) acts on
(
D+

T

)KS ⊂ DCl+(T ) by

conjugation when
(
D+

T

)KS
is identified to a set of representations of U; and by left multiplication when(

D+
T

)KS
is identified to a set of period matrices.

With the above set up, we will now give an explicit expression of the space
(
D+

T

)KS

+
. Note that for

any g, g′ ∈ Spin+(2, 6), Ãd(gg′) = (Ãd(g′))g. So the KS construction is equivariant with respect to the

conjugation action of SO+(2, 6) on D+
T and the left multiplication action of Spin+(2, 6) on

(
D+

T

)KS
.

Under the twisted adjoint representation, D+
T ≃ SO+(2, 6)/ (SO(2)× SO(6)) as a quotient group

pulls back to the group Spin+(2, 6)/Kmult, where

Kmult := (Spin(2)× Spin(6)) / {±(1, 1)} < Spin+(2, 6).

To see this, let (V, q) = V2 ⊕ V6, where V2 ≃ R2 and V6 ≃ R6 are two orthogonal real vector spaces. As
in Section 4.2, we may consider SO(V2) × SO(V6) ⊂ SO+(V ) as the group containing the composition
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of even number of reflections along v⊥ for v’s either all in V2 or all in V6. Since uv = −vu for any
u ∈ V2 ⊂ Cl+(V ) and v ∈ V6 ⊂ Cl+(V ), we have

SO(V2)× SO(V6) = {u1 · · ·u2kv1 · · · v2l : ui ∈ V2, vj ∈ V6, q(ui) = q(vj) = ±1} .

Its preimage under Ãd is

{±u1 · · ·u2kv1 · · · v2l : ui ∈ V2, vj ∈ V6, q(ui) = q(vj) = ±1}
= {(±u1 · · ·u2k)(±v1 · · · v2l) : ui ∈ V2, vj ∈ V6, q(ui) = q(vj) = ±1} / {(1, 1), (−1,−1)}

which is the group Kmult. This group is the maximal compact subgroup of Spin+(2, 6), and is connected:
fix e1, e2 ∈ V2 and e3 ∈ V6 with q(e1) = q(e2) = q(e3) = 1. Then any element w := u1 · · ·u2kv1 · · · v2l
with q(w) = 1 in Kmult is path connected to 1 as each ui is path connected to e1 and each vj is path
connected to e3. On the other hand, 1 and −1 in Kmult are also path connected by

γ : t 7−→ γ(t) := cos(πt)− sin(πt)e1e2 for t ∈ [0, 1].

Indeed, one can check that −e1e2 is path connected to −1, and the image of γ is contained in Spin(2) <
Kmult.

Since −1 ∈ Spin+(2, 6), the element −h̃ is contained in the Spin+(2, 6)-orbit of h̃ ∈
(
D+

T

)KS
, so

the left multiplication action of Spin+(2, 6) on
(
D+

T

)KS
is also transitive, and the connected maximal

compact subgroup Kmult is the stabiliser subgroup. So we have(
D+

T

)KS ≃ Spin+(2, 6)/Kmult,(
D+

T

)KS

+
≃
(
Spin+(2, 6)/ {±1}

)
/Kmult ≃ Spin+(2, 6)/ (Spin(2)× Spin(6)) .

In the other direction, the positive half-spin representation φ+ = π+ ◦ φ is equivariant with respect

to the conjugation actions of Spin+(2, 6) and SO∗(8) on
(
D+

T

)KS
and DM,T respectively. Since the two

actions of Spin+(2, 6) on
(
D+

T

)KS
by conjugation and by left multiplication are equivalent, both actions

are transitive, and the stabiliser subgroup Kconj < Spin+(2, 6) of the conjugation action is isomorphic
to Kmult. It is clear that

(φ+)∗ : Spin
+(2, 6)/Kconj −→ SO∗(8)/U(4)

is surjective with kernel {1, λ} = ker(φ+). In fact, only one of J̃ and λJ̃ belongs to
(
D+

T

)KS

+
. Assume

otherwise, and let J be φ−(J̃) the image of J̃ under the negative half-spin representation φ−. Then by
Remark 4.2.6, φ−(λJ̃) = −J . This is a contradiction to our construction because only one of J and −J
can define the positive complex structure of a member in AM,T by the same reasoning as in the proof

of Theorem 5.2.1. Therefore φ+ :
(
D+

T

)KS

+
→ DM,T is bijective.

Remark 5.2.3. It is clear that the stabiliser Kconj is in fact the group

(Spin(2)× Spin(6)) / {1, λ} < Spin+(2, 6).

The argument in the proof above is also consistent with the fact that Kconj ≃ U(4) as in [Harv, Equa-
tion 14.44].

Remark 5.2.4. By the Inverse Function Theorem, Theorem 5.2.2 implies that F is a diffeomorphism.

Surjectivity of the second arrow of F̃ implies that the Hodge group of W+ is SO∗(8) for a very general
member in AM,T . Note that the dimensions of KP and AM,T are both 6. So if KP is irreducible, for
example in the case of Theorem 3.5.20, then our map F is dominant on to an irreducible component of
AM,T . However, it is not known to us whether AM,T is irreducible or not.
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6 Application to examples

We have shown that the map F defined in Section 5.1 indeed lifts to an isomorphism F̃ between a type
IV6 HSD and a type II4 HSD induced by Diagram 2. In this section, we will apply the construction on
a few special modular varieties KP1 , · · · ,KP6 of K3 surfaces of Picard rank 14, and work out the explicit
properties of the resulting modular varieties of polarised abelian 8-folds with totally definite quaternion
multiplication. In Section 6.1, we discuss the six special families of K3 surfaces polarised by an even,
indefinite, 2-elementary lattice of rank 14; In Section 6.2.2 and 6.2.3, we will compute the attributes
introduced in Section 3.3.3 associated to the image of F for each special family; in Section 6.3 and 6.4,
we will perform computations of the map F̃ for these families in MAGMA, and study a special locus
on which F̃ exhibits exceptional behaviour.

6.1 Special families of K3 surfaces of Picard rank 14

We consider families of K3 surfaces with even, indefinite, 2-elementary polarisation lattices of rank 14.
The polarisation lattices and their complements in the K3 lattice ΛK3 can be classified by the triple
(rk, l, δ) as in Theorem 3.4.8. We can exhaust all such lattices: let X be a P -polarised K3 surface where
P is 2-elementary with rank 14, and let T be its transcendental lattice. Then T has signature (2, 6),
and is 2-elementary. i.e. AT ≃ (Z/2Z)l, where l = 2, 4, 6 or 8 by Theorem 3.4.8. With reference to
Table 4, we list in Table 6 all such transcendental lattices for each possible pair of (l, δ), as well as their
corresponding polarisation lattices with the same attributes.

l δ T P

2 0 T1 := U ⊕ U ⊕D4(−1) P1 := U ⊕D12(−1)

4 1 T2 := U ⊕ U ⊕ ⟨−2⟩⊕4 P2 := U ⊕ E8(−1)⊕ ⟨−2⟩⊕4

4 0 T3 := U ⊕ U(2)⊕D4(−1) P3 := U ⊕D8(−1)⊕D4(−1)

6 1 T4 := U ⊕ U(2)⊕ ⟨−2⟩⊕4 P4 := U ⊕D8(−1)⊕ ⟨−2⟩⊕4

6 0 T5 := U(2)⊕ U(2)⊕D4(−1) P5 := U ⊕D4(−1)⊕3

8 1 T6 := U(2)⊕ U(2)⊕ ⟨−2⟩⊕4 P6 := U ⊕D4(−1)⊕2 ⊕ ⟨−2⟩⊕4

Table 6: All even, indefinite, 2-elementary transcendental lattices (T ) and polarisation lattices (P ) for
a family of K3 surfaces of Picard rank 14 by their length (l) and parity (δ).

The modular varieties KPi of K3 surfaces polarised by the lattices Pi for i = 1, · · · , 6 are families
of Jacobian elliptic K3 surfaces: each K3 surface X in the family admits an elliptic fibration, which
is a projection X → P1 whose fibres are elliptic curves, as well as a section. The Jacobian elliptic
fibrations with finite Mordell-Weil group admitted by these families are classified in [CM1]. If the
elliptic fibration of X has a 2-torsion section S, then there is a canonical involution on X called the
van Geemen-Sarti involution ι given by the fibre-wise translation that identifies the zero-section
with S. By resolving the 8 singular points in X/ι, we obtain another K3 surface Y and the induced
rational double cover X 99K Y . In [CM2] by the same authors, it is shown that the family KP5 is a
van Geemen-Sarti dual of the family KP2 , i.e. there is a van Geemen-Sarti involution on any X5 ∈ KP5

which induces rational double cover from X5 to some X2 in KP2 , and a van Geemen-Sarti involution
on X2 which induces a rational double cover from X2 back to X5. In the same sense, the family KP5 is
self-dual. Moreover, the family KP6 of double sextics is studied in [KSTT].

Let P and T be one of the above pairs Pi and Ti. We will give an explicit construction of the map
F : KP → AM,T sending a K3 surface X to an abelian 8-fold A1 = (T1, J1, Q1) as in Diagram 3. Note
that by Theorem 3.5.20, KP is irreducible, and therefore F is dominant to an irreducible component of
AM,T . In the following subsections, we will explain how one may obtain the attributes M and T which
determine the modular variety AM,T of abelian 8-folds of PEL type starting from each of the six KP ’s
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listed above, as well as how the image of the lift F̃ changes as we vary our input in the HSD D+
T . For

this purpose, we use the computation system MAGMA which allows computation over integers as well
as number fields. Specifically, we will work out the details for the family KP3 . One may refer to the
variables and functions in the two MAGMA files pre-T3.m and T3.m in the appendix.

6.2 Realise map between modular varieties

6.2.1 Compute simple decomposition of a generic KS variety

Fixing any α as in Section 4.3, the original KS construction gives us a family of KS varieties, from
which we derive the family of the abelian subvarieties A1. Recall from Section 5.1 that given a KS
variety KS(X) in the family, both the complex structure J1 and the polarisation form Q1 of the abelian
subvariety A1 depend on the 16-dimensional real torus (Λ′

1)R/Λ
′
1, which can be obtained by fixing an

isomorphism of algebras
φ : Cl+(TQ) ≃ M4(HQ)⊕M4(HQ).

We would like to obtain the abelian 8-fold A1. Since we may glue up Clifford algebras by applying
Theorem 4.1.8, and since P and T are orthogonal direct sums of the 2-elementary indecomposible
lattices, it suffices to fix a map φ from the Clifford algebra over each indecomposible lattice component
to the corresponding matrix algebra listed in Table 5, which extends Q-linearly to an isomorphism, and
then put them together. In fact from Table 6, it is enough to consider U , U(2), D4(−1) and ⟨−2⟩⊕4.

Let us first consider the lattice U(n) for n = 1, 2. Let {f1, f2} be generators of the lattice U(n) such
that the associated symmetric bilinear form b is given by the matrix

MU(n) :=

(
0 n
n 0

)
Consider U(n) < Cl(U(n)), where Cl(U(n)Q) ≃ ClQ(1, 1) ≃ M2(Q) . Then the Clifford multiplication
is determined by the relations

• f2
1 = 0;

• f2
2 = 0;

• f1f2 = 2n− f2f1, so (f1f2)
2 = 2n · f1f2.

Thus a choice of the map φ : Cl(U(n)) → M2(Q) which preserves the Clifford multiplication is given by

φ(1) = 1, φ(f1) =

(
0 1
0 0

)
, φ(f2) =

(
0 0
2n 0

)
.

Observe that φ(f1), φ(f2) span the Z-algebra{(
d+ 2nα b
2nβ d

)
: a, b, c, d, α, β ∈ Z

}
This is well defined as one can check that the integral structure is preserved: any element in the above
set is the image of

d · 1 + α · f1f2 + b · f1 + β · f2 ∈ Cl+(U(n)).

So φ is a Z-algebra isomorphism onto its image.
Secondly, let us consider the case of D4(−1). Let {h1, h2, h3, h4} be the generators of the lattice

D4(−1) such that the associated symmetric bilinear form b is given by the matrix

−MD4 =


−2 −1 −1 −1
−1 −2 0 0
−1 0 −2 0
−1 0 0 −2

 .
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We will obtain a map φ : Cl(D4(−1)) → M2(HQ) by applying the Fundamental Lemma for Clifford
algebras (Lemma 4.1.4). From our discussion towards the end of Section 4.1, the lattice D4(−1) is in
fact the order o(−2) < HQ, where o = Z⟨h, i, j, k⟩ is the Hurwitz integers. An explicit isometry between
the two lattices is given by

h1 7→ −2h, h2 7→ −2i, h3 7→ −2j, h4 7→ −2k.

One can construct a Z-module homomorphism

φ : o(−2) −→ M2(o)

−2z 7−→
(

0 z
−2z̄ 0

)
with φ(−2z)2 = −2q(z) · 1. Therefore φ extends uniquely to an algebra homomorphism

φ : Cl(D4(−1)) −→ M2(o).

Lastly, let us consider the lattice ⟨−2⟩⊕4. Let ⟨−2⟩⊕4 be generated by h1, · · · , h4 such that the
associated symmetric bilinear form b is given by the matrix −2 · 14. Again we apply the Fundamental
Lemma for Clifford algebras: define a Z-module homomorphism φ : ⟨−2⟩⊕4 → M2(HQ) by defining

φ(h1) =

(
0 1
−2 0

)
, φ(h2) =

(
0 i
2i 0

)
, φ(h3) =

(
0 j
2j 0

)
, φ(h4) =

(
0 k
2k 0

)
and extend Z-linearly. It is easy to check that φ(v)2 = q(v)·1, so φ extends to an algebra homomorphism
φ : Cl(⟨−2⟩⊕4) → M2(HQ) as desired.

By applying Remark 4.1.11, we may put together any two of the homomorphisms of graded algebras
φ in the following way:

Cl(L1)⊗ Cl(L2) ∼= Mn1(F)⊗Mn2(F) −→ Mn1·n2((F) ∼= Cl(L1 ⊕ L2)

({aij}i,j , {bkl}k,l) 7−→ {aijbkl}n2(i−1)+k,n2(j−1)+l.

This gives us a homomorphism (which we still call φ) from the lattice Cl(T ) to M8(HQ) for the family of
K3 surfaces with transcendental lattice T . With reference to Remark 4.1.10, the image of any element
x in the even part Cl+(T ) under φ is in the form

φ(x) =



m11 0 0 m14 0 m16 m17 0
0 m22 m23 0 m25 0 0 m28

0 m32 m33 0 m35 0 0 m38

m41 0 0 m44 0 m46 m47 0
0 m52 m53 0 m55 0 0 m58

m61 0 0 m64 0 m66 m67 0
m71 0 0 m74 0 m76 m77 0
0 m82 m83 0 m85 0 0 m88


∈ M8(HQ),

which can be identified to an element in M4(HQ)⊕M4(HQ) by extracting the two obvious 4-by-4 blocks:

φ(x) =



m11 m14 m16 m17

m41 m44 m46 m47

m61 m64 m66 m67

m71 m74 m76 m77

 ,


m22 m23 m25 m28

m32 m33 m35 m38

m52 m53 m55 m58

m82 m83 m85 m88


 .
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Extending linearly by Q, this gives us the isomorphism φ identifying Cl+(TQ) with M4(HQ)⊕M4(HQ)
as required.

From the discussion following Theorem 5.1.6, the rank 16 lattice Λ′
1 is the image of Cl+(T ) under

d · ε1 ∈ Cl+(T ), where ε1Cl
+(TQ) is the preimage of the matrix (E1,1, 0) under φ. By Remark 4.1.10, it

is clear that the matrices (Ej,j , 0) and (0, Ej,j) for j = 1, · · · , 4 belong to the even part of the Clifford
algebra over TQ. By patching the two homomorphisms φ together, each εi can be written as a product
of xj and yk, where xj is the preimage of some Ej,j under φ : Cl(U ⊕ U(n)) → M4(Q); and yk is the
preimage of diag(1, 0) or diag(0, 1) under φ : Cl(T ′) → M2(o). In the following example we give the
idempotents εi’s for i = 1, · · · , 8 explicitly for the family KP3 , and obtain the lattices Λ′

i ⊂ R16 using
MAGMA.

Example 6.2.1. (See file [pre-T3.m]) Consider T3 = U ⊕U(2)⊕D4(−1). Let {f1, f2}, {f3, f4} and
{h1, h2, h3, h4} be the sets of generators of the indecomposible sublattices U , U(2) and D4(−1) such that
the matrices associated to the symmetric bilinear forms with respect to those generators are MU ,MU(2)

and −MD4respectively.
Notice that we have the following pseudo-idempotents in Cl(U ⊕U(2)), i.e. primitive elements in

Cl(U ⊕ U(2)) that are integral multiples of idempotents in Cl ((U ⊕ U(2))Q):

x1 := f3f1f2f4

x2 := 4f1f2 − x1

x3 := 2f3f4 − x1

x4 := 8 · 1− x1 − x2 − x3.

Their images under φ : Cl(U ⊕ U(2)) → M4(Q) are 8E1,1, · · · , 8E4,4. By considering the element

H := h1h2h3h4 + h2h3 + h3h4 + h4h2 ∈ Cl(D4(−1)),

we also have pseudo-idempotents in Cl(D4(−1))

y1 := 2−H

y2 := 2 +H

whose images under φ : Cl(D4(−1)) → M2(o) are the diagonal matrices diag(4, 0) and diag(0, 4) respec-
tively.

Therefore in Cl(T3) we have eight pseudo-idempotents

[32ε1, · · · , 32ε8] = [x1y1, x2y2, x3y2, x4y1, x1y2, x2y1, x3y1, x4y2]

whose respective images under φ : Cl(T3) → M4(HQ)⊕M4(HQ) are

[(32E1,1, 0), · · · , (32E4,4, 0), (0, 32E1,1), · · · , (0, 32E4,4)].

Since the sub-sublattices U ⊕U(2) and D4(−1) are orthogonal to each other, the actions of the xj’s
commute with that of the yk’s. Therefore, for the pseudo-idempotent 32εi = xjyk, the lattice Λ′

i is given
by the set

Cl+(T ) · 32εi =
{
L ·K ∈ Cl+(T ) : L ∈ (Cl(U ⊕ U(2)) · xj) , K ∈ (Cl(D4(−1)) · yk)

}
.

Note that the image of the multiplication by a pseudo-idempotent xj in Cl(U ⊕U(−2)) is the kernel
of the multiplication by 8 · 1 − xj in Cl(U ⊕ U(−2)). By writing out the matrix associated to the map
of multiplication by 8 · 1 − xj, one can obtain primitive generators of the lattice Cl(U ⊕ U(2)) · xj by
applying the MAGMA built-in function KernelMatrix. There are four such generators L1, · · · , L4,
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two of them are in the even degree part Cl+(U ⊕ U(2)), and the other two are in the odd degree part
Cl−(U ⊕ U(2)) (See function “L CUp”). Similarly, one can obtain eight generators K1, · · · ,K8

for the lattice Cl(D4(−1)) · yk where four of them are in the even degree part Cl+(D4(−1)), and the
other four are in the odd degree part Cl−(D4(−1)) (See function “L CDp”). There are only 16
combinations of the Ls’s and the Kw’s such that their product lies in Cl+(T ). These 16 vectors form
the 16 generators of the lattice Λ′

i ⊂ R16.

Finally, the complex structure J1 and the polarisation E1 of A1 are obtained by restricting J and
E of KS(X) to (Λ′

1)R.

Remark 6.2.2. By Theorem 5.1.2, for a very general X ∈ KP , the Ai := ((Λ′
i)R/Λ

′
i, Ji, Ei) obtained

from above satisfy A1 ∼ · · · ∼ A4 and A5 ∼ · · · ∼ A8, but A1 ̸∼ A5.

6.2.2 Compute representation of endomorphism algebra

Recall the attributes {x1, · · · , x4} ,M, T and H associated to the abelian 8-fold A1 as a member of the
target family AM,T , which were introduced in Section 3.3.3 assuming that the representation homo-
morphism Φ of HQ = EndQ(A1) is the standard one Φstd. However our expression of Λ′

1 obtained from
Section 6.2.1 already determines a basis of the real ambient space R16. Therefore we will first compute
a real representation ΦR out of J1 and Λ′

1 with respect to the current basis of R16, and then transform
to a complex representation Φ, and finally to the standard representation Φstd.

Each of the six families in Table 6 has a transcendental lattice in the form T = U ⊕ U(n) ⊕ T ′,
where T ′ is either D4(−1) ≃ o(−2) or ⟨−2⟩⊕4. For any very general KS variety associated to one of
the families, and for A1 the simple abelian subvariety in the KS variety as defined in Section 5.1, let
F = EndQ(A1) ≃ HQ, and let R = End(A1) which is an order in F . As a Z-submodule of F , R is of
rank 4. On the other hand, recall from [vG1, Lemma 6.5] we have

Cl+(TQ) ≃ EndCSpin+(Cl
+(TQ)).

Since Λ′
1 is a primitive sublattice in Cl+(T ), the algebra R is generated by the action of some elements

in the integral part Cl+(T ) on Λ′
1. However, R is not a free subalgebra of Cl+(T ): two elements in

Cl+(T ) may act differently on Cl+(T ) even though they have the same action restricted to Λ′
1.

In the following we will show how to obtain the representation Φ from the algebra isomorphism

φ : Cl(T ′) −→ M2(HQ)

given in Section 6.2.1. It is enough to define Φ on a set of four generators {r1, · · · , r4} ⊂ R < HQ.

The strategy is to first obtain a set of elements {h̃1, · · · , h̃4} ⊂ Cl+(T ) whose actions on Λ′
1 < Cl+(T )

generate R < HQ. Then we can compute matrices Ni’s in M16(Z) (with usual action on R16 ≃ (Λ′
1)R

by left multiplication) which represent the right actions of the h̃i’s on (Λ′
1)R < Cl+(TR). Then by

identifying ((Λ′
1)R, J1) with (Λ1)R = W1 where Λ1 = µ(Λ′

1) (see Definition 3.2.9), each matrix Ni is
taken to a complex matrix Mi ∈ M8(C). Finally, based on the multiplication rules satisfied by the Mi’s,
we choose the ri ∈ R that can be mapped to the Mi’s under the algebra homomorphism Φ.

