
On the degenerations of

(1,7)-polarised abelian surfaces

Submitted by

Al�o Marini

for the degree of Doctor of Philosophy

of the

University of Bath

2002

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and no information

derived from it may be published without the prior written consent of the author.

This thesis may be made available for consultation within the University library

and may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Al�o Marini



To my sister Fawzia



Acknowledgements

Thank-you Marinella for encouraging me throughout my PhD, for having been

always by my side and for sharing with me all the joy we have had in Bath.

Thanks a lot to my sister for everything she has done for our family after I left

Italy. And to my parents for... being my parents.

A huge cheers to all my mates, both in the UK and in Italy, who have made

my life fun while studying in Bath.

Special thanks are due to INdAM for sponsoring my PhD.

About maths, a big thank-you to Alastair King for the extremely useful dis-

cussions and help in general. I would like to thank Klaus Hulek as well for all the

times he taught me the secrets of abelian varieties.

Finally, a special thank-you to my supervisor Greg Sankaran for giving me the

opportunity to study and learn a very interesting subject, and for his knowledge,

patience and the time he has spent on me.



Contents

Summary 1

The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Moduli spaces 8

1.1 Moduli spaces of abelian varieties . . . . . . . . . . . . . . . . . . . 8

1.2 The Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Compacti�cation of moduli spaces of abelian surfaces . . . . . . . . 17

1.4 The moduli space of (1,7)-polarised abelian surfaces . . . . . . . . . 18

1.5 A di�erent model of the moduli space . . . . . . . . . . . . . . . . . 22

2 The geometry of H(�) and its boundary 24

2.1 The moduli space as an orbit space . . . . . . . . . . . . . . . . . . 24

2.2 Kronecker modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Geometry of the boundary B . . . . . . . . . . . . . . . . . . . . . 30

2.4 More on the isomorphic models of the moduli space . . . . . . . . . 35

3 The toroidal compacti�cation 39

3.1 The six odd 2-torsion points in the (1; 5) case . . . . . . . . . . . . 39

3.2 The toroidal compacti�cation of A(1;7) . . . . . . . . . . . . . . . . 41

3.3 The Horrocks-Mumford map . . . . . . . . . . . . . . . . . . . . . . 42

4 Degenerations 44

4.1 Existence of surfaces related to degenerations . . . . . . . . . . . . 44

4.2 General degenerations . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Degenerations arising from B0 � B . . . . . . . . . . . . . . . . . . 57

4.4 Degenerations over cusps . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



LIST OF TABLES iv

A Representation theory of G7 and SL2(Z7) 64

A.1 Character table of G7 and useful formulae . . . . . . . . . . . . . . 65

A.2 The group SL2(Z7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3 Decompositions of SL2(Z7) representations . . . . . . . . . . . . . . 69

B The Klein quartic Q 71

List of Tables

1 Hierarchy of the degenerations . . . . . . . . . . . . . . . . . . . . . 7

3.1 Multiplicities of 2-torsion points in P1+ � P4(V ) . . . . . . . . . . . 40

4.1 Construction of 3 points in Hes(Q0) from v 2 Q � P2(W ) . . . . . . 55

A.1 Character table of G7 . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2 Character table of SL2(Z7) . . . . . . . . . . . . . . . . . . . . . . . 67

List of Figures

3.1 Corank 2 boundary component, case p = 7 . . . . . . . . . . . . . . 41

3.2 Corank 2 boundary component, case p = 5 . . . . . . . . . . . . . . 43

4.1 Con�guration in P6(L) related to B0 . . . . . . . . . . . . . . . . . 58

4.2 � 2 VSP(Q; 6) over a cusp . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 An irreducible component of a degeneration over a cusp . . . . . . . 63



Summary

La morte non �e nel non poter comunicare ma nel non poter pi�u essere

compresi.

(Death is not when you cannot communicate, but when you can no

longer be understood.)

Pier Paolo Pasolini 1

The problem

The starting point for this thesis is the paper by Manolache and Schreyer [MS01],

where the authors �nd a birational model of the moduli space of (1,7)-polarised

abelian surfaces with canonical level structure, namely a Fano 3-fold of genus 12

called V22. The results in [MS01] are found by studying the locally free resolution

of a (1,7)-polarised abelian surface A � P6(V ), where V �= H0(A; (O)(1))_. As

we shall see, SL2(Z7) acts on V , and therefore on these surfaces and on their

resolutions. Every such resolution determines a twisted cubic curve in P3(U),

where U is a certain 4-dimensional irreducible SL2(Z7)-module. The class of such

curves consists of those annihilated by the unique SL2(Z7)-invariant net of quadrics

� � S2U and the moduli space H(�) of such curves is isomorphic to V22.

The other fundamental paper on which this thesis is based is [GP01] by Gross

and Popescu, where the authors also show that the moduli space of (1,7)-polarised

abelian surfaces is birational to V22, but using a di�erent approach and conse-

quently a di�erent model. Their model is the variety of sum of powers VSP(Q; 6)

1From www.pasolini.net
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SUMMARY 2

that parameterises polar hexagons to the Klein quartic Q � P2(W ), where W is

a 3-dimensional irreducible SL2(Z7)-module and Q is the unique invariant curve

of minimal degree 4 (see Appendix B). Such a polar hexagon is a con�guration

of six points in P2(W 0), where W 0 is the dual of W , and P2(W 0) is naturally con-

tained in P6(V ) as the projectivisation of the +1-eigenspace of a certain involution

� : V ! V . What Gross and Popescu show in [GP01] is that, for a general A,

these six points are precisely the odd 2-torsion points of A, and that each point

determines a Calabi-Yau 3-fold containing A. More precisely A is de�ned as the

intersection of those six 3-folds. Notice that Q is a model of X(7), the modular

curve of level 7, and that in [GP01] the latter notation is used in place of Q. How-

ever the curve Q0 � P2(W 0) (also the unique invariant quartic and also isomorphic

to X(7)) will also play a role in this thesis and we will be careful to distinguish

the two.

Now, for the case of (1,5)-polarised abelian surfaces Horrocks and Mumford

[HM73] showed that a birational model of the moduli space is P3. In a more

detailed analysis, Barth, Hulek and Moore [BHM87] showed that in fact every

point of P3 determines a surface and they also described the subvariety of P3 that

parameterises degenerate abelian surfaces, that is the boundary of the moduli

space. Furthermore they gave a precise description of all the degenerations. The

natural question raised by the work of [MS01] and [GP01] is, can a similar analysis

be made for V22?

This thesis takes a step toward answering this question by a detailed study of

the subvariety B � H(�) which parameterises degenerate twisted cubic curves.

We show that all points in B determine surfaces in P6(V ) and we �nd the corre-

sponding elements of VSP(Q; 6). Our original expectation was that B would also

be the subvariety which parameterises degenerate abelian surfaces. The �rst piece

of positive evidence that we �nd for this is the fact that B is birational to the Kum-

mer surface that parameterises translation scrolls. Unfortunately, all the additional

evidence is negative and points to the fact that B does not in fact parameterises

the translation scrolls and so cannot be the whole boundary. Indeed, we can not

in the end determine whether all points of B do actually parameterise degenerate

surfaces. However, in this thesis we will still speak of B as the \boundary" in the

sense that it parameterises degenerate twisted cubic curves and will consider that

the corresponding abelian surfaces are still, in some sense, degenerate. Indeed we

�nd that they are not general in the sense of [GP01].
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The structure of this thesis

Our thesis is divided into four chapters. In the �rst one we introduce the subject of

abelian varieties, then the crucial action of the Heisenberg group, which is the key

to handling these varieties. Then we talk about compacti�cations of moduli spaces

of (1; p)-polarised abelian varieties in general, and speci�cally about the toroidal

compacti�cation. Finally we report all the key results we need from [MS01] and

[GP01] that are going to de�ne the starting point of the following chapters. Most of

the notations are thereafter consistent with those papers. Among others, especially

important are the 4-dimensional �1-eigenspace U 0 := V� of the involution �, which

is dual to U . Notice that S2U 0 = L�W 0 where L = �?. But also S3W 0 = L�W

and hence we have an incomplete linear system of cubics on P2(W 0) which gives

an embedding P2(W 0) ,! P6(L).

In the second chapter we view H(�) as an orbit space, speci�cally the space

M� of 3 � 2 matrices with entries in the 4-dimensional space U 0 and with the

condition � on the minors (that is, the minors are in L), and obvious actions of

GL(3; C ) and GL(2; C ). Via geometric invariant theory we �nd the semi-stable

points of this space, and in doing so in Section 2.2 we briey introduce the theory

of Kronecker modules, which will provide a short and alternative description of

the semi-stable points. We �nd that this leads to Proposition 2.5, which says that

the quotient space M s
�= � and H(�) are isomorphic.

Furthermore we show that the boundary B may be also described as the locus

of orbits which contain a representative matrix with at least one zero entry. This

leads to Proposition 2.9, which says that the boundary B of H(�) is birational to

C � P1 �= Q� P1, where C � P3(U 0) is a curve naturally isomorphic to Q.

Note that the modular curve of level 7 has 24 cusps corresponding to the 24

exes in the models Q and Q0. Throughout this thesis we are going to use the

word \cusp" also for the images of the cusps of X(7) in Q, Q0 and C.

At the end of the chapter we also report several results from [Sch01], describing

in more detail three di�erent models of the Fano 3-fold V22, two of which (H(�)

and VSP(Q; 6)) we have introduced already.

We start the third chapter presenting several results from [HM73] that are

going to be used for comparisons in the sequel. In this way we can recover more

information about the features of surfaces parametrised by boundary points of

H(�).
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Then we report facts on the toroidal compacti�cation, in particular that there is

a relationship between boundary points of this compacti�cation and degenerations

of abelian surfaces, as shown in [HKW93]. We also report speci�c results on the

toroidal compacti�cation of (1,7)-polarised abelian surfaces and a comparison with

the work by [BHM87] on the (1; 5) case.

The fourth chapter is divided into four sections. In the �rst one we prove

several results, among them Proposition 4.4: that to every point of the boundary

B of H(�) it is possible to associate a surface.

The next section, devoted to general degenerations, contains several side results

and culminates in Proposition 4.13, which relates degenerate twisted cubic curves

and the �rst degeneration of a set of six points in VSP(Q; 6): where three of the six

points lie on the Hessian of the Klein quartic Hes(Q0) � P2(W 0). Furthermore, the

images of these three points under the embedding P2(W 0) ,! P6(L) are collinear

and the intersection of the three associated Calabi-Yaus is a 3-fold Ua of degree 7.

Thus the con�guration of six points is not general in the sense of [GP01] (see

Proposition 1.9.2). The most general surface related to such a degeneration is

then Ua intersected with any Calabi-Yau de�ned by any of the other three points.

The surfaces in the next section (parameterised by a subvariety B0 � B) are

relatively simple to describe, because they are de�ned by the intersection of two

3-folds Ua and Ue of degree 7 as above. There are two sets of three points as above

with one point in common, and the degenerate twisted cubic curve associated is

the connected union of three lines. This is summarised in Proposition 4.15

The last degeneration of (1,7)-polarised abelian surfaces arises over the cusps

of C, and Proposition 4.17 tells that one gets three types of reducible surfaces:

7 quadric surfaces, each contained in some P3 � P6(V ), or 7 double planes in

P6(V ), or 14 planes in P6(V ). We work out the related degenerations of H(�)

and VSP(Q; 6) as well. Notice that in the (1; 5) case there is no con�guration

analogous to the 14 planes (see Remark 4.20).

All the results proved in this thesis are presented in the next comprehensive

main theorem which lists and classi�es the surfaces (possibly degenerations of a

smooth (1; 7)-polarised abelian surfaces) parameterised by B � H(�):

Theorem A. Let [�] 2 B � H(�) �= VSP(Q; 6). Then [�] determines:

i. a singular twisted cubic curve in P3(U),

ii. six points in P2(W 0) and
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iii. a surface A� � P6(V ),

as follows:

1. [�] 2 B nB0 and [�] is not over a cusp of C, then it determines

i. a smooth conic in a general plane of P3(U) union a line,

ii. six points of P2(W 0), three of which lie on Hes(Q0), and whose images

in P6(L) are collinear,

iii. A� is the intersection of a 3-fold Ua of degree 7 determined by the

collinear points, and any Calabi-Yau 3-fold, determined by any of the

remaining ones.

2. [�] 2 B0 and [�] is not over a cusp of C, then it determines

i. the connected union of three lines in P3(U),

ii. six points of P2(W 0) with fp1; p2; p3g and fp1; p4; p5g lying on Hes(Q0),

and whose images in P6(L) form two sets of three collinear points of

P6(L),

iii. A� is the intersection of two 3-folds of degree 7: Ua determined by

the �rst set of collinear points, and Ue determined by the second set

of collinear points,

3. [�] is general over a cusp of C, then it determines

i. a smooth conic in a special plane (de�ned by the cusp) of P3(U) union

a line,

ii. a double point and two single points on a line in P2(W 0), plus a second

double point. Both the double points are in Q \ Hes(Q0), i.e. at cusps,

iii. A� is the union of 7 quadric surfaces, each contained in some P3 �

P6(V ),

4. [�] is special over a cusp of C like in Proposition 4.17, part (2a), then it

determines

i. a smooth special conic union a line,

ii. a quadruple point plus a double point in P2(W 0), both at cusps,
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iii. A� is the union of 7 double planes in P6(V ),

5. [�] 2 B0 is over a cusp of C, then it determines

i. three lines through a point in P3(U),

ii. three double points in P2(W 0), all at cusps,

iii. A� is the union of 14 planes in P6(V ).

Proof. See Proposition 1.6, Proposition 1.9, Proposition 4.13, Proposition 4.15 and

Proposition 4.17.

We also illustrate the results of the main theorem in Table 1

A partial conclusion

The research in this thesis has been conducted because B � H(�) promised to be

a good candidate for the boundary (inH(�)) of the moduli space of (1,7)-polarised

abelian surfaces. This is because B is birational to the appropriate Kummer surface

(whose base curve is indeed X(7)) that makes up the central boundary component

of the toroidal compacti�cation and parameterises translation scrolls. On the other

hand each of these scrolls should be contained in the secant scroll over the elliptic

curve on which it is de�ned, see Proposition 1.8. Therefore at least one point

among the six de�ning the element of VSP(Q; 6) related to such a scroll should lie

on Q0, but a fact like this does not appear to be true. Furthermore in the Kummer

surface there is a trisection that parameterises elliptic scrolls, and in B there is

the trisection B0 that could correspond to it. But if p � 5 each elliptic scroll is

de�ned over three elliptic curves (see [CH98]), whereas the general point of B0 is

only contained in two �bres.

In the spirit of our parallel strategy, also the model VSP(Q; 6) seems to pro-

vide an argument against B as the subvariety of H(�) parameterising translation

scrolls. More precisely we think it is possible to achieve this result using Proposi-

tion 5.3 in [GP01], since it carries information on the con�gurations of six points

in P2(W 0). Moreover it could also help to understand the Kummer surface of

translation scrolls in VSP(Q; 6) and indeed H(�). Unfortunately we did not have

enough time to complete the argument, but it appears to be a promising line of

research.
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Table 1: Hierarchy of the degenerations

1:

conic in a general plane of P3(U) + line

six points of P2(W 0);

three on Hes(Q0);

collinear images in P6(L)

intersection 3-fold Ua of degree 7

and Calabi-Yau 3-fold

# #

2:

connected union

of three lines in P3(U)

fp1; p2; p3g+ fp1; p4; p5g

lying on Hes(Q0);

collinear images in P6(L)

intersection of

two 3-folds

of degree 7: Ua; Ue

3:

conic in special plane

of P3(U) + a line

double point and

two single points

on line in P2(W 0),

+ double point

union of 7

quadric surfaces

# . #

5:

three lines

through a point in P3(U)

three double points in P2(W 0)

14 planes in P
6(V )

4:

special conic union a line

quadruple point +

double point in P2(W 0)

7 double planes in P
6(V )



Chapter 1

Moduli spaces

In this chapter we introduce the topic of moduli spaces of abelian varieties. In

particular we are interested in the case of abelian surfaces with canonical level

structure of type (1,7). So we include an overview of the known results about this

case, due to Manolache and Schreyer in [MS01].

