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Summary
Cylindrical Algebraic Decomposition was first introduced by Collins in 1975, to help
understand and analyse the real algebraic geometry of a system of polynomials.
There are various applications of CAD, specifically quantifier elimination problems
in fields ranging from motion planning to analysing financial markets.

CAD algorithms are extremely useful for solving a system of polynomials, but the
complexity of CAD algorithms is doubly exponential in the number of variables.
This makes it difficult to use for large examples. McCallum attempted to tackle this
problem first by switching from sign invariant CADs to order invariant CADs and
then by exploiting equational constraints in the input formulae.

However, with the switch to order invariance, if the input formulae contain polyno-
mial constraints that nullify over a region, the CAD algorithms produce an error.
Lazard formulated a theory using the lex-least valuation, which removed the nullifi-
cation problem for general CADs.

In this thesis we carry forward Lazard’s theory to exploit equational constraints and
tackle the doubly exponential complexity of CAD algorithms. To do this we study
the geometry of loci where nullification occurs, which we call curtains. Further to
this we adapt our modifications to the most recent algorithm proposed by Brown-
McCallum in 2020. We end with a comparison of the theoretical complexity of all
the modifications presented in this thesis.
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Chapter 1

Introduction

Herein we introduce the core subject matter of this thesis, Cylindrical Algebraic
Decomposition, mostly referred to as ‘CAD’ within the Computer Algebra research
community. First, we describe various pre-existing methods/algorithms used to com-
pute CADs. We then illustrate the various drawbacks associated with these methods.
After that, we provide the stages of improvements of the CAD algorithm we have
established, leading to our final result of using the Brown-McCallum projection op-
erator for multiple equational constraints. After discussing the various algorithmic
modifications in this thesis, we provide an in-depth complexity analysis, further jus-
tifying our findings by a thorough comparison of the pre-existing methods.

1.1 CAD Algorithms

In 1975, Collins [Col75] introduced the mathematical structure Cylindrical Algebraic
Decomposition (CAD) to gain a better understanding of the real algebraic geometry
for a system of polynomials using an algorithmic approach. A CAD is a decomposi-
tion of a semi-algebraic set X ⊆ Rn (for any n) into semi-algebraic sets (also known
as cells) homeomorphic to Rm, where 1 ≤ m ≤ n, such that the projection of any
two cells onto the first k coordinates is either the same or disjoint.

Various real-world problems can be reduced to a system of polynomial equalities
and inequalities. Often these problems are in the form of a Quantifier Elimination
problem. An example of this is the Piano Mover’s problem [WDEB13], which is
discussed later in this thesis. There are several specialised algorithms in this area, but
CAD is considered one of the most effective algorithms for Quantifier Elimination.
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There are two main problems with CAD algorithms: the first is the inherent com-
plexity; the second is their inability to handle polynomials that nullify over some
region. A polynomial is said to nullify if the hypersurface described by the polyno-
mial contains the fibres. The fastest CAD algorithm has doubly exponential com-
plexity in the number of variables of the input polynomials. McCallum has several
improvements, such as [McC99] and [McC01], which improve the doubly exponential
complexity of CAD algorithms. However, they fail in the case of nullification. Mc-
Callum in [McC19] verified the first algorithm (originally given by Lazard [Laz94])
that dealt with the nullification problem but did not consider the modifications made
in [McC99] and [McC01].

We aim to improve the efficiency of Lazard’s algorithm by adapting [McC99], and
[McC01]. We also take a different view on nullification and provide algorithms to
deal with it.

1.2 Outline of results

In this thesis we present our development of Lazard’s theory to improve the effi-
ciency of CAD algorithms. We also address the nullification problem by introducing
geometric objects called ‘curtains’ and establishing the theory around computational
algebraic geometry.

Concepts in topology and algebraic geometry play a pivotal role in the algorithmic
modifications provided in this thesis. For this reason, a thorough survey of these
concepts is provided in Chapter 2. Also in Chapter 2, we provide a comprehensive
literature review around the concepts of CAD followed by a literature review of
McCallum’s modifications of Collins’ CAD algorithm. These modifications exploit
polynomial constraints in the input, known as equational constraints.

We summarise the topics and results in the thesis:

• In Chapter 3, we discuss the procedure defined by Lazard in [Laz94] and verified
by McCallum and colleagues in [MPP19]. It consists of a new valuation, a
new projection operator and a new algorithm that deals with the nullification
problem.

• In Chapter 4, we present our first modifications to Lazard’s projection operator
and algorithm based on the method in [McC99].

• In Chapter 5 we introduce a more geometric point of view of nullification,
concentrating on the algebraic varieties of which this happens, which we call
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curtains.

• In Chapter 6, we discuss how to deal with the curtain problem arising in
Chapter 4 and provide a modified algorithm that solves it. We discuss various
modifications of Lazard’s projection operator and algorithm to obtain a result
analogous to McCallum’s in [McC01].

• In Chapter 7, we describe the recent results of Brown and McCallum in [BM20]
and adapt our results from Chapters 4 and 6 to this context.

• Chapter 8 carries out the complexity analysis of the various modified CAD
algorithms. It gives a comprehensive understanding of the improvements in
the complexity of CAD algorithms. In order to handle the case of equational
constraints appropriately, we introduce an enhancement to the existing method
used to compute the complexity. This gives us an improvement to the existing
results in [BDE+16, EBD19] as well as results for our own algorithms.

• Chapter 9 concludes by discussing the potential extensions and future work.

1.2.1 CAD, Procedural Steps

We first describe the steps involved in producing a CAD of Rn. The CAD procedure
input is a set of polynomial constraints in R[x1, . . . , xn].

• Variable Ordering: When computing a CAD we need a fixed variable order-
ing. This determines the order in which variables are eliminated. In quantifier
elimination problems we are restricted to the given ordering, but in general for
we assume the variable ordering to be x1 < . . . < xn.

• Projection Phase: This phase uses a function, known as the projection op-
erator, that reduces the number of variables of the polynomial constraints by
one. The projection operator is used recursively until it obtains polynomials
in R[x1].

• Base Phase: R1 is decomposed to the specifications of the required CAD and
assigning sample points to the cells.

• Lifting Phase: This phase consists of lifting the decomposition of R1 to Rn

and the projected polynomials obtained in the projection phase.

Most of the work presented in this thesis is based on proposing different modifications
to Lazard’s projection operator. We also provide the appropriate lifting algorithms
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to complement the modified projection operators. We end this work by a thorough
complexity analysis of these algorithms to justify our modifications.

1.3 Author’s Contribution and Collaborators

The work presented in this thesis is theoretical and developed by the author (su-
pervised by Prof. James H. Davenport and Prof. Gregory Sankaran). This research
was part of a larger project on improving the complexity of Cylindrical Algebraic
Decomposition formed by Prof. James Davenport, Prof. Gregory Sankaran, Dr. Rus-
sell Bradford, Zak Tonks and the author. There were several discussions held with
external collaborator Prof. Scott McCallum (Macquaire University, Australia). The
results obtained from these discussions are published as part of conference proceed-
ings for SYNASC (Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, Romania) and a poster presentation at ISSAC (International Sympo-
sium on Symbolic and Algebraic Computation, China).

The algorithms developed by the author and mentioned in this work have been
implemented in Maple by Zak Tonks (supervised by Prof. James Davenport and
Dr. Russell Bradford) as part of his PhD [Ton21]. There were several discussions
hosted by Dr. Matthew England and Prof. James Davenport (as part of the project
Pushing Back the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition),
where potential extensions of the research presented in this thesis were discussed.

13



1.3.1 Funding

The research conducted for this PhD was fully funded thanks to the University of
Bath and EPSRC grant: EP/N509589/1.

14



Chapter 2

Preliminaries

Cylindrical Algebraic Decomposition (CAD) was first introduced by Collins [Col75].
Over the past 45 years, there have been several enhancements to Collins’ original al-
gorithm. Our research extends the variants proposed by McCallum [McC84] [McC99]
[McC01] and Lazard [Laz94].

This chapter introduces the various mathematical preliminaries required for the va-
lidity proofs later. We also establish the standard terminologies in CAD to keep this
piece of work self-contained.

2.1 Polynomial Notations and Properties

Here we standardise our notation and review the material from real algebraic geom-
etry that we shall need. We work throughout over the field of real numbers R.

We use the notation R[x1, . . . , xn] for the ring of polynomials in variables x1, . . . , xn.
We also follow the convention that 0 is in N.

Definition 1. For f ∈ R[x1, . . . , xn], we denote by degxi
(f) the highest power of xi

present in f .

We often think of a polynomial f ∈ R[x1, . . . , xn] as a univariate polynomial in xn

with coefficients in R[x1, . . . , xn−1].

Definition 2. For a polynomial f in R[x1, . . . , xn] we define

• deg(f), the degree of the polynomial f , where deg(f) = degxn
(f).

15



• ldcf(f), the leading coefficient of f , i.e. the coefficient of xd
n where d = degxi

(f).

• trcf(f), the trailing coefficient of f , i.e. the coefficient of the least exponent
with non-zero coefficient of xn.

• ldt(f), the non-zero term with the greatest exponent of xn.

• trt(f), the non-zero term with the least exponent of xn.

• ldm(f), the leading monomial of f , where ldm(f) = ldt(f)/ ldcf(f).

Definition 3. Let f ∈ R[x1, . . . , xn] with main variable xn. Then f is a monic
polynomial if the ldcf(f) = 1 with respect to the main variable xn. We say that f is
a primitive polynomial if the gcd of all the coefficients (with respect to main variable
xn) is 1.

Definition 4. Let f be a polynomial in R[x1, . . . , xn]. We define red(f), the reduc-
tum of f as follows

red(f) = f − ldt(f).

By convention red(0) = 0. We define the kth reductum recursively:

red0(f) = f.

redk(f) = redk−1(f)− ldt(redk−1(f)).

We define RED(f) as the reducta set of f as follows

RED(f) = {redk(f) | 0 ≤ k ≤ deg(f), redk(f) �= 0} (2.1)

We are mainly concerned with ldcf(f) and trcf(f), but have included this terminology
to keep the work self-contained.

Let α = (α1, . . . ,αn) ∈ Rn . A formal power series about α over R is an expression
of the form ∞�

i1,...,in=0

ai1,...,in(x1 − α1)
i1 . . . (xn − αn)

in . (2.2)

Let U be an open subset of Rn and let f : U → R be a function. Then f is said to
be analytic in U if each point α in U has a neighbourhood W ⊆ U such that f has
a power series about α over R

f(x1, . . . , xn) =
∞�

i1,...,in=0

ai1,...,in(x1 − α1)
i1 . . . (xn − αn)

in , (2.3)

which is absolutely convergent for every point x in W .
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Theorem 1. [McC85, Theorem 2.1.3] Let U be a connected open subset in Rn and
let f, g ∈ R[x1, . . . , xn] be analytic in U . Then

• The functions f + g and fg (defined pointwise) are analytic in U .

• If f(x) �= 0 for all x ∈ U , then 1/f is analytic in U .

• If f(x) = 0 for all points x in a nonempty open subset D of U , then f = 0
everywhere in U .

The following result states that even if a polynomial cannot be factored over the ring
of polynomials, it is possible to factor it locally over R[[x1, . . . xn]], the ring of formal
power series. We use this result in our validity proof that Lazard’s theory can be
modified to exploit the single equational constraint case.

Theorem 2. (Hensel’s Lemma)[Abh90, Page 90, Lecture 12] Let F (x1, . . . , xm, y) ∈
R[[x1, . . . , xm]][y] be a monic polynomial of degree n > 0 in y with coefficients
a1, . . . , an ∈ R[[x1, . . . , xm]] i.e.

F (x1, . . . , xm, y) = yn+a1(x1, . . . , xm)y
n−1+ . . .+an(x1, . . . , xm) ∈ R[[x1, . . . , xm]][y]

Assume that F (0m, y) = Ḡ(y)H̄(y) where

Ḡ(y) = yr + b̄1y
r−1 + . . .+ b̄r ∈ R[y]

and H̄(y) = ys + c̄1y
s−1 + . . .+ c̄s ∈ R[y]

are monic polynomials in y with real coefficients of degrees r > 0 and s > 0 respec-
tively such that gcd(Ḡ(y), H̄(y)) = 1. Then there exist unique monic polynomials
over R[[x1, . . . , xm]]

G(x1, . . . , xm, y) = yr + b1(x1, . . . , xm)y
r−1 + . . .+ br(x1, . . . , xm)

H(x1, . . . , xm, y) = ys + c1(x1, . . . , xm)y
s−1 + . . .+ cs(x1, . . . , xm)

such that

• G(0m, y) = Ḡ(y), H(0m, y) = H̄(y)

• F (x1, . . . , xm, y) = G(x1, . . . , xm, y)H(x1, . . . , xm, y).

Definition 5. A valuation is any map ν : R[x1, . . . , xn] → X (where X is a set with
a suitable total ordering) that satisfies the following properties:

• ν(a) = ∞ if and only if a = 0

• ν(ab) = ν(a) + ν(b)
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• ν(a+ b) ≥ min(ν(a), ν(b)), with equality if ν(a) �= ν(b)

We say that a set of polynomials A is valuation invariant in a set S, if the valuation
of every polynomial in A is constant throughout S.

2.2 Semi-Algebraic sets and Polynomial Ideals

Definition 6. Let f : Rn → Rn−1 be the standard projection map. Then the fibre of
b ∈ Rn−1 is the set f−1(b) = {a ∈ Rn | f(a) = b}.
Definition 7. Let f be a polynomial in R[x1, . . . , xn]. We define Vf , the zero-set of
f , by

Vf = {α | α ∈ R, f(α) = 0}.
We also call Vf the hypersurface described by f .

Definition 8. Let F be a finite set of polynomials in R[x1, . . . , xn]. We define

VF = {α | α ∈ R, ∀f ∈ F f(α) = 0}

Definition 9. Let Z be a subset of Rn. We say that Z is an algebraic set if there
exists a set of polynomials F in R[x1, . . . , xn] such that Z = V (F ).

In view of Hilbert’s basis theorem, we can take the set F in Definition 9 to be finite.

Definition 10. Let Z be a subset of Rn. We define I(Z) as the ideal of polynomials
vanishing on Z as

I(Z) := {f ∈ R[x1, . . . , xn] | ∀x ∈ Z f(x) = 0}

It is easy to see that I(Z) is an ideal of the polynomial ring R[x1, . . . , xn]. So far we
have not used any special properties of R, but the next proposition is not valid over
most other fields.

Proposition 1. Let Z be an algebraic set in Rn. Then there exists a polynomial f
in R[x1, . . . , xn] such that Z = Vf .

Proof. Let {f1, . . . , fk} be generators of I(Z) (by Hilbert’s Basis theorem we may
assume k is finite). Set f = f 2

1 +. . .+f 2
k and let α ∈ Z. Hence f1(α) = 0, . . . , fk(α) =

0. This implies that f(α) = 0, thus by Definition 7 α ∈ V (f). Hence Z ⊆ V (f).
Since Z is an algebraic set, by Definition 9 there exist polynomials g1, . . . , gm in
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R[x1, . . . , xn] such that Z = V (g1, . . . , gm). This implies that {g1, . . . , gm} ⊆ I(Z).
Since f1, . . . , fk are the generators of I(Z), if α is a root of f1, . . . , fk then α is also
a root of g1, . . . , gm, implying that α ∈ Z. Therefore V (f) ⊆ Z.

Definition 11. [BCR98] A subset S of Rn is called a semi-algebraic subset if it can
be written as a union of the sets of the form

{x ∈ Rn | f1(x) = . . . = fl(x), g1(x) > 0, . . . , gm(x) > 0}

where f1, . . . , fl, g1, . . . , gm are in R[x1, . . . , xn]. It can also be written in the following
form

�

i

��

j

fi,j ∼i,j 0

�

where ∼i,j is either > or =.

Example 1. Figure 2-1 is a semi algebraic set and can be defined as follows.

�
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���
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���
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���
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Theorem 3. [BCR98] Let S be a semi-algebraic subset of Rn and π : Rn → Rn−1

the projection on the first n− 1 coordinates. Then π(S) is a semi-algebraic set.
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Figure 2-1: Batman is semi-algebraic!

2.2.1 Squarefree and Irreducible Bases

Both squarefree and irreducible bases are used in the implementations of CAD. To
understand the difference between then, we have a detailed look at them here.

Definition 12. Let f ∈ R[x1, . . . , xn] with positive degree. If there exist polynomials
g and h in R[x1, . . . , xn] with positive degrees such that f = g ·h, then f is a reducible
polynomial. If f cannot be expressed as such a product, then f is an irreducible
polynomial.

Definition 13. [Wil14, Definition 2.3] Let f be a polynomial in R[x1, . . . , xn]. The
squarefree decomposition of f is the decomposition

f =
k�

i=1

f i
i

such that fi ∈ R[x1, . . . , xn] and f1, . . . , fk are relatively prime and have no repeated
factors.

We say that f ∈ R[x1, . . . , xn] is squarefree if k = 1 in its squarefree decomposition.

Definition 14. [Col75, Page 145] Let A ⊆ R[x1, . . . , xn] be a set of primitive poly-
nomials of positive degrees. A basis for A is a set B of primitive polynomials of
positive degree in R[x1, . . . , xn] such that

• If b1, b2 ∈ B, then gcd(b1, b2) = 1.

• If b ∈ B, then b | a for some a ∈ A.

• If a ∈ A, there exists b1, . . . , bn ∈ B and positive integers e1, . . . , en such that

a =
n�

i=1

beii

with n = 0 if a = 1.

20



Definition 15. Let A be a set of primitive polynomials in R[x1, . . . , xn] of positive
degrees and B be a basis of A. If all the elements of B are squarefree then B is a
squarefree basis of A. If all the elements of B are irreducible then B is an irreducible
basis of A.

2.3 Resultants and Discriminants

This section summarises the properties of resultants and discriminants of polyno-
mials. These results will be useful throughout this thesis but mainly in Chapter 8,
when computing the complexity of various CAD algorithms. We have chosen to omit
the proofs for these results as they are standard results and can be found in various
sources such as [Col71], [Dav21], [GKZ94],[McC84], [Abh90] etc.

Definition 16. [Col71] Let f =
�d

i=0 aix
i
n and g =

�e
j=0 bjx

j
n with d, e ≥ 0 and

coefficients ai, bi ∈ R[x1, . . . , xn−1]. Then the Sylvester matrix Sylxn
(f, g) is defined

as follows:

Sylxn
(f, g) =




ad · · · · · · a0
. . . . . .

ad · · · · · · a0
be · · · · · · b0

. . . . . .

be · · · · · · b0� �� �
d+e








e





d

Definition 17. [Col71] Let f =
�d

i=0 aix
i
n and g =

�e
j=0 bjx

j
n with d, e ≥ 0 and

coefficients ai, bi ∈ R[x1, . . . , xn−1]. Then resxn(f, g), the resultant of f and g with
respect to the variable xn, is defined as

resxn(f, g) = det(Sylxn
(f, g))

We have used Sylxn
instead of just Syl, since our polynomials are multivariate and

we want to emphasise the main variable.

Let F,G ⊆ R[x1, . . . , xn]. We define resxn(F,G) = {resxn(f, g) | f ∈ F, g ∈ G}.
Theorem 4. [Col71, Theorem 2] Let f =

�d
i=0 aix

i
n and g =

�e
j=0 bjx

j
n with d, e ≥ 0

and coefficients ai, bi ∈ R[x1, . . . , xn−1]. Then resxn(f, g) = 0 if and only if f and g
have a common divisor of positive degree.
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Theorem 5. [Col71, Theorem 3] Let f =
�d

i=0 aix
i
n and g =

�e
j=0 bjx

j
n with

d, e ≥ 0 and coefficients ai, bi ∈ R[x1, . . . , xn−1]. Then there exist polynomials
S, T ∈ R[x1, . . . , xn] such that Sf+Tg = resxn(f, g), degxn

(T ) < d and degxn
(S) < e.