Suppose an element r ∈ R is given by the action of x ∈ Cl+(T ) on Λ′
i. Then by Remark 3.3.15, the

matrix φ(x) acts by multiplication from the left. On the other hand, there is a natural action of Cl+(T )
on Λ′

i coming from its Cl+(T )-module structure. The pushforward of this action under φ is also given
by matrix multiplication from the left (Remark 3.3.15). Any endomorphism of Ai should commute with
the action of φ(Cl+(T )), which implies that φ(x) is a diagonal matrix. Conveniently, we know some
diagonal matrices in the image φ(Cl+(T )): for example

14 ⊗ (φ(t1) · φ(t2)) = 14 ⊗ φ(t1t2) ∈ M4(Q)⊗M2(HQ)
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for t1, t2 ∈ T ′. These matrices together with the identity matrix span a Z-module of rank 4. Thus R
contains the Z-algebra generated by matrices in this form. In fact by studying our construction of φ’s,
we can obtain a set of h̃i’s in Cl+(T ) which have the same actions as a set of four primitive generators
of R, as well as their actions on W1 as matrices M1, · · · ,M4 ∈ M8(C). Let us first explain this in detail
for T ′ = D4(−1), which includes the case when T = T3.

Example 6.2.3. (See variable “tih mat 8” in file [T3.m]) Continue from Example 6.2.1. Define
h(−2) = 2h1 − h2 − h3 − h4 ∈ Cl(T ). The reason for the notation h(−2) is that, under the identifica-
tion of D4(−1) with the order o(−2) < HQ, the element h(−2) ∈ D4(−1) is mapped to −2 ∈ o(−2).
Let 1 represent the identity element in the any Clifford algebras. Then the images of the elements
(h(−2)h1), (h(−2)h2), (h(−2)h3) and (h(−2)h4) in Cl+(T ) under φ are diagonal matrices. By definition,
the identity 1 ∈ Cl+(T ) must also belong to R. The element h(−2)h4 is Z-linearly dependent on the
other four elements, and the elements

h̃1 := 1, h̃2 := (h(−2)h1), h̃3 := (h(−2)h2), h̃4 := (h(−2)h3)

together span a primitive lattice of rank 4 in Cl+(T ). So the set is also the set of actions of the primitive
generators of R as a (non-free) Z-algebra.

The built-in function Solution in MAGMA allows one to solve a system of equations over Z. In
particular, one can obtain matrices Ni’s in M16(Z) (with left multiplication on R16 ≃ (Λ′

1)R) that cor-

respond to the right actions of the elements h̃i’s on (Λ′
1)R < Cl+(TR) (See function “Get r action”

in file [T3.m]). One can also check that the Ni’s span a primitive lattice in M16(Z) with the lattices
machinery in MAGMA.

Finally, to obtain the matrices Mi ∈ M8(C), we introduce the complex structure J1 of A1 as in
Definition 3.2.9. Let W1 be the +i-eigenspace of J1. One may use Solution to find +i-eigenvectors of
J1 in (Λ′

1)R. Applying Solution again, one may transform the N1, · · · , N4 to M1, · · · ,M4 ∈ M8(C),
such that they respectively represent the actions of h̃i’s on W1 ≃ C8 with respect to the eight +i-
eigenvectors (See function “Get CC8 bas” in file [T3.m]).

Similarly, we explain how to identify h̃i with Mi in the case T ′ = ⟨−2⟩⊕4.

Example 6.2.4. Let T ′ = ⟨−2⟩⊕4 be generated by h1, · · · , h4 such that the associated symmetric bilinear
form is given by the matrix −2 · 14. Again, denote by 1 the identity element of any Clifford algebra.
Then the elements (h1h1), (h3h4), (h4h2) and (h2h3) in Cl+(T ) under φ are diagonal matrices. The
identity element 1 ∈ Cl+(T ) is again contained in R and (h1h1) is an integral multiple of 1. One can
check that the elements

h̃1 := 1, h̃2 := h3h4, h̃3 := h4h2, h̃4 := h2h3

together span a primitive lattice in Cl+(T ). Using Solution, one can obtain the actions of the h̃i
as matrices Ni in M16(Z). These 16-by-16 matrices associated to the h̃i can be transformed into the
matrices Mi by considering the +i-eigenvectors of the complex structure J1 in (Λ′

1)R.

The final step is to choose and match generators ri of R < HQ to the matrices Mi’s such that they
satisfy the same set of multiplication rules. Although the map

ri 7−→ h̃i 7−→ φ(h̃i)

does not necessarily preserve multiplication, it does preserve addition and scalar multiplication, which
hints at some good choices of the ri.

Let us start with the case when T ′ = D4(−1).
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Example 6.2.5. (See variable “bas R” in file [T3.m]) Continue from Example 6.2.3. Note that

φ(h̃1) = 12, φ(h̃2) =

(
−2h̄ 0
0 −2h

)
, φ(h̃3) =

(
2i 0
0 −2i

)
, φ(h̃4) =

(
2j 0
0 −2j

)
A good guess of R as an order would be ⟨1, o(−2)⟩. It is easy to identify some sets of primitive generators
{r1, · · · , r4}. For example r := {1,−2h,−2i,−2j} and r̄ := {1,−2h̄,−2̄i,−2j̄} are some obvious ones.
By comparing the multiplication rules within each set of primitive generators R and that of the Mi’s, one
can select one appropriate set of ri’s such that ri 7→ Mi defines an algebra isomorphism Φ: F → M8(C).

Let us consider the specific case of T = T3. It is easy to check that in the abelian 8-fold Ak <
KS(X), for k = 1, 4, 6, 7 (resp. k = 2, 3, 5, 8), the set of generators r̄ (resp. r) would define an
anti-homomorphism of algebras F → M8(C). Anti-homomorphisms instead of homomorphisms arise
naturally because the map h̃i 7→ Mi is an anti-homomorphism itself: the action of h̃ih̃j from the right
corresponds to the action of MjMi from the left. To obtain a homomorphism instead, we precompose
the anti-homomorphism by an anti-isomorphism ι of F :

ι : HQ −→ Hop
Q

1, i, j 7−→ 1, i, j respectively

k 7−→ −k.

In particular, for A1, the required real representation ΦR of F = EndQ(A1) is defined by

1 7→ N1 = 116, (−1 + i+ j − k) 7→ N2, 2i 7→ N3, 2j 7→ N4,

and the complex representation Φ is defined by

1 7→ M1 = 18, (−1 + i+ j − k) 7→ M2, 2i 7→ M3, 2j 7→ M4.

The case for T ′ = ⟨−2⟩⊕4 is simpler.

Example 6.2.6. Continue from Example 6.2.4. We have

φ(h̃1) = 12, φ(h̃2) =

(
2i 0
0 2i

)
, φ(h̃3) =

(
2j 0
0 2j

)
, φ(h̃4) =

(
2k 0
0 2k

)
A good guess of R as an order would be ⟨1, 2i, 2j, 2k⟩. One can check that in fact the map ri 7→ h̃i 7→ φ(h̃i)
also preserves multiplication, so the choice of the generators {r1, · · · , r4} = {1, 2i, 2j, 2k} defines an
anti-homomorphism F → M8(C). Precomposing by the anti-isomorphism ι in Example 6.2.5 gives the
desired representation ΦR and Φ.

Before we move on to the next subsection where we compute the attributes associated to the abelian
8-fold A1, we will show how to transform the representation Φ to the standard one Φstd by a change of
basis of C8 (See function “Phi2Chi” in file [T3.m]). Precisely, we hope to find an 8-by-8 change
of basis matrix Q ∈ M8(C), such that

Q · Φ(ri) = (χ(ri)⊗ 14) ·Q for all i = 1, · · · , 4.
Consider the C-vector space isomorphism (·)∼ described in [BL, p.252] which identifies a d-by-d

matrix to a horizontal vector of length d2

(·)∼ : Md(C) −→ Cd2

{aij} 7−→ ã := (a11, a12, · · · , add).
For each ri, we find matrices A and B such that for all 8-by-8 matrix M , we have

(M · Φ(ri))̃ = M˜ ·A,
((χ(ri)⊗ 14) ·M )̃ = M˜ ·B.

Using the KernelMatrix function in MAGMA, one can build (non-unique) 8-by-8 non-singular matrix
out of the kernel space of A−B to be the desired matrix Q.
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6.2.3 Compute attributes

In this subsection, we will compute the attributes {x1, · · · , x4}, M and T determining the moduli space
of abelian 8-folds with totally definite quaternion multiplication AM,T as the target space of the map
F and any abelian 8-fold A1 in the image of F . Suppose A1 is isomorphic to the complex torus W1/Λ1.
First, we will compute the attribute {x1, · · · , x4} ⊂ C8 associated to A1 satisfying Equation 3.3.3(1):

(Λ1)Q =

4∑
i=1

Φstd(F )xi.

Moreover, we will show that the attribute {x1, · · · , x4} associated to a particular member A1 ≃
((Λ′

1)R/Λ
′
1, J1) is determined by its complex structure J1.

Lemma 6.2.7. The real representation ΦR : HQ → M16(Z) sending each generator ri to the matrix
Ni ∈ M16(Z) obtained in the same fashion as in Examples 6.2.3 and 6.2.4 has image in the subset of
block diagonal matrices

{diag(N1, · · · ,N4) : Nj ∈ M4(Z)}

with respect to a suitable order of the generators of the lattice Λ′
1 defining A1.

Proof. Recall from Section 6.2.1 that the algebra homomorphism φ : Cl(T ) ≃ M4(HQ) ⊕ M4(HQ) is
obtained from combining the two homomorphisms

Cl(U ⊕ U(n)) → M4(Q) and Cl(T ′) → M2(HQ).

It can be observed that the ΦR(h̃i)’s, hence the image of ΦR, are pairs of diagonal matrices in M4(HQ)⊕
M4(HQ) for both T ′ = D4(−1) and ⟨−2⟩⊕4.

On the other hand, recall from Example 6.2.1 that each generator of the lattice Λ′
1 is a product of

Ls ∈ Cl(U ⊕U(n)) and Kw ∈ Cl(T ′). In particular when fixing s = s0, the rank 4 sub-lattice generated
by {Ls0Kw : w = 1, · · · , 4} corresponds to one of the four entries in the first column of φ(Cl+(T )).
Since the action of φ(⟨h̃1, · · · , h̃4⟩) on the first column of φ(Cl+(T )) is equivalent to that of ΦR(HQ) on
R16 ≃ Λ′

1 = ⟨LsKw : s, w = 1, · · · , 4⟩, it is clear that under suitable order of the generators LsKw, the
image ΦR(HQ) lies in the claimed subset of block diagonal matrices.

We first choose {(xR)1, · · · , (xR)4} ⊂ M16(Z) that satisfy

(Λ′
1)Q =

4∑
i=1

ΦR(F )(xR)i.

We fix the order of the set of generators Λ′
1 such that the image ΦR(HQ) are block diagonal matrices of 4-

by-4 blocks. Then it is clear that the attributes {(xR)1, · · · , (xR)4} can be chosen to be {e1, e5, e9, e13},
where ej = (0, · · · , 0, 1, 0, · · · , 0) is the vector with 1 as its jth entry. The complex vectors xi that
distinguish the members in AM,T can then be obtained by multiplying the change of basis Q obtained
at the end of Section 6.2.2 to their images in the +i-eigenspace of the complex structure J1 (See
function “Get xs” in file [T3.m]). It can be checked that they do satisfy the original equation
3.3.3(1)

Next, we will compute the attributes M such that Equation 3.3.3(2) is satisfied:

Λ1 =

{
4∑

i=1

Φstd(ai)xi : (a1, · · · , a4) ∈ M

}
.
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As explained in Remark 3.3.17, it is more intuitive to solve M from a real version of the equation that
does not depend on the complex vectors xi (or equivalently the complex structure of each member A1).
We will instead solve

Λ′
1 =

{
4∑

i=1

ΦR(ai)(xR)i : (a1, · · · , a4) ∈ M

}
.

In other words, we will identify Λ′
1 to a Z-submodule M of F 4, where F = HQ. Note that from 3.3.3(1)

we may decompose Λ′
1 into

Λ′
1 ≃

4⊕
i=1

Li,

where each Li := {ΦR(ai)(xR)i : (a1, · · · , a4) ∈ M} is a Z-module of rank 4 that corresponds to the
ith diagonal block of the elements in ΦR(F ). Let us first focus on one of the blocks Li. We will prove
that Li is isomorphic to a Z-submodule Mi of R, where R = End(A1) = ⟨r1, · · · , r4⟩ is the order in F
we obtained in Section 6.2.2. Consider the Z-submodule R(xR)i < Z4 of Li generated by the vectors
ΦR(r1)e1 = e1, · · · ,ΦR(r4)e13 after removing unnecessary zeros. Let (d1, · · · , d4) with dj |dj+1 be the
elementary divisors of the matrix(

e1 | ΦR(r2)e5 | ΦR(r3)e9 | ΦR(r4)e13

)
∈ M4(R),

and let d = d4. Then Li is isomorphic to the Z-module dLi < R(xR)i. We can therefore obtain a R-
module Mi by multiplying dLi by (xR)

−1
i on the right (See function “Get calMkk” in file [T3.m]).

Furthermore, Mi is torsion free and is isomorphic to Li.

Li
d·−−−−−−−−→ dLi

·(xR)
−1
i−−−−−−−−−−−→ Mi < R

∧
R(xR)i

This gives us

Λ′
1 ≃

4⊕
i=1

Mi < R4 < F 4.

We may even identify some of these Mi’s if they are isomorphic R-modules.

Lemma 6.2.8. Two R-modules M and N are isomorphic if and only if there exists h ∈ HQ such that
N = Mh. The isomorphism preserves the number of minimal vectors (i.e. vectors of smallest norm) in
the isomorphic modules.

Proof. The reverse implication for the first statement is clear as R is torsion free. For the forward
implication: suppose f : M → N is an R-module isomorphism. Fix any m ∈ M , so we have Rm < M .
Similar to the above, by considering the elementary divisors of χR(Rm) in M , we can find an integer d
such that any x ∈ M may be written as x = rm/d for some r ∈ R. Now

f(x) =
rf(m)

d
=

rm ·m−1 · f(m)

d
= x(m−1 · f(m))

where m−1 · f(m) ∈ HQ.
Norm in R is defined as Nm(r) = rr̄ for all r ∈ R. So if x ∈ M is a minimal vector, then xh ∈ N is

a minimal vector with norm Nm(x)Nm(h).
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With the function ShortestVectors in MAGMA, one may obtain a list of minimal vectors in each
R-module Mi. Then it can be tested whether those Mi’s with equal number of minimal vectors are
isomorphic by brute force. To be specific, suppose Mi and Mj have minimal vectors u1, · · · , un and
v1, · · · , vn respectively. For any k, l ∈ 1, · · · , n with k < l, let hkl := u−1

k vl. Then Mi ≃ Mj if and only
if there exists hkl ∈ HQ such that right multiplication by hkl is a bijection between the set of generators
of Mi and that of Mj . Note that if n ≥ 4, then the set of minimal vectors in the module Mi generates
Mi Moreover, if we let Ui be the 4-by-4 matrix representing the right multiplication of hkl on Mi,
then U := diag(U1, · · · , U4) is a matrix taking any element in Λ′

1 with respect to the generators ej ’s
to its image in M := M1 ⊕ · · · ⊕ M4, where each Mi is with respect to the basis {r1, · · · , r4} of R.
By identifying each Mi with a submodule in H, then there is a 4-by-16 matrix U ′ over H such that
U ′(ej) < H4 represents the same element as U(ej).

We will compute the Mi’s for the example T = T3.

Example 6.2.9. (See function “calMkk 2 Ikk” in file [T3.m]) Continue from Example 6.2.5.
Recall that R = ⟨1, o(−2)⟩. Up to reordering the index i for the modules Mi, it can be shown that M1

and M2 have 6 minimal vectors, while M3 and M4 have 12. On the other hand, the R-modules in HQ

I6 := ⟨h+ i, h+ j, i− j, k⟩
I12 := o = ⟨h, i, j, k⟩

have 6 and 12 minimal vectors respectively. By brute force, one can show that M1 ≃ M2 ≃ I6, and
M3 ≃ M4 ≃ I12. Therefore Λ1 is isomorphic to the Z-module in F 4

M = I6 ⊕ I6 ⊕ I12 ⊕ I12.

Next we calculate the matrix T = {tij} that satisfies Equation 3.3.3(3):

E

 4∑
i=1

Φstd(ai)xi,

4∑
j=1

Φstd(bj)xj

 = tr F |Q

 4∑
i,j=1

aitijb
ρ
j


where E is the alternating form associated to the polarisation of the abelian 8-fold A1, and ai, bj ∈ H.
Again, we solve the “real” version of the equation by considering E as a pairing on (Λ′

1)R ≃ R16 given
in Section 4.3 by

(v, w) 7−→ tr(αv∗w)

for a suitable choice of α ∈ Cl+(T ). Let ME be the corresponding 16-by-16 real matrix with respect to
the basis {e1, · · · , e16} of Λ′

1. Then T is the unique 4-by-4 matrix such that

(U ′
h)

tT U ′
l = (ME)h,l,

where U ′
h and U ′

l are the h-th and the l-th columns of U ′. From Lemma 6.2.7, if h = 4(s− 1) +w with
0 ≤ w < 4, then the s-th entry on the column U ′

h is the only non-zero entry. The vast number of zeros
greatly reduces the difficulties of solving for T .

Let us calculate T for the main example.

Example 6.2.10. (See function “Get calT” in file [T3.m]) Let T = T3. Let {f1, · · · , f4, h1, · · · , h4}
be the set of generators for the lattice T as in Example 6.2.1. Clearly f1+f2 and f3+f4 are two positive
orthogonal vectors. Choosing for example α = (f1 + f2)(f3 + f4), then the matrix ME is in the form

ME =


0 ∗ 0 0
∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0


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where each asterisk represents a non-zero 4-by-4 block. This implies that the matrix T only has four
non-zero entries: t1,2, t2,1, t3,4 and t4,3. Note that we have an over-determined system of linear equations.
To solve for any of these non-zero entries, say t1,2, it is enough to consider the four equations

U ′
1,1 · t1,2 · U ′

2,4+k = (ME)1,4+k where k = 1, · · · , 4.

The calculation gives

T =


0 256 0 0

−256 0 0 0
0 0 0 −512
0 0 512 0


In fact, the matrix T is the same for all Λ′

1 for i = 1, · · · , 8 up to switching the two copies of I6 (and/or
the two copies of I12) in M = I6 ⊕ I6 ⊕ I12 ⊕ I12.

Remark 6.2.11. We may also compute the attribute H = (hij) ∈ M4(H) which is determined by the
other three attributes (See function “Get calH” in file [T3.m]). We again consider the “real”
version of Equation 3.3.3(4) satisfied by H:

√
−1(xR)i =

m∑
i=1

ΦR(hij)(xR)j ,

where
√
−1 represents the action of the complex structure J1 of A1. By writing each hij as a linear

combination of the basis r = {r1, · · · , r4} we used in Example 6.2.5, this is then equivalent to solving
for aijk ∈ R such that

√
−1(xR)i =

4∑
j=1

4∑
k=1

aijk ΦR(rk)(xR)j .

We can easily solve the system consisting of the four equations when i = 1, · · · , 4 using the function
Solution.

6.3 Realise map between period domains

We have computed the attributes M and T which determine the target AM,T in the map F : KP →
AM,T , as well as the attribute {x1, · · · , x4} ⊂ C8, associated to an abelian 8-fold A1 in the image of
F , that is isomorphic to the complex torus ((Λ′

1)R/Λ
′
1, J1). Recall from Theorem 5.2.1 that the map F

lifts to the map F̃ : D+
T −→ DM,T , where

D+
T = {ω ∈ P(TC) : ω

2 = 0, ωω > 0}

DM,T = {Z ∈ Md(C) : −Z = Zt, 1− ZZ
t
> 0}

are the HSD overspaces of the modular varieties KP and AM,T . We would like to realise the map F̃

and compute F̃ (ω) ∈ DM,T for any ω ∈ D+
T , which allows us to study the image of an infinitesimal

deformation of D+
T under the map F .

As discussed in Section 4.3 and 5.1, a K3 surface X ∈ KP lifts to a point ω ∈ D+
T which gives the

complex structure J ∈ Cl+(T ) of the corresponding KS variety KS(X,α). Its restriction to Λ′
1 gives

the complex structure J1 of A1 = F (X). We have shown that J1 gives the attribute {x1, · · · , x4} ⊂ C8.
Carefully following the proof of Theorem 3.3.18 and [Sh, Section 2.3–2.5], we can then obtain the
standard normalised form of this attribute which is an element in DM,T .

We shall explain the steps in greater detail for our main example.
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Example 6.3.1. (See function “Get z” in file [T3.m]) Let T = T3 and fix ω which gives the
complex structure J ∈ Cl+(T ). We define the matrix X

X =

[
U V
V̄ −V̄

]
from the attribute x as in the proof of Theorem 3.3.18 (See function “Get Xmat” in file [T3.m]).

The next step is to find a suitable basis of H such that T −1 is the matrix i14, or equivalently to find
a matrix W ∈ M4(H) which satisfies

WT −1W ρ = i14,

where the positive anti-involution ρ acts on the matrix W by transpose of conjugation. Given the
expression of T in Example 6.2.10, it is easy to see that if

W ′ :=


−256 −i 0 0
−256 i 0 0
0 0 −i 512
0 0 i 512

 ,

then W ′T −1(W ′)ρ = diag(−2i, 2i,−2i, 2i). Thus we may take

W = diag(−j/
√
2, 1/

√
2,−j/

√
2, 1/

√
2) ·W ′.

If we perform change of basis of X by χ(W )
−1

, i.e. replace X by X · χ(W )
−1

, then X ∈ M8(C) is
still a block matrix in the form [

U V

V −V

]
,

and the matrix Z := −V −1U is an element in DM,T .