1.1 Moduli spaces of abelian varieties

In this section we follow the survey article by Hulek and Sankaran [HS02].

An abelian variety (over the complex numbers C ) is a g-dimensional torus

A = C g=L, where L � C g is a maximal lattice and A is a projective variety, i.e.

can be embedded into some projective space Pn. This is the case if and only if

A admits a polarisation. Here below we give two de�nitions of polarisation. The

most common one involves Riemann forms. A Riemann form on C g with respect

to the lattice L is a positive de�nite hermitian form H on C g whose imaginary

part H 0 = Im(H) is integer-valued on L, i.e. de�nes an alternating bilinear form

H 0 : L
 L! Z:

The R-linear extension of H 0 to C g satis�es H 0(x; y) = H 0(ix; iy) and determines

H by the relation

H(x; y) = H 0(ix; y) + iH 0(x; y):

H is positive de�nite if and only if H 0 is non-degenerate. In this case H (or

equivalently H 0) is called a polarisation. By the elementary divisor theorem there

8



CHAPTER 1. MODULI SPACES 9

exists then a basis of L with respect to which H 0 is given by the form

� =

 
0 E

�E 0

!
; E = diag(e1; : : : ; eg);

where the e1; : : : ; eg are positive integers such that e1je2j : : : jeg. The g-tuple

(e1; : : : ; eg) is uniquely determined by H and is called the type of the polarisa-

tion. A polarised abelian variety is a pair (A;H) consisting of a torus A and a

polarisation H.

If we choose a basis of the lattice L and write each basis vector of L in terms

of the standard basis of C g we obtain a matrix 
 2 M(2g � g; C ) called a period

matrix of A. The fact that H is hermitian and positive de�nite is equivalent to

t
��1
 = 0; and Im t
��1 �
 > 0:

These are the Riemann bilinear relations. We consider vectors of C g as row

vectors. Using the action of GL(g; C ) on row vectors by right multiplication

we can transform the last g vectors of the chosen basis of L to be (e1; 0 : : : ; 0),

(0; e2; : : : ; 0),: : : ,(0; : : : ; 0; eg). Then 
 takes on the form


 = 
� =

 
�

E

!

and the Riemann bilinear relations translate into

� = t�; Im � > 0:

Therefore � is an element of the Siegel space of degree g

H g = f� 2M(g � g; C ); � = t�; Im � > 0g:

Conversely, given an element � 2 H g we can associate to it the period matrix 
�

and the lattice L = L� spanned by the rows of 
� . The complex torus A = C g=L�

carries a Riemann form given by

H(x; y) = xIm(�)�1 t�y:

This de�nes a polarisation of type (e1; : : : ; eg). Hence for every given type of

polarisation we have a surjection

H g ! f(A;H)j (A;H) an (e1; : : : ; eg)-polarised abelian varietyg=isomorphism:
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To describe this set of isomorphic classes we have to see what happens when we

change the basis of L. Consider the symplectic group

Sp(�;Z) = fg 2 GL(2g;Z); g� tg = �g:

We write elements g 2 Sp(�;Z) in the form

g =

 
A B

C D

!
; A;B;C;D 2M(g � g;Z):

It is useful to work with the \right projective space P of GL(g; C )", i.e. the set of

all (2g � g)-matrices of rank g divided out by the equivalence relation 
M1

M2

!
�

 
M1M

M2M

!
for any M 2 GL(g; C ):

Notice that P is isomorphic to the Grassmannian G = Gr(g; C 2g ). The group

Sp(�;Z) acts on P by 
A B

C D

!"
M1

M2

#
=

"
AM1 +BM2

CM1 +DM2

#

where [ ] denotes equivalence classes in P . One can embed H g into P by � 7!

"
�

E

#
Then the action of Sp(�;Z) restricts to an action on the image of H g and is given

by  
A B

C D

!"
�

E

#
=

"
A� +BE

C� +DE

#
=

"
(A� +BE)(C� +DE)�1E

E

#
:

Therefore Sp(�;Z) acts on H g by 
A B

C D

!
: � 7! (A� +BE)(C� +DE)�1E:

From what we have seen here above we conclude that for a given type (e1; : : : ; eg)

of a polarisation the quotient

A(e1;:::;eg) = Sp(�;Z)nH g

parametrises all the isomorphism classes of (e1; : : : ; eg)-polarised abelian varieties;

that is A(e1;:::;eg) is the coarse moduli space of (e1; : : : ; eg)-polarised abelian vari-

eties. As a variety A(e1;:::;eg) is an orbifold.
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One is often interested in polarised abelian varieties with extra structures, the

so-called level structure. If L is a lattice equipped with a non-degenerate form �

the dual lattice L_ of L is de�ned by

L_ = fy 2 L
 Q ; �(x; y) 2 Z for all x 2 Lg:

Then L_=L is non-canonically isomorphic to (Ze1 � � � � � Zeg)
2. The group L_=L

carries a skew form induced by � and the group (Ze1�� � ��Zeg)
2 has a Q=Z-valued

skew form which with respect to the canonical generators is given by 
0 E�1

�E�1 0

!
:

If (A;H) is a polarised abelian variety, then a canonical level structure on (A;H)

is a symplectic isomorphism

� : L_=L! (Ze1 � � � � � Zeg)
2

where the two groups are equipped with the forms described above. Given � we

can de�ne the group

Splev(�;Z) := fg 2 Sp(�;Z); gjL_=L = idjL_=Lg:

The quotient space

Alev(e1;:::;eg) := Splev(�;Z)nH g

has the interpretation

Alev(e1;:::;eg) = f(A;H; �); (A;H) is an (e1; : : : ; eg)-polarised abelian variety,

� is a canonical level structureg=isomorphism:

A torus A = C g=L is projective if and only if there exists an ample line bundle

L on it. By the Lefschetz theorem the �rst Chern class de�nes an isomorphism

c1 : NS(A) �= H2(A;Z)\H1;1(A; C ):

The natural identi�cation H1(A;Z) �= L induces isomorphisms

H2(A;Z) �= Hom(^2H1(A;Z);Z)�= Hom(^2L;Z):

Hence given a line bundle L the �rst Chern class c1(L) can be interpreted as a

skew form on the lattice L. Let H 0 := �c1(L) 2 Hom(^2L;Z). Since c1(L) is a
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(1; 1)-form it follows that H 0(x; y) = H 0(ix; iy) and hence the associated form H

is Hermitian. The ampleness of L is equivalent to positive de�niteness of H. In

this way an ample line bundle de�nes, via its �rst Chern class, a Hermitian form

H. Reversing this process one can also associate to a Riemann form an element in

H2(A;Z) which is the �rst Chern class of an ample line bundle L. The line bundle

L itself is only de�ned up to translation. One can also view level structures from

this point of view. Consider an ample line bundle L representing a polarisation

H. This de�nes a map

� : A! Â = Pic0A

x 7! t�xL 
 L
�1

where tx is translation by x. The map � depends only on the polarisation, not

on the choice of the line bundle L. If we write A = C g=L then we have K(L) :=

ker� �= L_=L and this de�nes a skew form on K(L), the Weil pairing. This also

shows that K(L) and the group (Ze1�� � ��Zeg)
2 are (non-canonically) isomorphic.

We have already equipped the latter group with a skew form. From this point of

view a canonical level structure is nothing but a symplectic isomorphism

� : K(L) �= (Ze1 � � � � � Zeg)
2:

1.2 The Heisenberg group

In this section we follow [GP98] and [GP01].

Let x; y 2 K(L), then the Weil pairing induced by H 0 is given by

eL(x; y) = exp(2�iH 0(x; y)):

By de�nition we have that if x 2 K(L), then there is an isomorphism t�xL
�= L.

Therefore x induces a projective automorphism on P(H0(L)) and so this leads to a

representation K(L)! PGL(H0(L)): This representation does not lift to a linear

representation of K(L), but it does after taking a central extension of K(L),

1! C � ! G(L)! K(L)! 0;

whose Schur commutator map is the previously de�ned pairing eL. G(L) is called

the theta group of L. In practice a �nite version of G(L) is used: since K(L) is

�nite, for our purposes it is enough to work with the �nite group �L (in place of C
�)

generated by the image of eL. Notice that j�Lj is a divisor of the exponent of K(L).
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G(L) is isomorphic to the (in�nite) Heisenberg groupH(D) := H(e1; : : : ; eg), which

can be described as follows: as a set it is C � �K(D), where K(D) �= (Ze1 � � � � �

Zeg)
2. Let f1; : : : ; f2g be the standard basis of K(D), and de�ne an alternating

multiplicative form eD : K(D)�K(D)! C � by

eD(f�; f�) :=

8><>:
exp(�2�i=e�) if � = g + �

exp(2�i=e�) if � = g + �

1 otherwise.

To de�ne the group structure on H(D), we take for any (�; x1; x2); (�; y1; y2) 2

H(D)

(�; x1; x2)(�; y1; y2) := (��eD(x1; y2); x1 + y1; x2 + y2):

A theta structure for L is an isomorphism between G(L) and H(D) which restricts

to the identity on C � . Any such isomorphism preserves the alternating pairings

eD and eL and induces a canonical level structure on (A;L) (or (A;H)). The

natural representation G(L) ! GL(H0(L)) for the theta group lifts uniquely the

representation K(L)! PGL(H0(L)): Then, if a theta structure has been chosen,

we have that the last representation is isomorphic to the Schr�odinger representation

of H(D), which we are going to introduce. If V = C (Ze1 � � � � �Zeg) is the vector

space of complex-valued functions on the set Ze1 � � � � � Zeg, the Schr�odinger

representation � : H(D)! GL(V ) is given by

�(�; x1; x2)() = �eD( � ; x2)( � + x1):

This representation is irreducible, and since the centre C � acts by scalar multipli-

cation, one gets a projective representation of K(D).

We restrict our attention to surfaces, then the Schr�odinger representation on

projective space is as follows. Let D = (e1; e2) and �x a basis fÆj 2 Ze1 � Ze2g

of V , where Æ is the delta function

Æ(
0) =

(
0 if  6= 0

1 if  = 0:

We denote by HD the subgroup of H(D) generated by �1 = (1; 1; 0; 0; 0); �2 =

(1; 0; 1; 0; 0); �1 = (1; 0; 0; 1; 0) and �2 = (1; 0; 0; 0; 1), and these act on V via

�1(Æi;j) = Æi�1;j; �2(Æi;j) = Æi;j�1;

�1(Æi;j) = ��i1 Æi;j; �2(Æi;j) = �
�j
2 Æi;j:
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where �k := exp(2�i=ek). In the case e1 = 1, both �1 and �1 are just the identity,

and we shall denote by � and � the generators �2 and �2, and leave o� the �rst

index on the variables.

Let K(L) = K1(L)�K2(L) be a decomposition for L with K1(L) �= K2(L) �=

Ze1 � Ze2, both subgroups being isotropic with respect to the Weil pairing. A

basis of canonical theta functions (see [LB92]) f� j 2 K1(L)g for H
0(L) yields an

identi�cation of H0(L) and V via � 7! Æ , such that the representations G(L)!

GL(H0(L)) andH(D)! GL(V ) coincide. Thus if we map A into P(H0(L)_) using

as coordinates x = � ;  2 Ze1 � Ze2, the image of A will be invariant under the

action of the Heisenberg group via the Schr�odinger representation. In particular,

if A is embedded this way in P(H0(L)_), then H0(IA(n)) is also a representation

of the Heisenberg group.

In general one works with e1 = 1, then the action of the Heisenberg group

He := H1;e on the coordinates of P(H0(L)_) is

�(xi) = xi�1;

�(xi) = ��i(xi):

As mentioned before, we will only consider the action of He, the �nite subgroup

ofH(D)! GL(V ) generated in the Schr�odinger representation by � and � . Notice

that [�; � ] = �; thus He is a central extension

1! �e ! He ! Ze� Ze! 0:

K(L) can be viewed as a subgroup of the automorphism group of A via trans-

lations, and we get that the order 2 subgroup h(�1A)i acts on K(L) by inner

automorphisms. From this fact it is possible to de�ne Ke(L) as K(L)o h(�1A)i,

and then de�ne the extended theta group Ge(L) to be a central extension of Ke(L)

by C � . In fact Ge(L) = G(L)o h(�1A)i. The extended Heisenberg group is de�ned

by

He(D) := H(D)o h�i;

where � acts onH(D) via �(�; x1; x2) = (�;�x1;�x2). An extended theta structure

is an isomorphism between Ge(L) and He(D) inducing the identity on C � . Each

extended theta structure restricts to a theta structure, but a theta structure does

not always come from an extended theta structure. In fact, a theta structure
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b : G(L)!H(D) can be extended to an extended theta structure if and only if it

is a symmetric theta structure, that is if the diagram

G(L)
(�1)L
���! G(L)

b

??y ??yb
H(D)

�
���! H(D)

commutes. In order for a symmetric theta structure to exist, L must be a sym-

metric line bundle, that is (�1A)
�L �= L. There always exist a �nite number of

symmetric line bundles, each admitting a �nite number of symmetric theta struc-

tures.

The Schr�odinger representation � of H(D) extends to a representation �e of

He(D), with �e(�) 2 SL�(V ) = fM 2 GL(V )j det(M) = �1g. We denote by GD

(with G1;e := Ge) the subgroup of He(D) generated by HD and �. In the case that

D = (1; e), � acts on V by �(xi) = �x�i. Note that our � here is �� in [GP98] and

[GP01]. In fact

GD := HD o h�i:

�, acting as an involution on V , has two eigenspaces V�, with eigenvalues �1. We

will refer to the projectivization of the positive eigenspace as P+ � P(V ), and the

negative eigenspace as P� � P(V ).

In particular, if D = (1; e), then P� is given by the equation

fxi = x�ij i 2 Z=eZg;

and P+ is given by the equation

fxi = �x�ij i 2 Z=eZg:

In our case, namely (e1; e2) = (1; 7), let N(H7) be the normaliser of the

Heisenberg group H7 inside SL(V ), where the inclusion H7 ,! SL(V ) is via the

Schr�odinger representation. We have a sequence of inclusions

Z(H7) = �7 � H7 � N(H7);

and it is easy to see that N(H7)=H7 = SL2(Z7), in fact N(H7) is a semi-direct

product H7 o SL2(Z7). Therefore the Schr�odinger representation of H7 induces a

7-dimensional representation

�7 : SL2(Z7)! SL(V ):
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PSL2(Z7) can be de�ned by the following generators and relations:

PSL2(Z7) = hS; T j S7 = 1; (ST )3 = T 2 = 1; (S2TS4T )3 = 1i

where S and T are the projective classes of, respectively,

S 0 =

 
1 1

0 1

!
and T 0 =

 
0 �1

1 0

!
;

The representation �7 is given projectively by

�7(S
0) = (��

ij

2 Æij)i;j2Z7; �7(T
0) =

1
p
�7

(�ij)i;j2Z7;

where � is a �xed primitive 7-th root of unity.

The centre of SL2(Z7) is generated by T 02, and �7(T
02) = �. Thus the repre-

sentation �7 is reducible. If we introduce V+ and V� as the positive and negative

eigenspaces respectively of the Heisenberg involution � acting on V , then V+ and

V� are both invariant under �7 , and �7 splits as �+���, where �� is the represen-

tation of SL2(Z7) acting on V�. Note that �+ is trivial on the centre of SL2(Z7),

so in fact it descends to give an irreducible representation

�+ : PSL2(Z7)! GL(V+):

In the beautiful treatise [Kle79] by Felix Klein, the polynomial invariants of this

representation are computed and the quartic1

f 0Klein = y31y2 + y32y3 + y33y1

is the unique invariant of minimal degree 4. The smooth quartic curve de�ned by

this invariant

Q0 = ff 0Klein = 0g � P2+

is an isomorphic image of the modular curve of level 7, and has PSL2(Z7) as its

full automorphism group.