Theorem 6. [Col71, Theorem 5] Let f =
�d

i=0 aix
i
n and g =

�e
j=0 bjx

j
n with

d, e ≥ 0 and coefficients ai, bi ∈ R[x1, . . . , xn−1]. Let resxn(f, g) = h(x1, . . . , xn−1).
If (α1, . . . ,αn) ∈ Rn is a common root for f and g then h(α1, . . . ,αn−1) = 0. Con-
versely, if h(α1, . . . ,αn−1) = 0 then at least one of the following holds:

• ad(α1, . . . ,αn−1) = . . . = a0(α1, . . . ,αn−1) = 0,

• be(α1, . . . ,αn−1) = . . . = b0(α1, . . . ,αn−1) = 0,

• ad(α1, . . . ,αn−1) = be(α1, . . . ,αn−1) = 0,

• For some αn ∈ R, (α1, . . . ,αn) is a common root for f and g.

Corollary 1. Let f, g be two polynomials in R[x1, . . . , xn] with positive degree and
leading coefficients that do not vanish simultaneously over a set S ⊆ Rn−1. Then f
and g intersect over the set given by {resxn(f, g) = 0} ∩ S.

Theorem 4 and Corollary 1 help establish the geometric relationship between the
hypersurfaces described by two polynomials. Notably all projection operators for
CAD algorithms use the resultants to obtain information about the intersection of
two constraints.

Definition 18. [Dav21, Section A.1.2] Let f ∈ R[x1, . . . , xn] with positive degree d
in xn and let f � be the partial derivative of f with respect to xn. Then discxn(f), the
discriminant of f with respect to the variable xn, is defined as

discxn(f) = (−1)
d(d−1)

2 resxn(f, f
�). (2.4)

Theorem 7. [Dav21, Corollary 23] Let f =
�d

i=0 aix
i
n and g =

�e
j=0 bjx

j
n with

degree d, e ≥ 1. Then

discxn(fg) = discxn(f) discxn(g)(resxn(f, g))
2. (2.5)

Theorem 8. [Dav21, Corollary 22] Let f, g, h ∈ R[x1, . . . , xn] with positive degrees
in xn. Then

resxn(fg, h) = resxn(f, h) resxn(g, h). (2.6)
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Theorem 9. [Dav21, Lemma 19] Let f, g ∈ R[x1, . . . , xn] with positive degrees d, e in
the variable xn respectively. Then resxn(f, g) has a max degree of de in the variable
xn−1.

Let Syli,j(f, g) be defined like the Sylvester matrix of f and g but removing the last j
rows of the coefficients of f and g, and the last 2j−1 columns except the m+n−2j
column, where m and n are the degrees of f and g respectively.

Definition 19. We define the jth principal subresultant coefficient of f and g as
pscj(f, g) = det(Sylj,j(f, g)).

Definition 18, Theorem 7, Theorem 8 and Theorem 9 are used extensively in Chap-
ter 8 to find an upper bound for the number of cells produced by CAD algorithms.
For an in-depth understanding on resultants and discriminants look at [Dav21].

2.4 Quantified Formulae and Quantifier Elimina-

tion

In this section we present a few standard definitions in logic.

A standard atomic formula is of the form

f(x1, . . . , xn) ∼ 0

where ∼ is one of {=, <,>, �=,≥,≤} and f is some polynomial in R[x1, . . . , xn].

Definition 20. A standard formula is any formula which can be constructed using
standard atomic formulae using propositional connectives (¬,∧,∨,→,↔) and quan-
tifiers on variables (∃xi, ∀xi).

A quantifier free formula (QFF) is a standard formula that does not contain any
quantifiers on variables.

A Tarski formula or standard prenex formula is a standard formula of the following
form

Φ = (Qkxk)(Qk+1xk+1) . . . (Qnxn)φ(x1, . . . , xn)

where 0 ≤ k ≤ n, the Qi are quantifiers and φ is a quantifier free formula.

The problem of quantifier elimination is the following.

Given a Tarski formula

Φ = (Qkxk)(Qk+1xk+1) . . . (Qnxn)φ(x1, . . . , xn)
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where 0 ≤ k ≤ n and φ is a quantifier free formula, does there exist a quantifier free
formula in the free variables, Ψ(x1, . . . , xk−1), which is equivalent to Φ?

(∀x1)(∀x2) . . . (∀xk−1)[Φ = Ψ]

2.5 Cylindrical Algebraic Decomposition

We define a i-cell (for 0 ≤ i ≤ n) as a subset of Rn that is homeomorphic to Ri. For
any subset X ⊆ Rn, a partition of X is a set of non empty sets {X1, . . . , Xk} such
that ∪iXi = X and Xi ∩Xj = ∅ for all i �= j.

Let f be a real valued continuous function on S ∈ Rn−1. The f -section of S × R is
the set of points

{(α, f(α)) | α ∈ S}

and any set of this form is called a section.

Let f and g be two real valued continuous functions on S ⊆ Rn−1 (allowing the
constant function f = −∞ and g = ∞) such that f(α) < g(α) for all α ∈ S. We
define the (f, g)-sector of S × R as the set of points

{(α, b) | f(α) < b < g(α) and b ∈ R}

and any set of this form is called a sector.

Definition 21. Let f be a polynomial in R[x1, . . . , xn] and S ⊆ Rn−1. Then f is
delineable on S if Vf ∩ (S × R) consists of k disjoint sections of S × R with k ≥ 0.
These sections are often refered to as the f -sections of S × R.

Let θ1 < θ2 < . . . < θk be a collection of continuous real valued functions defined
over S ⊆ Rn−1. The set S × R has a natural decomposition:

• the θi-sections of S × R for 1 ≤ i ≤ k, together with

• the (θi, θi+1)-sectors of S × R for 0 ≤ i ≤ k, where θ0 = −∞ and θk+1 = +∞.

We now define the basic terminologies of CADs. These are versions that have been
adapted over the years from the orginal definitions found in [Col75].

Definition 22. A decomposition of X ⊆ Rn is called algebraic if every set of the
partition describing the decomposition is semi-algebraic.
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(0, 0)

S1

S2

S3

Figure 2-2: Algebraic decomposition of R2

Let us consider the following decomposition of R2 with respect to the polynomial
x2 + y2 − 1. In Figure 2-2, R2 is partitioned into the following three sets:

S1 : x
2 + y2 − 1 > 0,

S2 : x
2 + y2 − 1 = 0,

S3 : x
2 + y2 − 1 < 0.

Note, all of these three regions are semi-algebraic sets. Hence this decomposition of
R2 in Figure 2-2 with respect to the polynomial x2 + y2 − 1 is algebraic.

Definition 23. Let D be a decomposition of Rn. D is said to be cylindrical if the
projection of any two cells onto the first k variables (with 1 ≤ k < n) is either the
same or disjoint.

Definition 24. A decomposition of Rn is a Cylindrical Algebraic Decomposition
(CAD) if it is both cylindrical and algebraic.

The decomposition of R2 in Figure 2-2 is not cylindrical. The projection of S1 onto
the x1 variable is the set (−∞,∞) and the projection of S2 is [−1, 1]. The intersection
of these two projections is a non-empty intersection. However this is not the case
in the decomposition of R2 in Figure 2-3. In Figure 2-3, R2 is decomposed into the
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(0, 0)

S1,1 S5,1

S2,1

S2,2

S2,3

S3,1

S3,2

S3,3

S3,4

S3,5

S4,1

S4,2

S4,3

Figure 2-3: A Cylindrical Algebraic Decomposition of R2

following sets:

S1,1 = {x < −1}, S5,1 = {x > 1},
S2,1 = {x = −1, y < 0}, S2,2 = {x = −1, y = 0}, S2,3 = {x = −1, y > 0},
S3,1 = {x2 + y2 − 1 > 0 ∧ 1 > x > −1 ∧ y < 0},
S3,2 = {x2 + y2 − 1 = 0 ∧ 1 > x > −1 ∧ y < 0},
S3,3 = {x2 + y2 − 1 < 0 ∧ 1 > x > −1},
S3,4 = {x2 + y2 − 1 = 0 ∧ 1 > x > −1 ∧ y > 0},
S3,5 = {x2 + y2 − 1 > 0 ∧ 1 > x > −1 ∧ y > 0},
S4,1 = {x = 1, y < 0}, S4,2 = {x = 1, y = 0}, S4,3 = {x = 1, y > 0}.

Definition 25. Let f be a polynomial in R[x1, . . . , xn]. We say f is sign invariant
in a set S ⊂ Rn if one of the following is true

• f(x) > 0 for all x ∈ S.

• f(x) = 0 for all x ∈ S.

• f(x) < 0 for all x ∈ S.

Definition 26. Let D be a CAD of Rn and let F ⊂ R[x1, . . . , xn]. We say D is a
sign invariant CAD (or F -invariant) if every polynomial in F is sign invariant in
every cell of D.
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2.6 The first CAD algorithm

Collins was the first to propose an algorithm for computation of a CAD. Most algo-
rithms for CAD computation are directly or indirectly based on Collins’ work. Any
such method for CAD computation consists of the following three items:

Projection Operator: This is a function P : R[x1, . . . , xk] → R[x1, . . . , xk−1] where
k ≥ 2.

Lifting Theorem: This theorem validates the use of the projection operator P
recursively: i.e. for a given A ⊆ R[x1, . . . , xk], if P (A) is valuation invariant over
S ⊂ Rk−1, then A is valuation invariant in every section and sector of A over S.

CAD algorithm: CAD algorithms mainly consist of three phases :

• Projection phase: This phase consists of reducing the number of variables of
the polynomial constraints (using a function known as the projection operator)
until it has reached polynomials in one variable (R[x1]). The variable ordering
is important (generally x1 > x2 > . . . > xn) i.e. the first variable eliminated
is xn.

• Base phase: Decompose R1 according to specifications of the required CAD.
Each cell is given a sample point, which is used for tracking cells in the lifting
phase.

• Lifting phase: This phase consists of constructing a decomposition of R[x1, . . . , xk]
from R[x1, . . . , xk−1], until we obtain a decomposition of S.

Collins’ method produces a sign invariant CAD of Rn. The following describes
his projection operator.

Definition 27. [Col75, Page 142] Let A be a set of polynomials in R[x1, . . . , xn] and
let B = {redk(f) | f ∈ A and deg(redk(f)) > 0}. Then Collins’ projection operator,
CP(A) consists of the following polynomials:

• All leading coefficients of B.

• The set {psck(f, f �) | f ∈ B and 0 < k < deg(f)}.
• The set {psck(f, g) | f, g ∈ B and 0 < k < min(deg(f), deg(g))}.

Theorem 10 (Collins lifting theorem). Let A be a set of non-zero polynomials in
R[x1, . . . , xn] with n ≥ 2 and let S be a connected subset of Rn−1. If every element
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of CP(A) is sign invariant in S, then the following hold:

• Every element of A is either delineable or identically zero on S.

• The product of all the elements of A that are not identically zero on S is
delineable on S.

Algorithm 1 Collins’ Algorithm

(F, S) ← CAD(r, A, k)
Input: A is a set of integral polynomials in n variables. k satisfies 0 ≤ k ≤ n.
Output: S is a list of sample points for an A-invariant CAD of Rn. If k ≥ 1, F is
a list of defining formulas for the induced CAD of Rk, and if k = 0, F is the empty list.

1: Set B ← the squarefree basis for prim(A). Set S ← () and F ← ().
2: If n > 1 then go to step 3. Isolate the real roots of B. Construct the sample

points for the cells of CAD and add them to S. If k = 1, then construct the
defining formulas for the cells of CAD and add them to F . Exit.

3: If k < r then set P ← CP(A) and k� ← k; otherwise set P ← cont(A) ∪ CP(A)
and k� ← k − 1. Call CAD recursively with inputs n− 1, P, and k� to obtain S �

and F � which specify a P -invariant CAD of Rn−1.
4: for each cell c do
5: Let α denote the sample point for c.
6: B ← the set of all Bj(α, xn) such that Bj ∈ B and Bj(α, xn) �= 0.
7: isolate the real roots of B; use α and isolate the intervals for the roots of B

to construct sample points for the B-sections and B-sectors over c, adding
them to S; if k = n, then, from the defining formula for c, construct defining
formulas for the B-sections and B-sectors over c, adding them to F , and if
k < r, set F ← F �. Exit.

8: end for

2.7 McCallum’s developments of CAD

McCallum’s algorithm was the first adaptation of Collins’ theory. The key difference
in McCallum’s work was that he used the order of polynomials instead of the sign of
polynomials.

Definition 28. Let f be a polynomial in R[x1, . . . , xn] and let α ∈ Rn. The order of
f at α denoted ordα(f), is the least k ∈ N such that some partial derivative of f of
order k does not vanish at α.

28



Definition 29. [McC85, Page 44] Let f be a polynomial in R[x1, . . . , xn] and W ⊂
Rn. We say that f is order invariant on W if either:

• f(α) �= 0 for all α ∈ W .

• f(α) = 0 and ordα(f) is the same for all α ∈ W .

Let A ⊂ R[x1, . . . , xn]. Then W is A-order invariant if every polynomial in A is
order invariant on W . A decomposition of Rn is A-order invariant if every cell of
the decomposition is A-order invariant.

As seen in Definition 30, McCallum’s projection operator is a subset of Collins’ pro-
jection operator. McCallum’s approach does however have some limitations, which
are discussed further in this section.

Definition 30. Let A be a finite squarefree basis in R[x1, . . . , xn] with r ≥ 2. Then
McCallum’s projection operator, P(A) consists the following polynomials:

• The set of coefficients of all elements of A.

• The set of discriminants of all elements of A.

• The set of all cross resultants of the elements of A (avoiding the trivial resul-
tants res(f, f)).

Definition 31. [McC85] Let A be a set of polynomials in R[x1, . . . , xn]. We define A
to be well-oriented if no element of a basis for A vanishes identically on any connected
set of positive dimension, and the same condition holds recursively for P(A).

The idea of well-orientedness is that none of the polynomials nullify during the
recursive parts of a CAD algorithm. This is required because if at any stage of the
recursion a polynomial constraint nullifies, the algorithm produces an error.

Theorem 11. [McC85, Theorem 3.2.3] Let A be a finite square free basis in R[x1, . . . , xn]
with r ≥ 2 and let S be a connected subset of Rn−1. Suppose that each element of
A is not identically zero on S, and each element of P(A) is order invariant on S.
Then each element of A is degree invariant and delineable on S, and the sections of
A over S are pairwise disjoint and every element of A is order invariant in every
section of A over S.

In informal conversations, McCallum suggested that he would prefer computing the
irreducible basis of the input polynomials over a squarefree basis. An irreducible
basis is finer than a squarefree basis and hence takes a longer time to compute.
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Algorithm 2 McCallum’s Algorithm

(S) ← MCAD(A, r)
Input: A set of well-oriented polynomials in n variables with r ≥ 1.
Output: S is a list of sample points for an A-order invariant CAD of Rn.

1: Set B ← the finest squarefree basis for prim(A). Set S ← ().
2: If n > 1 then go to step 3. Isolate the roots of B. Construct sample points for

the cells of the decomposition of R and add them to S. Return S.
3: Set P ← cont(A) ∪ P(B).
4: S � ← MCAD(P, n− 1) (where S � is a list of sample points for a smooth, P -order

invariant CAD D� of Rn−1).
5: for each cell c in D� do
6: α ← the sample point of c.
7: B̂ ← the delineating set for B over c.
8: B∗ ← {B̂j(α, xn) | B̂j ∈ B̂}
9: Isolate the real roots of B∗. Use α and the isolating intervals for the real roots

of B∗ to construct sample points for the sections and sectors of B̂ over c, add
them to S.

10: end for
11: Return S.
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However, McCallum argued that once an irreducible basis is computed it is much
easier to work with when computing CADs.

2.7.1 Single Hypersurface Decomposition

In 1999, McCallum proposed a restricted projection operator that took advantage of
equational constraints in the input QFF.

Definition 32. [EBD19] An Equational Constraint (EC) is a polynomial equation
logically implied by a QFF. If it is an atom of the formula, it is said to be explicit; if
not, then it is implicit. If the constraint is visibly an equality one from the formula,
i.e. the formula Φ is f = 0 ∧ Φ�, we say the constraint is syntactically explicit.

Although implicit and explicit ECs have the same logical status, in practice only
the syntactically explicit ECs will be known to us and therefore be available to be
exploited.

Example 2. [EBD19] Let f and g be two real polynomials.

1. The formula f = 0 ∧ g > 0 has an explicit EC, f = 0.

2. The formula f = 0 ∨ g = 0 has no explicit EC, but the equation fg = 0 is an
implicit EC.

3. The formula f 2 + g2 ≤ 0 also has no explicit EC, but it has two implicit ECs:
f = 0 and g = 0.

4. The formula f = 0 ∨ f 2+g2 ≤ 0 logically implies f = 0, and the equation is an
atom of the formula which makes it an explicit EC according to the definition.
However, since this deduction is semantic rather than syntactic, it is more like
an implicit EC rather than an explicit EC.

The main idea behind exploiting equational constraints is that if the input formula
is of the form f = 0 ∧ φ, then to find solutions of the formula it is sufficient to
decompose Vf rather than the whole of Rn.

Definition 33. [McC99] Let A be a set of pairwise relatively prime polynomials in
R[x1, . . . , xn] with n ≥ 2 and let E ⊂ A. McCallum’s restricted projection operator
PE(A) is defined as follows:

PE(A) = P(E) ∪ {resxn(f, g) | f ∈ E, g ∈ A \ E}. (2.7)
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Theorem 12. [McC99, Theorem 2.2] Let n ≥ 2, and let f, g be two polynomi-
als in R[x1, . . . , xn] of positive degrees in the main variable xn and suppose that
resxn(f, g) �= 0. Let S be a connected subset of Rn−1 on which f is delineable and
in which resxn(f, g) is order invariant. Then g is sign invariant in each section of f
over S.

Theorem 13. [McC99, Theorem 2.3] Let A be a set of pairwise relatively prime
polynomials in R[x1, . . . , xn], with n ≥ 2. Let E be a subset of A and let S be a
connected subset of Rn−1. Suppose that each element of PE(A) is order invariant in
S. Then the following hold:

• Each element of E either vanishes identically on S or is delineable.

• The sections over S of the elements of E that do not vanish identically on S are
pairwise disjoint. Each element of E is order invariant in every such section.
Each element of A \ E is sign invariant in every such section.

2.7.2 Multiple Hypersurface Decomposition

In 2001, McCallum modified his projection operator further so that it can be recursed
over multiple equational constraints. Let us assume that the input QFF is of the
form

(f1 = 0) ∧ (f2 = 0) ∧ . . . ∧ (fk = 0) ∧ φ. (2.8)

Here the equational constraints are f1, . . . , fk. When using this method, we first
choose an equational constraint, say f1. For the next level, the equational constraints
are the resultants of f1 and fi for all i �= 1.