In particular, we may compute the image under F̃ for the point ω0 := [⟨(f1+f2)/
√
2−i(f3+f4)/2⟩C],

which clearly belongs to D+
T as (f1 + f2)/

√
2 and (f3 + f4)/2 are orthonormal vectors in TR.

Then with by the above calculations, we have

F̃ (ω) =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0


where

a =
8193− 128

√
2

8191
, b =

524289− 1024
√
2

524287
.

Remark 6.3.2. As a sanity check, one can check that Zt = −Z and 1 − ZZ
t
> 0. To check the

inequality, it is enough to check that all the eigenvalues of Z are positive, as Z is Hermitian. Note that
the Eigenvalues function in MAGMA can only find eigenvalues over the same field as the entries of
Z are defined over. So to exhaust all the eigenvalues, we must first convert Z to a complex matrix,
paying the price of floating point errors. Since the eigenvalues are always real, the check is the same as
checking the real parts of the eigenvalues are all positive.

In practice, it is hard to determine if the initial choice of ω belongs to D+
T or the other connected

component D−
T of the period domain. The above check therefore serves as a flag for this potential

mistake: if the resulting Z does not satisfy 1 − ZZ
t
> 0, then ω ∈ D−

T . To fix the problem, we replace
ω by ω, and J by −J .
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6.3.1 Local deformation

Having understood the map F̃ , we would like to vary the input ω ∈ D+
T to see how the image of

F̃ changes accordingly. Recall from the proof of Theorem 5.2.2 that F̃ is locally the Lie algebra
isomorphism so+(2, 6) → so∗(8). More specifically, we have

so+(2, 6)

so∗(8)

so+(2, 6)/kso+(2,6) ≃ TωD+
T

so∗(8)/kso∗(8) ≃ TF̃ (ω)DMT

TXKP

TF (X)AMT

dF̃ω dFX≃

where kso+(2,6) = Lie (SO(2)× SO(6)), kso∗(8) = Lie (U(4)), and all horizontal arrows are quotient maps
by the suitable objects. This shows that perturbing the point X ∈ KP , which is the same as choosing a
tangent vector in the 6-dimensional vector space TXKP , is equivalent to picking an element in so+(2, 6)
followed by some identification. In the following we will discuss how this allows us to study the image
under F̃ of the local deformation of a point ω ∈ D+

T .
From [He, Section X.2.1] the Lie algebra so(2, 6) is a real vector space

so(2, 6) :=

{[
M1 M2

M t
2 M3

]
:

All Mi real; M2 arbitrary;
M1,M3 skew-symmetric of order 2 and 6 resp.

}
.

Thus a basis of so(2, 6) can be given by the folowing 28 elements

Mij :=

{
M−

ij := Eij − Eji for i = 1, j = 2; or i ≥ 3, j > i;

M+
ij := Eij + Eji for i = 1, 2, j ≥ 3.

where Eij has 1 at the (i, j)-th entry being the only non-zero entry in the matrix. These generators
correspond to tangent vectors of SO+(2, 6) in 28 directions via the exponential map exp:

exp: so+(2, 6) −→ SO+(2, 6)

M 7−→
∞∑
k=0

Mk

k!
.

On the other hand, recall in the proof of Theorem 5.2.2 that any element N ∈ SO+(TR, q) ≃ SO+(2, 6)
acts on D+

T by left multiplication:

mN : D+
T −→ D+

T

[⟨e1 + ie2⟩C] 7−→ [⟨N · e1 + iN · e2⟩C],

where e1, e2 are orthonomal vectors in (T, q). Therefore, for any

N = exp

(
t ·
∑
ij

aijMij

)
∈ SO+(2, 6)

for a small t ∈ R>0 and some coefficients aij ∈ R, the perturbation of point ω ∈ D+
T by the vector N is

given by mN (ω) (See function “Perturb” in file [T3.m]).

Remark 6.3.3. It is clear that the cardinality (without multiplicity) of the set
{
F̃
(
mMij (ω)

)}
is at

most 6.
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6.3.2 Evaluate exponential map

To compute exp, it is enough to obtain the values of exp(tM+
ij ) and exp(tM−

ij ) for some small t. We

will first evaluate exp at tM+
ij . Note that (M+

ij )
2 = 0, so

exp(tM+
ij ) = 18 +

∞∑
k=0

t2k+1

(2k + 1)!
·M+

ij +
∞∑
k=1

t2k

(2k)!
· 18

where
∑∞

k=0
t2k+1

(2k+1)! and
∑∞

k=0
t2k

(2k)! are the Taylor series for sinh(t) and cosh(t) respectively. So exp(tM+
ij )

is the matrix with each of the (h, k)-th entry being
1 if h = k /∈ {i, j};
cosh(t) if h = k ∈ {i, j};
sinh(t) if h = i, k = j; or h = j, k = i;

0 otherwise.

Similarly for tM−
ij , since (M−

ij )
4 = 0,

exp(tM+
ij ) = 18 +

∞∑
k=0

t4k+1

(4k + 1)!
·M−

ij +
∞∑
k=0

t4k+2

(4k + 2)!
· (M−

ij )
2

+
∞∑
k=0

t4k+3

(4k + 3)!
· (M−

ij )
3 +

∞∑
k=1

t4k

(4k)!
· 18

= 18 +
1

2
(sinh(t) + sin(t)) ·M−

ij +
1

2
(cosh(t)− cos(t)) · (−18)

+
1

2
(sinh(t)− sin(t)) · (−M−

ij ) +
1

2
(cosh(t) + cos(t)− 2) · 18

So exp(tM−
ij ) is the matrix with each of the (h, k)-th entry being

1 if h = k /∈ {i, j};
cos(t) if h = k ∈ {i, j};
sin(t) if h = i, k = j;

− sin(t) if h = j, k = i;

0 otherwise.

In MAGMA, it is not ideal to use real data type for the values of the trigometric or hyperbolic
functions as floating point errors are significant when t is small. In order to work over the rationals, we
choose t such that the values of the above trigonometric/hyperbolic functions are rational.

In the case of tM+
ij , we would like to obtain rational values of cosh(t) and sinh(t) for small t ∈ Q>0.

Setting x(t) := cosh(t), y(t) := sinh(t), this is equivalent to finding a rational point close to the point
(1, 0) on the hyperbola x2 − y2 = 1. Since (−1, 0) is another obvious rational point on the hyperbola,
any line with rational slope m through (−1, 0) must intersect the hyperbola at another rational point,
whose coordinates can be calculated from solving the system of equations{

x2 − y2 = 1

y = mx+m

Therefore a rational point close to (1, 0) on the hyperbola has coordinates(
1 +m2

1−m2
,

2m

1−m2

)
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for some small m ∈ Q>0. Similarly for evaluating exp(tM−
ij ) for t small, we have

(cos(t), sin(t)) =

(
1−m2

m2 + 1
,

2m

m2 + 1

)
for suitable small m ∈ Q>0.

Example 6.3.4. Continue from Example 6.3.1. Let m = 10−3 and t = sinh−1(2m/(1−m2)) ≈ 0. Let
ω′
0 be the perturbation of ω0 by the vector tM ′

1,3 ∈ SO+(2, 6). Then

F̃ (ω′
0) =


0 a′ 0 0

−a′ 0 0 0
0 0 0 b′

0 0 −b′ 0


where

a′ =
8209390193− 127999872

√
2

8207394191
, b′ =

525338098289− 1023998976
√
2

525336102287
.

6.4 A special locus

In this subsection we will focus on our main example when T = T3. As seen in Example 6.3.1 and 6.3.4,
F̃ (ω0) and F̃ (ω′

0) are in a particularly nice form Z(a, b) ∈ M4(C) where

Z(a, b)1,2 = −Z(a, b)2,1 = a;

Z(a, b)3,4 = −Z(a, b)4,3 = b;

Z(a, b)i,j = 0 if (i, j) /∈ {(1, 2), (2, 1), (3, 4), (4, 3)}.

Furthermore, the condition 1− ZZ̄t > 0 tells us that |a| < 1 and |b| < 1.
Consider the sublattice T ′ = ⟨f1, f2, f3, f4⟩ = U ⊕ U(2) of (T, q) and let P ′ be its complement in

the K3 lattice ΛK3. By consulting Table 4, the lattice P ′ is given by U ⊕ E8(−1)⊕D8(−1). Then for
any ω in the identity component D+

T ′ of the period domain of weight two Hodge structures on T ′, the

image F̃ (ω) is in this nice form Z(a, b) with |a|, |b| < 1. This gives an inclusion of the 2-dimensional
subdomain F̃ (D+

T ′) of F̃ (D+
T ) into S1 × S1, the product of two Siegel upper-half spaces of degree 1:

F̃ (D+
T ′) ↪−→ D1 ×D1

≃−−→ S1 × S1

Z(a, b) 7−→ (a, b) 7−→ (f(a), f(b))

where f is the conformal map taking a disc D1 to S1 by

x 7−→ i(1 + x)

1− x
.

Recall that S1 is the parametrisation space for arbitrary elliptic curves. So we may consider D+
T ′ as

a subset of the parametrisation space of a pair of elliptic curves, which aligns with the row of r = 18
in Table 3. This observation can be explained by the geometry of the abelian 8-folds parametrised by
the special locus F̃ (D+

T ′). We will denote by X ′ a K3 surface in KP polarised by P ′ ⊇ P , and use the
notation KS(X ′) = KS(T ) and KS(T ′) to differentiate between KS varieties constructed from different
lattices.

Theorem 6.4.1. Suppose X ′ ∈ KP is polarised by P ′ ⊇ P . Let A1 = F (X ′) < KS(X ′). If X ′ is
very general, that is if Pic(X ′) = P ′, then A1 is isogenous to E4

1 × E4
2 , where E1 and E2 are two

non-isogenous elliptic curves.
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We will prove this statement using properties of Clifford algebras only. The first step is to prove the
following lemma.

Lemma 6.4.2. Suppose X ′ ∈ KP is very general. Let KS(X ′) = KS(T ) ∼ A1 × · · · × A8 be the
decomposition of the KS variety as obtained in Example 6.2.1. If Pic(X ′) = P ′ then for all i = 1, · · · , 8,
there exist elliptic curves E1, E2 and an integer k satisfying 0 ≤ k ≤ 8 such that

Ai ∼ Ek
1 × E8−k

2 .

Proof. Let X ′ be a K3 surface whose transcendental lattice is exactly the rank 4 lattice T ′ ⊂ T ⊂ ΛK3.
By Lemma 4.3.5(i), we have KS(T ) ∼ KS(T ′)2

4
.

On the other hand, by Theorem 3.5.25, the K3 surface X ′ has a Shioda-Inose structure associated
to an abelian surface A′. From Lemma 4.3.5(i), we have KS(T ′)2

18 ∼ KS(H2(X ′,Z)), and from Lemma
4.3.5(ii), we have KS(H2(X ′,Z)) ∼ (A′)2

19
. By the Poincarè’s Complete Reducibility Theorem, we have

KS(T ′) ∼ (A′)2.
Finally, from Table 5, we have Cl+(T ′) ≃ M2(R)⊕2. By Theorem 5.1.2, this implies KS(T ′) ∼

(E1 × E2)
2, where E1 and E2 are non-isogenous elliptic curves. Combining all statements, this gives

Ai ∼ Ek
1 × E8−k

2 . Moreover, four subvarieties in the decomposition of KS(X ′) described in Theorem
5.1.2 are isogeneous to Ek

1 × E8−k
2 , and the other four are isogeneous to E8−k

1 × Ek
2 .

Remark 6.4.3. Since A′ has transcendental lattice U ⊕ U(2), its Picard lattice is given by U(2) con-
sulting Table 4, which suggests that

A′ ≃ (E1 × E2)/{(P,Q)} ∼ E1 × E2,

where P ∈ E1[2] and Q ∈ E2[2] are 2-torsion points in the elliptic curves E1 and E2 respectively.

To prove Theorem 6.4.1, it remains to show k = 4 in the above statement.

Proof of Theorem 6.4.1. Let (T ′)⊥ be the sublattice in T such that T = T ′ ⊕ (T ′)⊥. i.e. Let (T ′)⊥ =
D4(−1). We recall in Example 6.2.1 that pulling back each pseudo-idempotent 32εi along the gluing
map

Cl+(T ′)⊗ Cl+((T ′)⊥) −→ Cl+(T )

is the tensor product xj ⊗ yk. Then by the same reasoning as in the proof of Lemma 4.3.5(i) we have

Λ′
1 ≃ Cl+(T ) · (32ε1) ≃

((
Cl+(T ′) · xj

)
⊗
(
Cl+((T ′)⊥) · yk

)
⊕
(
Cl−(T ′) · xj

)
⊗
(
Cl−((T ′)⊥) · yk

))
≃ 4

((
Cl+(T ′) · xj

)
⊕
(
Cl−(T ′) · xj

))
.

The second isomorphism comes from the fact that under the algebra isomorphism φ : Cl((T ′
R)

⊥) → M2(H),
the images of both

(
Cl+((T ′)⊥) · yk

)
and

(
Cl−((T ′)⊥) · yk

)
are rank 4 lattices over Z.

On the other hand, x1, · · · , x4 are pseudo-idempotents of Cl+(T ′) by definition. Similarly by study-
ing the algebra isomorphism φ : Cl(T ′

R) → M2(R)⊕2, the lattices Cl+(T ′) · xi and Cl−(T ′) · xi are both
of rank 1 over Z. Therefore, they respectively correspond to an elliptic curve E+

i and E−
i in the simple

decomposition of KS(T ′). This implies k = 4 or k = 8.
Assume for contradiction that k = 8, that is, Ai ∼ (E+

i )
8 for all i. From the decomposition

of a KS variety associated to a very general member X ∈ KP in Example 6.2.1, A1, · · · , A4 (resp.
A5, · · · , A8) are isogenous abelian 8-folds, so E+

1 , · · · , E
+
4 (resp. E+

5 , · · · , E
+
8 ) are isogenous elliptic

curves. Also, 32ε1 and 32ε5 pulls back to x1 ⊗ y1 and x1 ⊗ y2 respectively, so E+
1 ∼ E+

5 . This implies

KS(X ′)2
4 ∼ KS(X) ∼ (E+

1 )
64. However, for a very general X ′ with Pic(X ′) = P ′, we have shown in

the proof of Lemma 6.4.2 that KS(X ′) ∼ (E1 × E2)
2, where E1 and E2 are non-isogenous.
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Theorem 6.4.1 implies that D+
T ′ cuts out a special locus in D+

T whose image under F̃ corresponds to
non-simple abelian 8-folds which are products in the form of E4

1 ×E4
2 , where E1 and E2 are generically

non-isogenous. Also, we have A1 ∼ · · · ∼ A8. This is an example of the exceptional behaviour described
at the end of Section 5.1.

We can similarly find a 2-dimensional locus in D+
Ti

for all i = 1, · · · , 6. If X ′ has transcendental
lattice T ′

i = U ⊕ U or U ⊕ U(2), then X ′ has a Shioda-Inose structure (Theorem 3.5.25). Otherwise
if X ′ has transcendental lattice T ′

i = U(2) ⊕ U(2), then X ′ = Kum(A) is a Kummer surface with

NS(A) = U by [Mo1, Corollary 4.4], and KS(X) ∼ (A × A∨)2
4 ∼ A25 by [Mo2, Corollary 4.6] and

Lemma 4.3.5(i). Then in both cases, it is easy to check that all the arguments in the proof of Lemma 6.4.2
apply, as they only depend on the rank and the signature of the sublattice T ′ in T . The proof of
Theorem 6.4.1 also works nicely: by choosing pseudo-idempotents x1, · · · , x4 in Cl(T ′) such that their
images under φ : Cl(T ′) → M4(Q) are some integral multiples of E1,1 up to E4,4 (see Example 6.2.1),
then Cl+(T ′) ·xi and Cl−(T ′) ·xi are both of rank 1 over Z and correspond to two non-isogenous elliptic
curves E1 and E2. And by choosing pseudo-idempotents y1, y2 ∈ Cl((T ′)⊥) such that their images
under φ : Cl((T ′)⊥) → M2(o) are some integral multiples of diag(1, 0) and diag(0, 1), we can rule out
the possibility that A1 ∼ E8

1 . So in both cases, for all A1 parametrised by F̃ (D+
T ′), we again have

A1 ∼ E4
1 × E4

2 .

7 Future investigations

7.1 Degeneration problem

We may continue to explore the connections between our special families KP of K3 surfaces and the
resulting moduli spaces AM,T of abelian 8-folds by means of degeneration.

In Section 6.4, we have already applied one method of degenerations, which is to study specialisation
of families. We are in a collaboration with A. Malmendier and A. Clingher to describe the loci of
specialisation KP ′

3
in KP3 (See Section 6.4) where the K3 surfaces also admit polarisation by the rank

18 lattice
P ′
3 = U ⊕ E8(−1)⊕D8(−1).

More specifically, we also consider the family KKum(S) of Kummer surfaces Kum(S) associated to the
product of two elliptic curves S = E1×E2, as well as the family KKum(A′) of Kummer surfaces Kum(A′)
associated to the abelian surface A′ with Picard lattice U(2) as described in Remark 6.4.3. The family
KKum(S) of Kum(S) is in fact [CM1] a family of K3 surfaces polarised by the 2-elementary rank 18
lattice

U ⊕ E8(−1)⊕ 2D4(−1).

Any element Kum(S) in KKum(S) has 11 types of elliptic fibrations J1, · · · ,J11 as classified in [KuS],
and the fibration J6 induces a van Geemen-Sarti duality between the families KKum(S) and KP ′

3
. On the

other hand, the quotient of S by the diagonal action of (P,Q) where P ∈ E1[2] and Q ∈ E2[2], induces
two 2-isogenies

Kum(S) −→ Kum(A′)

Kum(A′) −→ Kum(S∨),

where S∨ is the dual of of S. We believe this is the specialisation of the 2-isogenies between Kummer
surfaces of the Jacobian of a special double sextic curve and Kummer surfaces of a (1, 2)-polarised
abelian surface, mentioned in [BCMS]. Therefore for any K3 surface X in the family KP ′

3
, there exist

three other K3 surfaces Kum(S),Kum(S∨) ∈ KKum(S) and Kum(A′) ∈ KKum(A′) that fit into the a
diagram (Diagram 4) of 2-isogenies of K3 surfaces. Our goal is to understand the dashed arrow in
Diagram 4, which is the 2-isogeny from X to Kum(A′) that describes the Shioda-Inose Structure of X,
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through understanding all other arrows. We also hope to compute the modular forms that cut out the
specialisation locus KP ′

3
from KP3 .

X Kum(A′)

Kum(S)

Kum (S∨)

Diagram 4: Some 2-isogenies among K3 surfaces belong to three families of K3 surfaces of Picard
rank 18.

Another special locus to study is the ramification locus if the degree of the map from D+
T to DM,T is

different from 1. Specialising to these loci gives information about extra structure carried by the simple
abelian 8-folds in AM,T , which should hint at the correct choice of the arithmetic subgroup in the LSV
biquotient of AM,T for F to be an isomorphism.

The other method is to degenerate the parametrised varieties into singular ones, which occurs at
the cusps of the compactified moduli space. Compactification methods and configuration of cusps for
modular varieties of K3 surfaces and abelian varieties are well studied. For certain semi-toroidal com-
pactifications of these modular varieties, it is known which semi-stable K3 surfaces or abelian varieties
correspond to each point in the boundary of the modular varieties. One may explore different compact-
ification methods of the moduli spaces KP and AM,T , and study how their boundaries correspond to
each other under the map F .

7.2 Special cases of the Hodge conjecture

There have been recent advances in proving special cases of the Hodge conjecture by the study of KS
varieties: in [vG2], B. van Geemen has shown that E. Markman’s proof of a partial case of the Hodge
conjecture for abelian 4-folds of Weil type is related to the KS construction for K3 surfaces of Picard
rank 16. We may ask whether the KS construction has similar implications for the other cases of the
Hodge conjecture.

Another interesting question is the Kuga-Satake Hodge conjecture [vG1], concerning a certain cycle
class of the product of a projective hyperkähler variety with the square of its associated KS variety.
The conjecture is proved for a special family of K3 surfaces of Picard rank 16 studied in [Pa], and its
specialisation to families of higher Picard ranks [VV]. We may examine the conjecture on the special
families of K3 surfaces of Picard rank 14 studied in the thesis.

7.3 Connections with mirror symmetry

Mirror symmetry is an area that lies in the intersection of algebraic geometry and physics, which
describes a relation between Calabi-Yau manifolds. In particular Calabi-Yau 2-folds are K3 surfaces,
and by the work of I.V. Dolgachev [D], one can create a mirror family of K3 surfaces by associating a
rank r lattice polarisation to a rank 20− r polarisation.

A possible direction of research is to study the KS construction for families of K3 surfaces that are
Dolgachev mirror duals to the special families of K3 surfaces we have studied. Such a family of mirror
duals K∨

P parametrising K3 surfaces of Picard rank 6 is a type IV14 LSV, while the original family KP
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of K3 surfaces of Picard rank 14 is a type IV6 one. With I. Satake’s result [Sa], it is expected that
one can obtain a map from a type IV14 LSV to a type II64 LSV, which is a moduli space A∨

M,T of
polarised abelian 128-fold with totally definite quaternion multiplication. Remarkably, a simple factor
of a generic KS variety associated to a K3 surface of Picard rank 6 is also an abelian 128-fold with the
expected endomorphism structure. Thus one may construct a map F∨ : K∨

P → A∨
M,T in the same way

as the map F : KP → AM,T was constructed via the KS construction, and proceed with comparing the
geometric properties of A∨

M,T and AM,T .
Moreover, when restricting ourselves to consider KP of K3 surfaces polarised by a 2-elementary

lattice, the existence of a Dolgachev mirror family KP∨ is equivalent to the existence of mirror symmetry
[Y] between any member X in KP and a log del Pezzo surface of index 2. This might provide insights
of how to match up members of the Dolgachev mirror families, or a way to relate the maps F and F∨.
We hope to develop this idea in another collaboration with A. Malmendier.
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Part II

Kuga varieties of polarised abelian surfaces

8 Definitions

In this section, we will give all necessary definitions for our work in Part II.

8.1 Kuga varieties

We introduce our object of interest, a Kuga variety, in greater generality than how it was first introduced
in [K].