Throughout these pages we are going to use the following notation: W 0 := V+

and U 0 := V�, and we are going to work with their dual spaces as well, that as

SL2(Z7)-modules are not isomorphic. More information about the representations

of SL2(Z7) and these spaces can be found in A.3.

1The notation f 0

Klein is chosen because in Appendix B we work with a quartic given by the

same equation, but embedded in the dual space P2�+ , non isomorphic to P+ as a SL2(Z7)-module.
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1.3 Compacti�cation of moduli spaces of abelian

surfaces

It is a fact that there is not a unique compacti�cation of a quotient

Alev(e1;:::;eg) := Splev(�;Z)nH g :

Since we are interested in surfaces, we restrict our work to the case

(e1; : : : ; eg) = (1; p):

In this section we are going to report the main facts one gets from the most

advanced compacti�cation on the market, that is the toroidal compacti�cation.

Practically all these results can be found in [HKW93].

Then, in the sequel we are going to draw several comparisons between our work

and the facts of this section.

We think this is not the place to introduce the subject of toric geometry. Thus

we just say that via toric methods, and after making choices, often natural, which

have to ful�ll certain condition of admissibility for the fans used, one gets the

toroidal compacti�cation A�(e1;:::;eg) of A
lev
(e1;:::;eg)

.

We list the main features of the geometry of A�(1;p), and in Chapter 3 we will

describe the degenerations parametrised by the di�erent kind of boundary points.

A combinatorial object called the Tits building enumerates the various bound-

ary components, as well as containing important information about their inter-

section behaviour. From [HKW93], Theorem I.3.40 and De�nition I.3.105, we get

that there are

1. a corank 1 (open) central boundary component DÆ(l0).

2. (p2 � 1)=2 corank 1 (open) peripheral boundary components DÆ(l).

3. p+ 1 corank 2 boundary components.

Then, from [HKW93] Theorem I.3.151 and I.4.8 we get

1. Let D(l) be the closure of DÆ(l) in Alev(e1;:::;eg), then there is an isomorphic

map from a Kummer modular surface K(1):

f : K(1)! D(l):
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2. There is a map from the Kummer modular surface K(p) to the closure D(l0)

of DÆ(l0) in A
lev
(e1;:::;eg)

, which is an isomorphism around each singular �bre,

but for p > 3 is not an isomorphism.

Notice that by [HKW93] Theorem 2.31(ii) the Kummer modular surfaceK(p) is

a �bre space over the modular curve X(p) of level p, whose singular �bres over the

cusps are folded p-gons, i.e. strings of [p=2]+1 smooth rational curves intersecting

transversally.

The geometry of the p + 1 corank 2 boundary components will not be treated

in generality here, but we will describe the picture for our p = 7 case in Chapter 3.

We just say here that every corank 2 boundary component lies in the closure of the

central boundary component DÆ(l0), and intersects (p� 1)=2 peripheral boundary

components D(l), each one at one of their �bres. There are no other intersections

(apart from those ones involving corank 2 boundary components) between the

central and the peripheral boundary components.

1.4 The moduli space of (1,7)-polarised abelian

surfaces

In this section we briey review the main results by Manolache and Schreyer [MS01]

about the moduli space of (1,7)-polarised abelian surfaces. A central result is the

following

Theorem 1.1 ([MS01], Theorem 3.2). An abelian surface A; G7-invariantly

embedded in P6(V ), has a G7-invariant resolution of the form:

0 OA  O
�
 3V4O(�3)

�
 2S
3 �0

 3V1O(�4)
�0

 O(�7) 0

with �0 =

 
0 1

�1 0

!
t� and � 0 = t�.

Note that all the modules in the above sequence are G7-modules, and S is the

non-trivial character of h�i. See appendix for the table of characters of G7.

We give here below more results we are going to use in the next chapter:

Proposition 1.2 ([MS01], Proposition 3.3).

HomG7
(S
3; V4O(�3)) = 4I;

i.e. � has entries in a 4-dimensional vector space (see appendix).
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A key observation is the following

Remark 1.3 ([MS01], Remark 3.4). Let F1 and F2 be two G7-sheaves, then

HomG7
(F1;F2) is a N -module, because G7 = H7 o Z2 is a normal subgroup of

N �= H7 o SL2(Z7), � being central in SL2(Z7).

As pointed out by Manolache and Schreyer, using the character table of SL2(Z7)

and with the notation from the appendix, we see that

Hom(
3;O(�3)) �= Hom(O(�4);
3) = ^3V = V1 � 4V
#
1 ; and

HomG7
(S
3; V4O(�3)) �= HomG7

(V1O(�4); S

3) = U 0 := hu0; u1; u2; u3i:

If we equip V with the canonical basis he0 : : : e6i, then we get that the elements

of HomG7
(V1O(�4); S


3) are given by the following 1� 7 matrices with entries in

^3V

u0 = (ek+1 ^ ek+4 ^ ek+2 � ek+6 ^ ek+3 ^ ek+5)k2Z7

and similarly:

u1 = (ek ^ ek+1^ ek+6)k2Z7; u2 = (ek ^ ek+2^ ek+5)k2Z7; u3 = (ek ^ ek+4^ ek+3)k2Z7:

Finally HomG7
(V

#
1 O(�4); S


3) = hu#0 i, where u
#
0 = (ek+1 ^ ek+4 ^ ek+2 + ek+6 ^

ek+3 ^ ek+5)k2Z7:

Furthermore, the elements of HomG7
(S
3; V4O(�3)) are given by the trans-

poses of the above matrices. Notice that the composition of Hom(O(�4);
3) and

Hom(
3;O(�3)) is given by the wedge product, if we identify canonically ^6V with

V � = V3 = H0(O(1)). A direct computation gives us the non-zero compositions:

� := ut0u1 = ut1u0 = �u
t
2u2 =

0BBBBBBBBBBB@

0 x4 0 0 0 0 �x3

�x4 0 x5 0 0 0 0

0 �x5 0 x6 0 0 0

0 0 �x6 0 x0 0 0

0 0 0 �x0 0 x1 0

0 0 0 0 �x1 0 x2

x3 0 0 0 0 �x2 0

1CCCCCCCCCCCA
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� := ut0u2 = ut2u0 = �u
t
3u3 =

0BBBBBBBBBBB@

0 0 x1 0 0 �x6 0

0 0 0 x2 0 0 �x0

�x1 0 0 0 x3 0 0

0 �x2 0 0 0 x4 0

0 0 �x3 0 0 0 x5

x6 0 0 �x4 0 0 0

0 x0 0 0 �x5 0 0

1CCCCCCCCCCCA

� := ut0u3 = ut3u0 = �u
t
1u1 =

0BBBBBBBBBBB@

0 0 0 �x5 x2 0 0

0 0 0 0 �x6 x3 0

0 0 0 0 0 �x0 x4

x5 0 0 0 0 0 �x1

�x2 x6 0 0 0 0 0

0 �x3 x0 0 0 0 0

0 0 �x4 x1 0 0 0

1CCCCCCCCCCCA
Furthermore ut0u

#
0 = 2 � diag(x0 : : : x6) = ! and ut1u

#
0 = ��; where �� is like �,

but with all signs positive. (The same for ut2u
#
0 = ��; ut3u

#
0 = ��.) In the sequel we

will omit to write (�)t, and we will identify loosely the elements of Hom(
3;O(�3))

and Hom(O(�4);
3).

In other words, once we choose a basis u0; : : : ; u3 of HomG7
(S
3; V4O(�3)), we

can view the matrix � associated to A as an element of M :=M(3� 2; U 0). That

is, the entries of this matrix are linear forms over C in 4 variables. We are going

to give more information about this fact in the next chapters.

Proposition 1.4 ([MS01], Proposition 3.5). A matrix � as in Theorem 1.1

satis�es

��0 = 0 if and only if the three quadrics in P3(U) given by its 2 � 2 minors (in

S2U 0) are annihilated by each of the three operators

�1 = 2a0a1 � a
2
2; �2 = 2a0a2 � a

2
3; �3 = 2a0a3 � a

2
1:

We denote by � the linear span of the operators �1;�2;�3, which is also the

unique SL2(Z7)-invariant 3-dimensional subspace of S
2U .

From the appendix we see that

W �= � � S2U;
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so this property simply tells us that the minors of the matrix � lie in the irreducible

G7-module L, where S
2U 0 = L�W 0 (see appendix).

Remark 1.5. A resolution like in Theorem 1.1 is determined up to action from

the left and right respectively of GL(3; C ) and GL(2; C ).

Let C� � P3(U) be the curve de�ned by the 2 � 2 minors of a matrix � as in

the resolution of Theorem 1.1. Then one can prove the following

Proposition 1.6 ([MS01], Proposition 4.1). The curve C� is a projectively

Cohen-Macaulay curve of degree three and arithmetic genus 0.

This means that the minors of � determine a twisted cubic curve C�. In

particular these minors are independent, so de�ne a 3-dimensional linear subspace

of S2U 0 = H0(P3(U);O(2)). Furthermore it is possible to prove that if A is smooth,

then it is uniquely determined by the curve C� associated to its resolution.

The Hilbert scheme Hilb3t+1(P
3(U)) has two components of dimension 12 and

15:

Hilb3t+1(P
3(U)) = H1 [H2

with general points of H1; H2 and H1\H2 corresponding respectively to a twisted

cubic, a plane cubic union a point or a plane nodal cubic with an embedded point

at the node. For all C 2 H1; H
0(P3(U); IC(2)) = 3. The morphism

f : H1 ! G (3; H0(P3(U);O(2)))

C 7! H0(P3(U); IC(2))

is birational onto its image H, regular precisely on H1 n H1 \ H2, cf. [EPS87].

Consider

H(�) := H \ G (3; L) � G (3; H0(P3(U);O(2)));

where G (3; L) is the Grassmannian of 3-dimensional vector subspaces of L.

Since it does not intersect f(H1 \H2), we can regard H(�) as a subvariety of

H1 as well (cf. [MS01]).

Theorem 1.7 ([MS01], Proposition 4.4). H(�) is a smooth prime Fano 3-fold

of genus three.

By the results of [MS01] the moduli space of (1; 7)-polarised abelian surfaces

with canonical level structure is birational to H(�). For more information about

Fano 3-folds, see [Muk92], and about Fano 3-folds of genus 12, see [Sch01].
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1.5 A di�erent model of the moduli space

We report few crucial facts from [GP98] and [GP01]: the 7� 7 matrix

M 0
7(x; y) = (x i+j

2
y i�j

2
)i;j2Z7

has rank at most 4 on an embedded H7-invariant (1; 7)-polarised abelian surface

in P6(V ). On the other hand, for any parameter point y = (0 : y1 : y2 : y3 : �y3 :

�y2 : �y1) 2 P2(W 0), the matrix M 0
7 is alternating. We will denote in the sequel

by I3(y) � C [x0 ; : : : ; x6] the homogeneous ideal generated by the 6� 6 PfaÆans of

the alternating matrix M 0
7(x; y) and by V7;y � P6(V ) the closed subscheme de�ned

by this ideal. Notice that, in our notation, M 0
7(x; (1 : 0 : 0)) = �; M 0

7(x; (0 : 1 :

0)) = � and M 0
7(x; (0 : 0 : 1)) = �:

Now we quote two main propositions that we are going to need for our research:

Proposition 1.8 ([GP98], Proposition 5.2). Let y 2 P2(W 0).

1. For y 2 Q0 = fy31y2 + y32y3 + y33y1 = 0g � P2(W 0), the scheme V7;y is the

secant variety of an elliptic normal curve in P6(V ) (the level 7 structure

elliptic curve corresponding to the point y on the modular curve Q0).

2. For a general y 2 P2(W 0), the scheme V7;y is a projectively Gorenstein irre-

ducible threefold of degree 14 and sectional genus 15.

Proposition 1.9 ([GP98], Proposition 5.4). Let A 2 P6(V )be a general Heis-

enberg invariant (1; 7)-polarised abelian surface, and let A\P2(W 0) = fp1; : : : ; p6g

be the odd 2-torsion points of A. Then:

1. The points pi form a polar hexagon to the Klein quartic curve Q � P2(W ).

2. The surface A is contained in V7;pi, for all i = 1; : : : ; 6. Moreover, 21 cubic

PfaÆans de�ning any three of the six V7;pi's generate the homogeneous ideal

IA of A.

It follows that the moduli space of (1,7)-polarised abelian surfaces with canon-

ical level structure is birational to the space VSP(Q; 6) of polar hexagons to the

Klein quartic curve Q � P2(W ).

Remark 1.10. By direct computation we see that the seven PfaÆans of a matrix

M 0
7(x; y) associated to an element y = (0 : y1 : y2 : y3 : �y3 : �y2 : �y1) 2 P

2(W 0)
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are given by y3jL 
 V4, where from the appendix we have S3W 0 = L � W and

S3V3 = (I � U 0 � L)
 V4: i.e. the i-th PfaÆan is

Pfa�(y1�+ y2�+ y3�)i =

(y22y3 � y
3
1)xixi+3xi+4 + (y23y1 � y

3
2)xixi+1xi+6 + (y21y2 � y

3
3)xixi+2xi+5 +

y1y2y3(xi+1xi+2xi+4 + xi+3xi+5xi+6 � x
3
i )+ (1.1)

y21y3(x
2
i+2xi+3 + x2i+5xi+4) + y22y1(x

2
i+3xi+1 + x2i+4xi+6) +

y23y2(x
2
i+1xi+5 + x2i+6xi+1)

Then the second part of Proposition 1.9 simply says that the linear space

spanned by any three of the six p3i jL 2 L is 3 dimensional.



Chapter 2

The geometry of H(�) and its

boundary

In this chapter we study H(�) from the point of view of geometric invariant theory

(see Section 1.4) and describe the geometry of its boundary.

2.1 The moduli space as an orbit space

In what follows we regard the moduli space of (1,7)-polarised abelian varieties as

an orbit space: in fact, by Remark 1.5, GL(3; C ) and GL(2; C ) act on the variety

M :=M(3� 2; U 0).

In order to apply the theory of orbit spaces, see [New78], p. 73, we restrict our

attention to P(M), SL(3; C ) and SL(2; C ). Doing so, no harm has been done to

the elements

H0(P3(U); I�(2)) 2 G (3; H
0(P3(U);O(2)));

where I� is the ideal generated by the minors of a matrix arising from a resolution

as in Section 1.4, and to the e�ects of the actions.

We will see in the proof of the next proposition that the actions of SL(3; C ) and

SL(2; C ) on P(M) induce an action on the minors, given by linear combinations.

In any case the vector space W� generated by the minors of � is �xed by this

action.

Notice that SL(3; C ) � SL(2; C ) is reductive, and we consider its obvious lin-

earisation.

The study of this problem has been done in [EPS87]. At the time we started

24
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working we were not aware of the existence of this paper. Even though the next

result can be found in [EPS87], we give it with our proof, because it is nice on

its own and as a self-praise for a month of hard thinking. However we present an

alternative proof as well, the second one involving the topic of Kronecker modules,

which we are going to introduce briey.

Proposition 2.1. Let � 2M . The following are equivalent:

1. � is stable,

2. � is semi-stable,

3. the minors of � are linearly independent.

Proof (GIT version). We �rst prove that 2) and 3) are equivalent. If dim(W�) < 3,

� is conjugate to a matrix whose �rst minor equals 0. Hence, up to this action, �

equals

�1 =

0B@ � �� �
0 0

1CA or �2 =

0B@ � �� 0

� 0

1CA : (2.1)

To see this, choose a non-zero element e0 of the bottom 2 � 2 submatrix �b of �

(if there is none, we are done). Then, if in the same row (resp. column) there is a

dependent element, then we can suppose it is zero, and we are done. Otherwise,

call it e1, then �b is conjugate to

 =

 
e0 e1

� �

!