Definition 34. [McC01] Let A be a set of pairwise relatively prime polynomials in
R[x1, . . . , xn] with n ≥ 2 and let E ⊂ A. McCallum’s semi-restricted projection
operator P∗

E(A) is defined as follows:

P∗
E(A) = P(A) \ res(A \ E,A \ E). (2.9)

Theorem 14. [McC01, Theorem 2.1] Let n ≥ 2, and let f, g be two polynomials in
R[x1, . . . , xn] of positive degrees in main variable xn and suppose that resxn(f, g) �= 0
and discxn(g) �= 0. Let S be a connected subset of Rn−1 on which f is delineable and
g does not vanish identically, and in which both resxn(f, g) and discxn(g) are order
invariant. Then g is order invariant in each section of f over S.

Theorem 15. [McC01, Theorem 2.2] Let A be a set of pairwise relatively prime
polynomials in R[x1, . . . , xn], with n ≥ 2. Let E be a subset of A and let S be a
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connected subset of Rn−1. Suppose that each element of P∗
E(A) is order invariant in

S. Then the following hold:

• Each element of E either vanishes identically on S or is delineable.

• The sections over S of the elements of A that do not vanish identically on S
are pairwise disjoint, and each element of A is order invariant in every such
section.

2.7.3 Limitations

Since McCallum’s work is based on the order of a polynomial it has some inherent
limitations. Because the order of a polynomial is not defined when a polynomial
nullifies over a set, McCallum’s approach is unable to decompose such regions of a
polynomial (we call these regions curtains: see Definition 43). McCallum’s further
work in [McC99] and [McC01] face the same limitations. In Chapter 5 and Chapter 6
we explore the problems caused by curtains when exploiting equational constraints.

2.8 Application of CAD

In this section we look at the applications of CAD to a motion planning problem,
showing how equational constraints can arise. All of the work described in the section
is taken from [WDEB13].

Piano mover’s problem: Given a body B and a region bounded by a collection of walls,
either find a continuous motion connecting two given positions and orientations of B
during which B avoids collisions with the walls, or else establish that no such motion
exists.

For simplicity, let us look at the case of moving a ladder along a right-angled corridor
of width 1. Figure 2-4a describes the valid regions where the ladder can be placed and
Figure 2-4b describes the configurations the ladder cannot be placed in. In order to
find a Tarski formula for the valid region, we first describe the invalid regions using a
Tarski formula and then take the negation of it. The invalid region can be described
as follows:

• x < −1 ∧ y > 1 or w < −1 ∧ z > 1: This describes the ladder being on the
outside and any collisions with the inside walls.

• x > 0 or w > 0: This describes the ladder being outside the rightmost walls
and any collisions it may have with that wall.
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Figure 2-4: Piano mover’s problem

• y < 0 or z < 0: This describes the ladder being below the corridor and any
collisions with the bottom-most wall.

• (∃t)[0 < t ∧ t < 1 ∧ x + t(w − x) < −1 ∧ y + t(z − y) > 1]: This describes an
inner point of a ladder being outside the corridor when the ends are not.

The invalid regions can be described by the following formula.

[x < −1 ∧ y > 1] ∨ [w < −1 ∧ z > 1] ∨ [x > 0] ∨ [w > 0]

∨ [y < 0] ∨ [z < 0] ∨ [(∃t)[0 < t ∧ t < 1 ∧ x+ t(w − x) < −1

∧ y + t(z − y) > 1]]

(2.10)

Since there is a quantifier in the formula, before taking the negation we eliminate
the quantifier by using QEPCAD, B [Bro03]. QEPCAD, B is the software created
by Brown to eliminate quantifiers to obtain QFF using CAD implementations. Once
this is done and we take the negation, we get the following formula describing the

34



valid regions.

[w ≤ 0] ∧ [x ≤ 0] ∧ [y ≥ 0] ∧ [z ≥ 0] ∧ [x ≥ −1 ∨ y ≤ 1]

∧ [w ≥ −1 ∨ z ≤ 1]

∧ [wy − w + x+ y < 0 ∨ w + 1 ≥ 0 ∨ xz + z − yw + w − y − x ≤ 0]

∧ [yw − w + y + x ≥ 0 ∨ [[z − 1 ≤ 0 ∨ xz + z − yw + w − y − x ≥ 0]

∧ y − 1 ≤ 0]]

(2.11)

Suppose now we are asked the following problem.

Is it possible to move a ladder of length 3 along a right angled corner of width 1?

The problem can be re-formulated for CAD as follows.

[(x− w)2 + (y − z2) = 9] ∧ (2.11) (2.12)

We note that the length of the ladder becomes an equational constraint in this formu-
lation. A more complicated configuration would lead to more equational constraints.

The authors of [WDEB13] used QEPCAD, B on 2.12 to obtain a solution space of
the configuration space (R4). QEPCAD, B produced a CAD of R4 with 285,419 cells
and gave the following formula as output. Note this is equivalent to 2.12.

x ≤ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ (y − z)2 + (x− w)2 = 9

∧ [[x+ 1 ≥ 0 ∧ w + 1 ≥ 0] ∨ [y − 1 ≤ 0 ∧ w + 1 ≥ 0

∧ y2w2 − 2yw2 + xw2 + 2w2 − 2xy2w

+ 4xyw − 2x3w − 4x2w − 4xw + x2y2 − 2x2y

x4 + 2x3 − 7x2 − 18x− 9 ≥ 0]

∨ [x+ 1 ≥ 0 ∧ yw − w + y + x ≥ 0

∧ w2 − 2xw + y2 − 2y + x2 − 8 > 0 ∧ x− 1 ≤ 0]

[x+ 1 ≥ 0 ∧ yw − w + y + x ≥ 0 ∧ y2w2 − 2yw2

+ x2w2 + 2xw2 + 2w2 − 2xy2w + 4xyw − 2x3w

− 4x2w − 4xw + x2y2 − 2x2y + x4 + 2x3 − 7x2 − 18x− 9 ≤ 0 ∧ z − 1 ≤ 0]

∨ [y − 1 ≤ 0 ∧ z − 1 ≤ 0]]

(2.13)

The first line in the formula gives the conditions of the problem which are in con-
junction with any valid position for the ladder. The remaining lines are a disjunction
of clauses that describe the various valid configurations.
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The CAD produced by 2.12 is a decomposition of the configuration space, which pro-
vides us information on the existence of a solution, and then the ability to construct
a path. To discuss the adjacency of cells in 4-dimensions is not an easy task. How-
ever, there have been several attempts to understand the adjacency of cells in higher
dimensions such as [BGV13]. Wilson et al. further proceed to compute heuristics
for different formulations of 2.12 and various values for lengths to understand the
effects of formulation on CAD problems of the same type. Given that all of these
methods are based on the computation of a CAD, an improvement in the algorithm
for producing a CAD reduces the time it takes to solve the path finding problem.
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Chapter 3

A different valuation: Lex-Least

In [Laz94], Lazard established a new method for computing CADs based on a val-
uation determined by the lexicographic order, which we call lex-least valuation. In
Section 3.1.2 we discuss our reasons for preferring this to the term “Lazard valuation”
used in [MPP19].

Lazard’s algorithm deals with curtains present in the hypersurfaces described by the
constraints. This is because it lifts the projected polynomials by removing factors
that form the curtain, discussed further in Section 3.3. Lazard’s algorithm also
provides some complexity gain compared with its predecessors.

Unfortunately, in [Col98], Collins observed that Lazard’s proof had some gaps. This
finding was disappointing as Lazard’s method provided significant improvements over
the existing CAD construction algorithms at the time. However, in 2019 McCallum
et al. [MPP19] provided a validity proof for Lazard’s approach to CAD construction.
We have modified this method to use it for equational constraints in Chapter 4 and
Chapter 6. In this chapter, we focus on Lazard’s original method, as it underlies the
contents of Chapters 4 – 8.

3.1 Lex-Least Valuation

We start this chapter by looking at the lexicographic ordering ≥lex as it sits at the
core of the lex-least valuation.

Definition 35. Let v, w ∈ Zn. We say that v = (v1, . . . , vn) ≥lex (w1, . . . , wn) = w
if and only if either v = w or there exists an i ≤ n such that vi > wi and vk = wk
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for all k in the range 1 ≤ k < i.

Definition 36. [MPP19, Definition 2.4] Let n ≥ 1 and suppose that f ∈ R[x1, . . . , xn]
is non-zero and α = (α1, . . . ,αn) ∈ Rn. The lex-least valuation να(f) at α is the
least (with respect to ≥lex) element v = (v1, . . . , vn) ∈ Nn such that f expanded about
α has the term

c(x1 − α1)
v1 · · · (xn − αn)

vn ,

where c �= 0.

Note that να(f) = (0, . . . , 0) if and only if f(α) �= 0. Lex-least valuation is referred
to as the Lazard valuation in [MPP19]. We discuss the change in terminology below,
in Section 3.1.2.

Example 3. If n = 1 and f(x1) = x3
1 − 2x2

1 + x1, then ν0(f) = 1 and ν1(f) = 2.
If n = 2 and f(x1, x2) = x1(x2 − 1)2, then ν(0,0)(f) = (1, 0), ν(2,1)(f) = (0, 2) and
ν(0,1)(f) = (1, 2).

The lex-least valuation is of course strongly dependent on the order of the variables,
as the following example illustrates.

Example 4. Let f(x, y, z, w) = x2 + y2z − 2yz2 + zw, α1 = (0, 1, 0, 1) and α2 =
(0, 0, 1, 0). With respect to the ordering x > y > z > w we get να1(f) = (0, 0, 1, 0)
and να2(f) = (0, 0, 0, 1). With respect to the ordering x > z > y > w we get
να1(f) = (0, 1, 0, 0) and να2(f) = (0, 0, 0, 1). Note that in the case of α2, the ordering
of variables does not change the valuation unlike the case for α1. Ordering of variables
is essential and must be fixed when comparing valuations of points.

Proposition 2. να is a valuation: that is, if f and g are non-zero elements of
R[x1, . . . , xn] and α ∈ Rn, then

να(fg) = να(f) + να(g) and να(f + g) ≥lex min{να(f), να(g)}.

Also να(f) = ∞ if and only if f = 0.

The proof of this is quite straightforward and is left for the reader to fill in.

Definition 37. [MPP19] Let n ≥ 2, and suppose that f ∈ R[x1, . . . , xn] is non-zero
and that β ∈ Rn−1. The Lazard residue fβ ∈ R[xn] of f at β, and the lex-least
semi-valuation ν �

β(f) = (ν1, . . . , νn−1) of f above β, are defined to be the result of
Algorithm 3 (See below).

The lex-least semi-valuation of f at β ∈ Rn−1 must not be confused with the lex-least
valuation at α ∈ Rn, defined in Definition 36. Notice that if b = (β, bn) ∈ Rn then
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Algorithm 3 Lazard residue

Input: f ∈ R[x1, . . . , xn] and β ∈ Rn−1.
Output: Lazard residue fβ and lex-least semi-valuation of f above β.

1: fβ ← f
2: for i ← 1 to n− 1 do
3: νi ← greatest integer ν such that (xi − βi)

ν |fβ.
4: fβ ← fβ/(xi − βi)

νi .
5: fβ ← fβ(βi, xi+1, . . . , xn)
6: end for
7: return fβ, (ν1, . . . , νn−1)

νb(f) = (ν �
β(f), νn) for some integer νn: in other words, ν �

β(f) consists of the first
n− 1 coordinates of the valuation of f at any point above β.

Note that our terminology differs from the used in [MPP19]. The reason for making
these changes is explained further in Section 3.1.2.

Remark 1. We can use Algorithm 3 to compute the lex-least valuation of f at
α ∈ Rn. After the final loop is finished, we proceed to the first step of the loop and
perform it for i = n and the n-tuple (ν1, . . . , νn) is the required valuation.

Lex-least semi-valuation and Lazard residue are also dependent on variable ordering
as demonstrated by the following example.

Example 5. Let f(x, y, z, w) = x2 + y2z− 2yz2 + zw and β = (0, 1, 0) with ordering
x > y > z > w then ν �

β(f) = (0, 0, 1) and fβ = 1 + w. If we change the ordering to
x > y > w > z then ν �

β(f) = (0, 0, 0) and fβ = z − 2z2.

3.1.1 Lazard Delineability

Lazard delineability is a property that helps define Lazard sections of polynomials.
The reason why Lazard’s algorithm works is because it is decomposing Lazard sec-
tions rather than sections of the polynomial constraint (as defined by McCallum in
[McC84]).

Definition 38. [MPP19, Definition 2.10] Let S be a connected subset of Rn−1 and
f ∈ R[x1, . . . , xn]. We say that f is Lazard delineable on S if:

i) The lex-least semi-valuation of f at β is the same for each point β ∈ S.

ii) There exist finitely many continuous functions θi : S → R, such that θ1(β) <
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. . . < θk(β) with k ≥ 0, and for all β ∈ S, the set of real roots of fβ is
{θ1(β), . . . , θk(β)}.

iii) If k ≥ 1, then there exist positive integers m1, . . . ,mk such that, for all β ∈ S
and for all 1 ≤ i ≤ k, mi is the multiplicity of θi(β) as a root of fβ.

With the definition of delineability, we are able to define Lazard sections and sectors
for polynomials.

Definition 39. [MPP19, Definition 2.10] Let f be Lazard delineable on S ⊆ Rn−1.

i) The graphs θi are called Lazard sections and mi is the associated multiplicity
of these sections.

ii) The regions between consecutive Lazard sections1 are called Lazard sectors.

Lazard delineability differs from delineability as in [Col75] and [McC99], both because
we require lex-least invariance rather than sign or order invariance, and because we
require it on the sections of fβ rather than f . However, if a polynomial f is Lazard
delineable on S and the semi-valuation of f for every point in S is the zero vector,
in which case Lazard invariance is the same as sign invariance. This means that
the Lazard sections of f are the same as the sections of f defined as in [Col75] and
[McC99].

For later use, we propose some geometric terminology to describe the conditions
under which a polynomial is nullified in the terminology of [McC99].

Let f be a polynomial in R[x1, . . . , xn] and let S ∈ Rn−1. If f nullifies over S then f
has a curtain over S. The formal definition for curtains can be found in Chapter 5.

Remark 2. Note that Lazard delineability is defined for polynomials with curtains,
as compared to the delineability in [Col75] and [McC99], which is not.

3.1.2 New Terminology

In this subsection we explain our preferred notations for lex-least semi-valuation and
Lazard residue. We have not changed the definitions themselves, just the terminol-
ogy. The original terminology is as follows

Definition. [MPP19] Let f ∈ R[x1, . . . , xn], α ∈ Rn and β ∈ Rn−1. Then

• The Lazard valuation of f at α is να(f) ∈ Nn.

1Including θ0 = −∞ and θk+1 = +∞.
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• The Lazard valuation of f on/above at β is νβ(f) ∈ Nn−1.

• The Lazard evaluation of f at β is fβ ∈ R[xn].

Note that here ν is being used for two functions. When ν is used as a valuation
at, it is treated as a function from Rn × R[x1, . . . , xn] → Nn. When ν is used as a
valuation on/above, it is treated as a function from Rn−1 × R[x1, . . . , xn] → Nn−1.
We felt that it is necessary to keep these two functions separate. The older notation
also has the potential to cause confusion when reading να(f). The reader needs to
check whether α ∈ Rn or α ∈ Rn−1, or whether να(f) ∈ Nn or να(f) ∈ Nn−1.

This is demonstrated with the following two examples, with Example 6 using the
original notation and Example 7 using our proposed terminology.

Example 6. Let f = x2 + y2z − 2yz2, α = (0, 1, 0) ∈ R3 and β = (0, 1) ∈ R2. The
Lazard valuation of f at α is να(f) = (0, 0, 1) and the Lazard valuation of f above β
is νβ(f) = (0, 0).

Example 7. Let f = x2 + y2z − 2yz2, α = (0, 1, 0) ∈ R3 and β = (0, 1) ∈ R2. The
valuation of f at α is να(f) = (0, 0, 1). The lex-least semi-valuation of f at β is
ν �
β(f) = (0, 0).

We also prefer the term ‘lex-least valuation’ over ‘Lazard valuation’ because it carries
its own definition in the name, and because the originality of Lazard’s work lies not
in the definition of the valuation but in the use made of it.

3.2 Properties of Lex-least Valuation

The following are the important properties of the lex-least valuation, taken from
[MPP19, Section 3]. These properties help establish the relationship between the
valuation of polynomials and the geometric aspects of the hypersurfaces.

Lemma 1. [MPP19] Let f(x, y) ∈ R[x, y] be primitive with respect to y and square-
free. Then for all but a finite number of points (α, β) ∈ R2 on the curve f(x, y) = 0
we have ν(α,β)(f) = (0, 1).

Proof. Let R(x) = resx(f,
∂f
∂y
). Since f is assumed to be square-free, R(x) is not

identically zero. Suppose that (α, β) ∈ R2 where f(α, β) = 0 and ν(α,β)(f) �= (0, 1)
then R(α) = 0 since f(α, β) = 0. But R(x) has finitely many roots, so there are
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only finitely many possible values for α. Since f is assumed to be primitive the set
of roots of f(α, y) = 0 is also a finite set.

An important property of the lex-least valuation is upper semicontinuity. We believe
that this might be an important property that a general valuation must have so that
it can be used to obtain CADs. We discuss this further in Chapter 9.

Proposition 3. (Upper semicontinuity) Let f ∈ R[x1, . . . , xn] be non-zero and
let a ∈ Rn. Then there exists an open neighbourhood U ⊂ Rn of a, such that
νb(f) ≤lex νa(f) for all b ∈ U .

Proof. The expansion of f about y = (y1, . . . , yn) ∈ Rn can be written as

f =
�

ω∈Nn

fω(y)(x1 − y1)
ω1 . . . (xn − yn)

ωn ,

where each fω(y) for fixed ω is a polynomial in y1, . . . , yn. Namely,

fω(y) =
∂ω1+...+ωn

f

∂xω1
1 . . . ∂xωn

n

����
x=y

.

For any ν0 ∈ N we define

Z(ν0) = {b ∈ Rn | νb(f) >lex ν0}.

We have
Z(ν0) =

�

ω≤lexν0

{y | fω(y) = 0},

which is closed because {ω ∈ Nn | ω ≤lex ν0} is finite.

Proposition 4. Let f and g be non-zero elements of R[x1, . . . , xn] and let X ⊂ Rn

be connected. Then fg is lex-least invariant in X if and only if f and g are lex-least
invariant in X.

Proof. Suppose that fg is lex-least invariant, say νb(fg) = v for all b ∈ X, so νb(g) =
ν − νb(f). If a ∈ X, then by Proposition 3 the set X+ = {b ∈ X | νb(f) ≤lex νa(f)}
is open. But

X− = {b ∈ X | νb(f) ≥lex νa(f)} = {b ∈ X | ν − νb(g) ≥ ν − νa(g)}
= {b ∈ X | νb(g) ≤lex νa(g)}
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is also open. HenceX+∩X− = {b ∈ X | νb(f) = νa(f)} is open, for any a ∈ X, so the
function b �→ νb(f) is a continuous function from X to Zn. As X is connected, this
function is constant, i.e. f is lex-least invariant. The other implication is trivial.

Proposition 5. [MPP19, Proposition 2.11] Let f ∈ R[x1, . . . , xn] be of positive
degree in xn and let S be a connected subset of Rn−1. Suppose that f is Lazard
delineable on S. Then f is lex-least invariant in each Lazard section and sector of f
over S.

Proof. We know that ν �
β(f) is the same for all β ∈ S. This means that for α ∈ Rn

in the Lazard sections of f over S, the first n − 1 coordinates of να(f) agree with
ν �
β(f). Consider a Lazard section given by θ with associated multiplicity m, and
α = (β, θ(β)) the point of this Lazard section above β. Then the last coordinate of
να(f) is m, and hence f is lex-least invariant in every Lazard section of f over S.
The same is true for every Lazard sector of f over S.