To begin with, let us first give the definition of a universal family of abelian varieties. Let Λ′ ≃ Z2g

be a real lattice with an alternating form E. Recall from Section 3.2 that D(2g,g) is the period domain
of (Λ′

R, E) of type (2g, g), and that it is biholomorphic to Sg, the Siegel upper half space of degree g.
Moreover, each point in the period domain D(2g,g) is a Hodge filtration (F •) for Λ′

C, which is equivalent
to a complex structure J on Λ′

R, or a R-linear map µ from Λ′
R to the +i-eigenspace of J .

Definition 8.1.1. [Ma, Section 2.1]
A universal family of abelian varieties is a fibred manifold X → D(2g,g), such that the fibre

over the Hodge filtration (F •) ∈ D(2g,g) is the abelian g-fold A(F •) given by the complex torus

F 1/
(
F 1 ∩ µ

(
Λ′))

with polarisation E. For any positive integer n, we denote by X(n) its n-fold self fibre product

X×D(2g,g)
· · · ×D(2g,g)

X.

In particular, the fibre of X(n) → D(2g,g) over (F •) is the n-fold product of the abelian variety A(F •).

Remark 8.1.2. We follow Ma’s convention to call X a universal family instead of a tautological family,
but no universality of X is to be expected: the base D2g,g is not a moduli space and the fibres are not
distinct.

Remark 8.1.3. Consider the following families over D(2g,g):

W(n) =

{(
F 1
)⊕n

}
(F •)∈D(2g,g)

and Λ(n) =
{(

µ(Λ′)
)⊕n
}
(F •)∈D(2g,g)

.

Then we have X(n) ≃ W(n)/Λ(n).

Remark 8.1.4. Let E be the vector subbundle F 1V of the Hodge bundle V with respect to its filtration
(F •) [Vo, Section 10.2.1]. It is dual to W(1) ⊗ OA under the polarisation form, and both are called a
Hodge subbundle. In some literature e.g. [Ma] and [vdG], the vector bundle E instead of V is called the
Hodge bundle.

Let f : X → A ≃ Γ\Sg be a family of structured abelian g-folds, where the action of Γ := Γ(f) <
Sp(2g) on Sg is given in Remark 3.2.24. We will construct an n-fold Kuga variety associated to the

family f by defining an extension Γ̃n of Γ and a left action of it on W(n) ≃ Cng ×Sg which descends to
that of Γ on Sg, with reference to [HKW2, Chapter I.1] and [Na, (2.7)].
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First, by identifying Cng with the set of n × g complex matrices, we can identify Cng × Sg with a
subset of Gr(g,Cn+2g) by sending an element (Z, τ) to a GL(g,C)-equivalence class of block matrices:

(Z, τ) 7→

Zτ
1g

 .

We define the integral affine symplectic group as the semi-direct product Mn×2g(Z) ⋊ Γ, brought
to the form

Γ̃n =

{
(l, γ) =

(
1n l
0 γ

)
∈ Mn+2g(Z) : γ ∈ Γ, l ∈ Mn×2g(Z)

}
.

The group Γ̃n acts on Cng × Sg by left multiplication on the GL(g,C)-equivalence classes of block

matrices. Explicitly, if γ̃ = (l, γ) ∈ Γ̃n and τ̃ = (Z, τ) ∈ Cng × Sg, then

γ̃ · τ̃ =

(1n l
0 γ

)
·

Z
τ
1g

 =

Z + l · τ

γ ·
(
τ
1g

) =

(Z + l · τ) ·N
γ · τ
1g

 (7)

for some N ∈ GL(g,C).
Finally, we define an n-fold Kuga variety.

Definition 8.1.5. [Ma, Section 2.2]
An n-fold Kuga variety associated to a family of structured abelian g-folds f , is the quotient

X
(n)
Γ := Γ̃n\X(n).

The projection Cng ×Sg → Sg induces a map π : X
(n)
Γ → A. We are interested in the particular kind

of n-fold Kuga varieties where the base A is a modular variety Ap of abelian surfaces of polarisation
type (1, p) for prime p ≥ 3 with a choice of canonical level structure (see Remark 3.2.8). We denote
this n-fold Kuga variety by Xn

p . The modular group Γp associated to Ap given in Theorem 3.2.26 can
be written explicitly [HKW2, Proposition 1.20] as

Γp =

γ ∈ Sp(4,Z) : γ − 14 ∈


Z Z Z pZ
pZ pZ pZ p2Z
Z Z Z pZ
Z Z Z pZ


 .

We denote the associated integral affine symplectic group by Γ̃n
p .

Remark 8.1.6. According to Equation (7), the fibre in Xn
p over τ is Cng modulo the lattice given by

l · τ . When p ̸= 2, this fibre is isomorphic to the product of n copies of the torus Cg/(τ,D)Z2g (see
[HKW2, Proof of Proposition 2.16]). The (1-fold) Kuga variety X1

p for prime p ≥ 3 is more commonly
known as the universal family of (1, p)-polarised abelian surfaces: any other family of (1, p)-polarised
abelian varieties is a pullback of X1

p up to a base change.

In the special situation when p = 2, so that −1 ∈ Γp, the fibre over τ is isomorphic to the nth power
of the associated Kummer surface.

Remark 8.1.7. We may also construct the modular variety of (1, p)-polarised abelian surfaces without
any choice of canonical level structure of the abelian surfaces, as the quotient Γ[p]\S2, where [HKW2,
Proposition 1.20]

Γ[p] =

γ ∈ Sp(4,Q) : γ ∈


Z Z Z pZ
pZ Z pZ p2Z
Z Z Z pZ
Z 1

pZ Z Z



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is called the paramodular group. Similarly, we can construct the associated integral affine symplectic

group Γ̃[p]
n
and the n-fold Kuga variety.

Remark 8.1.8. Kuga varieties can be defined even more generally. For example in [A], an n-fold Kuga

variety is a pullback of X
(n)
Γ → A, an n-fold Kuga variety in the sense of Definition 8.1.5, along an

embedding M → A of locally symmetric varieties (see Section 2.3) up to base change.
Let us see an example: recall that the type II4 LSV AM,T constructed in Section 3.3.3 is a modular

variety of abelian 8-folds with polarisation type D and totally definite quaternion multiplication. Upon
base change by a cover of high enough degree for AM,T , there exists an embedding of AM,T into the
modular variety AD of abelian 8-folds with polarisation type D. Then the pullback of the universal
family of D-polarised abelian 8-folds along this embedding is a Kuga variety over AM,T .

8.2 Kodaira dimension

In this section, we will give an introduction to Kodaira dimension of a complex variety, and state S. Ma’s
theorem (Theorem 8.2.10) which bounds the Kodaira dimension of a n-fold Kuga variety.

Let X be a normal compact complex variety (irreducible but not necessarily smooth). Recall that
a line bundle is an invertible OX -module. Similar to the definitions given in Section 3.5.1, we say that
an OX -module L is a Q-line bundle if there exists an integer m > 0 such that L⊗m is a line bundle.
And again, a basis of Γ(X,L) of a Q-line bundle L gives a rational map φL : X 99K Pr

C defined away
from the base locus of L.

Definition 8.2.1. [U, Definition 5.1]
Let L be a Q-line bundle on a normal complex variety X. Define

N(L) :=
{
m > 0 : h0(X,L⊗m) ≥ 1

}
.

Then the L-dimension of L is defined to be

κ(X,L) :=

{
−∞ if N(L) = ∅,

maxm∈N(L)
{
dimφ(L⊗m)(X)

}
otherwise.

Remark 8.2.2. It is clear that the L-dimension of any Q-line bundle L on X is at most dim(X). If L
is a very ample line bundle, then φL is the embedding described in Theorem 3.1.3. So the L-dimension
of an ample line bundle on X is dim(X) ([U, Example 5.4]). In fact [HaKo, Section 2B], a Q-line
bundle L on X satisfies κ(L) = dim(X) if and only if it is big. On the other hand, κ(O(−D)) = −∞
if D is an effective divisor.

Alternatively, the L-dimension can be considered as the rate of growth of h0(X,L⊗m) with respect
to m.

Lemma 8.2.3. [HaKo, Section 2C]
Let L be a Q-line bundle on a normal compact complex variety X. If N(L) ̸= ∅, then

κ(X,L) = max

{
k : lim sup

h0(X,L⊗m)

mk
> 0

}
.

Similar to Section 3.5.1, we have a correspondence between Q-line bundles and Q-Cartier divisors.
Therefore, we can easily define the D-dimension [U, Definition 5.1] of a Q-Cartier divisor D replacing
L⊗m by mD and h0(X,L) by h0(X,O(mD)). We will use the notions of L-dimension for Q-line bundles
and D-dimension for Q-Cartier divisors interchangeably.

Now let us require X to be smooth. Recall [GrifH, Chapter 1.1 Chern Classes of Line Bundles] the
canonical bundle ωX of a smooth complex variety X is the top exterior power of its cotangent bundle
T ∗
X , or equivalently the bundle of differential n-forms. Let KX be the canonical divisor, defined up

to linear equivalence, the associated divisor of ωX .
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Definition 8.2.4. The Kodaira dimension κ(X) of a smooth complex variety X is the D-dimension
κ(KX) := κ(X,KX) of its canonical divisor KX .

For a singular normal complex variety X with smooth locus X0, one may also define [Reid, Section
1.5] its canonical sheaf to be

ωX = j∗ (ωX0) ,

which is the pushforward of the sheaf of regular dim(X)-forms on X0 by the inclusion j : X0 ↪→ X.

Similarly, we define its rth-tensor power to be ω⊗r
X = j∗

(
ω⊗r
X0

)
for any integer r > 0. If ωX is a Q-line

bundle, then we define the canonical divisor KX to be its corresponding Q-Cartier divisor. With the
following theorem which shows that the Kodaira dimension is a birational invariant, we may also define
the Kodaira dimension of a singular complex variety to be the Kodaira dimension of any of its smooth
birational models.

Theorem 8.2.5. [U, Lemma 6.3]
Let f : X → Y be a birational morphism of smooth complex varieties. Then there is a natural

isomorphism of C-vector spaces

f∗ : H0(Y,O(mKY )) −→ H0(X,O(mKX)).

Remark 8.2.6. Again, κ(X) of a complex variety X is at most dim(X). If κ(X) = dim(X), then
we say X is of general type [HaKo, Section 2C]. On the other end of the spectrum lie varieties with
Kodaira dimension −∞, such as rational varieties. Indeed, the canonical bundle of Pn is O(−n − 1)
and any positive power of it has no global section [Hart, Example 8.20.1].

Remark 8.2.7. The number h0(X,ω⊗m
X ) is called [I, Section 2] the mth-plurigenus of X and, by

Lemma 8.2.3, the Kodaira dimension is the measure of the rate of growth of the plurigenera with respect
to m.

The aim of this work in Part II is to calculate the Kodaira dimension κ(Xn
p ). Since Xn

p → Ap has
connected fibres, the following theorem, which is a generalisation of S. Iitaka’s fundamental theorem of
the pluricanonical fibrations, applies.

Theorem 8.2.8. [U, Theorem 6.12]
Let f : X → Y be a surjective morphism of complex varieties with connected fibres. Then there exists

a dense open subset W of Y such that for all w ∈ W , we have

κ(X) ≤ κ(Xw) + dim(Y ),

where Xw denotes the fibre f−1(w).

This implies that the Kodaira dimension of any (n-fold) Kuga variety over a modular variety Y is
at most dimY : the general fibre is the nth power of an abelian variety, and an abelian variety always
has Kodaira dimension 0 because it has trivial canonical bundle.

Definition 8.2.9. We say that an n-fold Kuga variety X
(n)
Γ → A is of relative general type if

κ(X
(n)
Γ ) = dim(A).

In the case of Xn
p , it is of relative general type when κ(Xn

p ) equals the dimension of Ap, which is 3
(see Section 3.2.4).

Part II of the thesis is based on the work [Ma] of S. Ma where a connection between Siegel modular
forms and differential forms on arbitrary Kuga varieties is established. In particular, he gives [Ma,
Theorem 1.3] a lower bound of the Kodaira dimension of a Kuga variety, assuming the existence of a
specific compactification for the Kuga variety, which is referred to as a Namikawa compactification (see
Definition 8.3.9) in [PSMS]. In terms of Xn

p , this result translates to:
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Theorem 8.2.10. Let X be a Namikawa compactification of Xn
p . Then

κ(Ap, (n+ 3)L −∆A) ≤ κ(KX) ≤ 3

where Ap is a toroidal compactification of Ap, L is the Q-line bundle of weight 1 modular forms of Γp

and ∆A is the boundary divisor of Ap.

Note that by [PSMS, Theorem 1.2], X is Q-Gorenstein, so its canonical sheaf is a Q-line bundle,
and KX is indeed a Q-Cartier divisor. We will see that κ(X) = κ(KX) if every singularity on X is a
canonical singularity (Lemma 8.4.2). Therefore, if we have a Namikawa compactification X of Xn

p with
canonical singularities, then Theorem 8.2.10 gives us a lower bound for κ(Xn

p ). Such a compactification

is constructed in [PSMS]. Now, we would like to find out for which n and p the lower bound κ(Ap, (n+
3)L −∆A) is equal to 3, or equivalently when Xn

p is of relative general type. Our main theorem is the
following:

Theorem 8.2.11. A Kuga variety Xn
p is of relative general type if

• p ≥ 3 and n ≥ 4; or

• p ≥ 5 and n ≥ 3.

Before moving on to the explicit computations, we will give the necessary definitions and known
results about toroidal compactifications and Namikawa compactifications (Section 8.3); singularities on
a Namikawa compactification, and when are they canonical (Section 8.4); and Siegel modular forms and
cusp forms (Section 8.5).

8.3 Compactification of Kuga varieties

The Namikawa compactification mentioned in Theorem 8.2.10 can be constructed as a toroidal com-
pactification [Na], which is a common method of compactification for LSVs and universal families over
a LSV. For the purpose of Section 9, we will give a brief description of the cusps of an n-fold Kuga
variety and the main steps involved in its toroidal compactification. We will specifically describe the
Namikawa compactification X of Xn

p .

8.3.1 Boundary components and cusps

Let us first describe the cusps on an n-fold Kuga variety, which is the locus to be added in the com-
pactification process. Consider the Siegel upper half space Sg of degree g.

Definition 8.3.1. [Na2, (4.1)], [HKW2, Definition 3.5]
The Siegel upper half space Sg is isomorphic to the bounded symmetric domain

Dg =
{
Z ∈ Sym(g,C) : 1g − ZZ > 0

}
,

whose closure is
Dg =

{
Z ∈ Sym(g,C) : 1g − ZZ ≥ 0

}
.

Define an equivalence relation ∼ on Sg := Dg: for two points p, q ∈ Sg, we say p ∼ q if and only
if they can be connected by finitely many holomorphic curves. The equivalence classes of points in Sg

with respect to ∼ are called boundary components on Sg. Boundary components in Sg\Sg are called
proper.

We can [HKW2, Proposition 3.6] associate to a boundary component of Sg an isotropic subspace of
R2g. A subspace V ⊂ R2g is isotropic if for all u, v ∈ V , we have uJ t

gv = 0 with Jg being the symplectic
form of degree g.
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Proposition 8.3.2. [HKW2, Proposition 3.12]
There is a one-to-one correspondence between the set of boundary components of Sg and the set of

isotropic subspaces in R2g with respect to J . Moreover, this correspondence is Sp(2g)-equivariant: it
respects the action of γ ∈ Sp(2g) on Sg given in Remark 3.2.24 and the action of γ−1 on R2g by left
multiplication.

Under this correspondence, we may translate the usual properties of real vector spaces into properties
of boundary components.

• A boundary component F of Sg is said to be of corank g′′ ≤ g if its corresponding isotropic
subspace in R2g has rank g′′. The symplectic group Sp(2g) acts transitively on the set of boundary
components of the same corank.

• A boundary component F is said to be adjacent to a second boundary component F ′, or F ′ ≻ F ,
if F ̸= F ′ and F ′ ⊃ F . If V ′ and V are the corresponding isotropic subspaces of F ′ and F in R2g,
then F ′ ≻ F if and only if V ′ ⊊ V .

Remark 8.3.3. In fact, Sg is a boundary component of corank 0 of itself. Every proper boundary
component of Sg is adjacent to Sg.

Let A be a LSV of type III, i.e. it is an arithmetic quotient of Sg by the arithmetic subgroup Γ. We
are interested in the Γ-orbits of the rational boundary components of Sg.

Definition 8.3.4. [HKW2, Definition 3.17]
A rational boundary component F is a boundary component whose stabiliser subgroup

P(F ) = {γ ∈ Sp(2g) : γ(F ) = F}

is defined over Q. That is, there exists an algebraic subgroup PQ(F ) ⊂ Sp(2g,Q) such that P(F ) =
(PQ(F ))(R), the R-valued points of the algebraic group PQ(F ).

The modular group Γ sends a rational boundary component to a rational boundary component. If
V ⊂ R2g is the isotropic subspace that corresponds to a rational boundary component F , then the
integral points X := V (Z) form a lattice in V , satisfying V = X⊗Z R. We call X the isotropic lattice
associated to F . Moreover, the action of the integral group P(F ) ∩ Γ on R2g preserves X.

We are now ready to define a cusp in A.

Definition 8.3.5. Let F be a proper rational boundary component of Sg. Then the cusp in A = Γ\Sg

associated to F is given by the quotient (Γ ∩ P(F )) \F .

Before moving on to defining the cusps in Kuga varieties, let us give a geometrical description of the
cusps of Ap with p ≥ 3 prime [HKW2, Section 3B]. The closure of each Γp-orbit of corank 1 boundary
components is a modular curve. There are a total of (1 + (p2 − 1)/2) such modular curves in Ap, and
their configuration is given in Diagram 5.

Ap

· · · · · ·

· · ·

· · ·

X(p)

X(1)
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Diagram 5: Configuration of the cusps in Ap.

There are p+1 nodes in the diagram: each corresponds to a Γp-orbit of corank 2 boundary components.
Every node is the intersection of (1 + (p − 1)/2) modular curves, which indicates adjacency of the
corresponding boundary components. The action of the group Sp(2,Fp) ≃ Γ[p]/Γp permutes those
modular curves with only one node on them: they are all isomorphic to X(1), the modular curve of
elliptic curves. The remaining curve X(p) with p + 1 nodes is the modular curve of elliptic curves of
level p. In particular,

X(p) = Γ(p)\S1,

where S1 is the usual upper half space, and

Γ(p) :=

{(
a b
c d

)
∈ SL(2,Z) : a, d ≡ 1 mod p; b, c ≡ 0 mod p

}
is the principal congruence subgroup. A cusp isomorphic to X(1) is called a peripheral boundary
component of Ap. The cusp X(p) is called the central boundary component of Ap.

We give similar definitions of cusps for a Kuga variety. Let Γ̃n be the integral affine symplectic
group extension of Γ. Consider the n-fold Kuga variety

X
(n)
Γ = Γ̃n\ (Cng × Sg) .

A rational boundary component of Cng × Sg is in the form F̃ ≃ Cng ×F , where F is a rational

boundary component of Sg. The corank of F̃ is defined to be the corank of F . The cusp of X
(n)
Γ

associated to F̃ is given by the quotient of F̃ by its stabiliser subgroup in Γ̃. Since we can separately

describe the action of Γ̃ on the two components Sg and on Cng (see Equation (7)), a cusp of X
(n)
Γ projects

down to a cusp of A.

8.3.2 Toroidal compactification

A toroidal compactification for a type III LSV is a modification of a natural compactification called
Satake compactification. The intuitive idea behind Satake compactification is to add in the cusps of
the LSV. This compactification is unique, but it has some undesirable properties such as being highly
singular and having boundary components with codimension strictly greater than 1. A toroidal com-
pactification of a type III LSV is obtained by blowing up the Satake compactification in the boundary.
It is normal, has purely 1-codimensional boundaries and it can be chosen to have at worst finite quotient
singularities, i.e. singularities that arise from fixed points of the action of a finite group on an affine
space (to be discussed in Section 8.4). As we will explain below, one can also extend the method of
toroidal compactification to Kuga varieties.

We start by describing a partial toroidal compactification for a cusp F̃ = Cng × F on X
(n)
Γ (or A,

substituting n = 0). Suppose the cusp F̃ has corank g′′ ≤ g. We think of F as given by its corresponding
isotropic lattice X ≃ Zg′′ in R2g. Let P̃(F̃ ) be the stabiliser subgroup of F̃ in R2ng ⋊ Sp(2g), which
can be embedded in GLn+2g(R). Then we choose a small neighbourhood N(F ) of the cusp F in Sg

satisfying (
P · Ñ(F̃ )

)
∩ Ñ(F̃ ) ̸= ∅

for all P ∈ P̃(F̃ ) where Ñ(F̃ ) = Cng ×N(F ). We also define the following subgroups of P̃(F̃ ) (see [Na,
(2.5)] and [Na2, (7.1)] for more details):

P̃ ′(F̃ ) := the centre of the unipotent radical of P̃

Υ̃n := P̃ ′(F̃ ) ∩ Γ̃n

P̃ ′′(F̃ ) :=
(
P̃(F̃ ) ∩ Γ̃n

)
/Υ̃n
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Note that the groups Υ̃n and P̃ ′′(F̃ ) both inherit the action of Γ̃n on Cng×Sg. The reason to introduce

these subgroups is that we can separate out a factor of Ñ(F̃ ) where the action of P̃(F̃ )∩ Γ̃n is given by
that of Υ̃n.

Definition 8.3.6. [T, Section 5]
Let g′ := g − g′′. Identify Cng × Sg with

([
M N

]
,

[
τ ′ ω
ωt τ ′′

])
:

M ∈ Cng′ , N ∈ Cng′′ ,
τ ′ ∈ Sg′ , τ ′′ ∈ Sg′′ ,
ω ∈ Mg′×g′′(C)

 .

Then the Siegel domain realisation for Cng × Sg associated to F̃ is the embedding

Cng × Sg ↪→ (Cng′ × Cng′′)× (Sg′ ×Mg′×g′′(C)×M sym
g′′×g′′(C))([

M N
]
,

[
τ ′ ω
ωt τ ′′

])
7→
(
(M,N) ,

(
τ ′, ω, τ ′′

))
This has the property that the action of P̃(F̃ ) on Cng × Sg preserves the factors of the Siegel domain
realisation.