(resp. t) and it is easy to see that the bottom row (resp. right column) has to be

dependent on the top (resp. left) one.

The following limits of 1-parameter subgroups of SL(3; C ) � SL(2; C ) applied

to � vanish:

lim
a!0

0B@ a

a

a�2

1CA (�1) = 0;

lim
a!0

0B@ a4

a�2

a�2

1CA (�2)

 
a3

a�3

!
= 0;
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so � is not semi-stable.

Now we are going to prove that if dim(W�) = 3, then � is semi-stable. We write

qi for the minor of � where the i-th row has been omitted, and if A 2 SL(3; C ), we

write Aij for the determinant of the 2 � 2 submatrix of A with the i-th row and

j-th column omitted. A straightforward computation shows that the minors of �

are �xed under the action of SL(2; C ), whereas an element A 2 SL(3; C ) acts on

the minors of � as follows:0B@ q1

q2

q3

1CA 7! A0

0B@ q1

q2

q3

1CA ; A0 =

0B@ A11 A12 A13

A21 A22 A23

A31 A32 A33

1CA :

Let dim(W�) = 3 and �x a basis of H0(P3(U);O(2)). If f is any non-vanishing

Pl�ucker function among those de�ning the embedding

' : G (3; H0(P3(U);O(2)))! P(
10
3 )�1

then f is an invariant homogeneous polynomial of positive degree not vanishing

on �. The invariance follows from the fact that

det(A0) = det

0B@ A11 �A12 A13

�A21 A22 �A23

A31 �A32 A33

1CA =
1

det(A)
det(tA�1) = det(A�1) = 1;

so f(A0W�B) = det(A0)f(W�B) = f(W�) and therefore � is semi-stable.

Now we prove that 1) and 2) are equivalent. Let A 2 SL(3; C ); B 2 SL(2; C )

and � be a semi-stable point. If A�B = � 2 P(M), then0B@ q1

q2

q3

1CA = A0

0B@ q1

q2

q3

1CA
so A = �I3; �

3 = 1. Thus A�B = �B, and B = �I2; �
2 = 1. It follows that

the stabiliser of � is isomorphic to Z2� Z3, and the dimension of the orbit of � is

dim(O(�)) = dim(SL(3; C )) + dim(SL(2; C )) = 8 + 3 = 11.

Since all the elements of P(M)ss (the set of semi-stable points, namely where

some f as above does not vanish) have orbits of the same dimension, the action

of SL(3; C ) � SL(2; C ) is closed in P(M)ss, that is the orbits are closed subsets of

P(M)ss (see [New78], Lemma 3.7). By [New78], Theorem 3.14(iv) this concludes

the proof.
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2.2 Kronecker modules

We de�ne the space of Kronecker modules to be X = W1 
W �
2 
 V , where Wi

is a C -vector space of dimension ki and V is a C -vector space of dimension n.

Therefore X can be thought as n copies of Hom(W2;W1), and one of its elements

as n maps from W2 to W1. We represent this by means of the quiver (a directed

graph)

W2
�

...
�

W1
�

We have an obvious action of G0 = GL(W1)�GL(W2) on X given by

(g1; g2)x = g1xg
�1
2 ;

where g = (g1; g2) 2 G
0; x 2 X. The subgroup D = f(�; �)j � 2 C �g of diagonal

scalars, which is normal, acts trivially on X, so the e�ective symmetry group is

G = G0=D. We call f : X ! C a semi-invariant function of weight (d1; d2) if

f(g1xg
�1
2 ) = det(g1)

d1 det(g�12 )d2f(x):

Since the action of D is trivial, k1d1 + k2d2 = 0, and also d1 � 0; d2 � 0, so

(d1; d2) = d

�
k2

m
;�

k1

m

�
, where m = hcf(k1; k2) and d � 0.

De�ne an abelian character � : G! C � by

�(g1; g2) = det(g1)
k2=m det(g2)

�k1=m :

then we say that f(gx) = �(g)df(x) is a semi-invariant function of weight d with

respect to G and �.

De�ne Sd the space of semi-invariant functions of weight d, and the graded

C -algebra S =
M
d�0

Sd. Furthermore, de�ne the open set of semi-stable points,

Xss = fx 2 Xj 9f 2 S>0; f(x) 6= 0g

and the open set of stable points

Xs = fx 2 Xssj Gx is closed in Xss and dim(Gx) = dim(G)g � Xss;

exactly as in [New78]. Then the fundamental theorem of GIT says that

ProjS = Xss= �;
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also called the moduli space for (most) modules up to isomorphism.

If x 2 X and � 2 V �, then x� 2 Hom(W2;W1). We call (U1; U2) a sub-module

of (W1;W2; x) if and only if

x�(U2) � U1

for all � 2 V �.

A central result is the following

Proposition 2.2 ([Dre87], Proposition 15). Let x 2 X, and let (U1; U2) be a

sub-module of x such that U2 6= f0g and U1 6=W1, then

1. x 2 Xss if and only if for all sub-modules (U1; U2) of x as above we get

dim(U1)= dim(U2) �
k1

k2
;

2. x 2 Xs if and only if for all sub-modules (U1; U2) of x as above we get

dim(U1)= dim(U2) >
k1

k2
:

The �rst consequence of this result is that if k1 and k2 are coprime, then

Xss = Xs.

Now we can supply the

Second proof of Proposition 2.1. We have that (k2; k1) = (3; 2) are coprime, there-

foreM s =M ss is the subset ofM whose elements admit only sub-modules (U1; U2)

with dim(U1)= dim(U2) = 3 or 2 >
3

2
.

These are exactly the elements with independent minors, in fact if a matrix is

conjugate to one of (2.1), then there are sub-modules with dim(U2)= dim(U1) = 1

or less and vice versa.

Now let P(M)s be the subset of P(M) given by the stable points of P(M).

P(M)s is open, so quasi-projective (cf. [New78]). Let P(M)s� be the subvariety of

P(M)s de�ned by the nine quadratic conditions (three each minor)

� = h�1;�2;�3i:

Proposition 2.3. There is a projective variety Y and an aÆne surjective mor-

phism � such that � : P(M)s ! Y is a geometric quotient and �(P(M)s�) := Y is

projective as well. Furthermore distinct orbits are mapped to distinct elements of

Y (and so of Y as well).
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Proof. After noting that a stable orbit of P(M) is either entirely in P(M)s� or en-

tirely outside, everything follows from [New78], Theorem 3.14 and Theorem 3.5(iv).

Lemma 2.4. Let A; B 2 M(3 � 2; U 0) be two matrices whose minors span a

3-dimensional subspace. If hqi(A)ii=1;2;3 = hqi(B)ii=1;2;3, then A and B lie in a

common orbit under the action of GL(3; C ) �GL(2; C )

Proof. First of all, up to the action, we can rearrange the matrices in such a way

that qi(A) = qi(B) := qi; i = 1; 2; 3. Obviously the ideals these minors generate

de�ne the same variety Z 2 P3(U). The obvious resolution

0! 2O(�3)
A
! 3O(�2)

(q1;q2;q3)
�! O ! OZ ! 0 (2.2)

is unique up to action by GL(2; C ), and it still works if we replace A with B. The

columns of A and B are just the syzygies of qi; i = 1; 2; 3 (see Theorem 4.2), thus

there is some x 2 GL(2; C ) such that A = Bx.

This lemma allows us to prove the main result of this section:

Proposition 2.5. Y is isomorphic to H(�).

Proof. Consider the morphism

! : P(M)s� ! H(�)

� 7! W�:

Obviously ! is constant on orbits, and since G (3; (L)) does not intersect

f(H1 \H2), any of its elements is representable by some element of P(M)s�, and

then ! is surjective as well. By [New78], Corollary 3.5.1, we see that (Y; �) is a

categorical quotient of P(M)s�. By de�nition of categorical quotient (see [New78],

de�nition after Proposition 2.9), there is a (unique) morphism  : Y ! H(�) such

that ! =  Æ �:

P(M)s�
�
�! Y
!

& # 9!

H(�)

By Lemma 2.4 and Proposition 2.3,  is a bijective morphism, and by [Muk92]

H(�) is a smooth (normal) irreducible variety. Consider the normalisation � :

~Y ! Y. In particular  Æ � is a normalisation of H(�), so by [Sha74] (corollary

to Theorem 5 in Chapter 2) we can conclude that  Æ � is the identity and then  

is actually an isomorphism.
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2.3 Geometry of the boundary B

In this section we study the geometry of the boundary B of the moduli space of

twisted cubic curves annihilated by �. The key observation is that by [Har92],

Proposition 9.4, if a matrix � 2M is not conjugate to a matrix �0 having a 0-entry,

then the minors of � determine a twisted cubic curve. Obviously, if the minors of

� 2 M de�ne a twisted cubic curve, it cannot be conjugate to a matrix having a

0-entry. This means that in this section we are studying the subset B of H(�)

de�ned by the condition that its elements are the images via � of the set of all the

matrices conjugate to some matrix having a 0-entry. In the next lemma we prove

that B is actually a subvariety of H(�).

Lemma 2.6. B is a subvariety of H(�).

Proof. Consider the subvariety B̂ of

P(M)s� � G (1; 2) � G (2; 3) �= P(M)s� � P1 � P2

de�ned by the condition that (m; a; b) 2 B̂ if and only if

mi(a) � b; i = 0; : : : ; 3

where mi is the matrix given by projecting the entries of m to huii. In other

words, (m; a; b) 2 B̂ if a is a 1-dimensional subspace of C 2 such that its image is

contained in the 2-dimensional subspace b of C 3 for every mi; and this is the case if

and only if m is conjugate to a matrix of M having a 0-entry. Clearly B̂ is closed,

and so is its projection �jMs
�
(B̂) into P(M)s�, see [Har92], Theorem 3.12. More-

over it is invariant under the action of SL(3; C ) � SL(2; C ). Finally, by [New78],

Theorem 3.5.iv) we get that �(�jP(M)s�
(B̂)) = B is closed in H(�).

The next step is to �nd a suitable representative for each [�] 2 B. Namely we

want to parametrise the boundary B of H(�). We can suppose that �12 = 0. For

simplicity from now on we write

� =

0B@ a 0

b d

c e

1CA : (2.3)
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If we write an entry like

3X
i=0

a1ui, then the minors ad and ae satisfy � if and only

if d and e satisfy the linear system

a� =

0B@ a1 a0 �a2 0

a2 0 a0 �a3

a3 �a1 0 a0

1CA
Remark 2.7. Let x and y be any two elements of U 0. Via the previous matrix x�

we get a multiplication U 0 � U 0 ! W 0 � S2U 0 = L �W 0 given by (x; y) 7! x�y.

Notice that these are all SL2(Z7)-modules. This induces a product

� : U 0 � U 0 !W 0:

Obviously � is symmetric, and the condition � says that every minor of a matrix

� is contained in L � S2U 0. This is a fact we are going to use heavily in the next

chapter.

The rank of a� must be at most 2, because otherwise d and e would be depen-

dent, and so a minor of � would be zero. Thus the minors of a� must vanish, that

is

a30 � a1a2a3 = 0 (2.4)

a20a1 + a0a
2
2 + a2a

2
3 = 0 (2.5)

a20a2 + a0a
2
3 + a3a

2
1 = 0 (2.6)

a20a3 + a0a
2
1 + a1a

2
2 = 0 (2.7)

Let us call C the curve in P3(U 0) de�ned by these equations. As shown in

Appendix B, C is isomorphic to the modular curve of level 7, whose standard model

is the Klein quartic Q, a smooth plane curve of genus 3 given by the equation

fKlein = v31v2 + v32v3 + v33v1: (2.8)

It is easy to check that the rank of a� cannot be 1. So the space of solutions is

2-dimensional, and then we can �x a basis for it, namely (d; e). In other words, as

long as d and e are independent, any choice we make is good, and does not a�ect

the space spanned by the minors of the matrix.
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Lemma 2.8. Let � 2M s. Then none of its minors is of the form l2, where l is a

linear form.

Proof. Let l = l0u0+l1u1+l2u2+l3u3 such that l
2 satis�es �. Then we can certainly

suppose that l0 = 1, and from �� (with l in place of a), we get 2li = l2i+1; i = 1; 2; 3.

Thus, for example, l2 = 2�, where �7 = 1, but then l1l2l3 = 2�2�22�4 = 8 6= 1, so

the linear system a� would have rank 3, contradicting the fact that � 2M s.

This lemma implies that, because of the � condition, the variety de�ned by

the minors of � is a (possibly reducible) curve, as opposed to [EPS87], Lemma 3,

where the authors encounter a surface.

In the next proposition we describe the geometry of B:

Proposition 2.9. B is birational to C � P1 �= Q� P1.

Proof. If as in (2.3) � is a matrix representing the point [�] 2 B, then a 2 C, while

d and e are determined up to choice of a basis. We call V� the variety de�ned by

the minors of �.

For the minor q1(�) to satisfy �, the vector (b; c) must satisfy the linear system

� =

0B@ e1 e0 �e2 0 �d1 �d0 d2 0

e2 0 e0 �e3 �d2 0 �d0 d3

e3 �e1 0 e0 �d3 d1 0 �d0

1CA :

If a0 = 0, by (2.4),. . . ,(2.7) two more coeÆcients among a1; a2 and a3 must be

zero. We can suppose a1 = 1, and so d; e 2 hu2; u3i. Let d = u2 and e = u3. Then

we can suppose b1 = b2 = c1 = 0, so b3 = �c0, b0 = c2 = 0 and c3 is free. Therefore

� =

0B@ u1 0

b3u3 u2

�b3u0 + c3u3 u3

1CA :

These matrices are parametrised by (b3 : c3) 2 P1. Unless b3 = 0, their minors

determine a line and a conic, non coplanar and meeting at a point. If b3 = 0 the

minors determine three non coplanar lines meeting at a common point.

If a0 6= 0 we can set a0 = 1, and (2.4) gives us, say, a3 =
1

a1a2
, while (2.5),

(2.6) and (2.7) become the non-homogeneous equation 1 + a21a
3
2 + a31a2 = 0. It

is easy to see that either d0 or e0 is nonzero, so let e0 = 1, and d0 = 0, which
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implies d1d2d3 6= 0. We can assume that b0 = b1 = c0 = 0, so now the vector

(b2; b3; c1; c2; c3) must satisfy the linear system

�0 =

0B@ �e2 0 0 d2 0

1 �e3 0 0 d3

0 1 d1 0 0

1CA :

The rank of �0 is three, so we get a 2-dimensional space of solutions. Obviously

multiplication by a scalar on (b; c) does not a�ect V�, and so we get a P1 of

solutions. Also in this case in general V� is a conic and a line, non-coplanar and

meeting at a point. If this does not happen, then V� can only be the union of three

non coplanar lines, one of them meeting the other two, possibly at a single point.

If so, by Lemma 2.4 the minors of � can be arranged in such a way that

� =

0B@ a 0

b d

0 e0

1CA : (2.9)

So we are looking for a form e0 = xd + ye 2 C. Actually e0 = xd + e, because

d =2 C. Consider the linear system0B@ e01 1 �e02 0

e02 0 1 �e03

e03 �e
0
1 0 1

1CA :

Obviously a satis�es it, and since we can assume that b0 = 0, the minor

1� (e1 + xd1)(e2 + xd2)(e3 + xd3) (2.10)

must be zero.

Remark 2.10. If e0 2 hd; ei satis�es (2.10), then as this implies e0 2 C, we get

that e0 satis�es all the polynomials (2.4),. . . ,(2.7).

From d1d2d3 6= 0 we conclude that the degree of the previous polynomial is 3,

and so for any given a (with a0 6= 0) we get in general three matrices (and then

elements of B) whose minors de�ne three lines.