3.3 Lifting Algorithm

Lazard introduced a valuation and a reduced projection operator (see Definition 40).
This improves the complexity significantly, as the middle coefficients of the polyno-
mial constraints are not needed. His lifting algorithm also uses the lex-least valuation
to remove the factors that describe curtains. Thus Lazard’s method does not fail
even if the polynomial constraints contain curtains. The following defines Lazard’s
projection operator.

Definition 40. [MPP19, definition 2.1] Let A be a finite set of irreducible polynomi-
als in R[x1, . . . , xn] with n ≥ 2. The Lazard projection operator PL(A) is the subset
of R[x1, . . . , xn−1] composed of the following polynomials.

• All leading coefficients of the elements of A.

• All trailing coefficients of the elements of A.

• All discriminants of the elements of A.

• All resultants of pairs of distinct elements of A.

The use of this projection operator is shown in Algorithm 4. Steps 8 – 12 describe
Lazard’s approach in using the lex-least valuation. Lazard calculates the Lazard
residue of the polynomials (step 9) over the sample points in contrast to McCal-
lum’s approach of substituting the sample points before calculating the roots of the
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polynomials. In doing so, his method removes the factors of the polynomials that
potentially could nullify them. Hence we are able to compute roots on curtains of
the polynomial constraints.

Theorem 16. [MPP19, Theorem 5.1] Let f(x1, . . . , xn) ∈ R[x1, . . . , xn] have posi-
tive degree d in xn and suppose discxn(f), ldcfxn(f) and trcfxn(f) are non-zero (as
elements of R[x1, . . . , xn−1]). Let S be a connected subset of Rn−1 in which discxn(f),
ldcfxn(f) and trcfxn(f) are all lex-least invariant. Then f is Lazard delineable on S
and hence f is lex-least invariant in every Lazard section and sector over S. More-
over, the same conclusion holds for the polynomial f ∗(x1, . . . , xn) = xnf(x1, . . . , xn).

Algorithm 4 Lazard’s algorithm for lex-least invariant CAD

(I, S) ← LCAD(A)
Input = Set of polynomials A in n variables.
Output = I and S are lists of indices and sample points, respectively, of the cells
of a lex-least invariant CAD of A.

1: If n ≥ 2 then go to step 3.
2: Isolate the real roots of the irreducible factors of the non-zero elements of A.

Construct cell indices I and sample points S from the real roots. Exit.
3: B ← the square free basis of the primitive parts of all elements of A.
4: P ← cont(A) ∪ PL(B).
5: (I �, S �) ← LCAD(P ).
6: (I, S) ← (empty list, empty list).
7: for each α ∈ S � do
8: Let i be the index of the cell containing α.
9: f ∗ ← {fα | f ∈ B}.
10: Isolate the real roots of all the polynomials in f ∗.
11: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and the real roots of f ∗.
12: Add the sample points to I and S.
13: end for
14: return (I, S)

Corollary 2. Let f(x, xn) ∈ R[x, xn] satisfying the assumptions of Theorem 16. Let
S be a connected subset of Rn−1 in which discxn(f), ldcfxn(f) and trcfxn(f) are all
lex-least invariant. Then f is Lazard delineable on S and is lex-least invariant in
every section and sector of f over S.
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Theorem 17. Let A = {f1, . . . , fm} be a set of pairwise relatively prime irreducible
polynomials in n variables x1, ..., xn of positive degrees in xn, where n ≥ 2. Let S be a
subset of Rn−1 obtained via Algorithm 4 such that each element of PL(A) is lex-least
invariant in S. Then every element of A is lex-least invariant in the Lazard sections
and sectors of every other element.

Proof. If either xn ∈ A or −xn ∈ A then set f = f1 . . . fm/xn; otherwise set f =
f1 . . . fm.

Let us first assume xn �∈ A. Hence f is the product of all elements of A whose
trailing coefficients are non-zero. Then the trailing and leading coefficient of f are
non-zero and hence by Proposition 4 lex-least invariant in S. We know discxn(f) can
be expanded as follows:

discxn(f1 . . . fm) = (
m�

i=1

discxn(fi))(
�

1≤i<j≤m

resxn(fi, fj)). (3.1)

If everything in the RHS of 3.1 is lex-least invariant in S, then discxn(f) is lex-least
invariant by Proposition 4. Hence by the first part of Theorem 16, f is Lazard
delineable over S. Since resxn(fi, fj) for all 1 ≤ i < j ≤ m are lex-least invariant in
S, the Lazard sections of any two fi and fj (i �= j) are either disjoint or the same.
Hence every element of A is lex-least invariant in the Lazard sections of every other
element.

If xn ∈ A, then we use the second conclusion of Theorem 16 on f ∗ = xnf and the
result follows.
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Chapter 4

Lex-Least Invariance on a Single
Hypersurface

In this chapter, we look at exploiting a hypersurface described by a single equational
constraint; that is we decompose the hypersurface rather than the whole space of Rn.
When considering the projection set, all our information about the non-equational
constraints comes from the resultants. However, this does not give us any information
on the lex-least valuation of the non-equational constraints.

This chapter closely follows McCallum’s work from [McC99]. The main idea stems
from obtaining a solution space for a QFF of the shape

(f = 0) ∧ (. . .) (4.1)

using CAD algorithms. Since the QFF contains an equational constraint f = 0, any
cell (in any CAD of Rn) that is a solution to the QFF would also be contained in
the hypersurface Vf described by f = 0. Hence it is sufficient to decompose the
hypersurface Vf rather than the whole of Rn.

McCallum’s work on equational constraints focused on lifting order invariance to sign
invariance [McC99]. In doing so, he assumed that there were no curtains present in
the equational constraint. However, the only reason for making this assumption was
that he used his work [McC84], which could not handle polynomials with curtains.
In this chapter we use Lazard’s projection operator to exploit equational constraints.
Unfortunately, this approach still fails when it encounters curtains in the equational
constraint, but by building on Lazard’s work, it can handle curtains present in other
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constraints of the QFF. We demonstrate this through an example at the end of the
chapter. The problem caused by curtains in our case is not the same as McCallum’s,
which is discussed further in Chapter 5 and 6.

4.1 Main Theorem

This section contains three significant modifications of Lazard’s method and its ver-
ification by McCallum et al. in [MPP19]. The three developments are as follows:

• Modified projection operator: Like McCallum in [McC99] we modify the exist-
ing Lazard projection operator to exploit the single hypersurface described by
an equational constraint.

• Lifting theorem: This theorem validates the use of the modified projection
operator to lift a lex-least decomposition to a sign invariant decomposition.

• Modified lifting algorithm: This algorithm sets out the procedural steps re-
quired to obtain a sign invariant CAD of the hypersurface described by an
equational constraint.

4.1.1 Modified Projection Operator

We start by defining the modified projection operator. As in [McC99], we omit the
cross resultants, discriminants and the coefficients of the non-equational constraints.

Definition 41. Let A be a finite set of irreducible polynomials in R[x1, . . . , xn] with
n ≥ 2 and let E be a subset of A. The modified Lazard projection operator PLE(A)
is the subset of R[x1, . . . , xn−1] consisting of the following polynomials:

• All leading coefficients of the elements of E.

• All trailing coefficients of the elements of E.

• All discriminants of the elements of E.

• All resultants of pairs of distinct elements of E.

• All resultants resxn(f, g) where f ∈ E and g ∈ A \ E.

We can also define it as follows:

PLE(A) = PL(E) ∪ {resxn(f, g) | f ∈ E, g ∈ A \ E}.
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A : a set of polynomial
constraints in n variables

Identify Equational

Constraint EC

E : elements from B
that correspond to EC

B : square

free basis of A

PLE(B) : the projection of
the polynomial constraints A

Figure 4-1: Equational constraint implementation

In practice we choose E to consist of the irreducible factors of the chosen equa-
tional constraint i.e. the equational constraint is defined by

�
f∈E f = 0. Figure 4-1

describes how we project a set of polynomial constraints.

Note that, unlike PE(A), the modified Lazard projection operator PLE(A) does not
contain the middle coefficients of the elements of E. This is because PLE(A) is based
on Lazard’s work, which omits the middle coefficients of the polynomials constraints.

4.1.2 Lex-least to Sign Lifting Theorem

In this section we state and prove the lifting theorem that validates the use of the
modified projection operator PLE(A). In summary, this lifting theorem states that
a CAD of S ⊂ Rn−1 lifts to a sign invariant CAD of A on the hypersurface described
by the equational constraint.

The following theorem describes the relationship between the resultant of two poly-
nomials and their sign. This theorem is the first step of two to show that PLE(A)
can lift lex-least invariance to sign invariance.

Theorem 18. Let n ≥ 2 and let f, g ∈ R[x1, . . . , xn] be of positive degrees in the
main variable xn, that are relatively prime (with respect to variable xn). Let S be
a connected subset of Rn−1. Suppose that f is Lazard delineable on S and that
resxn(f, g) is lex-least invariant on S, and that Vf does not have a curtain on S.
Then g is sign invariant in each Lazard section of f over S.

Proof. Since g is a continuous function, it is sufficient to show that g is sign invariant
in an arbitrary neighbourhood of a point on some Lazard section of f over S. Define
σ to be a Lazard section of f over S, given by the map θ : S → R. Let α be an
arbitrary point on σ. Without loss of generality, we can assume α to be the origin.
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We can also assume g(α) = 0 since otherwise g is sign invariant in a neighbourhood
of α in Rn, in particular in a neighbourhood in σ.

By the definition of θ, we have θ(0n−1) = 0 and also f(0n) = 0. Suppose that
xn = 0 has multiplicity m �= 0 as a root of f(0n−1, xn) = 0. This implies that
f(0n−1, xn) = q̄(xn) · xm

n where q̄(0) �= 0. Therefore by Theorem 2 (page 16) there
exists a Euclidean neighbourhood N1 of the origin in Rn and formal power series
q(x1, . . . , xn) and h(x1, . . . , xn) such that f(x1, . . . , xn) = q(x1, . . . , xn) ·h(x1, . . . , xn)
for (x1, . . . , xn) ∈ N1, where q(0n−1, xn) = q̄(xn) and h(0n−1, xn) = xm

n .

Since q(0n) �= 0, there exist � > 0 and an open neighbourhood N2 of the origin in
Rn−1 such that q(γ1, . . . , γn) �= 0 for all (γ1, . . . , γn) ∈ N2 × (−�, �). Note, N1 is a
neighbourhood where q and h converge, and N2× (−�, �) is a subset of N1. Since θ is
continuous we can shrink N2 to get θ(γ1, . . . , γn−1) ∈ (−�, �) for all (γ1, . . . , γn−1) ∈
N2. In essence the subsection of σ (of f over N2) lies in N2 × (−�, �). If α� ∈ S ∩N2

and f is Lazard delineable then ν(α�,θ(α�))(f) = να(f).

On the other hand, να(h) = (0n−1,m). Since f = q · h and f is Lazard delineable in
S ∩N2, this implies that ν(α�,θ(α�))(h) = (0n−1,m).

Let P be the resultant of h and g with respect to xn. Clearly we have deg(f) ≥ m.
If deg(f) > m, we can take Q to be the resultant of q and g. In the case deg(f) = m
take Q = a0(x1, . . . , xm)

deg(g).

We also have P = 0 at α, and h and g both vanish at α, so να(P ) is non-zero.
By assumption resxn(f, g) is lex-least invariant in the region N2, so P is lex-least
invariant in N2 (by Proposition 4).

Since h = 0 in σ∩ (N2× (−�, �)) and P is lex-least invariant in N2, we see that g = 0
in σ ∩ (N2 × (−�, �)) which is a Euclidean neighbourhood of α in σ. Thus g is sign
invariant in σ, which implies that it is sign invariant in S.

Theorem 18 establishes that PLE(A) can lift from Lazard invariance to sign invari-
ance. The natural question to ask next is whther it is possible to lift to Lazard
invariance for small values of n. The following example demonstrates that it is not
possible to do so.

Example 8. Let f = z−x be the equational constraint and let g = z2− y2−x2. Let
R = resz(f, g) = −y2 and set S to be the x-axis. f is clearly lex-least delineable over
S and R is lex-least invariant in S. But ν(0,0,0)(g) = (0, 0, 2) and νa,0,a(g) = (0, 0, 1).
This shows that g is not lex-least invariant in the section of f over S.
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Theorem 19. Let A be a set of pairwise relatively prime irreducible polynomials in n
variables x1, ..., xn of positive degrees in xn, where n ≥ 2. Let E be a subset of A. Let
S be a connected subset of Rn−1. Suppose that each element of PLE(A) is lex-least
invariant in S. Then each element of E is Lazard delineable on S and exactly one
of the following must be true.

1. The hypersurface defined by the product of the elements of E has a curtain
over S.

2. The Lazard sections over S of the elements of E are pairwise disjoint. Each
element of E is lex-least invariant in every such Lazard section. Each element
of A \ E is sign invariant in every such Lazard section.

Proof. Because PL(E) ⊆ PLE(A), by Theorem 16 (page 43) either each element of
E is Lazard delineable on S or VE has a curtain on S and the Lazard sections of
the elements of E that do not contain curtains are pairwise disjoint. Now let f ∈ E
(such that f does not have a curtain over S), let σ be a section of f over S and let
g ∈ A. If g ∈ E, then by Theorem 16, g is lex-least invariant in every section and
sector of f . If g /∈ E then, R = res(f, g) ∈ PLE(A) and by the assumption R is
lex-least invariant in S. Then by Theorem 18, g is sign invariant in σ.

The reason for sign invariance and not lex-least invariance is that, we only get in-
formation of non-equational constraints is through the resultants. We later see in
Chapter 6 that in order to get lex-least invariance we would need the coefficients and
discriminants of the non-equational constraints.

Remark 3. Theorems 18 and 19 first appeared in [NDS19], where they are expressed
in terms of nullification (i.e. algebraically) rather than in terms of curtains (i.e.
geometrically) as the curtain point of view had not yet been developed.

This modification provides two significant benefits.

• Since the modified projection operator is based on PL(A), encountering cur-
tains on levels n− 1 to 1 will not cause the algorithm to error out.

• CAD algorithms are recursive, so using the modified projection operator PLE(A)
just once, for the projection from Rn to Rn−1 yields an improvement in the
overall complexity. We expand more on this in Chapter 8.
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4.1.3 Modified Lifting Algorithm

Traditional CAD algorithms (that do not exploit equational constraints) use a single
projection operator recursively. Our method uses the modified projection operator,
PLE(A) for the n-level polynomials, and then reverts to Lazard’s projection operator
PL(A) for the remaining recursions. This is described in steps 6 and 7 of Algorithm
5. Steps 10 to 15 lift a CAD of Rn−1 to a CAD of the hypersurface described by the
equational constraint, which is validated by Theorem 19.

Algorithm 5 Modified Lazard algorithm for sign invariant CAD

(I, S) ← MLCAD(A, f, n)
Input = Set of polynomials A in n variables, f is the polynomial describing the
equational constraint f = 0.
Output = I and S are lists of indices and sample points, respectively, of the cells
of a sign invariant CAD of the hypersurface Vf .

1: If n ≥ 2, then go to step 3:
2: Isolate the real roots of the irreducible factors of the non-zero elements of A.

Construct cell indices I and sample points S from the real roots. Exit.
3: B ← the squarefree basis of the primitive parts of all elements of A.
4: E ← all irreducible factors of f .
5: P ← cont(A) ∪ PLE(B).
6: (I �, S �) ← LCAD(P, n− 1).
7: (I, S) ← (empty list,empty list).
8: for each α ∈ S � do
9: If f has a non-point curtain over α, return Fail
10: Let i be the index of the cell containing α.
11: f ∗ ← {fα | f ∈ B}.
12: Isolate the real roots of all the polynomials in f ∗.
13: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and the real roots of f ∗.
14: Add the sample points to I and S.
15: end for
16: return (I, S)

Remark 4. In Step 6, the algorithm LCAD is called and not MLCAD, as the pro-
jection operator PLE cannot be used recursively, since it lifts Lazard invariance to
sign invariance.
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This improvement does have a limitation of its own. It fails if the equational con-
straint has a curtain on S and S is not a singleton. This is further discussed in
Chapter 6.

4.2 Working Example

Although we made significant improvements with this approach to CAD algorithms
to improve the complexity (described in Chapter 8), we encountered problems with
curtains. However, these problems are not the same as McCallum’s problems stated
at the beginning of this chapter. In this section, we address the issues caused by
curtains in detail through a working example.

Let us consider a QFF having the following polynomial constraints

f1 := (x− 1)2 + (y − 1)2 − 1

f2 := x2 + y2 + z2 − 1

f3 := z − x

f4 := z − y

(4.2)

and let f1 and f2 be equational constraints.

The hypersurface described by f1 = 0 is the cylinder shown in Figure 4-2. Our
algorithm decomposes a single equational constraint, so let us first look at the case
where we decompose f1 = 0. In this case, we will calculate the following resultants:

R1 := resz(f1, f2) = (x2 + y2 − 2x− 2y + 1)2

R2 := resz(f1, f3) = x2 + y2 − 2x− 2y + 1

R3 := resz(f1, f4) = x2 + y2 − 2x− 2y + 1.

(4.3)

Because R1 = R2
2 = R2

3, the resultants do not give us any information on how f2, f3
and f4 interact on the hypersurface Vf1 . This is the sole reason why curtains cause
a problem in our method. Curtains occurring at any level from n − 1 to 1 pose no
problem since our work builds on Lazard’s method which which works on curtains.
This is discussed later (in Chapter 5).

Let us now look at the case where the chosen equational constraint is f2 = 0. In this
case, the resultants computed are
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R�
1 := resz(f2, f1) = (x2 + y2 − 2x− 2y + 1)2

R�
2 := resz(f2, f3) = 2x2 + y2 − 1

R�
3 := resz(f3, f4) = x2 + 2y2 − 1.

(4.4)

If we proceed to calculate the resultants of these resultants, we obtain the following:

R�
1,2 := resy(R1, R2) = (x4 + 4x3 + 8x2 − 8x)2

R�
2,3 := resy(R2, R3) = (3x2 − 1)2

R�
3,1 := resy(R3, R1) = (x4 − 8x3 + 30x2 − 24x+ 1)2.

(4.5)

This gives us the required information on how f1, f3 and f4 interact on Vf2 . This
provides further evidence that the curtain/nullification problem is a problem linked
to CAD computation rather than the valuation property used.

To fully understand the problems caused by curtains, we choose to define them
formally and reformulate the nullification problem in terms of curtains. In the next
chapter, we examine the various types of curtains, their properties and their effects
on the computation of CADs.
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Figure 4-2: Curtain component
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Chapter 5

Curtains

This chapter looks into details about curtains, which we mentioned in Chapter 1
and 4. Throughout the developments made in the theory and algorithms of CAD,
there have always been difficulties when input polynomial constraints nullify.

Definition 42. Let f be a polynomial in R[x1, . . . , xn] and S be a subset of Rm with
m < n. We say that f is nullified over S, or vanishes over S, if f(α, β) = 0 for all
α ∈ S and for all β ∈ Rn−m.

Because ord(α,β)(f) is independent of β if f vanishes over α. In principle it is possible
to use the information coming from order alone to construct a cylindrical algebraic
decomposition, but in practice it is not. Order invariance sits at the core of McCal-
lum’s work in [McC84], [McC99] and [McC01]; hence his approach has an inherent
problem with nullification.