Remark 8.3.7. When n = 0, the embedding of Sg into Sg′ × Mg′×g′′(C) × M sym
g′′×g′′(C) described in

Definition 8.3.6 is called a tube domain realisation associated to a corank g′′ cusp. The image in the
factor M sym

g′′×g′′(C) is the cone of positive semi-definite forms on Cg′′. Its product with the vector space
Sg′ ×Mg′×g′′(C) realises the image of the embedding as a tube domain.

The action of the group P̃(F̃ ) ∩ Γ̃n on Cng × Sg can also be described independently on each of
the factors in the Siegel domain realisation. In particular, we will describe the action of its subgroup
Υ̃n for the factor Cng′′ ×M sym

g′′×g′′(C). This factor can be identified to (X∨
C)

n × Sym2
C(X∨), which is the

set of n-tuple of C-linear forms and a bilinear symmetric form over XC. This is a vector space in the
boundary Cng′′ ×

(
Dg′′ \ Dg′′

)
of the domain Cng′′ ×Dg′′ .

Proposition 8.3.8. [Na2, Section 3], [PSMS, Section 1]
The group Υ̃n is isomorphic to (X∨)n × Sym2(X∨), and it acts on Cng × Sg by real translation in

the imaginary direction of the factor Cng′′ ×M sym
g′′×g′′(C) of the Siegel domain realisation.

We consider the partial quotient of Ñ(F̃ ) by Υ̃n. Then by Proposition 8.3.8, we can embed the
partial quotient into

T (F̃ ) = Cng′ × (C∗)ng
′′ × Sg′ × Cg′×g′′ × (C∗)g

′′×g′′
sym . (8)

This is a torus bundle i.e. a fibre space over the smooth complex manifold Cng′ × Sg′ × Cg′×g′′ where

each fibre is isomorphic to the torus (C∗)g
′g′′+g′′(g′′+1)/2. The image of the partial quotient in T (F̃ ) is

highly singular. By choosing a fan Σ(F̃ ) (see [HKW2, Section 2A]) for (X∨
R)

n × Sym2
R(X∨), we may

extend the torus part in T (F̃ ) to a smooth torus embedding Temb(Σ(F̃ )). In particular, we obtain
torus bundle

X̃(F̃ ) := Sg′ × Cg′g′′ × Cng′ × Temb(Σ(F̃ )).

Moreover if the cone decomposition Σ(F̃ ) chosen is admissible (see [Na2, Definition 7.3(i)]), then the

action of P̃ ′′(F̃ ) on the torus part of T (F̃ ) can be extended to an action on Temb(Σ(F̃ )). By taking the

interior of the closure of Υ̃n\Ñ(F̃ ) in X̃(F̃ ) and quotienting it by P̃ ′′, we arrive at the partial toroidal
compactification at the cusp F̃ . If in addition Σ(F̃ ) is simplicial (see [HKW2, Definition 3.61(c)]),
the partial toroidal compactification has finite quotient singularities which arise from fixed points by
the action of P̃ ′′(F̃ ).
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Finally, if the fans chosen for the partial compactification at each cusp are compatible, i.e. they form
an admissible family (see [Na2, Definition 7.3(ii)]), then we can obtain a toroidal compactification

of the n-fold Kuga variety X
(n)
Γ by gluing the partial toroidal compactification for each cusp F̃ to X

(n)
Γ

along (P̃(F̃ ) ∩ Γ̃n)\Ñ .

8.3.3 Namikawa compactification

An explicit construction of a Namikawa compactification X (of a special kind) for an n-fold Kuga variety
is the main purpose of Section 1 in [PSMS]. Here we briefly introduce the definition and the idea of
construction of a Namikawa compactification X of Xn

p over Ap.

Definition 8.3.9. A Namikawa compactification of Xn
p is an irreducible normal projective variety

X containing Xn
p as an open subset, together with a projective toroidal compactification Ap of Ap for

which the following conditions hold.

1. π : Xn
p → Ap extends to a projective morphism π : X → Ap;

2. every irreducible component of ∆X := X ∖ Xn
p dominates an irreducible component of ∆A :=

Ap ∖Ap.

Therefore X sits inside the commutative diagram

Xn
p X

Ap Ap

π π

and π does not contract any divisor.
Namikawa compactifications are constructed by toroidal methods in [Na]. For the Kuga variety

Xn
p , every rational boundary component F̃ is of corank g′′ ≤ g = 2, which corresponds to a rank g′′

isotropic lattice in R2. We may construct a partial toroidal compactification at a cusp F̃ which leads to a
Namikawa compactificationX, by choosing a suitable cone decomposition Σ(F̃ ) in (X∨

R)
n×Sym2

R(X∨). In
[PSMS], the cone decomposition is chosen to be the perfect cone decomposition [HKW2, Remark 3.127].
Briefly, when n = 0, i.e. Xn

p = Ap, the perfect cone decomposition of the cone of positive semi-definite

symmetric bilinear forms with rational radical in Sym2
R(X∨) is given by the convex hull of the rank

one 1-forms on the faces. When n > 0, in [PSMS] we extend the perfect cone decomposition to the
Siegel domain realisation. Moreover, Σ(F̃ ) satisfies the conditions as listed in [PSMS, Proposition 1.4],
which ensures that the local uniformising space X̃(F̃ ) of X has canonical singularities (Definition 8.4.1).
We complete the construction of a Namikawa compactification X for Xn

p by gluing up the the partial

toroidal compactifications coming from the special choice of cone decomposition for each cusp F̃ as
described in Section 8.3.2.

We will prove in the Section 9 that for any p and n > 2, this Namikawa compactification X of Xn
p

has canonical singularities.

8.4 Canonical singularities and the RST criterion

In this section, we will discuss canonical singularities on normal complex varieties, and the Reid–
Shepherd-Barron–Tai (RST) criterion for checking if a finite quotient singularity is canonical. The
main reference in this section is [Reid].

First, we will give the definition of a normal variety with canonical singularities.
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Definition 8.4.1. [Reid, Definitions 1.1]
A normal variety X has canonical singularities if it satisfies the following two conditions:

(i) the canonical divisor KX is Q-Cartier (or Q-Gorenstein), i.e. the Weil divisor rKX is Cartier for
some integer r ≥ 1.

(ii) if f : Y → X is a resolution of X and {Ei} the set of all exceptional prime divisors of f , then

rKY = f∗(rKX) +
∑

aiEi

with ai ≥ 0.

Part (i) in Definition 8.4.3 says [Reid, Section 1.7] that O(rKX) = ω⊗r
X extends to a line bundle

over X. Part (ii) says [Reid, Section 1.9] that any regular canonical r-form in ω⊗r
X is still regular when

considered as a rational canonical r-form on the resolution Y of X: it has no poles along the exceptional
divisors of f . Therefore, the rth-plurigenera of X and Y agree. In particular, we have the following
lemma.

Lemma 8.4.2. If X is a normal variety with canonical singularities, and f : Y → X is a resolution,
then

κ(KX) = κ(KY ).

By choosing a simplicial cone decomposition, we may construct a toroidal compactification of a
universal family over a type III LSV that locally looks like a quotient of an affine space by the action
of a finite group everywhere: away from the cusps, it agrees with the universal family itself; and near
the cusp, it is given by the partial toroidal compactification. Singularities on such a quotient arise
from fixed points of the action of the finite group: these are called finite quotient singularities.
The Reid–Shepherd-Barron–Tai (RST) criterion is a simple tool for checking if a finite quotient
singularity is canonical.

We will need the following set-up to state the RST criterion [Reid, Section 4]. Suppose G is a finite
group acting on the complex vector space Cm linearly. For a non-trivial element γ ∈ G of order k, the
eigenvalues of its action on Cm can be expressed as an m-tuple (ξα1 , . . . , ξαm), with ξ being a primitive
k-th root of unity and αj being a non-negative integer less than k for any j. We define, with dependence
on the choice of ξ, the type of γ to be

1

k
(α1, . . . , αm)

and its associated RST sum to be

RST(γ) :=

m∑
i=1

αi

k
.

Furthermore, we say that γ is a quasi-reflection if all but one αj are 0, or equivalently γ preserves a
divisor.

The RST criterion is then given by the following:

Theorem 8.4.3. [Reid, 4.11]
Let G be a finite group which acts on Cm as above. Then Cm/G has a canonical singularity if G

contains no quasi-reflection and every non-trivial element γ ∈ G satisfies the inequality

RST(γ) ≥ 1.

Note that, since we need to check the above inequality involving the RST sum for every element in
G, it does not matter which root of unity ξ was chosen to give the type of a generator γ of G.
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Remark 8.4.4. One may visualise the inequality in Theorem 8.4.3. For a non-trivial element γ ∈ G
with type 1/k(α1, · · · , αm), its RST sum is at least 1 if and only if the point (α1/k, · · · , αm/k) ∈ [0, 1]m

lies on or above the hyperplane
∑

yi = 1. For example when m = 3, the point in [0, 1]3 corresponding
to γ ∈ G that satisfies the inquality, has to lie in the shaded area in Diagram 6.

(0, 0, 0)

(1, 1, 1)

Diagram 6: Pictorial description of the RST inequality when m = 3.

Notice that as m increases, the volume below the hyperplane
∑

yi = 1 inside the hypercube decreases.
Thus finite quotient singularities are more likely to be canonical when the dimension m of the variety
increases.

8.5 Modular forms

In this section, we give the minimal definitions and explanations of some terminologies related to
modular forms for use in Section 10.

8.5.1 Siegel modular forms

We begin by introducing Siegel modular forms associated to an arithmetic subgroup Γ of Sp(2g,Z).
We first give an analytic definition of Siegel modular forms. Consider the modular variety A := Γ\Sg

of structured abelian g-folds with modular group Γ. Let k be a positive integer. A weight k Siegel
modular form of Γ is a holomorphic function on Sg that satisfies certain rules with respect to the Γ
action.

Definition 8.5.1. [F, Definition I.3.1]
A holomorphic function f : Sg → C for g > 1 is a Siegel modular form of a finite index subgroup

Γ < Sp(2g,Z) of weight k if it satisfies the automorphy condition:

f(γ(τ)) = det(Cτ +D)kf(τ) for all γ =

[
A B
C D

]
∈ Γ.

In the case of g = 1, f is a Siegel modular form if it satisfies both the automorphy condition and
the growth condition: for all projective rational matrices γ ∈ Sp(2,R), i.e. rγ ∈ Sp(2,Q) for some
r ∈ R∗, we have

(cτ + d)−kf(γ(τ)) is bounded as Im(τ) → ∞ if γ =

(
a b
c d

)
∈ Sp(2,R).

We denote by Mk(Γ) the vector space of weight k Siegel modular forms of Γ.

The automorphy condition is simply a transformation rule for f with respect to the action of Γ on Sg.
The group of projective rational matrices in Sp(2,R) acts transitively on the set of rational boundary
components in Sg, so the growth condition is checking whether f exhibits controlled behaviour near the
cusps in A, that is, whether f is holomorphic at the cusps.
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Remark 8.5.2. The automorphy condition implies that f is holomorphic near the cusps when g > 1
by the Koecher principle [vdG, Theorem 2]. Also due to the automorphy condition, it is in fact enough
to check the growth condition for one γ in each coset of Γ in the group of projective rational matrices
in Sp(2,R) for the case g = 1.

Remark 8.5.3. When g = 2, we have Sp(2,Z) ≃ SL(2,Z), and a modular form in Mk(SL(2,Z)) is
called a weight k elliptic modular form.

Remark 8.5.4. The vector spaces Mk(Γ) for k ≥ 0 form a graded ring
⊕

k Mk(Γ) under multiplication:
if f1 ∈ Mk1(Γ) and f2 ∈ Mk2(Γ) for some k1, k2 ≥ 0, then f1f2 ∈ Mk1+k2(Γ).

From now on, we will just write modular forms for Siegel modular forms. Modular forms for Γ are
closely related to differential forms of the Siegel modular variety A. Let A0 be the unramified part of
A. Recall that a canonical form on A0 is a section on H0(KA0).

Proposition 8.5.5. [vdG, Section 11]
Let {τij} for 1 ≤ i, j,≤ g be a set of coordinates for Sg ⊂ Mg(C). Consider the volume form

ω =
∧

1≤i≤j≤g dτij on Sg. If f is a weight k(g + 1) modular form of Γ, then fω⊗k ∈ H0(kKSg) is a

Γ-invariant canonical k-form on Sg, which descends to a canonical k-form on A0. This describes an
isomorphism of graded rings ⊕

k

Mk(g+1)(Γ) −→
⊕
k

H0(kKA0),

where multiplication in
⊕

k H
0(kKA0) is the tensor product.

The above isomorphism allows us to give an alternative definition of a modular form from the
geometrical perspective. Recall that the Hodge subbundle E defined in Remark 8.1.4 is isomorphic to
H0(A,ΩA).

Definition 8.5.6. The Q-line bundle L := ωA/(g+1) = det(E) is called the line bundle of weight 1
modular forms of Γ.

In particular, a weight k modular form of Γ is a section of kL regular on A0.

Remark 8.5.7. [vdG, Theorem 7]
To end this subsection, let us discuss more about the geometry of A in relation to this line bundle L.

Recall the Baily-Borel Theorem says that A is a quasi-projective variety. In fact, the embedding of A
into the projective space comes from the ample Q-line bundle L. Moreover, the Satake compactification
of A is the closure of the image of A under this embedding, and is given by Proj (

⊕
k Mk(Γ)).

8.5.2 Siegel cusp forms

Let us move on to define a Siegel cusp form. One considers the Siegel operator Φ: roughly, Φ(f)(τ)
for f ∈ Mk(Γ) and τ ∈ Sg is the limit of f(τ) as τ approaches some standard corank 1 boundary
component. Then a weight k Siegel cusp form of Γ is defined to be a modular form f ∈ Mk(Γ) with
Φ(f)(N(·)) = 0 on Sg for every projective rational matrix N ∈ Sp(2g,R). For the precise definition of
a Siegel operator or a Siegel cusp form, see [F, Section I.3, Definition II.6.9]. We denote by Sk(Γ) the
vector space of weight k Siegel cusp forms of Γ. From now on, we write cusp forms instead of Siegel
cusp forms.

Remark 8.5.8. As in remark 8.5.2, a cusp form is a modular form that vanishes at every cusp that
comes from a corank 1 boundary component, and it is enough to check that Φ(f)(N(·)) vanishes for
one N in each coset of Γ in the group of projective rational matrices in Sp(2g,R) because of the auto-
morphy condition. Since for each boundary component of corank greater than 1 there exists a boundary
component of corank 1 that is adjacent to it, a cusp form in fact vanishes at every cusp of A.

90



By considering a cusp form as a modular form that vanishes at every (corank 1) cusp, we have an
alternative definition of a cusp form involving the line bundle L. Consider the Mumford compactifi-
cation [AMRT] where we take the union of A with the corank 1 boundary components in the boundary
of the Satake compactification, and then blow up the boundary. The Mumford compactification is
canonical: to construct the partial compactification of a corank 1 boundary component F of Sg, the
only way to compactify the partial quotient T (F ) of the associated tube domain (see Equation 8), is to
add the point 0 to the C∗ factor.

Remark 8.5.9. The Mumford compactification is the common open part in all toroidal compactifica-
tions. Despite its name, the Mumford compactification is not compact.

If A# is the Mumford compactification of A, then A# \ A is a divisor ∆A which we call the the
boundary divisor of A. A cusp form of Γ of weight k can then be considered as a global section of
the divisor kL −∆A.

In fact, if f ∈ Mk(g+1)(Γ) is a cusp form, then the canonical k-form fω⊗k on A0 mentioned in

Proposition 8.5.5 extends to a canonical k-form on the Mumford compactification A#.

Theorem 8.5.10. [AMRT, Section IV.1.2] Let A ≃ Γ\Sg be a moduli space of structured abelian g-folds,
and let A# be the Mumford compactification of A. Then there is an isomorphism of vector spaces

S(g+1)(Γ) ≃ H0(KA#).

Remark 8.5.11. The lower bound for κ(KX) = κ(KX0) in Ma’s theorem (Theorem 8.2.10) is deter-
mined by proving extended versions of Theorem 8.5.5 and Theorem 8.5.10 for a Namikawa compactifica-

tion of Kuga families [Ma, Theorem 1.2]: for any Namikawa compactification X of X
(n)
Γ which projects

to a toroidal compactification A of A, we have an isomorphism of graded rings⊕
k≥0

H0(X, kKX + k∆X)) ≃
⊕
k≥0

Mk(n+g+1)(Γ),

where ∆X is the boundary divisor X \ X(n)
Γ . Moreover for every positive integer k, there an injection

H0(k(n+ g + 1)L −∆X) ≃ Sk(n+g+1) ↪→ H0(kKX + (k − 1)∆X),

which results in the injection

H0(k(n+ g + 1)L − k∆X) ↪→ H0(kKX).

By Lemma 8.2.3, we have κ((n+ g + 1)L −∆X) ≤ κ(KX).

8.5.3 Jacobi cusp forms

In this section, we will define Jacobi forms and Jacobi cusp forms. The standard reference for the topic
is [EZ].

The notion of Jacobi forms arises from the modular forms of a special parabolic subgroup Γ∞ of
Sp(4,Z). For this we consider S2 as its image under the tube domain realisation for a corank 1 boundary
component F

τ 7→ (τ ′, ω, τ ′′) ∈ S1 × C× C.

Definition 8.5.12. [Grit]
The group Γ∞ is the set of matrices in Sp(4,Z) in the form

∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 .
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The group Γ∞ preserves the C factor in the tube domain realisation of S2 associated to F , i.e. Γ∞
acts on C by translation. In particular, the action of Γ∞ on the tube domain can be interpreted as the
extended action of the stabiliser subgroup P(F ) on the torus bundle X̃(F ) ≃ S1 × C × Temb(Σ(F )),
where Temb(Σ(F )) ≃ C is the unique smooth torus embedding of C∗ mentioned in Section 8.5.2. For
more details of Γ∞, see [Grit] and [vdG, Section 11].

Definition 8.5.13. [Grit]
Let k and m be positive integers. A holomorphic function ϕ on S1 ×C is a Jacobi form of weight

k and index m if the function on S2 given by

τ 7→ ϕ(τ ′, ω) exp(2πimτ ′′)

is a weight k modular form for Γ∞.
We denote by Jk,m the vector space of Jacobi forms of weight k and index m.

A Jacobi form ϕ ∈ Jk,m can also be characterised by its Fourier expansion

ϕ(τ ′, ω) =
∞∑
n=0

∑
r∈Z

r2≤4mn

c(n, r) exp
(
2π(nτ ′ + rω)

)

together with a list of transformation rules with respect to the (restricted) action of Γ∞ on S1 ×C (see
[vdG, Section 8]). The Jacobi form ϕ is therefore [vdG, Section 11] a local section of a certain Q-line
bundle J on the Kuga variety

X
(1)
Γ∞

≃ Γ∞\(C× S1).

This Kuga variety is the boundary divisor in the Mumford compactification A#, and J = 3kL+mN ,

where L is the line bundle of weight 1 modular forms of Γ∞, and N is the normal bundle of X
(1)
Γ∞

in A#.
To end this section, we give the definition of a Jacobi cusp form.

Definition 8.5.14. [Grit, Section 1]
A Jacobi form ϕ of weight k and index m is a Jacobi cusp form of the same weight and index if

in its Fourier expansion, a summand is non-zero only if r < 4mn. We denote the vector space of Jacobi
cusp form of weight k and index m by Jcusp(k,m).

9 Canonical singularities

In this section, we will show that the L-dimension κ(Ap, (n+3)L−∆A) is a lower bound for κ(Xn
p ) for

any n ≥ 3 and for any p, by showing that any Namikawa compactification X of Xn
p as constructed in

[PSMS] has canonical singularities.

9.1 Strategy

We will separately examine the singularities in the interior and the boundary of X, and check if they
are canonical by applying the RST criterion.

9.1.1 Strategy in the interior

In the interior Xn
p of X, a singularity corresponds to a point τ̃ = (Z, τ) in C2n×S2 fixed by Γ̃n

p . We can
apply the RST criterion to check if τ̃ corresponds to a canonical singularity: suppose γ̃ is an element
in the isotropy group iso(τ̃) < Γ̃n

p of τ̃ . i.e. γ̃ fixes τ̃ . Equation (7) in Section 8 shows the action
of γ̃ separately as the action of γ on the S2 factor and that of γ̃ on the C2n factor. Also, γ̃ fixes τ̃
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only if γ fixes τ . The isotropy group iso(τ̃) of τ̃ in Γ̃n
p is finite, so any nontrivial element γ̃ = (l, γ)

in iso(τ̃) is a torsion element and l = 0. As a result of [T, Theorem 4.1], the induced action of any
element γ ∈ iso(τ) ≤ Γp of order k on the tangent space Tτ (S2) can be diagonalised under suitable
local coordinates. It will be shown that γ̃ also acts diagonally on TZ(C2n). This gives us the finite
dimensional representation of iso(τ̃) required for the application of the RST criterion.

Note that it suffices to apply the RST criterion at a limited number of singularities in Xn
p :

Lemma 9.1.1. Let τ̃ = (Z, τ) be a point in C2n×S2 that corresponds to a canonical singularity in Xn
p .

Then either τ corresponds to a canonical singularity in Ap, or iso(τ̃) = ⟨σ̃ := (0,−14)⟩ < Γ̃n
p . In the

latter case, τ corresponds to a smooth point.

Proof. The isotropy group of τ̃ , iso(τ̃), cannot contain a quasi-reflection: according to [Ma, Lemma 7.1],
a non-trivial element γ̃ ∈ iso(τ̃) does not fix any divisor in Xn

p .
Consider any nontrivial γ̃ := (0, γ) ∈ iso(τ̃). If γ acts trivially on S2, then γ = −14.
Moreover, by the definition of RST sums, we have

RST(γ̃) ≥ RST(γ)

So τ̃ corresponds to a canonical singularity in Xn
p if τ corresponds to a canonical singularity in Ap.