So far we have proved that over every point a 2 C there is a P1 of elements of

B. That is, the closure of the �bres of the following map

B 9 9 KC �= Q

� 7! a
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are P1's. The map is not well-de�ned if and only if an element of B is represented

by a matrix like (2.9). Indeed a determines the plane where the conic lives, and

so if the conic is smooth, a must be unique.

Therefore now we only need to show that the locus B0 � B whose elements are

represented by matrices like (2.9) is closed.

This is clear after noticing that

B� := f(a; b) 2 C � Cj a�b = 0g � C � C � P3(U 0)� P3(U 0)

is a proper closed subset of C � C, and that B0 is isomorphic to B�, in fact the

entries b (resp. d0) of (2.9) can be chosen arbitrarily among the solutions of e�

(resp. a�), and we are still in the same orbit of matrices representing � 2 B0.

Notice that the projections pi : B
� ! C; i = 1; 2 are generically 3 : 1.

From (2.10) we see that in general a �bre of B over a point a 2 C meets three

other �bres, each one at a single point. In the next lemma we work out over which

�bres the intersection is non-smooth.

Lemma 2.11. Let � be a matrix whose image is in B, and let the top-left entry

be a 2 C. If the rational �bre over a does not meet three distinct �bres, then a is

the image of a cusp of Q.

Proof. The �rst observation is that over the cusp a = u1, corresponding to y2,

where yi is the dual basis of vi, the space of solutions of a
� is given by the last two

columns of (B.7), that is hu2; u3i. Then after replacing the polynomial (2.10) with

the polynomial given by (2.5), we get clearly a double solution, namely e02e
02
3 = 0.

Now notice that, by Remark 2.10, the condition that the polynomials like (2.10)

have a double solution is invariant under the action of SL2(Z7), whose action on

the entries (in U 0) of � descends to an action on the coeÆcients of the polynomials.

Therefore the set of points of C we are after is a union of SL2(Z7)-orbits of C, and

it contains the orbit of 24 images of cusps of Q.

Let us assume a0 6= 0. Then we only need the polynomial (2.10) to have a

double solution. Using as d and e the �rst two columns of (B.7), the discriminant

D of (2.10), divided by a common monomial, has degree 11, and is not divisible

by fKlein. Then the zero locus of D intersects Q at at most 44 reduced points,

including the three cusps with zero entries. By [Kle79], there is one orbit only

with at most 44 points, precisely the orbit of 24 cusps.
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Remark 2.12. As mentioned in the summary, at �rst sight we have a good candi-

date for a possible subspace of H(�) whose points could parameterise translation

scrolls. In fact we have just seen in Proposition 2.9 that B is birational to the

Kummer surface that parameterises those surfaces. But things will not be as

straightforward as expected, as we will see in Chapter 4. For a brief description of

the translation scrolls, see Section 3.1, where everything works for (1; p) in place

of (1; 5).

2.4 More on the isomorphic models of the mod-

uli space

We have seen that the moduli space we are interested in is birational to H(�),

the moduli space of twisted cubic curves annihilated by the net of quadrics �. By

Section 1.5 it turns out that an isomorphic model to it is given by the variety of

sum of powers VSP(Q; 6). In fact H(�) and VSP(Q; 6) are isomorphic, and in this

section we are going to discuss the isomorphism in more detail and present more

facts on these spaces.

First of all we need the following

Theorem 2.13 ([Sch01], Theorem 1.1).

H(�) �= G (3; L; �Klein) �= VSP(Q; 6): (2.11)

As explained in [Sch01], every Fano 3-fold of genus 12 has these descriptions

over an algebraically closed �eld of characteristic 0, where

VSP(Q; 6) = ffl1 : : : l6g 2 Hilb6(P2(W 0))j l41 + � � �+ l46 = v31v2 + v32v3 + v33v1g

and G (3; L; �Klein) is as follows (notice that the spaces here correspond to those in

the appendix): consider on

L = (f?Klein)
�
3 =

hv1v2v3; v2v
2
3; v3v

2
1 ; v1v

2
2; v

2
3v1 � v

3
2; v

2
1v2 � v

3
3; v

2
2v3 � v

3
1i
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the net �Klein : ^
2L!W �= C 3 of alternating forms de�ned by the matrix

�Klein =

0BBBBBBBBBBB@

0 0 0 0 0 �y2 y1

0 0 0 0 �y3 0 y2

0 0 0 �y1 0 0 y3

0 0 y1 0 y2 �y3 0

0 y3 0 �y2 0 y1 0

y2 0 0 y3 �y1 0 0

�y1 �y2 �y3 0 0 0 0

1CCCCCCCCCCCA
:

Here (f?Klein)3 = fx 2 S3W = C [y1 ; y2; y3]3 j xfKlein = 0g, the 7-dimensional

vector space of di�erentials of the third order that annihilates fKlein (see [Sch01]).

We write yi in place of @vi for the dual generators of W with respect to the vi, the

elements of the basis of W 0 in the appendix. Then

G (3; L; �Klein) = fE 2 G (3; L) j ^
2 E � ker(�Klein : ^

2L! W )g:

We follow [Sch01], Theorem 2.6, to give a sketch of the proof of the second

isomorphism in (2.11):

1. The PfaÆans of �Klein are (f?Klein)3, and if IPfa� is the ideal they generate,

then the dual socle generator (see [Eis95]) of C [y1 ; y2; y3]=IPfa� is fKlein.

2. Given an element P 2 G (3; L; �Klein), choose a basis l for L with the last

three generators being taken from a basis p for P . Then, with respect to this

chosen basis, �Klein gets a block decomposition form

�0Klein =

 
�  

� t 0

!
; (2.12)

Now  can be viewed as a 4� 3 syzygy matrix for the exact complex

0! 3OP2(W 0)(�4)
 
! 4OP2(W 0)(�3)

minors
�! OP2(W 0) ! O� ! 0;

where � � P2(W 0) is a variety given by six points, simply by computing the

Hilbert series:

PHilb(�) = (1; 3; 6; 6; 6 : : : ):

3. Notice that if we replace p with p0 = pa; a 2 GL3, then we simply get

 0 =  a, and the above resolution is not a�ected. Similarly if we choose

di�erently the �rst four generators of l, then only the top-left block � of

�0Klein will be a�ected.
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4. Consider the �rst four PfaÆans of �0Klein. They must be a linear combination

of the original ones, and are given by the minors of  , so we see that

(I�)3 � (f?Klein)3;

thus

S3W ! A� = C [y1 ; y2; y3]=I� ! AKlein = C [y1 ; y2; y3]=(f
?
Klein)

and

Hom
�
(AKlein)4; C

�
� Hom

�
(A�)4; C

�
:

5. Finally, fKlein is a generator for Hom((AKlein)4; C ), being the dual socle gener-

ator, and the fourth power of the six points i of � � W 0 impose independent

conditions on quartics. Then h4i ii=1;:::;6 = Hom((A�)4; C ), so

fKlein =

6X
i=1

�i
4
i :

6. Reversing this process one gets the isomorphism starting from VSP(Q; 6).

Finally, the �rst isomorphism in (2.11) comes from [Sch01], Theorem 5.1, and

in our picture it is clear after we notice that, with the notation from the appendix,

the correspondence with the data in [Sch01] is given by the net of quadrics

q : W ,! S2U; q(W ) = �;

and by the 7-dimensional space annihilated by �

(�?)2 = L � S2U 0 = L�W 0;

(�?)2 = hu
2
0; u2u3; u3u1; u1u2; u0u3 + u21; u0u1 + u22; u0u2 + u23i:

Then we get that �q = �Klein, where �q is a skew-symmetric matrix one can

recover from the resolution of the module SU 0=(�?). Let H(q) denote the variety

of twisted cubics C � P3(U) whose equations H0(P3(U); IC(2)) � S2U 0 are annihi-

lated by q. Since a twisted cubic is de�ned by the quadrics that contains it and

h0(P3(U); IC(2)) = 3, H(q) is a subset of G (3; Vq) in a natural way. Then one can

prove that �q is a net of alternating forms on Vq which de�nes H(q) � G (3; Vq ),

namely

H(�) �= G (3; Vq ; �q) = G (3; V� ; �Klein):
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In our picture we need the fact that L is self dual, then the copies of L we use

are

(f?Klein)
�
3 � S3W 0 = L�W

and

V� � S2U 0 = L�W 0:

We describe the SL2(Z7)-isomorphism

S3W = L�W 0 = S2U 0; (2.13)

and that of their dual spaces:

y1y2y3 = u20; y2y
2
3 = u2u3; y3y

2
1 = u3u1; y1y

2
2 = u1u2;

y23y1 � y
3
2 = u0u3 + u21; y21y2 � y

3
3 = u0u1 + u22; y22y3 � y

3
1 = u0u2 + u23:

And in terms of the duals we get again the equations (B.8):

v1v2v3 = a20; v2v
2
3 = 2a2a3; v3v

2
1 = 2a3a1; v1v

2
2 = 2a1a2;

v23v1 � v
3
2 = 2a0a3 + a21; v21v2 � v

3
3 = 2a0a1 + a22; v22v3 � v

3
1 = 2a0a2 + a23;

where the ai's are the duals of the ui's.

The SL2(Z7)-isomorphism between the above copies of W 0 is given by

3y23y1 + y32 = u0u3 � u
2
1; 3y21y2 + y33 = u0u1 � u

2
2; 3y22y3 + y31 = u0u2 � u

2
3;

and this leads to two isomorphic representations of W given by

3v23v1 + v32 = 2a0a3 � a
2
1; 3v21v2 + v33 = 2a0a1 � a

2
2; 3v22v3 + v31 = 2a0a2 � a

2
3:

This allows us to map the generators of a twisted cubic curve, namely the

minors of a 3�2 matrix with linear entries in U 0, which are annihilated by � �= W ,

to the generators of a 3-dimensional subspace of (f?Klein)
�
3, as shown in the next

diagram:

G (3; L; �Klein) 3 E 0 � (f?Klein)
�
3
�= L � S3W 0 = L�W

" ko

� (f?Klein)3
�= L � S3W = L�W 0

# ko

H(�) 3 E � �? �= L � S2U 0 = L�W 0

(2.14)

Remark 2.14. The SL(Z7)-isomorphism � can now be computed, because by A.1

and (1.1) we get

(v1v2v3 $ u20; v
2
2v3 � v

3
1 $ u1u2; : : : ; v

2
3v2 $ u0u2 + u23):



Chapter 3

The toroidal compacti�cation

In this brief chapter we are going to present some relevant results of [HKW93]

on the toroidal compacti�cation of the moduli space of (1; p)-polarised abelian

surfaces A�(1;p), restricting our attention to the case (1; 7).

We are also going to report some basic fact on the Horrocks-Mumford bundle F

and Horrocks-Mumford map from A�(1;5) to P(�(F )), for future comparisons with

our results.

3.1 The six odd 2-torsion points in the (1; 5) case

The moduli space of Horrocks-Mumford Surfaces is given by P(�(F )), where F is

the Horrocks-Mumford bundle on P4(V ), cf. [HM73].

The normaliser of H5 is

N = H5 o SL2(Z5);

and �(F ) is irreducible and isomorphic to �4, the unique 4-dimensional repre-

sentation of SL2(Z5) which factors through PSL2(Z5) (for a list of all irreducible

SL2(Z5)-modules see the appendix of [HM73]).

Under the involution �(xi) = x�i we get two eigenspaces, and we are interested

in P1+ = P(V+). Via a suitable action of SL2(Z5) on P
1
+ compatible with the action

on P4(V ) one gets that the space �(OP1+(6)) is a SL2(Z5)-module and as such it

splits into two irreducible factors of dimension 4 and 3 respectively. More precisely

�(OP1+(6))
�= �4 � �3;

And �4 �= �(F ). P(�(OP1+(6))) parametrises sets of six points in P1+, and a surface

Xs de�ned by a section s of the Horrocks-Mumford bundle is fully determined by

39
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the (unordered) 6-tuple Xs \ P
1
+. The multiplicities of this 6-tuple also describe

the type of surface ([BHM87]):

Table 3.1: Multiplicities of 2-torsion points in P1+ � P4(V )

multiplicities type of Xs

111111 abelian surface

21111 translation scroll

3111 tangent scroll

222 double elliptic quintic scroll

2211 union of �ve quadrics

42 �ve planes with a double structure

We explain these types of surface. If E is a quintic elliptic normal curve H5-

equivariantly embedded, then for every point e 2 E with 2e 6= 0 we de�ne a

translation scroll X to be the union of secants

X =
[
P2E

P; P + e:

The surface X has degree 10 and its singular locus is the curve E, where X has

transversal A1-singularities.

If e = 0 in the above construction we obtain the tangent scroll of E. If e is

a non-zero 2-torsion point then the secants P; P + e and P; P � e coincide and

set-theoretically X is a elliptic quintic scroll. Since degX = 10 the zero locus of

the surface supported on X has a double structure.

If �nally the elliptic curve E degenerates to a pentagon of lines, the translation

scroll degenerates to a union of �ve quadrics. These can degenerate further to a

union of �ve planes again with double structure.

Then the multiplicities listed before are just the multiplicities with which the

elliptic curve E (as a singular locus in the scrolls) intersects P1+.

Remark 3.1. It seems reasonable to bear in mind this strategy in our case p = 7.

Indeed we have just seen thatH(�) �= VSP(Q; 6). In what follows we will comment

our results with several remarks in order to compare them with the features of this

nice case.

We are going to give more (known) information about P(�(F )) and its relation

with A�(1;5) in Section 3.3.
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3.2 The toroidal compacti�cation of A(1;7)

According to what we saw in Section 1.3, in the toroidal compacti�cation A�(1;7)
the open central boundary component is an open Kummer surface K0(7) and the

24 open peripheral boundary components are open Kummer surfaces K0(1), which

are �bre spaces over the modular curve X0(7) (resp. X0(1)) with rational �bres.

Notice that as we saw in Proposition 2.9, the boundary B of H(�) is birational to

the Kummer surface K0(7).

The closure of X0(7) is given by adding 24 cusps. Over each cusp the �bre in

the closure of the central boundary component is a string of four rational curves.

Inside the central boundary component the strings are divided into eight sets of

three strings with six curves pairwise identi�ed. Each set of strings with identi-

�cation is the con�guration of the corank 2 boundary component (cf. [HKW93],

chap. 4A and the next picture). The intersections of these rational curves are

called deepest points. The corank 2 boundary components lie in the closure of

the central boundary component, and the closure of every peripheral boundary

component meets the �bre over the corresponding cusp at the outer rational curve

of the con�guration shown in Figure 3.1. There is a terminology for the corank

2 boundary component, namely the outer rational curves are called cp-lines, the

next rational curves are called adjacent cc-lines, and all the others are called non

adjacent cc-lines.

Figure 3.1: Corank 2 boundary component, case p = 7
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In the following list we turn our attention to the degenerations of abelian
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surfaces associated to points of the boundary of the toroidal compacti�cationA�(1;p).

This information is gathered from De�nition 3.8 and Propositions 4.5, 4.7, 4.8 and

4.10 of part II in [HKW93].

Let x 2 A�(1;p). Then

1. if x is in the open central boundary component, the corresponding surface is

an elliptic ruled surface.

2. if x is in one of the open peripheral boundary components, the corresponding

surface is a chain of p irreducible elliptic ruled surfaces.

3. if x is in the corank 2 boundary component, but not a deepest point, the

corresponding surface is a chain of p quadrics, i.e. P1 � P1.

4. if x is a deepest point, the corresponding surface consists of 2p copies of P2

and p copies of ~P2, where ~P2 denotes P2 blown up in three points.

3.3 The Horrocks-Mumford map

We now turn our attention to the Horrocks-Mumford map

�5 : A
0
(1;5) ! P(�(F ))smooth:

This information and the notation is gathered from Theorems 1.5, 1.9 and 3.1 of

part III in [HKW93].