To fully understand the problems associated with curtains, this chapter looks into
the classification of curtains based on different properties, how to detect them and
their relation to input polynomial constraints for CAD problems.

5.1 Definitions and Examples

Definition 43. A variety C ⊆ Rn is called a curtain if, whenever (x, xn) ∈ C, then
(x, y) ∈ C for all y ∈ R.

In other words, C is a curtain if it is a union of fibres of Rn → Rn−1.
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Definition 44. Suppose f ∈ R[x1, . . . , xn] and S ⊆ Rn−1. We say that Vf (or
f) has a curtain at S if for all (α1, . . . ,αn−1) ∈ S and for all y ∈ R we have
f(α1, . . . ,αn−1, y) = 0. We call S the base of the curtain.

Definition 45. Let f ∈ R[x1, . . . , xn]. Suppose that f factorises as f = gh, where
g ∈ R[x1, . . . , xn−1] and g(α1, . . . ,αn−1) = 0, then f is said to contain an explicit
curtain whose base is the zero set of g.

Example 9. For a hypersurface there are two types of curtains.

• Explicit Curtain: f(x, y, z) = xy2 − y2 − xz + z = (x − 1)(y2 − z), curtain at
(1, 0). The curtain can be seen in Figure 5-1a as the sheet given by x = 1.

• Implicit Curtain: f(x, y, z, k) = x2 + yz, curtain at (0, y, 0). This can be seen
in Figure 5-1b, where the blue line represents the curtain.

(a) Surface with an Explicit Curtain (b) Surface with an Implicit Curtain

Figure 5-1: Different types of curtains

The terminology of explicit curtains becomes slightly complicated when we look at
higher codimensions. The notion of explicit curtain could be extended to higher
codimension but there is more than one way to do that and at present it is not
clear which of them, if any, may prove useful. For example one could distinguish
irreducible components that are curtains, but they may not be explicitly specified
by the original equations.
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5.2 CAD and Curtains

In this section, we discuss the interactions between curtains and the work done
by McCallum and Collins. Most of McCallum’s work on CAD is linked to order
invariance, so let us recall the definitions related to order of polynomials.

The problem with curtains occurred in the lifting algorithm, as it would try to
compute the roots of nullified polynomials, resulting in no roots being found. This
causes McCallum’s algorithm to produce an error whenever it encounters a non-point
curtain in the projection, so that the curtains of the polynomial constraints are not
decomposed. There is no way of classifying curtains into delineable sections and
sectors on the basis of the order of polynomials.

Lazard deals with these problems by using the lex-least valuation and Lazard de-
lineability. Before we look at Lazard delineability, let us look at the close relation
between lex-least valuations and curtains.

Lemma 2. Let f ∈ R[x1, . . . , xn] and α ∈ Rn−1. Then ν �
α(f) �= 0 if and only if there

is a curtain at α.

Proof. Let α = (α1, . . . ,αn−1) and ν �
α(f) = (ν1, . . . , νn−1). Let νi be the first non-

zero coordinate in the valuation. Then f(α1, . . . ,αi−1, xi, . . . , xn) has a factor of
(xi−αi), hence f(α1, . . . ,αi, xi+1, . . . , xn) = 0 independent of xn. This implies there
is a curtain at α.

Let us now assume that f has a curtain at α. Run Algorithm 2. Assume all νi are
zero in the output. This implies that fα has to be trivially zero (i.e. independent
of xn), but this is only possible if f is trivially zero by Definition 37. This is a
contradiction to the fact that f has a curtain at α. Hence there exists an i with
νi �= 0.

The major difference between the definition of delineablity stated by McCallum and
Lazard is that McCallum considers the polynomial f whereas Lazard considers the
residue fα. In doing so, Lazard, in a way, is removing the curtain and only looking at
the roots of the residue. Off curtains, sections and sectors defined by both McCallum
and Lazard are the same. Since Lazard defines delineability of the residue of the
polynomial, this results in the formation of the sections and sectors of the curtains
of the polynomial.

Unfortunately, the nice relation between lex-least valuation and curtains does not
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hold when exploiting equational constraints using Lazard’s theory. This isn’t a lim-
itations of Lazard’s theory, but rather a limitation of equational constraints.

5.3 Curtains and Single Equational Constraints

McCallum, in [McC99] and [McC01], lifts order invariance to sign invariance and
order invariance respectively, but only if the input polynomials did not have any
curtains.

Firstly, not all types of curtains cause a problem when taking advantage of equational
constraints at a single level. Let us classify curtains further.

Definition 46. Let f ∈ R[x1, . . . , xn] and α ∈ Rn−1. We say that f has a point
curtain at α

• if f(α, y) = 0 for all y ∈ R, and

• there exists a Euclidean open neighbourhood U ⊂ R of α such there exists no
β ∈ U\{α} such that f(β, y) = 0 for all y ∈ R.

Note that one can view this as a single fibre of a point on the hypersurface. It also
implies the fibres of a small neighbourhood around the point in question are not part
of the hypersurface. In Definition 46, we need to specify Euclidean neighbourhood
and not Zariski neighbourhood. The following example illustrates this.

Example 10. Let f = y2 − x2(x − 1) in R3. There is a point curtain at (0, 0).
However, no open Zariski neighbourhood of {(0, 0)} satisfies Definition 46. In Figure
5-2, any polynomial that vanishes on the left hand component also vanishes on the
point curtain.

Example 11. We illustrate this distinction as follows.

• Point Curtain: f(x, y, z) = x2+zy2−z has point curtains at (0, 1) and (0,−1).
These are represented by the blue lines in Figure 5-3a.

• Non-Point Curtain: Consider f(x, y, z) = −x3y3z−xy4z+xy3z2+x4+2x3z+
x2y − x2z + 2xyz − 2xz2. It has a non-point curtain on (0, y) for all y ∈ R.

The example for non-point curtains in Example 11 is of the form x·(quintic) so it is
an explicit curtain. In R3, all non-point curtains are explicit curtains.

Now let us explain how curtains cause a problem when we try to exploit the hyper-
surfaces defined by an equational constraint.
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Figure 5-2: Euclidean neighbourhood

Example 12. Let f = x2+y2−1 (which we assume to be an EC), g1 = z−x−1 and
g2 = z − y − 1 (which we assume are not ECs: See Figure 5-4). Then resz(f, g1) =
x2 + y2 − 1 = resz(f, g2), and this gives us no information about resz(g1, g2). In such
cases, when the EC has a non-point curtain, it becomes impossible to use PLE to
detect the intersections of the other constraints on that curtain.

Example 13. Let f = x − yz (which we assume to be an EC), g1 = z − x and
g2 = z−y (which we assume are not ECs). Then resz(f, g1) = yx−x and resz(f, g2) =
y2 − x and resy(resz(f, g1), resz(f, g2)) = x2(1− x). This gives us information about
the interaction of g1 and g2. In such cases, when the EC has a point curtain, the
algorithm decomposes everything above correctly.

In Chapter 6 we further examine this phenomenon and show how it can be used to
circumvent the curtain problem for point curtains. In order to make use of this, we
need to be able to distinguish point and non-point curtains as done in Algorithm 6.
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(a) Point Curtain (b) Non-point Curtain

Figure 5-3: Different types of curtains

Figure 5-4: Failure at non-point curtains (Example 12)

5.4 Summary

Defining, classifying and understanding curtains has been one of our main focuses.
Curtains have not been fully studied and we apply our understanding of curtains
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Figure 5-5: Success at point curtains (Example 12)

to equational constraints to reduce the complexity of CAD algorithms. The next
chapter explores how one can use Algorithm 6 to circumvent the problem when a
single equational constraint has curtains.
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Algorithm 6 Detecting and Classifying Curtains

(B,B�) ← PC(f, I, S, n)
Input = Set of indices I, set of sample points S with respect to the indices I which
correspond to the CAD cells, equational constraint f ∈ R[x1, . . . , xn+1].
Output = B,B�, where B is the set of sample points that are point cur-
tains and B� is the set of sample points that are curtains (but not point cur-
tains).

1: B ← Empty list.
2: B� ← Empty list.
3: for α ∈ S do
4: if ν �

α(f) �= 0 then
5: Check if the nearest 1-cell neighbours have zero valuation.
6: If all neighbours are zero valuation add α to B; otherwise add it to B�.
7: end if
8: end for
9: return (B,B�).
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Chapter 6

Further Developments of
Equational Constraints and
Curtains

This chapter addresses the problem of curtains encountered in Chapter 4. Our
work on single equational constraints in Chapter 4 and [NDS19] reduces the Lazard
projection by decomposing the hypersurface described by the equational constraint.
In doing so, we only obtain information about the non-equational constraints from
their resultants with the equational constraint. As mentioned in Chapter 4, these
resultants give us no information on how the non-equational constraints interact
with each other on curtains of the equational constraint. In this chapter, we discuss
why point curtains do not cause Algorithm 5, which exploits a single hypersurface, to
fail. We extend this by providing a subroutine that decomposes curtains of equational
constraints.

The second half of this chapter looks at exploiting multiple hypersurfaces described
by equational constraints. The main idea is based on obtaining a solution space for
a QFF of the shape

(f1 = 0) ∧ . . . ∧ (fk = 0) ∧ (. . .) (6.1)

using CAD algorithms. Since the QFF contains equational constraints f1, . . . , fk, any
cell (in any CAD of Rn) that is a solution to the QFF would also be contained in the
the intersections of of Vf1 , . . . , Vfk . Hence we restrict our algorithm to decomposition
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of the intersections of the equational constraints rather than the whole of Rn. The key
difference between this result and our result from Chapter 4 is that here we lift lex-
least invariance to lex-least invariance rather than sign invariance. This enables us to
use our projection operator recursively and takes advantage of multiple equational
constraints. The specification of this is described in Section 6.2. Although this
research mimics [McC01], it builds on [MPP19], and hence we do not encounter the
same difficulties with curtains that arise in [McC01].

However, this algorithm, like the one from Chapter 4, fails when our equational
constraints contain non-point curtains. To solve this problem, we could apply the
method from Section 6.1, but this would significantly increase the computational
complexity. This is further described in Chapter 9 along with the potential avenues
to deal with this problem.

6.1 Curtains on Single Hypersurfaces

This section introduces a subroutine that is executed when an equational constraint
contains a curtain. Our method is based on the fact that we can detect curtains
during the lifting process of Algorithm 5 in Chapter 4. The subroutine is called if
and only if there are curtains detected.

Theorem 19 lifts lex-least invariance to sign invariance when the equational constraint
does not contain a curtain. So far little work has been done on how the structure
of CAD algorithms affect the decomposition of curtains. In the following section we
describe how our work from Chapter 4 does decompose curtains of a certain type.

6.1.1 Point Curtains

The following theorems describe how point curtains do not pose a problem to Algo-
rithm 5, because of the way cells are lifted.

Proposition 6. Let f, g ∈ R[x1, . . . , xn] and α ∈ Rn−1 and suppose that the variety
Vf defined by f contains a curtain at α. Then Vg contains a curtain at α or intersects
Vf at finitely many points over α.

This is the triviality that the intersection of Vf and Vg over α is either finite or
infinite, rewritten in terms of curtains.

The modified projection operator PLE(A) only projects information about the equa-
tional constraint and the resultants between the equational and non-equational con-
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straints.

Theorem 20. Let f, g ∈ R[x1, . . . , xn] and suppose that α ∈ Rn−1 is a point cell
obtained from Algorithm 5. Suppose that f is an equational constraint and that Vf

has a point curtain at α. Then g is sign invariant in the sections and sectors of fαgα.

Proof. By assumption Vf has a point curtain at α. This implies that there exists
a neighbourhood B of α in Rn−1 such that ν �

β(f) = 0n−1 for β ∈ B \ {α} and
ν �
α(f) �= 0n−1. Because we are using the projection operator PLE, where E is the set
of irreducible factors of f , the polynomial f is lex-least invariant with respect to the
CAD produced by the projection operator PLE. Since the polynomial f is lex-least
invariant with respect to the CAD and Vf has a curtain at α, the CAD consists of
cells of the form α× (a, b) or point cells α× {c}, where a, b, c ∈ R.

We know that res(f, g)(α) = 0. Then by Proposition 6, Vg has a point curtain at
α or intersects Vf at finitely many points. If Vg has a curtain at α then g is sign
invariant in all cells over α. Suppose Vf only intersects Vg at finitely many points
and let A = {β1, . . . , βk} (arranged in increasing order) be the roots of fαgα. Then
the cells above α will be of the form α×(a, b) or point cells α×{c}, where a, b, c ∈ A.
Note that βi has to be either a root of fα or gα for each i. Since g = 0 intersects
f = 0 at only finitely many points and all roots of gα are in A, g is non-zero in
α × (βi, βi+1). Otherwise g is zero on the point cells (α, βi) where βi is a root of g,
and non-zero otherwise.

Curtains do not cause the algorithm in [Laz94] to halt. Hence in [Laz94] there was no
need for a result analogous to Theorem 20. However, as described in Chapter 4 and
Chapter 5, curtains pose a different problem when exploiting equational constraints,
hence the need for Theorem 20.

6.1.2 Decomposing Curtain Base Set

Since we will be constantly referring to an arbitrary coordinate of a given point in
the following sections, we define the following function.

Definition 47. Let α = (α1, . . . ,αn) ∈ Rn. We define CPROJk(α) to be the kth

coordinate of α, which is αk.

To understand our approach, we will first demonstrate it through a rough diagram of
the main algorithm and an example. We further discuss this subroutine by providing
a theorem that validates its use, followed by a standard algorithm.
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Input Polynomial Constraints

Project to n− 1 using PLE

Project to first variable using PL recursively

Lift cells to n− 1-level �

Check for curtains

Project NEC to 1 variable, using PL recursively

Yes

Lift to n− 1 level, only restricted to the curtains of EC

Add these sample points obtained in �

Lift all cells to n-level

No

Sign-invariant CAD of single EC wrto the input polynomials

Figure 6-1: Flow chart describing our approach to decompose the variety described
by a single equational constraint
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CAD

S1 S2 S3

S3,1 S3,2 S3,3 S3,4 S3,5

S4 S5 x1

x2

Figure 6-2: Set of sample points before Algorithm 7

CAD

S2 S2.1 S2.2 S2.3 S3

S3,2 S3,2.1 S3,2.2 S3,3 S3,3.1 S3,3.2 S3,4

S3.1 S3.2 S3.3 S4 x1

x2

Figure 6-3: Set of sample points after Algorithm 7

Consider a QFF having a set of polynomial constraints A in R[x1, x2, x3] with a single
equational constraint f . We start by projecting to x2 using the modified operator
PLE and then to x1 using the standard Lazard operator PL. We then lift to cells in
R2. Figure 6-2 describes the tree structure of the cells obtained.

We have omitted some of the branches from the diagram to make it clearer. In Fig-
ure 6-2 we have S1 < . . . < S5 and CPROJ2(S3,1) < . . . < CPROJ2(S3,5). Similarly
we have assumed the same ordering for Figure 6-3.

We proceed by checking if the sample points at the x2-level describe cells that are
part of the base of a non-point curtain in the equational constraint. This is first
done by computing the roots in the range of neighbours of the curtain, and then by
computing the sample points in the range of neighbours of the curtain. In our case,
we assume that there is a non-point curtain at sample point S3,3. This sample is
highlighted in blue. We now project all the non-equational constraints to x1 using
only the original Lazard operator PL. When lifting, we limit the sample points to
the curtain cells, as seen in Figure 6-3.

The final step combines the sample points from Figure 6-2 and the new sample points
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showing in Figure 6-3 and lifts the cells to R3.

To decompose a curtain of an equational constraint is the same as decomposing a set
S × R where S ⊂ Rn−1. When working in a curtain, the equational constraint does
not give us any information on how the rest of the polynomial constraints interact.
The following theorem validates our method of decomposing curtains separately.

Theorem 21. Let A = {f, g1, . . . gm} be a set of polynomial constraints where f is
the equational constraint. Let D be the CAD obtained using Algorithm 8. Then the
constraints g1, . . . , gm are sign invariant in the cells of D.

Proof. Let S be a connected subset of Rn−1 such that f is Lazard delineable over
S and the set {res(f, gj)|1 ≤ j ≤ m} is lex-least invariant over S. If Vf does not
contain a non-point curtain on S, then by Theorem 19 and Theorem 20 we are done.
Let us assume the contrary. Since Vf contains a non-point curtain on S, Algorithm 7
splits up S into connected, non-intersecting subsets, where f is Lazard delineable and
PL(g1, . . . , gm) is lex-least invariant. Hence by Theorem 17, g1, . . . , gm are lex-least
invariant in the cells of the curtains of Vf , hence also sign invariant.

In Algorithm 7, the main parts are steps 3–7 and 14–18. For each recursion we
look at the adjacent neighbours of the sample point describing the curtain. We
compute the sample points within the neighbours of the curtains. In summary, we
are restricting the computation of roots by using the neighbours of sample points
describing curtains as boundaries.
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Algorithm 7 Decomposing Curtain Base Set

(IC , SC) ← DCBS(A, I, S, C,m)
Input = A a set of polynomials in m variables. Set of sample points S and their
respective indices I. The set of sample points describing the curtain base C ⊂ S.
Output = SC is a set of sample points that decompose the base of curtains
described by C and their respective indices IC .

1: If m ≥ 2 then go to step 9.
2: for each c ∈ C do
3: Let i = (i1, . . . , in) ∈ I be the index of c.
4: Set (c1, c2) ← Sample of indices (i1 − 1, 1 . . . , 1) and (i1 + 1, 1 . . . , 1).
5: Isolate the real roots of all the irreducible factors of the elements of A between

the neighbours of CPROJ1(c1) and CPROJ1(c2).
6: Construct cell indices and sample points for Lazard sections and sectors of

elements of A from i, α and the isolated real roots obtained from the previous
step.

7: Add the sample points to IC and SC .
8: end for Exit.
9: B ← the square free basis of the primitive parts of all elements of A.
10: P ← cont(A) ∪ PL(B).
11: (I ��, S ��) ← DCBS(P, I, S, C,m− 1).
12: If m = n, set (IC , SC) ← (I ��, S ��); return (IC , SC).
13: (I �, S �) ← (empty list,empty list).
14: for each α ∈ S �� do
15: f ∗ ← {fα | f ∈ B}.
16: for each c ∈ C do
17: Let i = (i1, . . . , in) ∈ I be the index of c.
18: Set (c1, c2) ← Sample points given by indices (i1, . . . , im − 1, 1 . . . , 1) and

(i1, . . . , im + 1, 1 . . . , 1)
19: Isolate the real roots of all the polynomials in f ∗ between the neighbours of

CPROJm(c1) and CPROJm(c2).
20: Construct cell indices and sample points for Lazard sections and sectors

of elements of B from i, α and the isolated real roots obtained from the
previous step.

21: Add the sample points to IC and SC .
22: end for
23: end for
24: return (IC , SC)
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Algorithm 8 Modified Lazard CAD with Curtains

(I, S) ← MLCADC(A, f, n)
Input = Set of polynomials A in n variables, f is the polynomial describing the
equational constraint f = 0.
Output = I and S are lists of indices and sample points, respectively, of the cells
of a sign invariant CAD of the hypersurface Vf .

1: If n ≥ 2 then go to step 3.
2: Isolate the real roots of the irreducible factors of the elements of A. Construct

cell indices I and sample points S from the real roots. Exit.
3: B ← the square free basis of the primitive parts of all elements of A.
4: E ← all irreducible factors of f
5: P ← cont(A) ∪ PLE(B).
6: (I �, S �) ← LCAD(P, n− 1).
7: (CP , CNP ) ← PC(f, I �, S �, n).
8: If CNP is empty go to step 11.
9: (I ��, S ��) ← DCBS(A\f, I �, S �).
10: (I �, S �) ← (CPROJn−1(I

��) ∪ I �,CPROJn−1(S
��) ∪ S �).