9.1.2 Strategy in the boundary

A singularity in the boundary of X correspond to a point τ̃ in X̃(F̃ ) fixed by P̃ ′′(F̃ ) near a proper
boundary component F̃ of corank g′. Again, the RST criterion can be applied to check if τ̃ corresponds
to a canonical singularity: Let τ̃ := (Z, τ), where Z ∈ C2n and τ ∈ Sg′ × Temb(Σ(F̃ )). As mentioned

in Definition 8.3.6, P̃ ′′(F̃ ) preserves the decomposition of X̃(F̃ ), so γ̃ acts on each factors of X̃(F̃ )

separately. A calculation similar to Section 8 Equation (7) shows that locally at τ̃ , γ̃ = (l, γ) ∈ P̃ ′′(F̃ )
fixes τ̃ only if γ fixes τ . However, different from what we had in Section 9.1.1, γ̃ may not be a torsion
element, i.e. l could be non-zero. Nevertheless, the action of γ̃ on the tangent space of a resolution of
X̃(F̃ ) at τ̃ at τ̃ is of finite order, so the RST criterion can be applied there.

The following observations are useful for checking whether these singularities are canonical:

1. [PSMS, Lemma 1.3]: Let (X̃(F̃ ))∗ be a smooth P̃ ′′(F̃ )-equivariant resolution of X̃(F̃ ). If P̃ ′′(F̃ )

has no quasireflection, then the partial compactification P̃ ′′(F̃ )\X̃(F̃ ) has canonical singularities

if P̃ ′′(F̃ )\(X̃(F̃ ))∗ has canonical singularities. In particular, this implies that we can apply the

RST criterion at the singularities in P̃ ′′(F̃ )\(X̃(F̃ ))∗ instead.

2. Let τ̃ = (Z, τ) correspond to a canonical singularity near F̃ . Then either τ corresponds to a

canonical singularity in the boundary of Ap, or iso(τ̃) = ⟨σ̃ := (l,−14)⟩ < P̃ ′′(F̃ ) for some l ∈ L.
In the latter case, τ corresponds to a smooth point. The proof is similar to that in Lemma
9.1.1. Again, this implies that we only need to apply the RST criterion at a limited number of
singularities.

9.2 Singularities in the interior of compactification

In this section, we will identify the singularities in Xn
p and show that for n > 2, they are all canonical.

First we identify singularities that project to non-canonical singularities in Ap. It is given in the
proof of [HKW1, Theorem 1.8] that for any odd prime p, the singular points in Ap are exactly the points
that lie on two disjoint curves which we call C1 and C2. Any point on one of these curves corresponds
to a point τ in S2, whose isotropy group in Γp is generated by a single generator. Its induced action on
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the tangent space of S2 at τ is also given there: one can write any point in the tangent space Tτ (S2) in
the form (

τ1 + x τ2 + y
τ2 + y τ3 + z

)
.

So the tuple (x, y, z) can be considered as the local coordinates for TτAp, and the respective action of
a generator of iso(τ) on Tτ (S2) with these coordinates is given by

(x, y, z) 7→ (−x,−iy, z) along C1;

(x, y, z) 7→ (ρ2x,−ρy, z) along C2, where ρ = e2πi/3.

Therefore, the chosen generators are of types 1
4(2, 3, 0) and

1
6(4, 5, 0) when the root of unity ξ is chosen

to be i and e2πi/6 respectively on each curve C1 and C2.
Note that both cyclic groups generated by i and by e2πi/6 contain a reflection. However as mentioned

in the proof of [HKW1, Proposition 1.8], quotients by reflections are smooth. On C1, dividing the
isotropy group by the reflection group gives an order 2 cyclic group with a generator of type 1

2(1, 1, 0);
whereas on C2, the quotient gives us an order 3 cyclic group with a generator of type 1

3(1, 1, 0). By
applying the RST criterion on these cyclic groups of order 2 and 3, it is clear that the singularities on
C1 are canonical, whereas those on C2 are not.

Let τ̃ := (Z, τ) ∈ C2n × S2 such that τ corresponds to a point in C2. Let σ̃ := (0,−14) and
γ̃ := (0, γ), where γ is the generator of iso(τ) with the action on Tτ (S2) described above. Then either
iso(τ̃) = ⟨γ̃, σ̃⟩ or iso(τ̃) = ⟨γ̃⟩.

We shall first compute the type of γ̃. We only need to understand the action of γ̃ at a point
Ỹ = (Z+Y, τ) on the tangent space Tτ̃ (C2n×{τ}) ≃ TZ(C2n) to complete the type of γ̃. To do this, we
need the explicit expressions of the set C2 and its isotropy group iso(τ) from [HKW1, Definition 1.5]:

C2 =

{(
ρ 0
0 τ3

)
: ρ = e2πi/3, τ3 ∈ S1

}
,

iso(τ) =

〈
γ =


0 0 −1 0
0 1 0 0
1 0 1 0
0 0 0 1


〉
.

Following Equation (7) in Section 8, the action of γ̃ at Ỹ in Tτ̃ (C2n × {τ}) is given by

γ̃ · Ỹ =

(Z + Y ) ·N
τ
12

 , where N =

(
(ρ+ 1)−1 0

0 1

)
.

Since γ̃ fixes (Z, τ), Z ·N = Z and γ̃ acts on TZ(C2n) diagonally by sending the set of local coordinates
Y to Y ·N .

Note that (ρ+1)−1 = e2πi·(5/6). So by choosing the primitive root of unity to be e2πi/6, which is the
same as that for the S2 factor, we have an extra n copies of 5/6’s and n copies of 0’s in the RST sum
of γ̃. In other words, the type of γ̃ is 1

6(4, 5, 0, 5, . . . , 5, 0, . . . , 0).
As for the type of σ̃, since σ̃ acts trivially on Tτ ({Z} × S2), the first entries in the type of σ̃ which

correspond to the S2 factor are all 0’s. On the other hand, the calculation in Equation (7) shows
that σ̃ acts on the set of local coordinates in TZ(C2n) diagonally by X 7→ −X. So the type of σ̃ is
1
2(0, 0, 0, 1, . . . , 1) when the primitive root of unity ξ is chosen to be −1.

Since σ̃ commutes with γ̃, we can draw the following table which shows the type of a non-trivial
element γ̃k1 σ̃k2 ∈ iso(τ̃), where 0 ≤ k1 ≤ 5 and 0 ≤ k2 ≤ 1.
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k1

k2 0 1

0 N/A 1
2(0, 0, 0, 1, . . . , 1, 1, . . . , 1)

1 1
6(4, 5, 0, 5, . . . , 5, 0, . . . , 0)

1
6(4, 5, 0, 2, . . . , 2, 3, . . . , 3)

2 1
6(2, 4, 0, 4, . . . , 4, 0, . . . , 0)

1
6(2, 4, 0, 1, . . . , 1, 3, . . . , 3)

3 1
6(0, 3, 0, 3, . . . , 3, 0, . . . , 0)

1
6(0, 3, 0, 0, . . . , 0, 3, . . . , 3)

4 1
6(4, 2, 0, 2, . . . , 2, 0, . . . , 0)

1
6(4, 2, 0, 5, . . . , 5, 3, . . . , 3)

5 1
6(2, 1, 0, 1, . . . , 1, 0, . . . , 0)

1
6(2, 1, 0, 4, . . . , 4, 3, . . . , 3)

The types of all non-trivial elements in ⟨γ̃⟩ are given by the first column of the table, while that in
⟨γ̃, σ̃⟩ are given by the entire table. Notice the RST criterion only fails when n ≤ 2:

RST(γ̃5) < 1.

We conclude that for n > 2, both ⟨γ̃⟩ and ⟨γ̃, σ̃⟩ satisfy the RST criterion, and therefore τ̃ is a canonical
singularity in Xn

p , no matter iso(τ̃) = ⟨γ̃, σ̃⟩ or iso(τ̃) = ⟨γ̃⟩.
Finally, for any singularity that corresponds to a point in C2n × S2 whose isotropy group is ⟨σ̃⟩,

we only need to study the first row of the table: there is no quasi-reflection and the RST inequality is
satisfied for any n. Therefore such singularity is always canonical.

9.3 Singularities in the boundary of compactification

In this section we will check that every singularity in the boundary of X is canonical.
First, we identify all the non-canonical singularities in Ap. Consider the compact curves C∗

1 and
C∗
2 containing C1 and C2 in Ap. Then from [HKW1, Propositions 2.15 and 3.4], for any odd prime p,

the complement Ap ∖ (C∗
1 ∪ C∗

2 ) contains only isolated singularities. The types of a generator in the
respective isotropy groups are given as 1

2(1, 1, 1) or
1
3(1, 2, 1). So both isotropy groups satisfy the RST

criterion, and these singularities in X are canonical. Therefore, any non-canonical singularity in X has
to project down to C∗

1 ∖ C1 or C∗
2 ∖ C2.

From the same source above, each set C∗
1 ∖ C1 and C∗

2 ∖ C2 consists of (p2 − 1)/2 points, one in
each of the corank 1 peripheral boundary components. [HKW1, Proposition 2.8] further says that near
one of these boundary component F̃ , the singularities in C∗

1 and C∗
2 are represented by Q1 = (i, 0, 0)

and Q2 = (ρ, 0, 0) as points in S1 × C× C, the tube domain realisation of S2, with ρ = e2πi/3.
First consider the singularity in X associated to Q2: let τ̃ := (Z, τ) ∈ X̃(F̃ ) such that τ = Q2. From

[HKW1, Propositions 2.5 and 2.8], the stabiliser subgroup of τ in P ′′(F ) is generated by the order 6
element

γ =


0 0 −1 0
0 1 0 0
1 0 1 0
0 0 0 1

 .

Let γ̃ := (l, γ) be the corresponding generator in iso(τ̃), and let σ̃ := (l,−14) for some l ∈ L. Then
again iso(τ̃) = ⟨γ̃⟩ or iso(τ̃) = ⟨γ̃, σ̃⟩. To find the types of elements in iso(τ̃), we consider their actions

on each factor of X̃(F̃ )∗, a P̃ ′′(F̃ )-equivariant resolution of X̃(F̃ ). [T, Lemmas 5.1 and 5.2] describes
such a resolution of singularities for the moduli space of principally polarised abelian g-folds whose
modular group is Sp(2g,Z), as well as a formula for the RST sum of a generator γ in the isotropy group.
This result applies to our work as Γ < Sp(2g,Z). Explicitly when g = 2, there are three factors in the
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resolution of S2: Sg′ ,Cg′g′′ and a torus at infinity. The following submatrices are extracted from the
entries γij of γ:

γ′ =

(
γ11 γ13
γ31 γ33

)
, U =

(
γ22
)
.

Suppose γ′ has eigenvalues λ±1 and U has eigenvalue µ. Then the eigenvalues of the action of γ on the
tangent space of the Sg′ factor, the Cg′g′′ factor and the torus at infinity in the resolution of S2 are λ,
λµ and 0 respectively.

In our case, γ′ has eigenvalues e±2πi/6 and U has eigenvalue 1. Therefore, when e2πi/6 is chosen to
be the primitive root of unity, the Sg′ , Cg′g′′ and the torus at infinity factors contribute 2

6 ,
1
6 and 0 to

the RST sum respectively.
For the RST sum over the remaining Cn × (C∗)n factor of τ̃ , follow Section 8 Equation (7) and

consider the action of γ̃ on Ỹ := (Z + Y, τ) in the tangent space at Z of the resolved C2n factor:

γ̃ · Ỹ =

(Z ′ + Y ) ·N
τ
12

 where Z ′ = Z + l ·
(
τ
12

)
and N =

( 1
ρ+1 0

0 1

)
.

Again γ̃ fixes τ̃ , so Z ′ ·N = Z and γ̃ acts on the tangent space diagonally by sending the local coordinates
Y to Y · N . The eigenvalues of the action are the eigenvalues of N , which are e2πi·(5/6) and 1. When
we choose e2πi/6 to be the primitive root of unity for γ̃, which is the same choice as the other factors,
they contribute n copies of 5

6 and n copies of 0 to the RST sum.
Do the same for σ̃ to find RST(σ̃): write σ = −14 and consider the submatrices σ′ and U extracted

from σ in the same way as above. Their eigenvalues are {−1,−1} and −1 respectively, which contribute
0 to the RST sum for all 3 factors of the solution of S2 after resolving. Following Equation (7), the
action of σ̃ on the tangent space of the resolved Cn × (C∗)n factor at Z is again multiplication by −1
to the local coordinates Y .

Therefore, we can draw a similar table as in the previous subsection for each element γ̃k1 σ̃k2 ∈ iso(τ̃),
where 0 ≤ k1 ≤ 5 and 0 ≤ k2 ≤ 1:

k1

k2 0 1

0 N/A 1
2(0, 0, 0, 1, . . . , 1, 1, . . . , 1)

1 1
6(2, 1, 0, 5, . . . , 5, 0, . . . , 0)

1
6(2, 1, 0, 2, . . . , 2, 3, . . . , 3)

2 1
6(4, 2, 0, 4, . . . , 4, 0, . . . , 0)

1
6(4, 2, 0, 1, . . . , 1, 3, . . . , 3)

3 1
6(0, 3, 0, 3, . . . , 3, 0, . . . , 0)

1
6(0, 3, 0, 0, . . . , 0, 3, . . . , 3)

4 1
6(2, 4, 0, 2, . . . , 2, 0, . . . , 0)

1
6(2, 4, 0, 5, . . . , 5, 3, . . . , 3)

5 1
6(4, 5, 0, 1, . . . , 1, 0, . . . , 0)

1
6(4, 5, 0, 4, . . . , 4, 3, . . . , 3)

One can check that there is no quasi-reflection, and the RST sum is at least 1 everywhere on the table.
So the RST criterion is satisfied for both ⟨γ̃⟩ and ⟨γ̃, σ̃⟩. Thus for all n ≥ 1, the singularity in X that
corresponds to (Z,Q2) is canonical.

Now we replace Q2 by Q1 everywhere in the above to check whether the other singularity in the
boundary component F̃ is canonical or not. Again, let τ̃ = (Z, τ) such that τ = Q1. The stabiliser
subgroup of τ = Q1 in P ′′(F ) is generated by the order 4 element

γ =


0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .
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First we caluclate RST(γ). Extract the submatrices γ′ and U as before. The eigenvalues of γ′ are ±i
and the eigenalue of U is 1. When i is the chosen primitive root of unity, the Sg′ factor, the Cg′g′′ factor
and the torus at infinity in the resolution of S2 contribute a 2

4 , a
1
4 and a 0 to the RST sum respectively.

Consider the action of γ̃ at Ỹ = (Z + Y, τ). Then Equation (7) gives:

γ̃ · Ỹ =

(Z ′ + Y ) ·N
τ
12

 where Z ′ = Z + l ·
(
τ
12

)
and N =

(
−i 0
0 1

)
.

Once more Z ′ ·N = Z and γ̃ acts on the tangent space diagonally by sending the local coordinates Y
to Y ·N . This action has eigenvalues e2πi·(3/4) and 1, which contribute n copies of 3

4 and n copies of 0
to the RST sum over the resolved Cn × (C∗)n factor when the primitive root of unity chosen is i.

The RST sums of σ̃ restricted to each factor is the same as the case of Q2.
Therefore we can draw the table for the type of γ̃k1 σ̃k2 ∈ iso(τ̃), where 0 ≤ k1 ≤ 3 and 0 ≤ k2 ≤ 1:

k1

k2 0 1

0 N/A 1
2(0, 0, 0, 1, . . . , 1, 1, . . . , 1)

1 1
4(2, 1, 0, 3, . . . , 3, 0, . . . , 0)

1
4(2, 1, 0, 1, . . . , 1, 2, . . . , 2)

2 1
4(0, 2, 0, 2, . . . , 2, 0, . . . , 0)

1
4(0, 2, 0, 0, . . . , 0, 2, . . . , 2)

3 1
4(2, 3, 0, 1, . . . , 1, 0, . . . , 0)

1
4(2, 3, 0, 3, . . . , 3, 2, . . . , 2)

The RST criterion is satisfied for both ⟨γ̃⟩ and ⟨γ̃, σ̃⟩, so for all n ≥ 1, the singularity in X that
corresponds to (Z,Q1) is canonical.

We summarise our findings in the following theorem:

Theorem 9.3.1. Singularities in the Namikawa compactification X of Xn
p are canonical for n ≥ 3. For

n = 1, 2, the set of non-canonical singularities in X is exactly the preimage under π of the curve C2 in
X1
p and X2

p respectively.

10 Low weight cusp form trick

In this section, we will prove the following theorem:

Theorem 10.0.1. The equality κ(Ap, (n+ 3)L −∆A) = 3 holds for the following values of n and p:

• p ≥ 3 and n ≥ 4;

• p ≥ 5 and n ≥ 3.

To find a lower bound for κ((n + 3)L −∆A), which is the rate of growth with respect to m of the
dimension of the space of weight m(n + 3)-cusp forms of Γp, we use the “low weight cusp form trick”,
which has been used in this context in [GritH] and [GritS], and more widely thereafter.

Suppose n > N and there exists a non-zero weight 3 + N cusp form F of Γp, that is, there is a
non-zero F ∈ H0((3 +N)L −∆A). For any non-zero F ′ ∈ H0(m(n−N)L),

FmF ′ ∈ H0(m((n+ 3)L −∆A)).

Fixing F , the space of cusp forms in the form of FmF ′ then grows at the same rate as H0(m(n−N)L)
with respect to m, which is known to be O(m3) (See [GritHS, proof of Theorem 1.1]). So we have
κ((n+ 3)L −∆A) ≥ 3.
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Therefore, Xn
p is of relative general type if

h := dimH0((3 +N)L −∆A) > 0.

To find a lower bound for h, we apply Gritsenko’s lifting of Jacobi cusp forms mentioned in [Grit,
Theorem 3], which states the existence of an injective lifting

Jcusp(k, p) ↪→ Sk(Γ[p])

where Jcusp(k, p) is the space of Jacobi cusp forms of weight k and index p ≥ 1, and Sk(Γ[p]) is the
space of weight k cusps forms of Γ[p], with the paramodular group Γ[p] defining the moduli space of
(1, p)-polarised abelian surfaces without level structure as Γ[p]\H2. But since Γp ≤ Γ[p], the image of
the lifting is also contained in Sk(Γp).

From [EZ, Equation (8) in Introduction], dim Jcusp(k, p) ≥ j(k, p) (equality holds when k ≥ p),
where

j(k, p) :=


p∑

j=0

(
dimMk+2j −

(⌊
j2

4p

⌋
+ 1
))

, if k is even

p−1∑
j=1

(
dimMk+2j−1 −

(⌊
j2

4p

⌋
+ 1
))

, if k is odd

with Mr being the space of modular forms of weight r for SL(2,Z).
It is a general fact that

dimMr =

{⌊
r
12

⌋
, if r ≡ 2 mod 12⌊

r
12

⌋
+ 1, otherwise.

By a simple computation, it can be found that the first prime p such that j(k, p) > 0 for k = 5 and
6 are p = 5 and 3 respectively. Note:

1. dim(Sk(Γp)) ≥ j(k, p) for any k, p;

2. j(k, p) increases with p;

3. From [U2], κ(Xn
p ) is non-decreasing with respect to n.

By letting k = 3 + N = 2 + n, this shows that for the values of n and p stated in Theorem 10.0.1,
dim(Sk(Γp)) ≥ j(k, p) ≥ 1. This concludes our proof for Theorem 10.0.1.

Combining the results of [GrifH] and [HS], which say X0
p = Ap is of general type for p ≥ 37, we

can mark on the (p, n)-plane a region for which the Kuga varieties are of relative general type as in
Diagram 7.

n

p

of relative general type

0

1

2

3

4

5

1 2 3 5 7 37
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Diagram 7: The pairs (p, n) for which the Kuga variety Xn
p is of relative general type.

Lastly, we discuss some possible improvements for Theorem 8.2.11. By following [HS] and applying
the Riemann-Roch theorem on the exceptional divisor E of a blow-up at a non-canonical singularity
in X1

p, we may be able to improve our boundary at n = 1 by finding two consecutive primes p′ and p′′

with p′ < p′′ such that κ(X1
p′) < κ(X1

p′′). However, that would involve understanding the intersection
behaviour of divisors on the 4-fold E, which is expected to be complicated. The low density of prime
numbers near 37 makes the quest less promising: the estimate for p′ we find by this method may not
be smaller than 31.