Theorem 3.2 ([HKW93]). The Horrocks-Mumford isomorphism � can be ex-

tended to a morphism

��5 : A
�
(1;5) ! P(�(F )):

Moreover the following holds:

1. �� maps the closure of H�
1 of the Humbert surface H1 � A(1;5) onto the curve

C12 which parametrises tangent scrolls.

2. ��5 maps the closure of H�
2 of the Humbert surface H2 � A(1;5) onto the curve

C6 which parametrises double elliptic scrolls.

3. ��5 maps the closed central boundary component birationally onto the surface

P(�(F ))sing of singular HM-surfaces, namely scrolls over elliptic curves with

a level 5 structure.



CHAPTER 3. THE TOROIDAL COMPACTIFICATION 43

4. Under ��5 each of the 12 peripheral boundary components is contracted to a

point corresponding to the union of �ve planes with double structure.

5. All the projective lines in each of the six corank 2 boundary components (see

Figure 3.2), except for the non adjacent cc-lines, are contracted to points

corresponding to the union of �ve planes with double structure. The six non-

adjacent cc-lines are mapped to the six double tangents of C6 parametrising

singular HM-surfaces which are the union of �ve quadrics or union of �ve

planes with double structure.

Figure 3.2: Corank 2 boundary component, case p = 5

� � � �

First notice that the di�erent combinatorics of the (1; 5) and (1; 7) cases give

rise to di�erent degenerations over the cusps. In fact the two deepest points of

a non adjacent line in a corank 2 boundary component in the (1; 5) case are in

the same orbit with respect to SL2(Z5), and the degenerations they parametrise

are the same, see Remark 4.20. But in the (1; 7) case the central deepest point

common to the three chains of rational curves is not in the same orbit of the other

ones, and the degenerations they parametrise, as we shall see, are di�erent.

And then, could it be that it is possible to �nd a map

~��7 : A
�
(1;7) ! H(�)

like ��5? In fact

s :=

0B@ u1 0

u2 u2

0 u3

1CA
lies in the intersection of the P1's over the cusps u1; u2; u3 in H(�). Perhaps these

�bres are the non-contracted (by ��7) non adjacent cc-lines as in the (1; 5) case.



Chapter 4

Degenerations

In this chapter we are going to work out the surface associated to a given boundary

point [�] 2 B of the moduli space H(�), where � is a matrix in M .

Furthermore we will relate degenerations of twisted cubic curves (i.e. elements

of H(�)) with degenerations of six general points in the variety of sum of powers

of Q.

4.1 Existence of surfaces related to degenerations

Here we are going to prove that given any element [�] 2 B as above, that is, a

map

3V4O(�3)
�
 2S
3;

we can actually �nd a map

O
�
 3V4O(�3); (4.1)

and then a resolution exactly as in Theorem 1.1.

Remark 1.3 allows us to prove the following

Proposition 4.1. For any � with ~� 2 B we can construct a complex like

0 OA  O
�
 3V4O(�3)

�
 2S
3 �0

 3V1O(�4)
�0

 O(�7) 0: (4.2)

Proof. In the light of the last remark, we get from the appendix that

HomG7
(V4O(�3);O) = I � U 0 � L;

44
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so the map in (4.1) is naturally given by the three minors (q1(�); q2(�); q3(�)) of

�, because by Proposition 1.4 the condition � implies

fq1(�); q2(�); q3(�)g � L � S2U 0:

We can then write a sequence exactly like (4.2), and the N -homomorphism in

(A.1) between the copy of the SL2(Z7)-module L � S2U 0 and

L
 V4 � S3V3 = (I � U 0 � L)
 V4;

yields the 21 cubic generators of a variety A� associated to a given [�] 2 H(�),

when we view H(�) as the space of twisted cubic curves in P3(U).

The sequence (4.2) is indeed a complex: �� = 0 can be computed (carefully

and patiently) using the exactness of (2.2), using the fact that

^3V 
O(�4)
�
� 
3

is surjective and so implies

�(2S
3) = �(2�(^3V 
O(�4)));

and by the computations of the compositions of these maps on page 19. An

example: consider the �rst syzygy �1, that is, the �rst column of (au#0 ; bu
#
0 ; cu

#
0 )

t =

(2a0x0; a1x4; a2x1; a3x5; : : : )
t from the composition ��; for generality assume a0 6=

0. The composition ��1 is a polynomial of degree 4. Then the coeÆcient of, e.g.,

x0x
2
1x5 of ��

1 is given by

2a0(b0e2 + b2e0 � c0d2 � c2d0) + a2(b0e0 � c0d0) + a3(b0e3 + b3e0 � c0d3 � c3d0)

�2b0(a0e2 + a2e0)� b2(a0e0)� b3(a0e3 + a3e0)

+2c0(a0d2 + a2d0) + c2(a0d0) + c3(a0d3 + a3d0):

and by the condition � the coeÆcient of u0u2 equals that of u
2
3, therefore we get

that the previous expression equals

a0(b0e2 + b2e0 � c0d2 � c2d0) + a0(b3e3 � c3d3)

+a2(b0e0 � c0d0) + a3(b0e3 + b3e0 � c0d3 � c3d0)

�b0(a0e2 + a2e0)� b0(a3e3)� b2(a0e0)� b3(a0e3 + a3e0)

+c0(a0d2 + a2d0) + c0(a3d3) + c2(a0d0) + c3(a0d3 + a3d0) = 0:

Clearly �� = 0 implies �0� 0 = 0, and �nally the � condition on � guarantees

that the composition ��0 equals zero (on this last fact, see [MS01], Proposition 3.5).
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For the next proofs we are going to use the following

Theorem 4.2 ([Eis95], Theorem 20.9). Let R be a ring. A complex

0! Fn
�n
! Fn�1 ! � � � ! F1

�1
! F0

of free R modules is exact if and only if

1. rankFk = rank�k + rank�k+1, and

2. depth I(�k) � k

for k=1,. . . ,n.

The notation I(�k) stands for the ideal generated by the minors of �k of di-

mension equal to rank �k. By [Eis95], Theorem 18.7, we can use the codimension

of variety determined by I(�k) in place of its depth.

In order to prove the exactness of the complex (4.2) we need to prove �rst

another interesting result. In our attempt to classify the degenerations we are

after, we want to exploit the fact that a matrix

� =

0B@ a 0

b d

c e

1CA ;

as in the proof of Lemma 2.6, determines a sub-morphism

2V4O(�3)
(de)
 S
3:

More precisely the last morphism comes from the complex (4.2) determined by

a boundary point [�] 2 H(�), as shown in the next diagram:

0 0

" "

V4O(�3)
a
 � S
3

" "

0  OA  O
�
 � 3V4O(�3)

�
 � 2S
3  : : :

" "

2V4O(�3)
(de)
 � S
3

" "

0 0



CHAPTER 4. DEGENERATIONS 47

Notice that all the boundary points which are images of orbits with a matrix

with a top-left entry like a will admit the sub-morphism as above.

More precisely, starting o� with the ideal Ia generated by the 14 cubics de�ned

by the minors q2(�) and q3(�), we can extract from the complex (4.2) the following

one:

0 Ia  2V4O(�3)
(de)
 S
3 a

 V1O(�4) 0: (4.3)

We are in position to prove the following

Proposition 4.3. Let a 2 C. Then the complex (4.3) de�ned by the ideal Ia is

exact, and therefore de�nes a variety Ua of dimension 3 and degree 7.

Proof. First of all we need to prove the exactness of the complex. We are going to

use Theorem 4.2. Notice that since Ia is not contained in any hyperplane, we can

localise at xi 6= 0, where 
3 is free.

To test the �rst condition, notice that rank 2V4O(�3) = 14 and rankS
3 = 20.

Since � 2 P(M)s, all the cubics are non zero, and then the �rst map has rank 1,

and trivially the variety the 14 cubics determine is of non-zero codimension. Now

we need rank
�
d

e

�
= 13 and rank a = 7. Observe that from the exact complex

0! 
3 ! ^3V � 
O(�3)! 
2 ! 0

there is an injective map


3 �
,! ^3V � 
O(�3);

therefore we get

rank a(V1O(�4)) = rank �(a(V1O(�4)))

as well as �
d

e

�
(
3) =

�
d

e

�
(�(^3V 
O(�4))):

Now let a 6= d 2 C � P3(U 0) (see Proposition 2.9), and let wd 2 U
0 such that

the composition dwd = 0. Then we can �nd a submatrix � of
�
d

e

�
(�(^3V 
O(�4)))

like

� :=

 
du

#
0 0

� ewd

!
:

From the computations of page 19, we get that du
#
0 = a0!+a1�

�+a2�
�+a3�

�

has maximal rank, and since the PfaÆans of ewd are non-zero, we conclude that

rank
�
d

e

�
= 13.
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The variety determined by the 13 � 13 minors is contained in the union of

the variety determined by the PfaÆans of ewd, which is a 3-fold, and by the one

determined by the determinants of all the top left blocks of rank 7. The proof that

the latter one is of dimension at most 3 is exactly as in the following test for the

exactness at the map a, after replacing d with a.

We have

�(a(V1O(�4))) = (u
#
0 aja0aju1aju2aju3a)

and the block u
#
0 a has maximal rank as before. About the second condition of

exactness, notice that the PfaÆan varieties Vuia determined by uia; i = 0; : : : ; 3

are 3 dimensional. Now let x 2 P6(V ) such that x =2 Vuia for some i, but x belongs

to the variety Z determined by the 7�7 minors of �(a(V1O(�4))), which is clearly

symmetric with respect to G7. This means that there is a j 2 f1; : : : ; 7g so that

Pfa�j(uia)(x) 6= 0. By G7-symmetry we can assume that j = 1, so there is a linear

combination of columns of uia(x) such that it is equivalent to

g(x) :=

 
0 �

0 T

!
:

Where T is an invertible matrix. If a is one of the three elements with 0-entries,

we can compute by hand that after rearranging the columns of �(a(V1O(�4)))

we get upper triangular matrices with the seven xi's as entries. Taking suitable

columns we see that the intersection of these determinants is contained in projective

subspaces of codimension 3.

So let a have all the entries non-zero, and take a column k of u#0 a such that

the top entry k1(x) 6= 0. Substituting k(x) in place of the �rst column of g(x) we

get that the rank is maximal, a contradiction. Therefore

Z �
[

i=0;:::;3

Vuia

and then dim(W ) � 3 and the complex is exact.

Finally, the Hilbert polynomial of Ia: let K be the kernel of Ia  2V4O(�3) as

a map of direct sums of line bundles. Then, exactly as in [MS01], Theorem 2.5, by

\kind of adding" a piece of the Koszul complex to the resolution (4.3), we obtain
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the following commutative exact diagram

0

#

7O(�4)
a

. #

0  
3  35O(�4)  21O(�5)  7O(�6)  O(�7)  0�
d

e

�
# . # # o # o # o

0  K  28O(�4)  21O(�5)  7O(�6)  O(�7)  0

#

0

The bottom row leads to a resolution of Ua involving only direct sums of line

bundles, namely

0 IUa  14O(�3) 28O(�4) 21O(�5) 7O(�6) O(�7) 0

Now we can compute the Hilbert polynomial of Ua, from which the result follows

PUa =
7

6
n3 +

7

2
n2 +

7

3
n:

Thanks to this intermediate result we can prove now the main proposition of

this section:

Proposition 4.4. The complex (4.2) is exact. Therefore � de�nes a variety A�

of dimension 2 and degree 14.

Remark 4.5. We are not claiming that the statement of Proposition 4.4 holds for

every [�] 2 H(�).

Proof. We know by [MS01] that for a general point of H(�) the complex is exact.

So we restrict our attention to the case when � represents an element of B � H(�),

which we write as in (2.3). As before, A� is not contained in any hyperplane, so

we can localise at xi 6= 0, where 
3 is free.

To test the �rst condition, notice that rank 3V4O(�3) = 21 and rank 2S
3 =

40. Since � 2 P(M)s, � 6= 0, so rank � = 1, and thus the only thing we need is

rank� = 20. Observe that rank� = rank�0, in fact from the injective map


3 �
,! ^3V � 
O(�3);
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using the de�nition of �0 and the fact that the entries of �0 are just transposes of

the entries of � we get

rk�0(3V1O(�4)) = rk2�(�0(3V1O(�4))) = rk(�(2�(^3V 
O(�4))))t:

So with rank� = 20 we shall have proved the �rst condition for the rest of the

sequence as well.

Now let �22 = d 2 C � P3(U 0) (see Proposition 2.9), and let a 6= wd 2

U 0 such that the composition dwd = 0. Then we can �nd a submatrix ~� of

�(2�(^3V 
O(�4))) like

~� :=

0B@ au
#
0 0 0

� du
#
0 0

� � ewd

1CA :

From the computations of page 19, we get that a(u#0 ) and d(u
#
0 ) have maximal

rank, and since the PfaÆans of ewd are non-zero, we conclude that rank� = 20.

To test the second condition, �rst notice that any product of two PfaÆans of an

antisymmetric matrix like ewd can be computed as the determinant of a suitable

6� 6 minor.

Secondly, we need to prove two things: that codim I�0(= codim I�) � 4 and

codim I�0(= codim I�) � 3.

For the latter part, observe that we can extract matrices like ~� from �, but

with the top and middle diagonal blocks being given by columns as in the proof of

Proposition 4.3 about the codimension of Z determined by a. Therefore the variety

Z 0 determined by the maximal rank minors of � is contained in the union of the

varieties determined by the three blocks (which we can vary), whose codim � 3.

For � 0, with the usual matrix, notice that by Proposition 4.3 the middle and

bottom V4's determine a threefold of degree 7. Because � is stable, the 21 cubics

are independent, and symmetric with respect to G7. Therefore all the syzygies of

a resolution of A� are G7-modules, namely 7-dimensional vector spaces in general,

except when the syzygies have degree multiple of 7. But in that case dimS7nV � �

1 modulo 7, and because the sum (with suitable sign) of those syzygies has to

be precisely �1, the Hilbert polynomial of A� is divisible by 7. Now consider

the variety determined by all the 21 cubics. Because the resolution of Ua has

length precisely three, it does not contain a lower dimensional (possibly embedded)

component. In fact, if there was one, call it L and let IL and I be the ideals of L
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and of the union of the rest of the components. Then Ia = IL � I, and therefore a

resolution of Ia would be at least as long as the resolution of L, namely at least 4.

This leads to the fact that when we add the top 7 cubics to the 14 generating Ua,

the new variety we get, that is A�, has to drop dimension, otherwise the degree

would drop to some number not a multiple of 7. Hence we have proved that

codimI�0 = codimI� � 4.

The part on the degree and the dimension is straightforward once we notice

that it holds for general (1; 7)-polarised abelian surfaces, and that the shape of the

resolution determines the Hilbert polynomial of the variety, which is a constant

feature on the varieties parameterised by H(�).

Corollary 4.6. Let � 2 P(M). Then the complex (4.2) associated to it is exact if

and only if � is stable.

Proof. If � is stable the exactness follows from the previous proposition.

If � is not stable, it is conjugate to an element as in (2.1), so there are at

least 7 zero-generators. Then we get that at least a block-column of � is a zero

block-syzygy and the complex is not exact.

Remark 4.7. By Proposition 2.11 we know that for a general (1; 7)-polarised

abelian variety the six points in W 0 in Proposition 1.9 must be the pre images of

hq�(1); q�(2); q�(3)i \ (W
0)3jL � L:

But hq�(1); q�(2); q�(3)i determines the 4-dimensional subspace of L � S3W given

by the minors of  (see 2.12), and clearly we get that the space spanned by the third

powers of the (possibly degenerate) six points restricted to L must be contained

in, and generally equal to, hq�(1); q�(2); q�(3)i.