11: (I, S) ← (empty list,empty list).
12: for each α ∈ S � do
13: Let i be the index of the cell containing α.
14: f ∗ ← {fα | f ∈ B}.
15: Isolate the real roots of all the polynomials in f ∗.
16: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and the real roots of f ∗.
17: Add the sample points to I and S.
18: end for
19: return (I, S).

Algorithm 8 describes the procedure for obtaining a sign invariant CAD of the hy-
persurface described by the equational constraint, even in the presence of curtains.
The main difference between Algorithm 8 and Algorithm 5 is in steps 7–11. They de-
scribe the process of checking whether the calculated sample points in Rn−1 describe
part of the base of a non-point curtain.
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One of the main questions in choosing a CAD algorithm that exploits equational
constraints is the trade-off of time vs the quality of the decomposition. Lazard
[Laz94] produces a lex-least invariant CAD of Rn: by contrast, our result produces a
sign invariant CAD of the hypersurface described by the equational constraint. If we
only wanted a sign invariant decomposition of the solution space, our approach would
be more efficient. On the other hand, if a full decomposition of Rn were needed, our
method would fall short. The algorithm described in this section decomposes curtains
of the equational constraint, hence improving the quality of the CAD as compared
to the approach of Chapter 4. However, it is computationally more expensive. This
comparison is further discussed in Chapter 8.

6.2 Multiple Hypersurfaces

The content of this section is analogous to what we did in Chapter 4. We modify
Lazard’s projection operator and method to take advantage of multiple equational
constraints in the input QFF. Let us recall what we mean by multiple equational
constraints in a QFF:

(f1 = 0) ∧ . . . ∧ (fk = 0) ∧ (. . .).

In this QFF, the equational constraints are given by the polynomials f1, . . . , fk.
Since a solution cell to the QFF must satisfy the equational constraints, we focus
our attention on the intersection of equational constraints. First, let us define the
projection operator.

Definition 48. Let A be a finite set of irreducible polynomials in R[x1, . . . , xn] with
n ≥ 2 and let E be a subset of A. The modified Lazard projection operator for
multiple equational constraints PL∗

E(A) is the subset of R[x1, . . . , xn−1] consisting of
the following polynomials.

• All leading coefficients of the elements of A.

• All trailing coefficients of the elements of A.

• All discriminants of the elements of A.

• All resultants resxn(f, g), where f ∈ E and g ∈ A and f �= g.

The way we take advantage of multiple equational constraints is by using this op-
erator recursively. The resultants between the chosen equational constraint and the
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A : a set of polynomial
constraints in n variables

EC : set of equational

constraints for A

f : select an equational

constraint from EC

EC � : set of equational

constraints for projection,

{resxn(f, f
�) | f � ∈ EC \ f}

B : square

free basis of A

E : elements from B
that correspond to f

PL∗
E(B) : the projection of

the polynomial constraints A

remaining equational constraints are equational constraints of the projected poly-
nomials. Hence we take the equational constraints one at a time, so if we have k
equational constraints we will use PL∗

E(A) for the first k projections. The following
theorems validate the use of PL∗

E(A) recursively.

Theorem 22. Suppose f, g ∈ R[x1, . . . , xn] both have positive degree in xn, and that
f, g are not identically zero. Let S ⊂ Rn−1 be a connected subset such that f does
not have a curtain over S. If discxn(g), ldcfxn(g), trcfxn(g) and resxn(f, g) are all
lex-least invariant over S, then g is lex-least invariant on every section and sector of
f over S.

Proof. From Theorem 18 we know that g is sign invariant in the sections of f . Since
discxn(g), ldcfxn(g) and trcfxn(g) are lex-least invariant over S, g is Lazard delineable
over S from Theorem 16. Hence g is lex-least invariant in the sections and sectors
of f .

Theorem 23. Let A be a set of pairwise relatively prime irreducible polynomials in
n variables x1, . . . , xn of positive degrees in xn, where n ≥ 2, and let E be a subset
of A. Let S be a connected subset of Rn−1. Suppose that each element of PL∗

E(A)
is lex-least invariant in S. Then each element of E is Lazard delineable over S and
exactly one of the following is true.

1. The hypersurface defined by the product of the elements of E has a curtain
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over S. Each element of A \ E is lex-least invariant in the intersection with
the curtain.

2. The Lazard sections of the elements of E are pairwise disjoint over S. Each
element of A is lex-least invariant in such Lazard sections.

Proof. The resultants are only needed to split cells that are contained in the sectors
of f ∈ E or the curtains of f ∈ E. From Theorem 22 we know that each element
of A \ E is lex-least invariant on every section of f ∈ E independently. Since each
element of resxn(E,A \E) is invariant on S, it follows that each element of A \E is
lex-least invariant on all sections of f ∈ E simultaneously.

The difference between the projection operators PLE(A) and PL∗
E(A) is that PLE(A)

does not consider the leading coefficients, trailing coefficients and the discriminants
of the non-equational constraints. The method using a single equational constraint
is significantly more efficient than Lazard’s original method with respect to time
and space complexity (see Section 8.2). However, that need not be the case when
comparing the multiple equational constraint approach to the single equational con-
straint approach. That is because it is dependent on the number of constraints in
QFF, the number of irreducible factors, the number of variables etc. This is further
discussed in Chapter 8.

The usage of the projection operator PL∗
E(A) has been described in Algorithm 9.

Steps 4–7 describe choosing an equational constraint and using the operator PL∗
E(A).

Step 9 is only called if there are equational constraints left to exploit.

Theorem 20 can be extended to show that the non-equational constraints are lex-least
invariant on a point curtain of an equational constraint.

Corollary 3. Let f, g ∈ R[x1, . . . , xn] and α ∈ Rn−1. Suppose that f is an equational
constraint and Vf has a point curtain at α. Then g is lex-least invariant in the
sections and sectors of fg over α.

Proof. The proof follows directly from above, with minor changes when g has a
curtain at α. Since α is a point in Rn−1, g is Lazard delineable over α. Thus every
Lazard section of fg over α is contained within a Lazard section of g. Furthermore,
every Lazard sector of fg over α is either a Lazard sector of f or a Lazard sector of
g. Hence g is lex-least invariant in every Lazard section and sector of fg over α.
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Algorithm 9 Modified Lazard CAD Multiple Equational Constraints

(I, S) ← MLCADME(A,E, n)
Input = Set of polynomials A in n variables and a set of polynomials describing the
equational constraints E.
Output = I and S are lists of indices and sample points, respectively, of the cells
comprising a lex-least invariant CAD of the intersections of the hypersurfaces de-
scribed by the elements of E.

1: If n ≥ 2 then go to step 3.
2: Isolate the real roots of the irreducible factors of the non-zero elements of A.

Construct cell indices I and sample points S from the real roots. Exit.
3: B ← the square free basis of the primitive parts of all elements of A.
4: f ← Select an equational constraint from E.
5: E ← all irreducible factors of f .
6: E � ← {resxn(f, f

�) | f � ∈ E\{f}}.
7: P ← cont(A) ∪ PL∗

E(B).
8: If E � is empty go to step 11 else go to step 9.
9: (I �, S �) ← MLCADME(P,E �, n− 1).
10: Go to step 12.
11: (I �, S �) ← LCAD(P, n− 1).
12: (I, S) ← (empty list,empty list).
13: for each α ∈ S � do
14: Let i be the index of the cell containing α.
15: f ∗ ← {fα | f ∈ B}.
16: Isolate the real roots of all the polynomials in f ∗.
17: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and the real roots of f ∗.
18: Add the sample points to I and S.
19: end for
20: return (I, S).
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Corollary 4. Let f, g1, . . . , gm ∈ R[x1, . . . , xn] and α ∈ Rn−1. Suppose that f is an
equational constraint and Vf has a point curtain at α. Then g1, . . . , gm are lex-least
invariant in the sections and sectors of fg1 . . . gm over α.

Proof. Let us consider the case m = 2. From Corollary 3 we know that f and g1 are
lex-least invariant on sections of fg1. Applying the same Corollary to fg1 and g2,
we get that fg1 and g2 are lex-least invariant on every section and sector of fg1g2.
Hence, f , g1 and g2 are lex-least invariant in every Lazard section and sector of fg1g2
over α. The result follows by trivial induction.

Corollary 5. Let A ⊂ R[x1, . . . , xn] be a set of irreducible polynomials and let E ⊂
A. Let S be a connected subset of Rn−1 such that every element of PL∗

E(A) is lex-least
invariant in S. Then each element of E either vanishes identically on S or is Lazard
delineable on S. If S is a point, then all elements of A \E are lex-least invariant in
the Lazard sections and Lazard sectors of f . If S is not a point, then the sections
of any f ∈ E that does not vanish identically over S are pairwise disjoint, and each
element of A \ E is lex-least invariant in every such section.

Proof. This is a direct consequence of Corollary 4 and Theorem 23.

6.3 Summary

Rewriting the problem of nullification using curtains has given us a better under-
standing of why our modifications to Lazard’s work fails in the presence of curtains.
We have used this knowledge to provide a subroutine that circumvents the problems
caused by curtains. In doing so, we established that point curtains do not cause
problems in our modifications of Lazard’s algorithm. We have also described an
algorithm that can take advantage of multiple equational constraints in a QFF.

In the next chapter, we adapt our algorithms from Chapters 4–6 to the recent devel-
opments made by Brown and McCallum in [BM20].
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Chapter 7

Brown-McCallum Projection

Towards the end of 2020, Brown and McCallum defined a modified version of Lazard’s
projection operator that allows one to omit the trailing coefficients of the polynomial
constraints under certain circumstances. In summary, they propose that if a poly-
nomial constraint has only finitely many point curtains, one can omit the trailing
coefficient in the projection set.

They do still use the notion of nullification, which we have translated to the termi-
nology of curtains. The notations of [BM20] match those of [MPP19] but here we
have used the same notation and terminology that is used elsewhere in this thesis.
Most of the results presented in this chapter are a direct consequence of the theorems
stated in Chapter 4 and Chapter 6.

7.1 Brown-McCallum Modification

In Chapter 6 we handle curtains in equational constraints and we detect the curtains
when lifting. However, Brown and McCallum’s improvement [BM20] is to omit the
trailing coefficients of a polynomial constraint if we know that it has no curtains or
finitely many point curtains. This obliges them to detect curtains in the projection
phase instead. Hence our work on detecting curtains is not appropriate for their use.

We define a procedure T that takes as input a polynomial constraint f ∈ R[x1, . . . , xn]
and outputs either a set S ⊂ Rn−1 or FAIL. The requirement for T is that if it returns
a set S, then S must be finite and must contain all the points at which f has a curtain.

There are various ways one could approach this. A simple way would be to show
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that the system of equations defined by the coefficients of f (in variables x1, . . . , xn)
is unsatisfiable over the reals. This can be achieved using several methods: an easy
way would be to use linear substitution. If such a test fails, then we resort to any
suitable finite zero-test over C. If the tests mentioned above fail, T returns FAIL.
If one of the tests discussed above succeeds, then T computes a suitable finite set
S ⊂ Rn−1.

The following defines the Brown-McCallum projection operator, which uses the pro-
cedure T to determine which polynomials’ trailing coefficients can be omitted. The
Brown-McCallum operator also depends on a set of points Γ, which is a list of points
that track the bases of point curtains through the projection phase. When Algo-
rithm 10 is first called, Γ is initialised to the empty set.

Definition 49. [BM20, Definition 4] Let A ⊂ R[x1, . . . , xn] be a finite irreducible
basis, with n ≥ 2. Let Γ be a finite set of points in Rn. The Brown-McCallum
operator BM(A,Γ) is a finite subset of R[x1, . . . , xn−1] consisting of the following
polynomials:

• All leading coefficients of the elements of A

• All discriminants of the elements of A

• All resultants of distinct pairs of elements of A

• All trailing coefficients (i.e. coefficients independent of xn) of the elements of
A for which T returns FAIL.

together with the set of points

{(γ1, . . . , γn−1) | (γ1, . . . , γn) ∈ Γ)} ∪
�

f∈Â

T (f),

where Â = {f | f ∈ A ∧ T (f) �= FAIL}
The following theorem justifies the use of the projection operator BM(A,Γ).

Theorem 24. [BM20, Theorem 3] Let f be a polynomial in R[x1, . . . , xn] with posi-
tive degree in xn and let S be a connected subset of Rn−1. Suppose that the discrim-
inant and leading coefficient of f are lex-least invariant in S and f has no curtain
over S. Then f is Lazard delineable over S, hence lex-least invariant in every Lazard
section and sector.

Theorem 24 states that we are allowed to use the projection operator BM if f does
not contain a curtain. However, the method used by Brown and McCallum in [BM20]
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is similar to ours in Theorem 20. The idea stems from the structure of lifting and the
fact that it is easy to identify point curtains. In summary, the base of point curtains
of an input polynomial at n-level will be a point cell in the (n− 1)-level.

Algorithm 10 Brown-McCallum algorithm for lex-least invariant CAD

(I, S) ← BMCADL(A)
Input = Set of polynomials A in n variables and Γ a set of points in Rn.
Output = I and S are lists of indices and sample points, respectively, of the of a
lex-least invariant CAD of A.

1: If n ≥ 2 then go to step 3.
2: Isolate the real roots of the irreducible factors of the non-zero elements of A.

Construct cell indices I and sample points S from the real roots and the points
in Γ. Exit.

3: B ← the squarefree basis of the primitive parts of all elements of A.
4: (P,Γ�) ← BM(B, ∅).
5: (I �, S �) ← BMCADL(cont(A) ∪ P,Γ�).
6: (I, S) ← (empty list,empty list).
7: for each α ∈ S � do
8: Let i be the index of the cell containing α.
9: f ∗ ← {fα | f ∈ B}.
10: Let D be the isolated real roots of f ∗.
11: Set E ← {γn | (α1, . . . ,αn−1, γn) ∈ Γ}.
12: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and D ∪ E.
13: Add the sample points to I and S.
14: end for
15: return (I, S)

Theorem 25. Let A = {f1, . . . , fm} be a set of pairwise relatively prime irreducible
polynomials in n variables x1, ..., xn of positive degrees in xn, where n ≥ 2. Let Γ
be a finite set of points in Rn. Let S be a subset of Rn−1 obtained via Algorithm 4
and suppose that each element of BM(A,Γ) is lex-least invariant in S. Then every
element of A is lex-least invariant in the Lazard sections and sectors of every other
element.

Proof. The proof is similar to the proof of Theorem 17 and is a direct consequence
of Thorem 24.
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7.2 Brown-McCallum Projection with Equational

Constraints

In [BM20], the authors state that their projection operator should be compatible
with the single and multiple equational constraint versions of the Lazard projection
operator. In this section we provide the modified versions of the Brown-McCallum
projection operator, such that it can be used for single and multiple equational
constraint cases.

7.2.1 Single Equational Constraint

The modified version for Brown-McCallum projection operator is not readily trans-
latable from Lazard’s version. This is because the Brown-McCallum projection op-
erator needs as input a set Γ of points that describe point curtains in a polynomial
constraint.

Definition 50. Let A be a finite irreducible basis in R[x1, . . . , xn], with n ≥ 2.
Let Γ be a finite set of points in Rn and E ⊂ A. The modified Brown-McCallum
projection operator BME(A,Γ) is a finite subset of R[x1, . . . , xn−1] containing the
following polynomials:

• All leading coefficients of the elements of E;

• All discriminants of the elements of E;

• All resultants resxn(f, g) for all f ∈ E, g ∈ A and f �= g;

• All trailing coefficients of the elements of E for which T returns FAIL;

together with the points

{(γ1, . . . , γn−1) | (γ1, . . . , γn) ∈ Γ} ∪
�

f∈Ê

T (f)

where Ê = {f | f ∈ E ∧ T (f) �= FAIL}.
Theorem 26. Let A be a set of pairwise relatively prime irreducible polynomials in
n variables x1, ..., xn of positive degrees in xn, where n ≥ 2. Let E be a subset of A
and let Γ be a finite set of points in Rn. Let S be a connected subset of Rn−1. Suppose
that each element of BME(A,Γ) is lex-least invariant in S. Then each element of E
is Lazard delineable on S and exactly one of the following must be true.
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1. The hypersurface defined by the product of the elements of E has a curtain
over S.

2. The Lazard sections over S of the elements of E are pairwise disjoint. Each
element of E is lex-least invariant in every such Lazard section. Each element
of A \ E is sign invariant in every such Lazard section.

Proof. In Theorem 18, we require f to be Lazard delineable over a connected subset
S without specifying how S is obtained. We can use the projection operator BM to
do so. Similarly the only other requirement is that resxn(f, g) is lex-least invariant
over S. Therefore we can use BME. Hence from Theorem 19 and Theorem 25 the
result follows.

In Theorem 18, we are not concerned with the projection operator used, rather we
are concerned with which polynomials are lex-least invariant. Hence the Brown-
McCallum projection operator can be used to obtain the lex-least invariance stated
in the assumptions of the theorem. This shows that modifying a projection operator
to use it for single equational constraints is possible irrespective of the projection
operator being used. This is further discussed in Chapter 9.

7.2.2 Multiple Equational Constraints

In this section we present the modified version of the Brown-McCallum projection
operator for the multiple equational constraint case. This is a direct consequence of
the results in Section 6.2.

Definition 51. Let A be a finite irreducible basis in R[x1, . . . , xn], with n ≥ 2. Let
Γ be a finite set of points in Rn and let E ⊂ A. The modified Brown-McCallum
projection operator BM∗

E(A,Γ) is a finite subset of R[x1, . . . , xn−1] containing the
following polynomials:

• All leading coefficients of the elements of A;

• All discriminants of the elements of A;

• All resultants resxn(f, g) for all f ∈ E, g ∈ A and f �= g;

• All trailing coefficients of the elements of A for which T returns FAIL;
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Algorithm 11 Brown-McCallum modified algorithm for sign invariant CAD

(I, S) ← BMCADS(A, f,Γ, n)
Input = Set of polynomials A in n variables, Γ a set of points in Rn and f the
polynomial describing the equational constraint f = 0.
Output = I and S are lists of indices and sample points, respectively, of the cells
of a sign invariant CAD of the hypersurface Vf .

1: If n ≥ 2, then go to step 3:
2: Isolate the real roots of the irreducible factors of the non-zero elements of A.

Construct cell indices I and sample points S from the real roots and the points
in Γ. Exit.

3: B ← the squarefree basis of the primitive parts of all elements of A.
4: E ← all irreducible factors of f from B
5: (P,Γ�) ← BME(B,Γ).
6: (I �, S �) ← BMCADL(P, n− 1).
7: (I, S) ← (empty list,empty list).
8: for each α ∈ S � do
9: Let i be the index of the cell containing α.
10: f ∗ ← {fα | f ∈ B}.
11: Let D be the isolated real roots of f ∗.
12: Set E ← {γn | (α1, . . . ,αn−1, γn) ∈ Γ}.
13: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and D ∪ E.
14: Add the sample points to I and S.
15: end for
16: return (I, S)

together with the points

{(γ1, . . . , γn−1) | (γ1, . . . , γn) ∈ Γ}
�

f∈Â

T (f)

where Â = {f | f ∈ A ∧ T (f) �= FAIL}.
Theorem 27. Let A be a set of pairwise relatively prime irreducible polynomials in
n variables x1, . . . , xn of positive degrees in xn, where n ≥ 2. Let E be a subset of A
and let Γ be a finite set of points in Rn. Let S be a connected subset of Rn−1. Suppose
that each element of BM∗

E(A,Γ) is lex-least invariant in S. Then each element of E
is Lazard delineable over S and exactly one of the following is true.
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1. The hypersurface defined by the product of the elements of E has a curtain
over S. Each element of A \ E is lex-least invariant in the intersection with
the curtain.