There are a few more questions that can be asked: for example, whether the boundary we have
drawn can be improved for p = 5 and p = 3. The image of Gritsenko’s lift is not the entire Sk(Γp) or
even Sk(Γ[p]), so we might be able to find a weight 4 cusp form with respect to Γp or Γ[p] through other
means which improves the bound at p = 5, and likewise for p = 3. Another question is to calculate κ(Xn

p )
for other Xn

p not of relative general type by considering the slope of Siegel cusp forms of Γp, which is the
ratio between weight and vanishing order at ∞, and to draw a boundary on the (p, n)-plane separating
the regions with κ(Xn

p ) = −∞ and κ(Xn
p ) ≥ 0. We can also extend the problem by considering p = 2,

non-prime p, or abelian surfaces without level structure.
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pre-T3.m

1 //Set up T = T_3
2 U := Matrix(K, 2, 2, [0, 1, 1, 0]);
3 D4 := Matrix(K, 4, 4, [2, 1, 1, 1, 1, 2, 0, 0, 1, 0, 2, 0, 1 ,0 ,0, 2]);
4 T:= DiagonalJoin(DiagonalJoin(U, U*2), D4*(-1));
5
6 //CU: \Cl(U+U(2))
7 CU<f1,f2,f3,f4>, VU, fU := CliffordAlgebra(DiagonalJoin(U, U*2));
8 //CUp: \Cl^+(U+U(2))
9 CUp, gU := EvenSubalgebra(CU); 
10 iU := MainInvolution(CU);
11 //CD: Cl(D_4(-1))
12 CD<h1,h2,h3,h4>, VD, fD := CliffordAlgebra(D4*(-1));
13 //CDp: \Cl^+(D_4(-1))
14 CDp, gD := EvenSubalgebra(CD); 
15 iD := MainInvolution(CD);
16
17 //Idpt: pseudo-idempotents 32\epsilon_i
18 x1 := f3*f1*f2*f4;
19 x2 := 4*f1*f2 - x1;
20 x3 := 2*f3*f4 - x1;
21 x4 := 8*One(CU) - x1 - x2 - x3;
22 X:=[x1, x2, x3, x4];
23
24
25 temp := h1*h2*h3*h4 + h2*h3 + h3*h4 + h4*h2;
26 y1:= 2*One(CD)-temp;
27 y2:= 2*One(CD)+temp;
28 Y:=[y1,y2];
29
30 //Get_lambda_U: Calculate lattice \Lambda_i associated to abelian 8-fold A_i ``restricted to'' CU
31 //input: 
32 //pseudo-idempotent x
33 //output: 
34 //even degree generators and odd degree generators of \Lambda_i in CU
35 function Get_lambda_U(x)
36 I := 8*One(CU) - x;
37 M := Matrix(K, 16, 16, [Eltseq(Basis(CU)[ii]*I):ii in [1 .. 16]]);
38 KM := KernelMatrix(Matrix(Integers(),M));
39 L_CUp := [];
40 L_CUi := [];
41 for ii in [1..NumberOfRows(KM)] do
42 if iU(CU!KM[ii]) eq CU!KM[ii] then L_CUp := L_CUp cat [CU!KM[ii]];
43 else L_CUi := L_CUi cat [CU!KM[ii]];
44 end if;
45 end for;
46 return L_CUp, L_CUi;
47 end function;
48
49 function Get_lambda_D(y)
50 I := 4*One(CD) - y;
51 M := Matrix(K, 16, 16, [Eltseq(Basis(CD)[ii]*I):ii in [1 .. 16]]);
52 KM := KernelMatrix(Matrix(Integers(),M));
53 L_CDp := [];
54 L_CDi := [];
55 for ii in [1..NumberOfRows(KM)] do
56 if iD(CD!KM[ii]) eq CD!KM[ii] then L_CDp := L_CDp cat [CD!KM[ii]];
57 else L_CDi := L_CDi cat [CD!KM[ii]];
58 end if;
59 end for;
60 return L_CDp, L_CDi;
61 end function;
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63 Idpt := [[1,1],[2,2],[3,2],[4,1],[1,2],[2,1],[3,1],[4,2]];
64
65 for n in [1..8] do
66
67 L_CUp, L_CUi := Get_lambda_U(X[Idpt[n][1]]);
68 L_CDp, L_CDi := Get_lambda_D(Y[Idpt[n][2]]);
69
70 /*
71 printf "[";
72 for ii in [1..#L_CUp] do
73 AsPolynomial(L_CUp[ii]);
74 if ii ne #L_CUp then printf ",";
75 end if;
76 end for;
77 if n ne 8 then printf "],";
78 else printf "]";
79 end if;
80 */
81
82 /*
83 printf "[";
84 for ii in [1..#L_CUi] do
85 AsPolynomial(L_CUi[ii]);
86 if ii ne #L_CUi then printf ",";
87 end if;
88 end for;
89 if n ne 8 then printf "],";
90 else printf "]";
91 end if;
92 */
93
94 printf "[";
95 for ii in [1..#L_CDp] do
96 AsPolynomial(L_CDp[ii]);
97 if ii ne #L_CDp then printf ",";
98 end if;
99 end for;
100 if n ne 8 then printf "],";
101 else printf "]";
102 end if;
103
104 /*
105 printf "[";
106 for ii in [1..#L_CDi] do
107 AsPolynomial(L_CDi[ii]);
108 if ii ne #L_CDi then printf ",";
109 end if;
110 end for;
111 if n ne 8 then printf "],";
112 else printf "]";
113 end if;
114 */
115 end for;
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T3.m

1 //T_3 = U + U(2) + D_4(-1)
2
3 //field K = \QQ[\sqrt(-1), \sqrt(2)] \subset \CC
4 P<X> := PolynomialRing(Rationals());
5 K<x,s> := NumberField([X^2+1, X^2-2]:Abs := true);
6  
7 //Conj: complex conjugate in K
8 Conj := hom<K -> K|-x,s>;
9  
10 //Conj_mat: complex conjugate for matrices/K
11 //input: 
12 //M = matrix over K
13 //output: 
14 //complex conjugate of M
15 function Conj_mat(M)
16 return Matrix(K,Nrows(M),Ncols(M),[Conj(M[i,j]):j in [1..Ncols(M)],i in [1..Nrows(M)]]);
17 end function;
18  
19 //Set up T = T_3
20 U := Matrix(K, 2, 2, [0, 1, 1, 0]);
21 D4 := Matrix(K, 4, 4, [2, 1, 1, 1, 1, 2, 0, 0, 1, 0, 2, 0, 1 ,0 ,0, 2]);
22 T:= DiagonalJoin(DiagonalJoin(U, U*2), D4*(-1));
23  
24 //C: Clifford algebra \Cl(T)
25 C<f1,f2,f3,f4,h1,h2,h3,h4>, V, f := CliffordAlgebra(T);
26 basCV := [f1,f2,f3,f4,h1,h2,h3,h4];
27  
28 //Cp: \Cl^+(T)
29 Cp, g := EvenSubalgebra(C); 
30  
31 //H: \HH_\QQ
32 H<i,j,k>:=QuaternionAlgebra< K | -1, -1 >;
33 h := (1 + i + j + k)/2;
34  
35 //Gives conjugation of matrices with entries in \HH
36 function Conj_H_mat(M)
37 return Matrix(H,Nrows(M),Ncols(M),[Conjugate(M[i,j]):j in [1..Ncols(M)],i in [1..Nrows(M)]]);
38 end function;
39  
40 //Quadratic form in H
41 function quadform(u)
42 return u*Conjugate(u);
43 end function;
44  
45 //Bilinear form in H
46 function bilform(u,v)
47 if u eq v then return quadform(u);
48 else return 1/2*(quadform(u+v)-quadform(u)-quadform(v));
49 end if;
50 end function;
51  
52 //\alpha: product of two orthogonal positive definite vectors in T
53 alpha:= Cp!((f1+f2)*(f3+f4));
54  
55 //A: change of basis matrix such that A^t*T*A is Diag([1,1,-1,...,-1])
56 A1 := Transpose(Matrix(K,4,4,[1/s,1/s,0,0,0,0,1/2,1/2,1/s,-1/s,0,0,0,0,1/2,-1/2]));
57 A2 := Transpose(Matrix(K,4,4,[s,-1/s,-1/s,-1/s,0,1/s,0,0,0,0,1/s,0,0,0,0,1/s]));
58 A := DiagonalJoin([A1,A2]);
59  
60 //J = (f1+f2)/s * (f3+f4)/2: complex structure of KS variety, product of two +ve def vectors
61 e1 := ColumnSubmatrix(A,1,1);
62 e2 := ColumnSubmatrix(A,2,1); 102



63
64 //Perturb \omega = <e_1 + ie_2> in the direction of M_{a,b}
65 //input: m~0
66 function Perturb(m,a,b)
67 ct := (1-m^2)/(m^2+1);
68 st := 2*m/(m^2+1);
69 cht := (2+2*m^2)/(2-2*m^2);
70 sht := 2*m/(1-m^2);
71 SOt := IdentityMatrix(K,8);
72 if a lt 3 and b gt 2 then
73 SOt[a,b] := sht;
74 SOt[b,a] := sht;
75 SOt[a,a] := cht;
76 SOt[b,b] := cht;
77 else
78 SOt[a,b] := st;
79 SOt[b,a] := -st;
80 SOt[a,a] := ct;
81 SOt[b,b] := ct;
82 end if;
83 //SOV in SO(V) 
84 SOV :=A*SOt*A^(-1);
85 return SOV*e1, SOV*e2;
86 end function;
87
88 //e1, e2 := Perturb(10^(-3), 1,3);
89
90 J := -&+[Eltseq(e1)[ii]*basCV[ii]: ii in [1..8]]*&+[Eltseq(e2)[ii]*basCV[ii]: ii in [1..8]]; 
91  
92 L_CUp :=
93 [
94     [f1*f2*f3*f4,f2*f4],
95     [-f1*f2*f3*f4 + 4*f1*f2, f2*f3],
96     [-f1*f2*f3*f4 + 2*f3*f4, f1*f4],
97     [f1*f2*f3*f4 - 4*f1*f2 - 2*f3*f4 + 8, f1*f3],
98     [f1*f2*f3*f4, f2*f4],
99     [-f1*f2*f3*f4 + 4*f1*f2, f2*f3],
100     [-f1*f2*f3*f4 + 2*f3*f4, f1*f4],
101     [f1*f2*f3*f4 - 4*f1*f2 - 2*f3*f4 + 8, f1*f3]
102 ];
103  
104 L_CUi :=
105 [
106     [f2*f3*f4, f1*f2*f4],
107     [f1*f2*f3, f2*f3*f4 - 4*f2],
108     [f1*f3*f4, f1*f2*f4 - 2*f4],
109     [f1*f2*f3 - 2*f3, f1*f3*f4 - 4*f1],
110     [f2*f3*f4, f1*f2*f4],
111     [f1*f2*f3, f2*f3*f4 - 4*f2],
112     [f1*f3*f4, f1*f2*f4 - 2*f4],
113     [f1*f2*f3 - 2*f3,f1*f3*f4 - 4*f1]
114 ];
115  
116 L_CDp :=[
117     [h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,

h1*h2 + h1*h4 + h2*h3 + 2],
118     [h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3 - h2*h3 + h3*h4,h1*h2 + h1*h3 + h2*h4 + 2,

h1*h3 + h1*h4 - h2*h3 + 2],
119     [h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3 - h2*h3 + h3*h4,h1*h2 + h1*h3 + h2*h4 + 2,

h1*h3 + h1*h4 - h2*h3 + 2],
120     [h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,

h1*h2 + h1*h4 + h2*h3 + 2],
121     [h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3 - h2*h3 + h3*h4,h1*h2 + h1*h3 + h2*h4 + 2,

h1*h3 + h1*h4 - h2*h3 + 2],
122     [h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,

h1*h2 + h1*h4 + h2*h3 + 2], 103



123     [h1*h2 + h1*h3 + h3*h4 + 2,h1*h2*h3*h4 - 2*h1*h3 + 2*h2*h3 - 4,h1*h2 - h1*h3 + h2*h3 + h2*h4,
h1*h2 + h1*h4 + h2*h3 + 2],

124     [h1*h2*h3*h4 + 2*h1*h2 + 2*h2*h3 + 4,-h1*h2 + h1*h3 - h2*h3 + h3*h4,h1*h2 + h1*h3 + h2*h4 + 2,
h1*h3 + h1*h4 - h2*h3 + 2]

125 ];
126  
127 L_CDi := [
128     [-h1*h3*h4 - 2*h1 + 2*h2 + 2*h3,h1*h2*h3 + h1*h3*h4 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 - h2*h3*h4 

+ 2*h4,h1*h2*h4 + 2*h1 + h2*h3*h4 - 2*h2],
129     [-h1*h3*h4 - 2*h1 + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*h1 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 + 2*h2 + 

2*h4,h1*h2*h4 - h1*h3*h4 + h2*h3*h4 - 2*h2],
130     [-h1*h3*h4 - 2*h1 + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*h1 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 + 2*h2 + 

2*h4,h1*h2*h4 - h1*h3*h4 + h2*h3*h4 - 2*h2],
131     [-h1*h3*h4 - 2*h1 + 2*h2 + 2*h3,h1*h2*h3 + h1*h3*h4 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 - h2*h3*h4 

+ 2*h4,h1*h2*h4 + 2*h1 + h2*h3*h4 - 2*h2],
132     [-h1*h3*h4 - 2*h1 + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*h1 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 + 2*h2 + 

2*h4,h1*h2*h4 - h1*h3*h4 + h2*h3*h4 - 2*h2],
133     [-h1*h3*h4 - 2*h1 + 2*h2 + 2*h3,h1*h2*h3 + h1*h3*h4 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 - h2*h3*h4 

+ 2*h4,h1*h2*h4 + 2*h1 + h2*h3*h4 - 2*h2],
134     [-h1*h3*h4 - 2*h1 + 2*h2 + 2*h3,h1*h2*h3 + h1*h3*h4 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 - h2*h3*h4 

+ 2*h4,h1*h2*h4 + 2*h1 + h2*h3*h4 - 2*h2],
135     [-h1*h3*h4 - 2*h1 + h2*h3*h4 + 2*h3,h1*h2*h3 + 2*h1 - h2*h3*h4 - 2*h2,h1*h3*h4 - 2*h1 + 2*h2 + 

2*h4,h1*h2*h4 - h1*h3*h4 + h2*h3*h4 - 2*h2]
136 ];
137  
138 I_6_H := [h-i, h+j, i-j, k];
139 I_12_H := [h, i, j, k];
140
141  
142 function Get_lambda(L_CUp, L_CUi, L_CDp, L_CDi)
143  
144 Mpp := Matrix(Integers(), 8, 128, [Eltseq(Cp!(L_CUp[ii]*L_CDp[jj])):jj in [1..#L_CDp], ii in 

[1..#L_CUp]]);
145 Mii := Matrix(Integers(), 8, 128, [Eltseq(Cp!(L_CUi[ii]*L_CDi[jj])):jj in [1..#L_CDi], ii in 

[1..#L_CUi]]);
146 M := VerticalJoin(Mpp, Mii);
147 L_matK := Matrix(K,M);
148 L_Cp := [Cp!M[ii]:ii in [1..16]];
149 return L_matK, L_Cp;
150 end function;
151  
152 //Get_r_action: Get matrix of right action of Cp on L_Cp < Cp
153 //input:
154 //xx in Cp, L_Cp, L_matK
155 //output: 
156 //16x16 matrix/K
157 function Get_r_action(xx, L_Cp, L_matK)
158 Lxx := Matrix(K,16,128,[Eltseq(L_Cp[ii]*xx) : ii in [1..16]]);
159 return Transpose(Solution(L_matK,Lxx));
160 end function;
161  
162 //Get_l_action: Get matrix of left action of Cp on L_Cp
163 function Get_l_action(xx, L_Cp, L_matK)
164 xxL := Matrix(K,16,128,[Eltseq(xx*L_Cp[ii]) : ii in [1..16]]);
165 return Transpose(Solution(L_matK,xxL));
166 end function;
167  
168 //Get_CC8_bas: Obtain a basis for the \pm sqrt(-1)-eigenspaces for J in \RR^16
169 //input: 
170 //J: complex structure in \Cl(T), L_Cp, L_matK
171 //output: 
172 //two 16x8 matrix/K with respect to Lambda_i<Cp
173 function Get_CC8_bas(J, L_Cp, L_matK)
174 J_mat := Get_l_action(Cp!J, L_Cp, L_matK);
175 //C8p: matrix whose columns span +\sqrt(-1)-eigenspace
176 CC8p := KernelMatrix(Transpose(J_mat) - DiagonalMatrix(K,[x:ii in [1..16]]));//+ve eigenspace
177 CC8p := Transpose(CC8p);
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178 //C8n: matrix whose columns span -\sqrt(-1)-eigenspace
179 CC8n := KernelMatrix(Transpose(J_mat) + DiagonalMatrix(K,[x:ii in [1..16]]));
180 CC8n := Transpose(CC8n);
181 return CC8p,CC8n;
182 end function;
183  
184 //Get_coeff: get coefficients when xx is written as linear comb. of basis bas / \HH
185 //input:
186 //xx, bas
187 //output:
188 //seq /K
189 function Get_coeff(bas,xx)
190 xx_seq:=Eltseq(xx);
191 bas_seq:=Transpose(Matrix(K,4,4,[Eltseq(xx):xx in bas]))^(-1)*Matrix(K,4,1,xx_seq);
192 return Eltseq(bas_seq);
193 end function;
194  
195 //Dot_product: product between sequences v, w
196 function Dot_prod(v,w)
197 n := #v;
198 return &+[v[ii]*w[ii]: ii in [1..n]];
199 end function;
200  
201 //Chi: M -> \rchi(M): Representation M_d(\HH_\QQ) -> M_2d(\CC)
202 function Chi(M)
203 n := NumberOfRows(M);
204 A := [];
205 B := [];
206 M_seq := Eltseq(M);
207 for ii in [1..#M_seq] do
208 z := M_seq[ii];
209 z_seq := Eltseq(z);
210 A := A cat [z_seq[1]+x*z_seq[2]];
211 B := B cat [z_seq[3]+x*z_seq[4]];
212 end for;
213 AM := Matrix(n,n,A);
214 BM := Matrix(n,n,B);
215 return BlockMatrix(2,2,[AM,BM,-Conj_mat(BM),Conj_mat(AM)]);
216 end function;
217  
218 //Chi_R: M -> \rchi_\RR(M): Representation M_d(\CC) -> M_2d(\RR)
219 function Chi_R(M)
220 nn := NumberOfRows(M);
221 A := [];
222 B := [];
223 M_seq := Eltseq(M);
224 for ii in [1..#M_seq] do
225 z := M_seq[ii];
226 z_seq := Eltseq(z);
227 A := A cat [z_seq[1]];
228 B := B cat [z_seq[2]];
229 end for;
230 AM := Matrix(K, nn,nn,A);
231 BM := Matrix(K, nn,nn,B);
232 return BlockMatrix(2,2,[AM,BM,-BM,AM]);
233 end function;
234  
235 //Phi_std: r -> \rchi(r) \otimes Id_4
236 //input:
237 //r in \HH_\QQ
238 //output: 
239 //8x8 matrix/K
240 function Phi_std(r)
241 temp := Eltseq(Chi(Matrix(1,1,[r])));
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242 return BlockMatrix(2,2,[temp[jj]*IdentityMatrix(K,4):jj in [1..4]]);
243 end function;
244  
245 //Phi2Chi: find 8x8 change of basis matrix Q, such that Q*Phi(x)*Q^(-1) = Chi(x) \otimes id_4
246 function Phi2Chi(tih_mat_8,bas_R)
247  
248 AminB := ZeroMatrix(K,0,64);
249 for ii in [1..4] do
250 //Define A such that Q*Phi(x) given by Eltseq(Q)*A
251 A := DiagonalJoin([Transpose(tih_mat_8[ii]):jj in [1..8]]);
252 //Similarly define B such that (Chi(x)\otimes id_4)*Q is Eltseq(Q)*B
253 temp := Eltseq(Phi_std(bas_R[ii]));
254 B := BlockMatrix(8,8,[temp[jj]*IdentityMatrix(K,8):jj in [1..64]]);
255 AminB := VerticalJoin(AminB, A-B);
256 end for;
257 //KM: the space Eltseq(Q) such that Q*Phi(x) = (Chi(x)\otimes id_4)*Q
258 KM := KernelMatrix(Transpose(AminB));
259  
260 Qs := [];
261 for ii in [1..NumberOfRows(KM)] do
262 //transform the length 64 vector back to a square matrix
263 Q_temp := Matrix(K,8,8,Eltseq(KM[ii]));
264 //sanity check
265 //&and[Q_temp*tih_mat_8[kk] eq BlockMatrix(2,2,[Eltseq(Chi(Matrix(1,1,[bas_R[kk]])))[ll]

*IdentityMatrix(K,4):ll in [1..4]])*Q_temp: kk in [1..4]];
266 Qs := Qs cat [Q_temp]; 
267 end for;
268  
269 //Create a non-singular matrix Q from the kernel space spanned by KM
270 Q := ZeroMatrix(K,8,8);
271 ii := 1;
272 while Determinant(Q) eq 0 and ii le #Qs do
273 Q := Q + ii*Qs[ii];
274 ii := ii + 1;
275 end while;
276 //sanity check
277 //&and[Q*tih_mat_8[kk]*Q^(-1) eq BlockMatrix(2,2,[Eltseq(Chi(Matrix(1,1,[bas_R[kk]])))[ll]

*IdentityMatrix(K,4):ll in [1..4]]): kk in [1..4]];
278 return Q;
279 end function;
280  
281 //Get_xs: find image of e1, e5, e9, e13 in CC^8 wrt \Phi_{std}
282 //input:
283 //Q: change of basis matrix to use \Phi_std
284 //output:
285 //8x4 matrix whose columns are the x_i's
286 function Get_xs(CC8p, CC8n, L_matK, Q)
287 S := Solution(Transpose(HorizontalJoin(CC8p,CC8n)), VerticalJoin([IdentityMatrix(K,16)[jj]: jj in 