4.2 General degenerations

So far we have proved that for all the varieties A� parameterised over the same

a 2 C � P3(U) (see Proposition 2.9) we get A� � Ua. Again by Proposition 2.9

we also know that this occurs when the twisted cubic curve in P3(U) de�ned by

� is degenerate. Now we want to �nd out what this result means in terms of the

other descriptions of H(�), and speci�cally VSP(Q; 6).
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As usual we work with

� =

0B@ a 0

b d

c e

1CA :

Proposition 4.8. Let A� be the variety associated to an element [�] 2 B � H(�),

and let A� \ P
2(W 0) = fp1; : : : ; p6g.

Then three of the six p3i jL 2 L, say p1; p2; p3, lie on a line and therefore a

statement like the second of Proposition 1.9.2 does not apply, namely A� is not

generated by V7;p1; V7;p2; V7;p3.

Proof. Let w =2 hai be an element of HomG7
(V1O(�4); S


3) = U 0, that is, a

linear combination of hu0; u1; u2; u3i, such that e�w = 0 (see Remark 2.7). This

requirement is non trivial, because in general rk(e�) = 3, therefore such a w does

not exist. Nevertheless in the proof of Proposition 2.9 we saw that for a given a

we can �nd in general three e's such that a�e = 0 and rk(e�) = 2 (, e 2 C).

From the Koszul complex of 
3 we get that 35O(�4) maps surjectively to S
3,

and we can consider the syzygies generated by the composition of w and (de). In

other words we get that (de)(S

3) contains a column like 

d

e

!
(w) =

 
d�w

e�w

!
=

 
d�w

0

!
: (4.4)

If A� is the degenerate (1; 7)-polarised abelian surface A� associated to �, then

the above column is nothing but 7 of the �rst 49 linear syzygies of the 21 cubics

that de�ne it. Bearing in mind Proposition 1.8 and the fact that �12 = 0, we get

that the middle V4 that generates the ideal of A� must be given by the 7 principal

PfaÆans of

M 0
7(x; d

�w) = (w0d3+w3d0�d1w1)�+(w0d1+w1d0�d2w2)�+(w0d2+w2d0�d3w3)�:

Notice that this does not depend on w, in fact fx 2 P3(U 0)j e�x = 0g = ha; wi,

thus d�(�a +  w) = �d�a +  d�w = 0 +  d�w. Furthermore d�w 6= (0 : 0 : 0),

because even if rk(d�) = 2, fx 2 P3(U 0)j d�x = 0g = ha; w0i 63 w, otherwise e = d.

Observe that, by Proposition 4.4, (d�w)3jL = ae.

The crucial observation is that because in general there are three such e 2 C,

call them e; f; g, then it is possible to �nd 3 corresponding sets of seven cubic

(PfaÆan) generators of A� as above. Therefore, for a map like

O  2V4O(�3)
(de)
 S
3
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to exist, one d�wi; i 2 fe; f; gg has to be a linear combination of the others. But

this is obvious by Remark 4.7, because

dimh(d�we)
3jL; (d

�wf)
3jL; (d

�wg)
3jLi = dimhae; af; agi = 2:

Remark 4.9. After tensoring with V4 the three collinear elements

(d�we)
3jL; (d

�wf)
3jL; (d

�wg)
3jL 2 L

of the previous proposition, they clearly generate the ideal of the variety Ua of

Proposition 4.3.

Remark 4.10. By Proposition 4.3 and the previous Remark 4.9, we see that Ua

must be contained in

V7;d�wi
� P6(V ); i 2 fe; f; gg:

Because Ua and V7;d�wi
's are all 3-dimensional, we conclude that the V7;d�wi

's are

either non-reduced, or reducible. In the former case and by Proposition 1.8 part

(2) we can argue that the d�wi's are not general points of P
2(W 0).

Clearly at this stage information about the nature of the three points d�we,

d�wf , d
�wg 2 W

0 must be supplied. Therefore in the next proposition we are going

to give a (slightly) computational analysis of the general picture we are dealing

with.

Proposition 4.11. Let Ua be as in Proposition 4.3. Then the three points d�we,

d�wf and d�wg 2 W
0 lie on the curve y51y3 + y52y1 + y53y2 � 5y21y

2
2y

2
3 = Hes(y31y2 +

y32y3 + y33y1) = 0, the Hessian of the Klein quartic f 0Klein in P2(W 0).

Proof. What follows is restricted to the open part of P2(W )0 := f(v1 : v2 : v3) 2

P2(W )j v1v2v3 6= 0g. In this way we lose three points of Q which, however, will be

completely treated in the next section.

1. Q and C are isomorphic, so let (v1 : v2 : v3) 2 Q � P2(W )0; then we get

a =

�
1;
v1

v3
;
v2

v1
;
v3

v2

�
= (v1v2v3 : v21v2 : v22v3 : v23v1) 2 C, namely a top-left

entry of a matrix � 2 ��1(B).

2. Let fx 2 P3(U 0)j a�x = 0g = he; di. To simplify the computations we

assume d0 = 0; then we get d =

�
0;

1

v1
;
1

v2
;
1

v3

�
= (0 : v2v3 : v1v3 : v2v1) and

let e = (1; e1; e2; e3) (up to scalar).
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3. As in the proof of Proposition ref�bre, assume e 2 C. We saw in Lemma 2.11

that in general there are 3 such e's. Notice that this means that he; di is a

tri-secant of C in P3(U 0). Let fx 2 P3(U 0)j e�x = 0g = ha; wi with w0 = 0.

4. The point of P2(W 0)0 which yields ea
V4 up to scalar, as in Proposition 1.8,

is given by d�w = (d3w3 : d1w1 : d2w2) := (y1 : y2 : y3). We are abusing the

notation, because actually we should be working with elements of W 0, not

its projectivization.

In other words

ea
 V4 = I3(d3w3 : d1w1 : d2w2):

Hence e =

�
1;
y1v3

y2v1
;
y2v1

y3v2
;
y3v2

y1v3

�
.

5. If e is a solution of a�, the following equations have to vanish

a�e =

8>>><>>>:
y2y3v

2
1 + y3y1v

2
3 � y

2
2v3v1 := �1

y3y1v
2
2 + y1y2v

2
1 � y

2
3v1v2 := �2

y1y2v
2
3 + y2y3v

2
2 � y

2
1v2v3 := �3:

Let S be the variety in P2(W )�P2(W 0) de�ned by �1; �2 and �3, and consider

the projections

P2(W )� P2(W 0) � S
p1

.
p2

&

P2(W ) P2(W 0):

It is easy to see that v1v3y3�1+ v1v2y1�2+ v2v3y2�3 = y1y2y3 � (v
3
1v2+ v32v3+ v33v1),

thus p1(S \P
2(W )0�P

2(W 0)0) = Q\P2(W )0. Furthermore p1 is generically 3 : 1.

In the same way, but through a computation with Maple, we see that

v21v
2
2v

2
3y

3
3y2 � (y

5
1y3 + y52y1 + y53y2 � 5y21y

2
2y

2
3)

2 2 I(�1; �2; �3);

thus p2(S \ P
2(W )0 � P2(W 0)0) = fy

5
1y3 + y52y1 + y53y2 � 5y21y

2
2y

2
3 = 0g \ P2(W 0)0.

Observe that the initial restriction to P2(W )0 does not change the result, in fact

starting with (1 : 0 : 0) 2 W we get the elements (0 : 1 : 0); (0 : 0 : 1) 2 Hes(Q0),

and by the usual action of PSL2(Z7) on Q this is enough.

In Table 4.1 we show this construction, and by abuse of notation we identify

vectors and their projective classes.
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Table 4.1: Construction of 3 points in Hes(Q0) from v 2 Q � P2(W )

v 2 Q � P2(W )

#

a 2 C � P3(U 0)

#

S = fx 2 U 0j a�x = 0g � P3(U 0)

3-secant of C at e; f; g

#

ha; wki = fx 2 U
0j k�x = 0g

3-secants of C: k 2 fe; f; gg
�!

d�wk 2 Hes(Q0) � P2(W 0)

d 2 S; k 2 fe; f; gg

& .

ak = (d�wk)
3jL 2 L

k 2 fe; f; gg

hae; af; agi � P6(L)

3-secant of P2(W 0)3jL � P6(L)
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Remark 4.12. The construction of the last proof associates to every point of

Q � P2(W ) three points of Hes(Q0) which we know are determined by a and the

trisecant of C � P3(U 0) via the product �. Then, by Proposition 4.8, the projective

classes of their third power restricted to L lie on a trisecant of P2(W 0)3jL � P6(L).

Moreover observe that p2(S) is, by construction, a PSL2(Z7)-invariant curve.

The Hessian of Q0 seemingly carries special information about V7;y � P6(V ), for

y 2 P2(W 0). And in fact for every y 2 Hes(Q0) there is some v = p1(p
�1
2 (y)) 2 Q

that, by the results of this section and the previous construction, determines a

variety V7;y � P6(V ) which is either non-reduced, or reducible.

All the results of this section can be summarised in the next proposition.

Proposition 4.13. Let [�] 2 B be a general boundary point of H(�), i.e. [�] 2

B nB0 � H(�) and a is not a cusp.

Then the degenerate (1; 7)-polarised abelian variety A� associated to � is the

intersection of a 3-fold Ua of degree 7 and a Calabi-Yau 3-fold.

Moreover Ua is generated by three distinct collinear points of P6(L) tensored by

V4. These are images of three points of Hes(Q0) � P2(W 0) uniquely determined by

the top-left entry a 2 C of �.

Proof. By Remark 4.7 we know that the ideal generated by the minors of � is also

generated by the image of six points fp1; : : : ; p6g 2 W
0 as in (1.9).

By Proposition 4.8 we know that the images in P6(L) of three of these six points,

say fp1; p2; p3g are collinear, and by Remark 4.9 we know that (once tensored by

V4) they generate the ideal of a 3-fold Ua of degree 7 and are determined by a.

Clearly we have that A� = Ua \ V7;pi for any i 2 f4; 5; 6g.

Finally, by Proposition 4.11 we know that fp1; p2; p3g � Hes(Q0) � P2(W 0).

Remark 4.14. From the previous proposition we can draw a crucial comparison

with the (1; 5)-polarisation case, see [BHM87], where a general degeneration is a

translation scroll over an elliptic curve embedded in a certain P4.

Because our boundary B is birational to the Kummer surface parameterising

translation scrolls, we could expect a similar picture, maybe over an elliptic curve

in P6(V ) somehow determined by a 2 C �= Q � P2(W ), which is however not

isomorphic to the Klein curve in P2(W 0) � P6(V ) as a curve with PSL2(Z7)-action.

Therefore a degeneration like A� would be contained in some V7;a0 , where a
0 2 W 0

de�nes a secant variety over the above elliptic curve, see Proposition 1.8 part (1).
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Certainly this does not occur so far for the general degeneration of our case,

because as we saw, the points fp1; p2; p3g as before do not lie in general on the Klein

quartic. The only possibility is that such an a0 can be found among fp4; p5; p6g,

but not de�ned by a, otherwise the degeneration would be uniquely de�ned by a

and we would end up with the same degeneration for every point of the �bre in B

over a, which is certainly not the case, because the minors of matrices of distinct

orbits in P(M)s span di�erent 3-spaces of L, and therefore once tensored with V4

they determine di�erent surfaces in P6(V ).

In our case, so far, the �rst degeneration of six points in P2(W 0) is not given

by the multiplicity, but by the failure of Proposition 1.9 part (2), namely by the

fact that the images of three of the six points in P6(L) do not span a plane, but a

line only.

The obvious question now is: \are the translation scrolls in our picture? And

if yes, what are they parameterised by in H(�)?"

4.3 Degenerations arising from B0 � B

At this stage degenerations of this sort are relatively simple to describe. First of

all we assume that we are working with an element [�] 2 B0, therefore we can

assume that

� =

0B@ a 0

b d

0 e

1CA :

Furthermore we assume that a is not the image of a cusp of Q; that case will be

treated in the next section.

Proposition 4.15. Let � be as above, then the degeneration of (1; 7)-polarised

abelian variety A� it determines is the intersection of two 3-folds Ua and Ue of

degree 7.

Moreover Ua (resp. Ue) is generated by three distinct collinear points of P6(L)

tensored by V4. These are images of three points fp1; p2; p3g (resp. fp1; p4; p5g) of

Hes(Q0) � P2(W 0) uniquely determined by the top-left entry a 2 C (resp. bottom-

right entry e 2 C) of �.

Proof. Everything works as in the proof of Proposition 4.13, moreover the same

argument holds for the sub-matrix
�
a

b

�
of � and for the 3-fold Ue it determines, see

Proposition 4.3.
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Notice that Ue is generated by ea
V4 and eb
V4, whereas ea
V4 and ad
V4

generate Ua. Therefore p1 is the pre-image in W
0 of ae 2 L. Or, if we set b and d

to be in C, exactly as in Proposition 4.4 we get p1 equals d
�b = b�d 2 W 0.

Finally notice that in place of V7;p4 and V7;p5 of Proposition 4.13 we have used

Ue, which is clearly contained in both.

Figure 4.1: Con�guration in P6(L) related to B0

�

�

�

�

�

�

�

�

�

�

�
�

A

A

A

A

A

A

A

A

A

A

A
A

� �

�

� �

� P
6(L)

Remark 4.16. In the notation of this section we see that if a and e are gen-

eral, namely are not cusps of C, by Lemma 2.11 then the �ve points of Propo-

sition 4.15 are distinct, and so we are left again with the interpretation of the

varieties parametrised by B0. If those were elliptic or tangent scrolls over an ellip-

tic curve E, then by Table 3.1 any of them would intersect P2(W 0) with multiplicity

respectively (2; 2; 2) and (3; 1; 1; 1), which is not the case here.

Moreover, by Proposition 1.1 in [CH98], we see that an elliptic scroll in P6(V )

contains three elliptic curves, and so if B0 was the space parameterising elliptic

scrolls, a �bre over an element like a 2 C should intersect three suitable distinct

�bres at each of the three points of intersection with B0. This means that the

degenerate twisted cubic curve de�ned by [�] 2 B0 should be the union of three

straight lines all meeting at a point. But with a simple argument about a P1 of

conics (like those in fa = 0g � P3(U) de�ned by the �bre over a), we get that a

case like that cannot occur.

4.4 Degenerations over cusps

In this section we study the boundary points of H(�) over cusps. As we will see,

this can be done by hand, and it will be a good example of how we recover the 21
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cubic generators, or more precisely the 3 G7-modules V4, from the syzygies that

de�ne a degeneration.

Here we are going to study the �bre of H(�) over (the image in C of) a speci�c

cusp of Q. This is enough because the action of PSL2(Z7) permutes the cusps of

Q. Notice that the action of PSL2(Z7) on L induces an action on H(�) as well, if

we view an element of H(�) as a 3-dimensional subspace of L. Alternatively we

can take the action of PSL2(Z7) on the entries (in U 0) of a matrix � representing

a point in H(�).

As usual let [�] 2 B � H(�), and

� =

0B@ a 0

b d

c e

1CA :

We assume that �11 = u1. Then as before hd; ei = hu2; u3i, and after setting

d = u2 and e = u3, we get

� =

0B@ u1 0

�u3 u2

��u0 + �u3 u3:

1CA : (4.5)

Notice that if (� : �) = (0 : 1), the corresponding matrix, and therefore element

of B, lies on the intersection of the three P1's over the cusps u1; u2 and u3.

Proposition 4.17. Let � be as in (4.5). Then the 21 cubics it determines de�ne

a variety A� of the following type:

1. If � 6= 0 6= � , 7 quadric surfaces, each contained in some P3 � P6(V ). As a

con�guration in VSP(Q; 6) this corresponds to a double point and two single

points on a line in P2(W 0), plus a second double point,

2. (a) if � = 0, 7 double planes in P6(V ). Then we get that the related con�gu-

ration in VSP(Q; 6) is a quadruple point plus a double point in P2(W 0),

(b) if � = 0, 14 planes in P6(V ). The related con�guration in VSP(Q; 6) is

given by three double points in P2(W 0).