2. The Lazard sections of the elements of E are pairwise disjoint over S. Each
element of A is lex-least invariant in such Lazard sections.

Proof. This proof follows a similar argument to the proof of Theorem 26. The result
follows from Theorem 25 and Theorem 23.

7.3 Summary

We present our modified verisons of the Brown-McCallum operator for the single and
multiple equational constraint case. Throughout Chapter 4 to Chapter 7, we focus
on the algorithms used to produce a CAD rather than the valuation used, in our
case the lex-least valuation. We discuss this further in the conclusion of this thesis,
as a potential avenue to continue the research presented here.
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Algorithm 12 Modified Brown-McCallum CAD for Multiple Equational Con-
straints
(I, S) ← BMCME(A,Γ, E, n)
Input = Set of polynomials A in n variables, Γ a set of points in Rn,
E a set of polynomials describing the equational constraints.
Output = I and S are lists of indices and sample points, respectively, of the cells
of a lex-least invariant CAD of the intersections of the hypersurface described by
the elements of E.

1: If n ≥ 2 then go to step 3.
2: Isolate the real roots of the irreducible factors of the non-zero elements of A.

Construct cell indices I and sample points S from the real roots and the points
in Γ. Exit.

3: B ← the squarefree basis of the primitive parts of all elements of A.
4: f ← Select an equational constraint from E.
5: F ← all irreducible factors of f .
6: E � ← {resxn(f, f

�) | f � ∈ E\{f}}.
7: (P,Γ�) ← BM∗

F (B,Γ).
8: If E � is empty go to step 11 else go to step 9.
9: (I �, S �) ← BMCME(P,Γ�, E �, n− 1).
10: Go to step 12.
11: (I �, S �) ← BMCADL(P,Γ�, n− 1).
12: (I, S) ← (empty list,empty list).
13: for each α ∈ S � do
14: Let i be the index of the cell containing α.
15: f ∗ ← {fα | f ∈ B}.
16: Let D be the isolated real roots of f ∗.
17: Set E ← {γn | (α1, . . . ,αn−1, γn) ∈ Γ}.
18: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and D ∪ E.
19: Add the sample points to I and S.
20: end for
21: return (I, S).
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Chapter 8

Complexity Analysis

In this thesis we have provided various improvements to the original algorithms
proposed by Lazard [Laz94] and Brown-McCallum [BM20], influenced by [McC99]
and [McC01]. This chapter provides a comprehensive complexity analysis of the
methods presented in this thesis. Our measure of calculating the complexity of
algorithms is the number of cells that a CAD algorithm produces, rather than its time
complexity. A variety of previously conducted experiments show a strong correlation
between the number of cells computed by a CAD algorithm and computation time
[BDE+16]. For each algorithm we compute the dominant term in the cell count
bound.

We focus on three parameters when conducting the complexity analysis: the number
of variables n, the number of polynomials m and the maximum degree d (in any one
variable). We first recall terminology used in this chapter.

Definition 52. Let {fi} be a finite set of polynomials. The combined maximum
degree of {fi} is the maximum element of the set

�

j

{degxj
(
�

i

fi)}.

For example, the set {x3 + y, x4 + y2} has combined degree 7 (in x), whereas the set
{x3 + y6, x4 + y2} has combined degree 8 (in y). Note that the chosen main variable
is irrelevant and we are only interested in the maximum possible degree.

Definition 53. [McC85, Section 6.1] A set of polynomials has the (m, d)-property
if it can be partitioned into m sets, such that the combined maximum degree of each
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set is less than or equal to d.

Example 14. The set of polynomials {x3+y, x5+y2, x5y+x3, x3+y} has combined
maximum degree 16 and thus the (1,16) - property. If we partition this set into four
sets of one polynomial each, it also has the (4,5)-property. We can also split this set
into two sets, which would give us the (2,8), (2,10), (2,11) and (2,13)-properties.

In fact, it is not necessary to require a partition in Definition 53. Equivalently, a set
A has the (m, d)-property if it can be decomposed as the union A = S1 ∪ . . . ∪ Sm

of possibly overlapping sets, such that the combined maximum degree of each set is
less than or equal to d.

Proposition 7. [BDE+16, Proposition 8] If A is a set of polynomials with the (m, d)-
property, then a squarefree basis of A will also have the (m, d)-property.

This can be easily seen, as a squarefree basis of A would only increase the number
of polynomials but will not increase the degree of their product.

Proposition 8. [BDE+16, Proposition 9] If A is a set of polynomials with the (m, d)-
property, then A has the (�m

l
�, ld)-property.

This can also be seen easily, by grouping the subsets together, l at a time.

Referring back to Example 14, we see that the set of polynomials has the (2,8)-
property and therefore also has the (1,16)-property, in which case l = 2. Let us focus
on the (4,5)-property instead. If we take l = 3, from Proposition 8 we get that it has
the (2, 15)-property, which we can see that it does. Indeed, it has the (2,13)-property
which according to Definition 54 is stronger.

The main idea behind the analysis is to find an upper bound on the number of roots
and then recursively compute the total number of cells being produced in the worst
case scenario. We start by analysing the complexity of the projection set.

When projecting with equational constraints we need to use an enhanced version of
the (m, d)-property, so that any statement made about projection operators using
equational constraints can be used recursively.

Definition 54. Let A be a set of polynomial factors of a family of polynomial con-
straints. We say that A has the (m, d)k-property if A can be written as the union of
m sets each of max combined degree ≤ d and each of the first k sets consist of the
factors of a single equational constraint.

This chapter is split into three sections, dedicated to the advancements made on Mc-
Callum’s algorithm, Lazard’s algorithm and the Brown-McCallum algorithm. Within
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each section we go through the complexity analysis of the original algorithm, fol-
lowed by the single equational constraint variant and then the multiple equational
constraint variant.

If it were the case that the combined maximum degree of all our polynomial con-
straints were 1, then the system of equations describe a set of polytopes, which can
be solved more efficiently using algorithms other than CAD, see for instance [Kar84].
Hence in all our results we make the assumption that the combined max degree d is
greater than 1.

8.1 Analysis of McCallum’s Projection Operators

Most of the results in this section have been taken from [BDE+16]. We use the
analysis presented here as a base for the analysis provided in the remainder of the
chapter.

Proposition 9. [BDE+16, Lemma 11] If A is a set of polynomials with the (m, d)-
property, then P(A) has the (M, 2d2)-property with

M =

�
(m+ 1)2

2

�
. (8.1)

Proof. Let A = S1∪ . . .∪Sm according to the (m, d)-property. Let B be a squarefree
basis of prim(A). Let T1 ⊆ B be the factors of S1 and let Ti ⊆ B be the factors of
Si that are not in Tj with j < i. Split P(A) as follows

P(A) = CA
���

i

CAi

����

i<j

CAi,j

�

1. CA: All non-leading coefficients of B.

2. CAi: cont(Si) ∪ ldcf(Ti) ∪ disc(Ti) ∪ res(Ti).

3. CAi,j: res(Ti, Tj) with i �= j.

By Lemma 3, the set of non-leading coefficients of Ti has the (1, d2)-property. Since
CA is the union of the set of non-leading coefficients for all possible Ti, CA has the
(m, d2)-property. Using Proposition 8 we get that CA has the (�m/2�, 2d2)-property.
By Lemma 4, each CAi has the (1, 2d

2)-property. There are m possible values for i,
so ∪i CAi has the (m, 2d2)-property.
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Fix i, j and consider res(
�

f∈Ti
f,
�

g∈Tj
g), which contains the product of all resul-

tants in res(Ti, Tj) by Equation 2.6. This is a resultant of two polynomials with at
most degree d, hence the resultant will have at most degree 2d2. Applying this to all
possible values for i, j, we get that ∪i<j CAi,j has the (1

2
m(m− 1), 2d2)-property.

Combining all three we get P(A) has the (M, 2d2)-property where

m+
m(m− 1)

2
+
�m
2

�
≤ m(m+ 1)

2
+

�
m+ 1

2

�
≤
�
(m+ 1)2

2

�
= M (8.2)

Lemma 3. Let Ti be as defined in Proposition 9. The set of all non-leading coeffi-
cients of Ti has the (1, d)-property.

Proof. The product of all elements in Ti has at most degree d. This implies that
the polynomials in Ti have at most d non-leading coefficients, each of whose degree
is at most d. This implies that the set of non-leading coefficients of Ti has the
(1, d2)-property.

Lemma 4. The set CAi as defined in Proposition 9 has the (1, 2d2)-property.

Proof. Define c as the product of all elements in cont(Si). Suppose Ti = {F1, . . . , Ft}
for some t and put F = cF1 . . . Ft. Thus, F divides the product of all elements in Si

and has degree at most d (since A has the (m, d) property). Let F � be the derivative
of F with respect to xn. Since F has at most degree d, res(F, F �) has degree at most
2d2, since it is the determinant of a (2d− 1× 2d− 1) matrix. From Equation 2.4 we
get that res(F, F �) = c� disc(F ) where c� is a power of c. Applying Equation 2.5 once
gives us

disc(F ) = disc(Ft) disc(F1 . . . Ft−1) res(F1 . . . Ft−1, Ft)
2. (8.3)

Applying Equation 2.6 to Equation 8.3 repeatedly gives

disc(F ) = disc(F1 . . . Ft−1) disc(Ft)
t−1�

j=1

(res(Fj, Ft)
2). (8.4)

Applying both Equation 2.6 and Equation 2.5 recursively we get that res(F, F �) is
the product of a power of c and

(
t�

j=1

ldcf(Fj) disc(Fj))(
�

1≤i<j≤t

(res(Fi, Fj))
2). (8.5)
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Since this includes all elements of CAi we are done.

In order to get the complexity of the whole process of CAD we must apply this
recursively. To make calculations easier we weaken the bound as follows.

Corollary 6. [McC85] If A is a set of polynomials with the (m, d)-property where
m > 1 then P (A) has the (m2, 2d2)-property.

When computing the upper bound on the number of cells we use the result from
Proposition 9 for the first recursion and use Corollary 6 for the subsequent recursions.
Table 8.1 describes the growth of the projected polynomials using P(A). Note that
columns in Table 8.1 do not refer to the number of polynomials and their degree,
but to the number of sets and the max combined degree given by Definition 53. The

Table 8.1: Growth of polynomials in CAD

Variables Number mi Degree di Product midi

n m d md
n− 1 M 2d2 2Md2

n− 2 M2 8d4 23M2d4

n− 3 M4 128d8 27M4d8

...
...

...
...

n− r M2r−1
22

r−1d2
r

22
r−1M2r−1

d2
r

...
...

...
...

1 M2n−2
22

n−1−1d2
n−1

22
n−1−1M2n−2

d2
n−1

Product M2n−1−1m 22
n−1−nd2

n−1 22
n−1−nM2n−1−1md2

n−1

number of real roots of the projected polynomials determines the size of the CAD.
We can bound the number of real roots of the univariate polynomials by the product
of the elements in columns 2 and 3 of Table 8.1. The number of cells produced in
R1 is twice this product plus 1. Hence the total number of cells in the CAD can be
given by the product of 2K + 1 where K varies through all the products between
column 2 and 3 of Table 8.1, which is given by

(2md+ 1)
n−1�

i=1

(2(22
i−1M2i−1

d2
i

) + 1). (8.6)
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Since we are interested in the complexity, we can omit the ‘+1’ term in the product
to give us the dominant term of the expression:

2md
n−1�

i=1

(2(22
i−1M2i−1

d2
i

)) = 22
n−1M2n−1−1md2

n−1. (8.7)

Substituting the value for M from Equation 8.2 we get the upper bound

22
n−1

�
(m+ 1)2

2

�2n−1−1

md2
n−1 = 22

n−1

(m+ 1)2
n−2md2

n−1. (8.8)

This bound is doubly exponential with respect to n. Hence even a small jump from
n = 4 to n = 5 has a drastic effect on the time and space complexity of the algorithm.

8.1.1 Single Equational Constraint McCallum

Let us now consider McCallum’s modified projection operator PE(A) for the single
equational constraint case. Assuming there is an equational constraint, it is clear
that PE(A) ⊆ P(A) from their definitions. Since PE(A) is used only at the first level
when computing a CAD (i.e. when projecting from n to n− 1), we can use Table 8.1
for our complexity calculations with a different value for M .

Theorem 28. Let A be a set of polynomial factors of a family of polynomial con-
straints. Suppose that A has the (m, d)k-property with d ≥ 2 and k ≥ 1. Let E be the
first set of the (m, d)k decomposition and let F be the squarefree basis of E. Then
PF (A) has the (M, 2d2)k�-property (with respect to the family of projected polynomial
constraints) where

M =

�
5m+ 4

4

�
(8.9)

and k� < k.

Proof. Let A = S1 ∪ ... ∪ Sm according to the (m, d)k-property, so that E = S1 and
S2, ..., Sk are associated with equational constraints. Since E has the (1, d)-property,
its squarefree basis F has the (1, d)-property.

• From the proof of Proposition 9 we see that the set of leading coefficients,
discriminants, resultants and contents of F form a set R1 which has the (1, 2d2)-
property.
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• By Lemma 3 the remaining coefficients of F form a set R2 which has the (1, d2)-
property. Set R3 = cont(A) \ cont(E). Clearly R3 ⊆ cont(A \ E) and A \ E
decomposes into (m−1) sets each of max combined degree d. Hence the set R3

has the (m− 1, d)-property, thus the (
�
m−1
2

�
, d2)-property. Then R2 ∪ R3 has

the (
�
m−1
2

�
+ 1, d2)-property; hence by Proposition 8 the (

�
�m−1

2 �+1,

2

�
, 2d2)-

property. Hence we get that R2 ∪R3 has the (
�
m+3d−2

2d

�
, 2d2)-property.

• From the proof of Proposition 9, res(Si, F ) has the (1, 2d2)-property for i > 1.
Hence R4 =

�
i>1 res(Si, F ) has the (m− 1, 2d2)-property.

Hence the set PF (A) = R1 ∪R2 ∪R3 ∪R4 has the (M, 2d2)-property where

1 +

�
m+ 3d− 2

2d

�
+ (m− 1) ≤

�
5m+ 4

4

�
= M. (8.10)

Moreover, the decomposition of R4 according to the (m−1, 2d2)-property is as given
above, and the sets in the decomposition of PF (A) associated with a projected equa-
tional constraint are precisely the nonzero res(Si, F ) for 1 < i ≤ k, so PF (A) has the
(M, 2d2)�k-property for some k� < k.

To obtain the dominant term on the cell bound we substitute the value from Theo-
rem 28 in Equation 8.7 and get

22
n−1

�
5m+ 4

4

�2n−1−1

md2
n−1 = 22

n−1

�
5m+ 4

2

�2n−1−1

md2
n−1. (8.11)

Comparing the dominant terms given by Equation 8.8 and Equation 8.11, we see
that

(m+ 1)2 ≥ 5m+ 4

2
(with m > 1), (8.12)

which implies that the complexity is reduced when using PE(A) instead of P(A).

8.1.2 Multiple Equational Constraint McCallum

In this section we analyse McCallum’s final modification for order invariant CADs,
P∗
E(A) for multiple equational constraints. In the process we also fill a gap in a proof

in [EBD19].
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Theorem 29. Let A be a set of polynomial factors of a family of polynomial con-
straints. Suppose that A has the (m, d)k-property with d ≥ 2 and k ≥ 1. Let E be the
first set of the (m, d)k decomposition and let F be the squarefree basis of E. Then
PF (A) has the (3m, 2d2)k�-property (with respect to the family of projected polynomial
constraints) where k� < k.

Proof. From Theorem 28 we know that PF (A) decomposes into
�
5m+4

4

�
sets, each

of maximum combined degree 2d2. Each set in the decomposition of A \ E has a
max combined degree of d, hence will generate a discriminant of degree 2d(d − 1)
and (d+ 1) coefficients of degree d. Taking the discriminant and leading coefficients
together and all the non-leading coefficients together, we get two sets that have the
(1, 2d2)-property and the (1, d2)-property respectively.

Since there are (m− 1) sets in the decomposition of A \ E, the set of discriminants
and leading coefficients has the (m − 1, 2d2)-property and the set of non-leading
coefficients has the (m − 1, d2)-property, and by Proposition 8 the (�m−1

2
�, 2d2)-

property. Hence the projection P∗
F (A) has the (M, 2d2)-property where

�
5m+ 4

4

�
+ (m− 1) +

�
m− 1

2

�
≤
�
11m

4

�
≤ 3m = M. (8.13)

There are k equational constraints, so Theorem 28 implies that P∗
F (A) has the

(M, 2d2)k�-property (with respect to the family of projected polynomial constraints)
where k� < k.

If there are l equational constraints, we can apply this result in the first l rows in
Table 8.2. For the remaining rows we use Corollary 6.

The total number of cells in the CAD is given by the product of 2K + 1 where K
varies through all the products between column 2 and 3 of the Table 8.2, and we get

n�

i=1

(2midi + 1) =

n−(l+1)�

i=1

(2midi + 1)×
n�

s=n−l

(2msds + 1). (8.14)

Since we are only concerned with the dominant term, we omit the ‘+1’ and get

n−(l+1)�

i=1

(2midi) =

n−(l+1)�

i=1

(32
rlm2r22

l+r−1d2
l+r

) = 3ls
n−1−2lm2n−l−2(2d)2

n−2l+1

(8.15)

n�

s=n−l

(2msds) =
n�

s=n−1

3sm22
s−1d2

s

= 3l(l+1)/2ml+1(2d)2
l+1−1. (8.16)
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Table 8.2: Growth of polynomials in CAD

Variables Number mi Degree di Product midi

n m d md
n− 1 3m 2d2 2 · 3md2

...
...

...
...

n− l 3lm 22
l−1d2

l
3lm22

l−1d2
l

n− (l + 1) 32lm2 22
l+1−1d2

l+1
32lm222

l+1−1d2
l+1

...
...

...
...

n− (l + r) 32
rlm2r 22

l+r−1d2
l+r

32
rlm2r22

l+r−1d2
l+r

...
...

...
...

1 32
n−l−1lm2n−l−1

22
n−1−1d2

n−1
32

n−l−1lm2n−l−1
22

n−1−1d2
n−1

Combining these two we get

3l2
n−l+l(l−3)/2m2n−l+l−1(2d)2

n−1. (8.17)

8.2 Analysis of Lazard’s Projection Operators

All the results in this section are similar to the results in Section 8.1. We start with
Lazard’s original projection operator PL(A). The key difference between PL(A) and
P(A) is that PL(A) does not use the middle coefficients of the elements of A.

Theorem 30. Let A be a set of polynomials with the (m, d)-property with d ≥ 2.
Then PL(A) has the (M, 2d2)-property with

M =

�
(m+ 1)2

2

�

Proof. Let A = S1∪ . . .∪Sm according to the (m, d)-property. Let B be a squarefree
basis of prim(A). Let T1 ⊆ B be the factors of S1 and let Ti ⊆ B be the factors of Si

that are not in Tj with j < i. Split PL(A) as follows

PL(A) = CA
���

i

CAi

����

i<j

CAi,j

�

1. CA: All trailing coefficients of B.
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2. CAi: cont(Si) ∪ ldcf(Ti) ∪ disc(Ti) ∪ res(Ti).