[1,5,9,13]]));
288 return Matrix(H,Q*Transpose(ColumnSubmatrix(S,8)));
289 end function;
290  
291 //Get_calM： obtain generators of \calM
292 //input:
293 //m: index of x_m
294 //output:
295 //4x4 matrix whose columns are generators of calM with respect to bas_R
296 function Get_calMkk(kk, tih_mat_16)
297 ii := 4*(kk-1)+1;
298 Rx_kk :=[[M[ii+jj,ii]:jj in [0..3]]:M in tih_mat_16];
299 Rx_kk := Transpose(Matrix(Integers(),Rx_kk));
300 S, P, T := SmithForm(Rx_kk);
301 n := LeastCommonMultiple(Diagonal(S));
302 return Transpose(Matrix(Rationals(),Rx_kk)^(-1)*n);
303 end function;
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304  
305 //Mult_H: compute xx^d1*yy^d2 in \HH with respect to bas_R
306 //input:
307 //xx, yy coefficients wrt bas_R; d1, d2 in \ZZ
308 //output:
309 //sequence of length 4/K: coefficients of product wrt bas_R
310 function Mult_H(bas_R, xx, d1, yy, d2)
311 xx_R := &+[xx[jj]*bas_R[jj]: jj in [1..4]];
312 yy_R := &+[yy[jj]*bas_R[jj]: jj in [1..4]];
313 prod := xx_R^d1*yy_R^d2;
314 return Get_coeff(bas_R,prod); 
315 end function;
316  
317 //calMkk_2_Ikk: change of basis matrix from calM_kk to I_kk
318 //Input: 
319 //Shortest_calMkk, Shortest_Ikk: shortest vectors in respective lattices
320 //bilform_mat: quadratic form associated to the lattice generated by bas_R
321 //calMkk: generators of calM_kk in terms of bas_R
322 //output:
323 //4-by-4 matrix
324 function calMkk_2_Ikk(bas_R, Shortest_calMkk, Shortest_Ikk, bilform_mat, calMkk)
325 calMkkhh := 0;
326 L_Id := Lattice(IdentityMatrix(Rationals(),4), bilform_mat);
327 xx := Shortest_calMkk[1];
328 //Norm(xx) eq Norm(Shortest_I_m[1]);
329 for yy in Shortest_Ikk do
330 hh := Mult_H(bas_R, xx, -1, yy, 1);
331 if {L_Id!Mult_H(bas_R, zz, 1, hh, 1): zz in Shortest_calMkk} eq Seqset(Shortest_Ikk) 
332 then  calMkkhh := Transpose(Matrix([Mult_H(bas_R, calMkk[ii], 1, hh,1): ii in [1..4]]));
333 break;
334 end if;
335 end for;
336 return calMkkhh;
337 end function;
338
339 //E: to calculate each entry in the matrix of polarisation
340 function E(xx, yy, L_Cp, L_matK)
341 zz := alpha * MainAntiautomorphism(C)(xx) * yy;
342 zzL_Cp := Matrix(K,16,128,[Eltseq(Cp!zz*L_Cp[i]) : i in [1..16]]);
343 T := Transpose(Solution(L_matK, zzL_Cp));
344 return Trace(T);
345 end function;
346
347 //Get_calT: calculate matrix calT as imaginary part of polarisation 
348 function Get_calT(calM2I, bas_R, L_Cp, L_matK)
349 mm := [1, 5, 9, 13];
350
351 //mE: matrix of imaginary part of polarisation with respect to L_Cp
352 mE := Matrix(K,16,16,[E(xx,yy, L_Cp, L_matK):xx,yy in L_Cp]);
353 bas_4R := Matrix(H,1,16,[bas_R cat bas_R cat bas_R cat bas_R]);
354 //LmatK_2_I: matrix taking each column in L_matK to a vector in I in terms of 1, i, j, k
355 LmatK_2_I := bas_4R * Matrix(H,calM2I);
356 calT := ZeroMatrix(H,4,4);
357 l_seq := [2, 1, 4, 3];
358 //the (hh, ll)-th block in Emat is non-zero, corresponds to a non-zero entry calT_hl in calT
359 for hh in [1..4] do 
360 ll := l_seq[hh];
361 mE_hl := Submatrix(mE, mm[hh], mm[ll], 4, 4);
362  
363 //find calT_hl
364 vectra:=[mE_hl[1,ii]:ii in [1..4]];
365 genI_h := [LmatK_2_I[1,mm[hh]+kk]:kk in [0..3]];
366 genI_l := [LmatK_2_I[1,mm[ll]+kk]:kk in [0..3]];
367 traces:= Matrix(K,4,4,[Trace(xx*yy):xx in bas_R, yy in [Conjugate(zz)*genI_h[1]:zz in genI_l]]);
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368 seqT_hl:= Eltseq(traces^(-1)*Matrix(K,4,1,vectra));
369 calT_hl:= &+[seqT_hl[i]*bas_R[i]:i in [1..4]];
370  
371 //checking
372 //matEthl:=Matrix(K,4,4,[Trace(genI_h[ii]*calT_hl*Conjugate(genI_l[jj])):ii,jj in [1..4]]); 
373 //matEthl eq mE_hl;  //TRUE !!!!
374  
375 //update T
376 calT[hh,ll] := calT_hl;
377 end for; //hh
378 return calT;
379 end function;
380  
381 //Get_calH: to obtain the matrix \calH
382 function Get_calH(J, L_Cp, L_matK, tih_mat_16, bas_R, calM2I)
383 mm := [1, 5, 9, 13];
384 J_mat := Get_l_action(Cp!J, L_Cp, L_matK);
385 calM2I_inv := Matrix(K,calM2I)^(-1);
386
387 calH := ZeroMatrix(H,4,4);
388 //solve sqrt(-1)*x_i = sum_{j=1}^4( sum_{k=1}^4( a_jk * Phi(bas_R[k]) ) * x_j )
389 for ii in [1..4] do
390     Phi_kj := ZeroMatrix(K,16,0);
391     for jj in [1..4] do
392         for kk in [1..4] do
393         //the i-th column of IIcalMinv is bas_R[i] in terms of the e_j's
394         Phi_kj := HorizontalJoin(Phi_kj, tih_mat_16[kk]*ColumnSubmatrix(calM2I_inv,mm[jj],1));
395         end for;//kk
396     end for; //jj
397     h_ii := Solution(Transpose(Phi_kj),Transpose(J_mat*ColumnSubmatrix(calM2I_inv,mm[ii],1)));
398     h_ii := Matrix(H,16,1,Eltseq(h_ii));
399     for jj in [1..4] do
400         calH[ii,jj] := &+[h_ii[mm[jj]+kk-1][1]*bas_R[kk]: kk in [1..4]];
401     end for; //jj
402 end for;//ii
403 return calH;
404 end function;
405
406 //Transform a matrix over K = \QQ<\sqrt(-1), \sqrt(2)> to one over \CC
407 function K2CC_mat(M)
408 n := NumberOfRows(M);
409 M_seq := Eltseq(M);
410 MCC_seq := [];
411 for ii in [1..#Eltseq(M)] do
412 z := M_seq[ii];
413 z_seq := Eltseq(z);
414 MCC_seq := MCC_seq cat [z_seq[1] + z_seq[2]*Sqrt(-1) + z_seq[3]*Sqrt(2) + z_seq[4]*Sqrt(-1)*Sqrt(2)]

;
415 end for;
416 return Matrix(n,n,MCC_seq);
417 end function;
418
419 //Get_Xmat: To obtain the square matrix associated to the attribute x_i's 
420 function Get_Xmat(xs)
421 U := RowSubmatrix(xs,1,4);
422 V := RowSubmatrix(xs,5,4);
423 return BlockMatrix(2,2,[U,V,Conj_mat(V),-Conj_mat(U)]);
424 end function;
425
426 //obtain the image z in period domain \calD_\calA given J
427 function Get_z(calT, calH, xs)
428 X_mat := Get_Xmat(xs);
429
430 //oT, oH: \rchi(T) and \rchi(H)
431 oT := Chi(calT); 108



432 oH := Chi(calH);
433
434 //find oW : \rchi(W)
435 A:= Matrix(H,4,4,[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1]);
436 temp:=A*calT^(-1)*Transpose(Conj_H_mat(A));
437 W1 := Matrix(H,2,2,[-i, Conjugate(temp[1,2])^(-1), i, Conjugate(temp[1,2])^(-1)]);
438 W2 := Matrix(H,2,2,[-i, Conjugate(temp[3,4])^(-1), i, Conjugate(temp[3,4])^(-1)]);
439 W := DiagonalMatrix([-j/s,1/s,-j/s,1/s])*DiagonalJoin(W1,W2)*A;
440 //W*calT^(-1)*Transpose(Conj_H_mat(W)) eq DiagonalMatrix([i,i,i,i]); //true
441 oW := Chi(W);
442 //x*oW*oT^(-1)*Transpose(Conj_mat(oW)) eq DiagonalJoin(-IdentityMatrix(K,4), IdentityMatrix(K,4));

//true
443
444 temp := X_mat*Conj_mat(oW)^(-1);
445 U := Submatrix(temp,1,1,4,4);
446 V := Submatrix(temp,1,5,4,4);
447 z := -V^(-1)*U;
448 //check z is indeed an element in the period domain \DMT
449 /*
450 Transpose(z) eq -z; //true
451 //IE: contains the set of eigenvalues (over CC, without multiplicity)
452 z_CC := K2CC_mat(Matrix(K,z));
453 conj_z_CC := Matrix(4,4,[Conjugate(zz): zz in Eltseq(z_CC)]);
454 IE := Eigenvalues(1-z_CC*Transpose(conj_z_CC));
455 &and[Real(IE[jj][1]) gt 0 : jj in [1..#IE]]; //true: 1-zz^* is positive definite
456 //if false, take -J as the complex structure
457 */
458 return z;
459 end function;
460
461 //================================================================================
462 //Consider A_n, n = 1.
463 n := 1;
464
465 //L_matK, L_Cp := Get_lambda(n);
466 L_matK, L_Cp := Get_lambda(L_CUp[n], L_CUi[n], L_CDp[n], L_CDi[n]);
467 //tih: \ti{h}_i \in \Cl^+(T) for i in [1..4]
468 hm2 := 2*h1-h2-h3-h4;
469 tih := [1, hm2*h1, hm2*h2, hm2*h3];
470 //Check tih spans a primitive lattice in \Cl^+(T)
471 /*
472 tih_Lat := Lattice(Matrix(Integers(),4,128,[Eltseq(Cp!tih[ii]): ii in [1..4]]));
473 Id_Lat := Lattice(IdentityMatrix(Integers(), 128));
474 Id_Lat/tih_Lat; //\ZZ^124
475 */
476 //tih_mat_16: action of tih as 16x16 matrices
477 tih_mat_16 := [Get_r_action(Cp!tih[ii], L_Cp, L_matK): ii in [1..4]];
478  
479 //tih_mat_8: action of tih as 8x8 matrices over CC8p
480 CC8p, CC8n:= Get_CC8_bas(J, L_Cp, L_matK);
481 tih_mat_8 := [Transpose(Solution(Transpose(CC8p), Transpose(tih_mat_16[ii]*CC8p))): ii in [1..4]];
482  
483 //bas_R := basis of R
484 if n in [1,4,6,7] then
485 bas_R := [1, -1+i+j-k, 2*i, 2*j];
486 else
487 bas_R := [1, -1-i-j+k, -2*i, -2*j];
488 end if;
489  
490 //Check Phi: bas_R[ii] -> tih_mat_8[i] is a homomorphism (preserves multiplication)
491 //[[Dot_prod(Get_coeff(bas_R, bas_R[ii]*bas_R[jj]),tih_mat_8) eq tih_mat_8[ii]*tih_mat_8[jj]: jj in 

[1..4]]: ii in [1..4]];
492  
493 Q := Phi2Chi(tih_mat_8,bas_R);
494 //xs: x_i's satisfying equation 3.3.3(1) 109



495 xs := Get_xs(CC8p, CC8n, L_matK, Q);
496  
497 //bilform_mat: inner product matrix for R wrt bas_R
498 bilform_mat := Matrix(Rationals(), 4,4, Eltseq([[bilform(bas_R[i],bas_R[j]): i in [1..4]]: j in 

[1..4]]));
499 //I_6  = I_6_H wrt bas_R
500 I_6 := 2*VerticalJoin([Matrix(Rationals(),1,4,Get_coeff(bas_R, I_6_H[jj])): jj in [1..4]]);
501 I_12 := 2*VerticalJoin([Matrix(Rationals(),1,4,Get_coeff(bas_R, I_12_H[jj])): jj in [1..4]]);
502 L_I_6 := Lattice(I_6, bilform_mat);
503 L_I_12 := Lattice(I_12, bilform_mat);
504 //Shortest_I_6: Shortest vectors in lattice
505 Shortest_I_6 := ShortestVectors(L_I_6);
506 Shortest_I_6 := Shortest_I_6 cat [-1*xx : xx in Shortest_I_6];
507 Shortest_I_12 := ShortestVectors(L_I_12);
508 Shortest_I_12 := Shortest_I_12 cat [-1*xx : xx in Shortest_I_12];
509  
510 I := [I_6, I_6, I_12, I_12];
511 Shortest_I := [Shortest_I_6, Shortest_I_6, Shortest_I_12, Shortest_I_12];;
512
513 //calM2I: change of basis matrix from calM to I
514 calM2I := ZeroMatrix(K,0,0);
515 for kk in [1..4] do
516 calMkk := Get_calMkk(kk, tih_mat_16);
517 L_calMkk := Lattice(calMkk, bilform_mat);
518 Shortest_calMkk := ShortestVectors(L_calMkk);
519 Shortest_calMkk := Shortest_calMkk cat [-1*xx : xx in Shortest_calMkk];
520 calM2I := DiagonalJoin(calM2I, calMkk_2_Ikk(bas_R, Shortest_calMkk, Shortest_I[kk], bilform_mat, 

calMkk));
521 end for;
522 //\calT satisfying equation 3.3.3(3)
523 calT := Get_calT(calM2I, bas_R, L_Cp, L_matK);
524
525 //\calH satisfying equation 3.3.3(4)
526 calH := Get_calH(J, L_Cp, L_matK, tih_mat_16, bas_R, calM2I);
527
528 //Z = \ti{F}(J) \in \DMT
529 Get_z(calT, calH, xs);
530
531  
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Index

(·)−, 45
(·)t, 45
(·)∗, 45∧

V , see exterior algebra
⊗̂, see graded tensor product
⊗, see Kronecker product of matrices, see Kro-

necker product
∼, see isogeny of abelian variety√
−1, 29

A, see abelian variety
AΛ, see discriminant group of lattice
α, 51, 53, 57, 61, 69
A#, see Mumford compactification
AD, 24
A(M,T ), 34

Ãd, see twisted adjoint representation
b, 34
C, see Weil operator
Cl(V ), see Clifford algebra
Cl+(V ), see even part of Clifford algebra
χ, 28
χR, 32
c1, see first Chern map
D, see polarisation type of abelian variety
∆A, see boundary divisor
Dg, see Siegel upper half space as bounded sym-

metric domain
Df , see period domain
disc(Λ), see lattice discriminant
∂, see degree function
E, 19
E8, 35
Eij , 55, 72
Ejj , 63
E, 79
EndsQ(A), 25, 53
F , 25
F •, see Hodge filtration
fM,T , 31
F , see Hodge numbers
G(L), 6
Γ(f), see monodromy group
Γ[p], 80, 85, 98
Γ∞, 91
Γp, 80

Γ̃n
p , see integral affine symplectic group, 92

H, see Hermitian form
H, see Hamilton quaternions
HQ, 28
Hdg(V ), see Hodge group
Hm, 31
hp,q, see Hodge numbers
Ip,q, 9
ι, 27
iso(τ), 92
J , see complex structure
Jcusp(k,m), see Jacobi cusp form
Jg, see standard symplectic form, 9, 83
KX , 81
KS(T ), 52
KS(X), 51
Kum(A), see Kummer surface
KP , 42
κ(X), see Kodaira dimension
κ(X,L), see L-dimension
Λ∨, see dual lattice
ΛK3, see K3 lattice
Mk(Γ), 89
MT(V ), see Mumford-Tate group
M, 29
µ, 20, 64, 79
m, 28
o, see Hurwitz integers
Φ, see representation of division ring
ΦR, 31
Φstd, 28, 54, 66
Ψ, see polarisation of Hodge structure, 14
P, see period map
P(F ), 84

P̃ ′′(F̃ ), 86

P̃ ′′(F̃ ), 93
P̃(F̃ ), 85
Q, 19
qAΛ

, see discriminant form of lattice
ρ, see anti-involution
ρ(X), see Picard rank
rk(Λ), see lattice rank
SO∗(2m), 9, 32
SO+(p, q), 9
Σ(F ), see cone decomposition
Sp(2g), 9, 23
Sg, see Siegel upper half space
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T (V ), see tensor algebra
T , 29
tr, see reduced trace
U , see hyperbolic plane
U(p, q), 9
U, 13, 56
VK, 6
X, see isotropic lattice
Xn
p , 80

X(n), 79

abelian variety, 18
endomorphism algebra of ∼, 22
endomorphism of ∼, 22
endomorphism structure of ∼, 27
homomorphism of ∼, 22
isogeny of ∼, 22, 25, 52
isomorphism of ∼, 22
polarisation type of ∼, 19, 22, 80
principally polarised ∼, 19
simple ∼, 25
subvariety of ∼, 25
totally definite quaternion multiplication of ∼,

27
abelian variety with endomorphism structure, 27

isomorphism of ∼, 28
right action of End(A), 30

almost complex structure, 8, 21
anti-involution

positive ∼, 26, 27
arithmetic subgroup, 8, 24

Baily-Borel Theorem, 10, 18, 34, 90
boundary component, 83

adjacency, 84, 90
central , 85
corank of ∼, 84
peripheral, 95
peripheral , 85
proper ∼, 83
rational, 84

boundary divisor, 91

canonical divisor, 81
canonical level structure, 20, 80
canonical singularities, 88
checkerboard grading, 46
Clifford algebra, 44

canonical automorphism, 45
Clifford multiplication, 44

even part of ∼, 44
Fundamental Lemma for ∼, 45, 62
gluing of ∼, 46
simple element with integral degree, 44
transpose, 45

Clifford group, 48
coarse moduli space, 18
complete family, 23, 31
complex structure, 20, 29
cone decomposition, 86

admissible ∼, 86
simplicial ∼, 86, 88

cusp, 84

division ring
of the first kind, 26
of the second kind, 27
representation of ∼, 27

double sextic, 38

equivalent representations, 27, 49
exterior algebra, 44

family
of polarised abelian g-folds with endomorphism

structure associated to a pair (M, T ), 31
of polarised abelian g-folds, 22
of structured varieties, 10
Picard rank of ∼ of K3 surfaces, 40
polarised ∼ of real Hodge structures, 17
very general member, 29, 40, 53, 74

finite quotient singularities, 88
quasi-reflection, 93
quasi-reflection, 88
type, 88

first Chern map, 12, 38

global period map, 17
Global Torelli Theorem, 18, 24, 34, 41
Grassmann variety, 16
Griffiths transversality, 18

Hamilton quaternions, 27
Hermitian form, 19, 33
Hermitian symmetric domain, 8, 17

classification of ∼, 8
Hermitian symmetric space, 8
Hodge bundle, 17, 79, 90
Hodge group, 13
Hodge numbers, 13, 16
Hodge structure, 13
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Hodge filtration associated to a ∼, 16
morphism of ∼, 14
of K3 type, 51
of weight one, 20
Tate ∼, 14

Hodge-Riemann pairing, 15
Hodge-Riemann relations, 14, 16, 19, 22, 57
holomorphic imbedding, 11
Hurwitz integers, 47, 62

idempotent, 25, 54
integral affine symplectic group, 80
isotropic lattice, 84
isotropic subspace, 83
isotropy group, 92

Jacobi cusp form, 92, 98
Jacobi form, 92
Jacobian elliptic fibration, 60

K3 lattice, 36
K3 surface

isomorphism of lattice polarised ∼, 39
lattice polarisation, 39
lattice polarised ∼, 39
marked lattice polarised ∼, 40
marking, 38

Kähler form, 13, 38
primitive part of cohomology, 15

Kodaira dimension, 82
of general type, 82

Kronecker product of matrices, 28, 46
KS variety

complex structure, 51
polarisation of ∼, 51

Kuga variety, 80
Kuga-Satake variety, 51
Kummer surface, 38, 80

L-dimension, 81
lattice, 34

d-elementary, 36
discriminant, 34
discriminant form, 37
discriminant group, 36
dual ∼, 35
even ∼, 36
hyperbolic plane, 35
indefinite ∼, 36
isometry, 35

length, 36
Nikulin lattice, 35
orthogonal direct sum, 35
parity, 37
primitive embedding of ∼, 35
rank, 34
signature, 34
twist, 35
unimodular, 36

Lefschetz’ theorem on (1, 1) classes, 13
line bundle

ample, 12
big, 39, 81
nef, 39

locally symmetric space, 7, 8
locally symmetric varieties, 10, 24

modular interpretation of ∼, 10

marking, 17, 38, 40
modular form

Siegel , 89
modular group, 24, 80
moduli problem, 10
moduli variety, 10

of polarised abelian varieties with totally defi-
nite quaternion multiplication, 34

of lattice polarised K3 surfaces, 42
of polarised abelian varieties of type D, 24

monodromy group, 17, 24
monodromy representation, 17
Mumford compactification, 91
Mumford-Tate group, 13, 53

Néron-Severi group, 12
Néron-Severi lattice, 40, 43
Namikawa compactification, 87, 91
Nikulin involution, 42

order, 47
maximal, 47

orthogonal group of a quadratic space, 41, 49

paramodular group, 81, 98
partial toroidal compactification, 86
period domain, 16, 22, 31, 40, 79
period map, 17
period matrix, 18, 23

standardised normalised, 31
Picard group, 12, 38
Picard rank, 38, 43
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pin group, 48
plurigenus, 82
Poincaré’s Complete Reducibility Theorem, 25, 75
polarisation

of a abelian variety, 18
of a K3 surface, 38
of a projective variety, 12
of Hodge structure, 14

polarisation formula, 37, 40, 44
positive line bundle, 14
principal congruence subgroup, 85
pseudo-idempotents, 63

Q-Cartier divisor, 81, 88
Q-line bundle, 81
quaternion algebra, 26

R-Cartier divisor, 39
R-line bundle, 39
real torus, 20
reduced characteristic polynomial, 26
reduced trace, 26
Reid–Shepherd-Barron–Tai criterion, 88

RST sum, 88
relative general type, 82
Riemannian manifold, 7

involutive isometry, 7
isometry, 7

Riemannian structure, 7
Rosati condition, 27, 30
Rosati involution, 25, 27

symmetric element of ∼, 25

Satake compactification, 85, 90
self fibre product, 79
semi-direct product, 80
Shioda-Inose structure, 42, 52
Siegel cusp form, 98
Siegel domain realisation, 86
Siegel modular forms

line bundle of ∼, 90
Siegel upper half space, 23, 74, 79

as bounded symmetric domain, 83
space of half spinors, 54
special Clifford group, 48
spin group, 48
spin representation, 49

half ∼, 49
standard symplectic form, 9
symmetric space, 7

of non-compact type, 8
symplectic basis, 19, 23

tensor algebra, 44
toroidal compactification, 87
totally complex number field, 26
totally real number field, 26

totally positive element of a ∼, 26
transcendental lattice, 40, 43
tube domain, 86, 91
twisted adjoint representation, 48

universal family of abelian varieties, 79

van Geemen-Sarti involution, 60, 76
very irrational, 39

Weil operator, 14, 20, 53, 56
Witt’s Theorem, 16, 24, 33, 41

Z2-graded algebra, 45
degree function, 45
graded tensor product, 45
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