3. CAi,j: res(Ti, Tj) with i �= j.

The product of all elements of Ti has at most degree d, hence the set of of trailing
coefficients of Ti has the (1, d)-property. Therefore CA has the (m, d)-property and
by Proposition 8 it has the (

�
m
2d

�
, 2d2)-property.

By Lemma 4, each CAi has the (1, 2d
2)-property. There are m possible values for i,

so ∪i CAi has the (m, 2d2)-property.

Fix i, j and consider res(
�

f∈Ti
f,
�

g∈Tj
g), which contains the product of all resul-

tants in res(Ti, Tj) by Equation 2.6. This is a resultant of two polynomials with at
most degree d, hence the resultant will have at most degree 2d2. Applying this to all
possible values for i, j, we get that ∪i<j CAi,j has the (1

2
m(m− 1), 2d2)-property.

Combining all three we get PL(A) has the (M, 2d2)-property where

m+
m(m− 1)

2
+
�m
2d

�
≤
�
m2d+md+m+ 2d− 1

2

�
≤
�
(m+ 1)2

2

�
= M.

Corollary 7. If A is a set of polynomials with the (m, d)-property where m > 1 then
PL(A) has the (m2, 2d2)-property.

Substituting the value for M from Theorem 30 into Equation 8.7 we get the following
upper bound:

22
n−1m

�
(m+ 1)2

2

�2n−1−1

d2
n−1 = 22

n−1

m((m+ 1)2)2
n−1−1d2

n−1. (8.18)

8.2.1 Single Equational Constraint Lazard

Let us now consider our modification of Lazard’s projection operator PLE(A) for the
single equational constraint case. Since PLE(A) is used only at the first level when
computing a CAD (i.e. when projecting from n to n − 1), we can use Table 8.1 for
our complexity calculations with a different value for M .

Theorem 31. Let A be a set of polynomial factors of a family of polynomial con-
straints. Suppose that A has the (m, d)k-property with d ≥ 2 and k ≥ 1. Let E
be the first set of the (m, d)k decomposition and let F be the squarefree basis of E.
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Then PLF (A) has the (M, 2d2)k�-property (with respect to the family of projected
polynomial constraints) where

M =

�
5m+ 3

4

�
.

Proof. Let A = S1 ∪ ... ∪ Sm according to the (m, d)k-property, so that E = S1 and
S2, ..., Sk are associated with equational constraints. Since E consists of a single
polynomial (by assumption), its squarefree basis F has the (1, d)-property.

• From the proof of Proposition 9 we see that the set of leading coefficients,
discriminants, resultants and contents of F form a set R1 which has the (1, 2d2)-
property.

• The trailing coefficients of F form a set R2 which has the (1, d)-property. Set
R3 = cont(A) \ cont(E). Clearly R3 ⊆ cont(A \E) and A \E decomposes into
(m− 1) sets each of max combined degree d. Hence set R3 has the (m− 1, d)-
property. Then R2 ∪ R3 has the (m, d)-property; hence by Proposition 8 the
(�m

2d
�, 2d2)-property.

• From the proof of Proposition 9, res(Si, F ) has the (1, 2d2)-property for i > 1.
Hence R4 =

�
i>1 res(Si, F ) has the (m− 1, 2d2)-property.

Hence the set PLF (A) = R1 ∪R2 ∪R3 ∪R4 has the (M, 2d2)-property where

1 +
�m
2d

�
+ (m− 1) ≤

�
2md+m+ 2d− 1

2d

�
≤
�
5m+ 3

4

�
= M. (8.19)

Moreover, the decomposition of R4 according to the (m−1, 2d2)-property is as given
above, and the sets in the decomposition of PLF (A) associated with a projected
equational constraint are precisely the nonzero res(Si, F ) for 1 < i ≤ k, so PLF (A)
has the (M, 2d2)�k-property for some k� < k.

Substituting the value for M from Theorem 31 into Equation 8.7 we get the following
upper bound:

22
n−1m

�
5m+ 3

4

�2n−1−1

d2
n−1 = 22

n−1

m

�
5m+ 3

2

�2n−1−1

d2
n−1. (8.20)
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8.2.2 Multiple Equational Constraint Lazard

In this section we analyse our modification to Lazard’s projection operator for the
multiple equational constraint case. To show the difference in the complexity between
P∗
E(A) and PL∗

E(A) we use Table 8.3.

Theorem 32. Let A be a set of polynomial factors of a family of polynomial con-
straints. Suppose that A has the (m, d)k-property and k ≥ 1. Let E be the first set
of the (m, d)k decomposition and let F be the squarefree basis of E. Then PL∗

F (A)
has the (9m/4, 2d2)k�-property (with respect to the family of projected polynomial
constraints) where k� < k.

Proof. From Theorem 31 we know that PLF (A) decomposes into
�
5m+3

4

�
sets, each of

maximum combined degree 2d2. Each set in the decomposition of A\E will generate
a discriminant of degree 2d(d− 1) and 2 coefficients of degree d (leading and trailing
coefficients). Hence each polynomial gives a set with the (1, 2d2)-property.

Since there are (m− 1) sets in the decomposition of A \E, the set of discriminants,
leading coefficients and trailing coefficients has the (m− 1, 2d2)-property and the set
of non-leading coefficients has the (m− 1, d2)-property. Hence the projection P∗

F (A)
has the (M, 2d2)-property where

�
5m+ 3

4

�
+ (m− 1) =

�
9m− 1

4

�
≤
�
9m

4

�
. (8.21)

There are k equational constraints, so Theorem 31 implies that PL∗
F (A) has the

(M, 2d2)k�-property (with respect to the family of projected polynomial constraints)
where k� < k.

The number of real roots of the univariate polynomials is given by the product of
the elements in columns 2 and 3 of Table 8.3. The number of cells produced in R1 is
twice this product plus 1. Hence the total number of cells in the CAD is the product
of 2K +1 where K varies through all the products between column 2 and 3 of Table
8.3, which is given by

(2md+ 1)
n�

i=1

(2midi + 1) = (2md+ 1)
n−l�

i=n

(2midi + 1)×
1�

s=n−l−1

(2msds + 1). (8.22)

Since we are only concerned with the dominant term, we remove all the ‘+1’ in
equation 8.22.
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Table 8.3: Growth of polynomials in CAD

Variables Number mi Degree di Product midi

n m d md
n− 1 9

4
m 2d2 2 · 9

4
md2

...
...

...
...

n− l (9
4
)lm 22

l−1d2
l

(9
4
)lm22

l−1d2
l

n− (l + 1) (9
4
)2lm2 22

l+1−1d2
l+1

(9
4
)2lm222

l+1−1d2
l+1

...
...

...
...

n− (l + r) (9
4
)2

rlm2r 22
l+r−1d2

l+r
(9
4
)2

rlm2r22
l+r−1d2

l+r

...
...

...
...

1 (9
4
)2

n−l−1lm2n−l−1
22

n−1−1d2
n−1

(9
4
)2

n−l−1lm2n−l−1
22

n−1−1d2
n−1

n−(l+1)�

i=1

(2midi) =

n−(l+1)�

i=1

(

�
9

4

�2rl

m2r22
l+r−1d2

l+r

)

=

�
9

4

�lsn−1−2l

m2n−l−2(2d)2
n−2l+1

(8.23)

n�

s=n−l

(2msds) =
n�

s=n−1

�
9

4

�s

m22
s−1d2

s

=

�
9

4

�l(l+1)/2

ml+1(2d)2
l+1−1. (8.24)

Combining these two we get
�
9

4

�l2n−l+l(l−3)/2

m2n−l+l−1(2d)2
n−1. (8.25)

8.3 Analysis of Brown-McCallum Projection Op-

erators

We start this section by presenting the complexity analysis of the Brown-Mccallum
projection operator found in [BM20]. Further to this, we present the complexity anal-
ysis for our modifications of the Brown-McCallum projection operator. In Chapter 7
these projection operators are called BM(A,Γ), BME(A,Γ) and BM∗

E(A,Γ). Since
Γ does not play a role in computing the complexity, we have suppressed it from the
notation for simplicity.
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Theorem 33. Let A be a set of polynomials with the (m, d)-property. Then BM(A)
has the (M, 2d2)-property where

M =
m(m+ 1)

2
.

Proof. Let A = S1∪ . . .∪Sm according to the (m, d)-property. Let B be a squarefree
basis of prim(A). Let T1 ⊆ B be the factors of S1 and let Ti ⊆ B be the factors of
Si that are not in Tj with j < i. Split BM(A) as follows

BM(A) =

��

i

CAi

����

i<j

CAi,j

�

1. CAi: cont(Si) ∪ ldcf(Ti) ∪ disc(Ti) ∪ res(Ti).

2. CAi,j: res(Ti, Tj) with i �= j.

By Lemma 4, each CAi has the (1, 2d
2)-property. There are m possible values for i,

so ∪i CAi has the (m, 2d2)-property.

Fix i, j and consider res(
�

f∈Ti
f,
�

g∈Tj
g), which contains the product of all resul-

tants in res(Ti, Tj) by Equation 2.6. This is a resultant of two polynomials with at
most degree d, hence the resultant will have at most degree 2d2. Applying this to all
possible values for i, j, we get that ∪i<j CAi,j has the (1

2
m(m− 1), 2d2)-property.

Combining both sets we get BM(A) has the (M, 2d2) property where M = m(m+1)
2

.

Corollary 8. Let A be a set of polynomials with the (m, d)-property where m > 1,
then BM(A) has the (m2, 2d2)-property.

Substituting the value for M from Theorem 33 into Equation 8.7 we get the following
upper bound:

22
n−1m

�
m(m+ 1)

2

�2n−1−1

d2
n−1 = 22

n−1

m(m(m+ 1))2
n−1−1d2

n−1. (8.26)

8.3.1 Single Equational Constraint Brown-McCallum

Let us now consider our modification of the Brown-McCallum projection operator
BME(A) for the single equational constraint case. Since BME(A) is used only at the
first level when computing a CAD (i.e. when projecting from n to n− 1), we can use
Table 8.1 for our complexity calculations with a different value for M .
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Theorem 34. Let A be a set of polynomial factors of a family of polynomial con-
straints. Suppose that A has the (m, d)k-property with d ≥ 2 and k ≥ 1. Let E
be the first set of the (m, d)k decomposition and let F be the squarefree basis of E.
Then BMF (A) has the (M, 2d2)k�-property (with respect to the family of projected
polynomial constraints) where

M =

�
5m+ 2

4

�
.

Proof. Let A = S1 ∪ ... ∪ Sm according to the (m, d)k-property, so that E = S1 and
S2, ..., Sk are associated with equational constraints. Since E consists of a single
polynomial, its squarefree basis F has the (1, d)-property.

• From the proof of Proposition 9 we see that the set of leading coefficients,
discriminants and contents of F form a set R1 which has the (1, 2d2)-property.

• Set R2 = cont(A) \ cont(E). Clearly R2 ⊆ cont(A \ E) and A \ E decomposes
into (m− 1) sets each of max combined degree d. Hence R2 has the (m− 1, d)-
property and by Proposition 8 the (�m−1

2d
�, 2d2)-property.

• From the proof of Proposition 9, res(Si, F ) has the (1, 2d2)-property for i > 1.
Hence R3 =

�
i>1 res(Si, F ) has the (m− 1, 2d2)-property.

Hence the set BME(A) = R1 ∪R2 ∪R3 has the (M, 2d2)-property where

1 +

�
m− 1

2d

�
+ (m− 1) ≤

�
2md+m+ 2d− 2

2d

�
≤
�
5m+ 2

4

�
= M (8.27)

Moreover, the decomposition of R3 according to the (m−1, 2d2)-property is as given
above, and the sets in the decomposition of BMF (A) associated with a projected
equational constraint are precisely the nonzero res(Si, F ) for 1 < i ≤ k, so BMF (A)
has the (M, 2d2)�k-property for some k� < k.

Substituting the value for M from Theorem 34 into equation 8.7 we get the following
upper bound:

22
n−1m

�
5m+ 2

4

�2n−1−1

d2
n−1 = 22

n−1

m

�
5m+ 2

2

�2n−1−1

d2
n−1. (8.28)
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8.3.2 Multiple Equational Constraint Brown-McCallum

To compute the complexity of our modified projection operator BM∗
E(A) we use

Table 8.4 as we find a different weaker bound for P∗
E(A) and PL∗

E(A).

Theorem 35. Let A be a set of polynomial factors of a family of polynomial con-
straints. Suppose that A has the (m, d)k-property with d ≥ 2 and k ≥ 1. Let E
be the first set of the (m, d)k decomposition and let F be the squarefree basis of E.
Then BM∗

F (A) has the (9m/4, 2d2)k�-property (with respect to the family of projected
polynomial constraints) where k� < k.

Proof. From Theorem 34 we know that BMF (A) decomposes into
�
5m+2

4

�
sets, each

of maximum combined degree 2d2. Each polynomial in A\E will generate a discrimi-
nant of degree 2d(d−1) and 1 coefficient of degree d (leading coefficient). Hence each
polynomial gives a set with the (1, 2d2−d)-property, so trivially the (1, 2d2)-property.

Since there are (m − 1) partitions in A \ E, the set of discriminants and leading
coefficients has the (m − 1, 2d2)-property. Hence the projection BM∗

F (A) has the
(M, 2d2)-property where

�
5m+ 2

4

�
+ (m− 1) =

�
9m− 2

4

�
≤ 9m

4
= M. (8.29)

There are k equational constraints, so Theorem 34 implies that BM∗
F (A) has the

(M, 2d2)k�-property (with respect to the family of projected polynomial constraints)
where k� < k.

The number of real roots of the projected polynomials determines the size of the
CAD. We can bound the number of real roots of the univariate polynomials by
the product of the elements in columns 2 and 3 of Table 8.4. The number of cells
produced in R1 is twice this product plus 1. Hence the total number of cells in the
CAD is given by the product of 2K + 1 where K varies through all the products
between column 2 and 3 of Table 8.4, which is given by

(2md+ 1)
n�

i=1

(2midi + 1) = (2md+ 1)
n−l�

i=n

(2midi + 1)×
1�

s=n−l−1

(2msds + 1). (8.30)
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Table 8.4: Growth of polynomials in CAD

Variables Number mi Degree di Product midi

n m d md
n− 1 9

4
m 2d2 2 · 9

4
md2

...
...

...
...

n− l (9
4
)lm 22

l−1d2
l

(9
4
)lm22

l−1d2
l

n− (l + 1) (9
4
)2lm2 22

l+1−1d2
l+1

(9
4
)2lm222

l+1−1d2
l+1

...
...

...
...

n− (l + r) (9
4
)2

rlm2r 22
l+r−1d2

l+r
(9
4
)2

rlm2r22
l+r−1d2

l+r

...
...

...
...

1 (9
4
)2

n−l−1lm2n−l−1
22

n−1−1d2
n−1

(9
4
)2

n−l−1lm2n−l−1
22

n−1−1d2
n−1

Since we are only concerned with the dominant term, we omit all the ‘+1’ in Equa-
tion 8.22.

n−(l+1)�

i=1

(2midi) =

n−(l+1)�

i=1

(

�
9

4

�2rl

m2r22
l+r−1d2

l+r

)

=

�
9

4

�lsn−1−2l

m2n−l−2(2d)2
n−2l+1

(8.31)

n�

s=n−l

(2msds) =
n�

s=n−1

�
9

4

�s

m22
s−1d2

s

=

�
9

4

�l(l+1)/2

ml+1(2d)2
l+1−1. (8.32)

Combining these two we get

�
9

4

�l2n−l+l(l−3)/2

m2n−l+l−1(2d)2
n−1. (8.33)
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8.4 Summary

The outcome of the complexity analysis carried out in this chapter is summarised
in Table 8.5. If the set of inputs has the (m, d)-property then the set of projected
polynomials after projection has the (M, 2d2)-property, with M as in Table 8.5.

Table 8.5: Growth of polynomials in CAD

Theory by Original Single EC Multiple EC

McCallum
�
(m+1)2

2

� �
5m+4

4

� �
11m
4

�

Lazard
�
(m+1)2

2

� �
5m+3

4

� �
9m−1

4

�

Brown-McCallum m(m+1)
2

�
5m+2

4

� �
9m−2

4

�

This shows that, if we have only one equational constraint, the “Single EC” methods
are better. However, if we have multiple equational constraints, the “Multiple EC”
methods are better: for projections with two (or more) equational constraints, the
number of polynomials is bounded by O(m4) for the original methods, O(m2) for the
“Single EC” methods and O(m) for the “multiple EC” methods.
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Chapter 9

Further Work

There have been various improvements done to the implementations of CAD al-
gorithms to improve the time and space complexity. In this thesis we provided
enhancements to Lazard’s projection operator and the Brown-McCallum projection
operator, both of which are based on lex-least invariance. These enhancements are
based on the exploitations of equational constraints present in the input formula.
These enhancements resonate with the work done in [McC99] and [McC01], which
are based on order invariance.

In Chapter 5 we discuss how to detect curtains during the lifting process of producing
a CAD. This information is vital when taking advantage of equational constraints.
If a curtain is detected, rather than producing an error we can run a subroutine
that decomposes the curtain of the equational constraint. Below we describe some
potential extensions of the work presented in this thesis.

9.1 Valuations

One usually constructs CADs that are required to be invariant for some property,
meaning that there is some “valuation” function ν on R[x1, . . . , xn] × X (where X
is a set with suitable total ordering) and if f is a constraint of the initial problem
and σ is a CAD cell then ν(f,α) should be constant for α ∈ σ. For Lazard, ν is
the lex-least valuation: other choices used include sign [Col75] and order [McC84].
Observe that the lex-least valuation takes account of the variable ordering but, sign
and order do not.
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One could ask what properties such a ν needs to have, and whether there are other
possible choices of ν that might be useful. For example, one could consider replacing
lexicographic by some other monomial order, or taking ν(f,α) to be the Newton
polygon of f near α. In any case ν would have to be able to detect when f vanishes,
and it would need to satisfy some kind of semi-continuity. The property of upper-
semicontinuity guarantees that if two polynomials are valuation invariant in a set,
then their product is valuation invariant in the same set and vice-versa, which helps
us take advantage of equational constraints.

9.2 Curtain Detection

In Definition 43, we have defined curtains as subvarieties of Rn whose base is a
subset of Rn−1. In practice, curtain behaviour could be detected earlier in the lifting
process, if we have some α ∈ Ri with i < n − 1 and f(α, xi+1, . . . , xn) = 0. Then f
has a curtain on the set {(α, β) | β ∈ Rn−i−1}. Trivially this would be a non-point
curtain of f . But it remains to combine this with CAD algorithms and implement
something similar to Algorithm 8.

9.3 Implementations

As mentioned in section 1.3, some implementation of the Lazard-based algorithms has
been done in [Ton21]. However, an implementation of the modified Brown-McCallum
algorithms for equational constraints is yet to be done. Such an implementation
would work with curtains.

Benchmarking these to the implementations of McCallum’s work to see the real
life improvements and verifying the decrease in complexity of the algorithms, as
computed in Chapter 8, has also to be done.

One could seek a better approach to detecting curtains than the probabilistic ap-
proach proposed in [BM20]. This would allow one to select equational constraints
with atmost point curtains so as to avoid any problems in the liftng phase.

We have yet to investigate the problems caused by curtains in the case of multiple
equational constraints, or to devise a subroutine that can be called when a curtain
is detected without affecting the time complexity significantly.
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