Proof. We �rst compute the 3-dimensional linear subspace E of L spanned by the

minors of �

E = h�(u0u2 + u23)� �(u2u3); u1u3; u1u2; i;
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or via the SL(Z7)-isomorphism as in Remark 2.14

E = h�(v2v
2
3)� �(v

2
3v1 � v

3
2); v

2
1v2 � v

3
3; v

2
2v3 � v

3
1i:

This amounts to saying that, as shown in the proof of Proposition 4.4, the 21

generators of A�, and more precisely the top, middle and bottom V4's are

V t
4 = ��fxixi+1xi+6gi2Z7 + �fxix

2
i�1xi+2 + x2i+1xi�2gi2Z7;

V m
4 = fxixi+2xi+5gi2Z7;

V b
4 = fxixi+3xi+4gi2Z7:

By (1.1) we get the following facts:

Pfa�(M 0
7(x; (1 : 0 : 0)) = Pfa�(�) = fxixi+3xi+4gi2Z7;

Pfa�(M 0
7(x; (0 : 1 : 0)) = Pfa�(�) = fxixi+1xi+6gi2Z7;

Pfa�(M 0
7(x; (0 : 0 : 1)) = Pfa�(�) = fxixi+2xi+5gi2Z7:

and

V (Pfa�(�)) =
S
i2Z7
fxi = xi+2 = xi+5 = 0g [

S
i2Z7
fxi = xi+1 = xi+6 = 0g;

V (Pfa�(�)) =
S
i2Z7
fxi = xi+2 = xi+5 = 0g [

S
i2Z7
fxi = xi+3 = xi+4 = 0g;

V (Pfa�(�)) =
S
i2Z7
fxi = xi+3 = xi+4 = 0g [

S
i2Z7
fxi = xi+1 = xi+6 = 0g:

Thus the middle and bottom V4's are, respectively, Pfa�(�) and Pfa�(�).

Therefore, the P1 of degenerations over the cusp u1 = (0 : 1 : 0 : 0) 2 C � P3(U 0),

corresponding to (0 : 1 : 0) 2 Q � P2(W ), takes place set-theoretically in the

following seven projective subspaces

V (Pfa�(�)) \ V (Pfa�(�)) =
[
i2Z7

fxi = xi+1 = xi+6 = 0g � P6(V ):

The variety A� de�ned by the above 21 cubics are:

1. if � 6= 0 6= � ,

A� = fxi = xi�1 = xi+1 = �xi+2xi+5 � �xi+3xi+4 = 0gi2Z7,

2. (a) if � = 0,

A� =
[
i2Z7

fxi = xi+1 = xi+2 = xi+3 = 0g with a double structure,

(b) if � = 0,

A� =
[
i2Z7

fxi = xi+1 = xi+2 = xi+4 = 0g [ fxi = xi+1 = xi+2 = xi+5 =

0g.
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In terms of the con�gurations in VSP(Q; 6) related to these degenerations,

and then related to con�gurations in H(�), we see that E, viewed as a subset of

L � S3W 0, determines via (2.13) a 4-dimensional vector space of L� = L � S3W ,

namely

fE = 0g = hy1y2y3; y1y
2
2; y3y

2
1; �(y2y

2
3) + �(y23y1 � y

3
2)i;

and this allows us to recover the matrix  in (2.12):

 =

0BBBB@
y1 0 0

��y2 y3 0

�y3 0 y2

��y3 �y2 �y1

1CCCCA
whose minors are precisely the elements in fE = 0g.

Furthermore they are the generators of the ideal of the six points de�ning the

(degenerate) element we still call � of VSP(Q; 6), which is

� =
n
(0 : 0 : 1)� 2; (1 : 0 : 0)� 2; (0 : 1 : +

p
�=�); (0 : 1 : �

p
�=�)

o
:

We �nally study the three possible cases:

1. If � 6= 0 6= � , the embedded point at (0 : 0 : 1) is a tangent vector along

f+�y2 + �y1 = 0g, whereas (1 : 0 : 0) points along fy3 = 0g. Observe that

� viewed in H(�) determines a smooth conic in fu1 = 0g union the line

fu2 = u3 = 0g.

2. (a) If � = 0, then � degenerates to two points:

the quadruple point (0 : 0 : 1), whose ring of regular function is

C [y1 ; y2]=(y
2
1; y1y2; y1 � y

3
2)
�= C � C y2 � C y22 � C y32 ;

and therefore it points along fy1 = 0g with multiplicity 4.

The double point (1 : 0 : 0) points along fy3 = 0g.

� viewed in H(�) determines the special smooth conic fu0u2 + u23 =

0g � fu1 = 0g union the line fu2 = u3 = 0g.

(b) If � = 0, then (1 : 0 : 0) points along fy3 = 0g, (0 : 1 : 0) points

along fy1 = 0g and (0 : 0 : 1) points along fy2 = 0g. � viewed in

H(�) determines the union of fu1 = u2 = 0g, fu1 = u3 = 0g and

fu3 = u2 = 0g in P3(U).
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Figure 4.2: � 2 VSP(Q; 6) over a cusp
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Remark 4.18. Case 2a is the only one where the surface A� is not generated by

V7;(0:0:1) and V7;(1:0:0), in other words by V7;y, where y 2 � 2 VSP(Q; 6). Notice that

Remark 4.7 holds.

Remark 4.19. Figure 4.3 represents the elements of the canonical basis of P6(V )

with an irreducible component of a degeneration A� over the cusp u1. The three

degenerate elliptic curves corresponding to the cusps u1; u2 and u3 are the three

possible chains of seven projective lines joining two elements of the basis and

invariant under the cyclic action of Z7 on the indexes. By the same action we can

focus our attention on the projective 3-spaces fx0 = x1 = x6 = 0g where one of

the irreducible components lives.

1. The general degenerate (1; 7)-abelian surface over a cusp is given by the

union of seven quadric surfaces. The surface on fx0 = x1 = x6 = 0g is given

by the product of the projective lines through e2; e3 and e4; e5 shifted by

(� : �), namely �x2x5 � �x3x4 = 0.

2. When (� : �) ! (1 : 0) the quadric surface splits in two projective planes,

namely fx0 = x1 = x2 = x6 = 0g and fx0 = x1 = x5 = x6 = 0g. The total

of 14 projective planes are divided into 7 pairs of coinciding planes by the

cyclic action of Z7, hence we get the double structure.
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Figure 4.3: An irreducible component of a degeneration over a cusp
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3. Finally, when (� : �) ! (0 : 1), the quadric surface again splits in two

projective planes, namely fx0 = x1 = x3 = x6 = 0g and fx0 = x1 = x4 =

x6 = 0g. This time the 14 projective planes are all di�erent under the cyclic

action of Z7. This is the most special degeneration, because it lies on the

only point where the �bres over the cusps u1; u2 and u3 intersect.

Remark 4.20. The result of Proposition 4.17 highlights a di�erence with the

results by [BHM87] on the (1; 5) case. The combinatorics in that case tells us that

when the quadric surfaces in P4 split up |exactly as in Remark 4.19| into 10

planes, in both the splits one gets 5 pairs of coinciding planes. This can be seen

easily with the corresponding picture and an argument as above. And in fact in

the (1; 5) case, the multiplicity of the six points over cusps is (2; 2; 1; 1) or (4; 2),

but not (2; 2; 2).

We remind the reader that all the results of this chapter are summarised in

Theorem A in the summary.



Appendix A

Representation theory of G7 and

SL2(Z7)

Here, we follow [MS01]. As mentioned in Section 1.2, if V = C (Z7), then the

Heisenberg group H7 := H1;7 is generated by

�(xi) = xi�1;

�(xi) = �i(xi);

where � := exp(2�i=7). The Galois group � of Q (�) over Q acts on H7: let � be

the generator given by �(�) = �3. Then �3= complex conjugation.

The irreducible H7-module V produces �ve more modules by the composition

with the automorphisms �i 2 �. Denote by Vi the representation H7
�i

! H7 !

Aut(V ). These six representations are inequivalent, as one sees computing their

characters, and together with the characters of Z7�Z7 these are all the irreducible

characters of H7.

We equip V = C (Z7) with the canonical basis feigi2Z7, where ei(l) = Æil. If

fxigi2Z7 is the dual basis of V _ = V3, then the action of � and � on V and on

V _ = V3 = H0(O(1)) is given by

�(ei) = ei�1 �(xi) = xi�1

�(ei) = �i(ei) �(xi) = ��i(xi):

We recall that G7 := H7 o h�i, where � 2 SL(V ); �x(i) = �x(�i).
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A.1 Character table of G7 and useful formulae

We set f�g to be the conjugacy class containing only the central element f�g 2 �7;

Cm;n = f(�;m; n); (�;�m;�n)j � 2 �7g and (m;n) 6= 0;

C� = f(�;m; n)�j m;n 2 Z7g:

There are 7 classes f�g, 24 classes Cm;n, each containing 14 elements, and 7

classes C�, each containing 49 elements. We denote by Z the sum of all 24 Zs;t.

With this notation we get the character table of G7 (Table A.1), where the

column ? gives the corresponding representation

Table A.1: Character table of G7

f�g Cm;n C� F

1 1 1 I

7�i(�) 0 �i(�) Vi

1 1 -1 S

7�i(�) 0 ��i(�) V
#
i

2 �sm+tn + ��sm�tn 0 Zs;t

We have the following formulae, with the notation V = V0 and 
 = 
P6(V ):

Vi 
 Vi = 3Vi+2 � 4V #
i+2

Vi 
 Vi+1 = 3Vi+4 � 4V
#
i+4

Vi 
 Vi+2 = 3Vi+1 � 4V #
i+1

Vi 
 Vi+3 = I � Z

^2Vi = 3Vi+2

^3Vi = Vi+1 � 4V
#
i+1

^4Vi = Vi+4 � 4V #
i+4

^5Vi = 3Vi+5

^6Vi = Vi+3

^7Vi = I

S2Vi = 4V #
i+2

S3Vi = 8Vi+1 � 4V
#
i+1

S4Vi = 10Vi+4 � 20V #
i+4

S5Vi = 38Vi+5 � 28V
#
i+5

S6Vi = 56Vi+3 � 76V #
i+3

S7Vi = 8I � 28S � 35Z

H0(OA(1)) = V3

H0(OA(2)) = 4V #
5

H0(OA(3)) = 5V4 � 4V
#
4

H0(OA(4)) = 6V1 � 10V #
1

H0(OA(5)) = 13V2 � 12V #
2

H0(
3(3)) = 0

H0(
3(4)) = ^3V = V1 � 4V #
1

H0(
3(5)) = 16V2 � 16V
#
2

H0(
3(6)) = 56V � 64V #

H0(
3(7)) = 24I � 24S � 49Z
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A.2 The group SL2(Z7)

First of all we need some notation:

� =
p
�7

�+ = (1 + �)=2

�� = (1� �)=2

�1 = � � �6

�2 = �4 � �3

�1 = �2 � �5

�1 = � + �6

�2 = �4 + �3

�3 = �2 + �5

Then we have the following equalities:

� + �2 + �4 = ���

�3 + �5 + �6 = ��+
�1 + �2 + �3 = �

�1�2�3 = �

�1 + �2 + �3 = �1

�1�2�3 = 1

and
�21 = �3 � 2

�22 = �1 � 2

�23 = �2 � 2

�1�2 = �3 � �2

�2�3 = �1 � �3

�3�1 = �2 � �1

��1 = �1 � 2�2

��2 = �2 � 2�3

��3 = �3 � 2�1

the general shape of an element A of N = H7 o SL2(Z7) is:

Ajk = �
1
p
7
�aj

2+bjk+ck2+dj+ek+f (a; b : : : f 2 Z7; b 6= 0)

Ajk = ��
aj2+bj+cÆj;dk+e (a; b : : : e 2 Z7; d 6= 0) where the signs are chosen to have

det(A) = 1.

For convenience of computation, it is useful to identify some elements in N and

their images in SL2(Z7):

�x(j) = x(2j) (resp. �ej = ej=2) with �� =

 
2 0

0 4

!
2 SL2(Z7)

�x(j) = �j
2

x(j) (resp. �ej = �j
2

ej) with �� =

 
1 0

2 1

!
2 SL2(Z7)

Æx(j) =

r
�1

7

X
k

�kjx(k) (resp. Æej =

r
�1

7

X
k

�kjek) with

�Æ =

 
0 �1

1 0

!
2 SL(Z7):

Observe that Æ2 = � and that the elements in SL2(Z7) are given according to

����1 = �2

����1 = � 4
��� = ��1

�� � = ��1
����1 = �4�1�2�� 2

����1 = �

Æ�Æ�1 = �

Æ�Æ�1 = ��1

We reproduce here the
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Table A.2: Character table of SL2(Z7)

id � � �� � �3 ��3 �� Æ

id �id �� ��� �� ��3 ���3 ��� �Æ (
22

52

) (
52

55

) F

1 1 56 56 24 24 24 24 42 42 42

1 1 1 1 1 1 1 1 1 1 1 I

8 -8 -1 1 1 1 -1 -1 0 0 0 M1

8 8 -1 -1 1 1 1 1 0 0 0 M2

7 7 1 1 0 0 0 0 -1 -1 -1 L

4 -4 1 -1 �� �+ ��+ ��� 0 0 0 U

4 -4 1 -1 �+ �� ��� ��+ 0 0 0 U 0 = U�

6 -6 0 0 -1 -1 1 1 0
p
2 �

p
2 T1

6 -6 0 0 -1 -1 1 1 0 �
p
2
p
2 T2

6 -6 0 0 -1 -1 -1 -1 2 0 0 T

3 3 0 0 ��+ ��� ��� ��+ -1 1 1 W

3 3 0 0 ��� ��+ ��+ ��� -1 1 1 W 0 =W �

We indicate here also the multiplication table of characters of SL2(Z7):

M1 
M1 = I � 3M2 � 3L� 2T �W �W 0

M1 
M2 = 3M1 � 2U � 2U 0 � 2T1 � 2T2

M1 
 L = 3M1 � U � U
0 � 2T1 � 2T2

M1 
 U = 2M2 � L� T �W

M1 
 U
0 = 2M2 � L� T �W

0

M1 
 T1 = 2M2 � 2L� 2T �W �W 0

M1 
 T2 = 2M2 � 2L� 2T �W �W 0

M1 
 T = 2M1 � U � U
0 � 2T1 � 2T2

M1 
 T = 2M1 � U � U
0 � 2T1 � 2T2

M1 
W = M1 � U � T1 � T2

M1 
W
0 = M1 � U

0 � T1 � T2
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M2 
M2 = I � 3M2 � 3L� 2T �W �W 0

M2 
 L = 3M2 � 2L� 2T �W �W 0

M2 
 U = 2M1 � U � T1 � T2

M2 
 U
0 = 2M1 � U

0 � T1 � T2

M2 
 T1 = 2M1 � U � U
0 � 2T1 � 2T2

M2 
 T2 = 2M1 � U � U
0 � 2T1 � 2T2

M2 
 T = 2M2 � 2L� 2T �W �W 0

M2 
W = M2 � L� T �W

M2 
W
0 = M2 � L� T �W

0

L
 L = I � 2M2 � 2L� 2T �W �W 0

L
 U = M1 � U � U
0 � T1 � T2

L
 U 0 = M1 � U � U
0 � T1 � T2

L
 T1 = 2M1 � U � U
0 � T1 � 2T2

L
 T1 = 2M1 � U � U
0 � 2T1 � T2

L
 T = 2M2 � 2L� T �W �W 0

L
W = M2 � L� T

L
W 0 = M2 � L� T

U 
 U = L� T �W

U 
 U 0 = I �M2 � L

U 
 T1 = M2 � L� T �W
0

U 
 T2 = M2 � L� T �W
0

U 
 T = M1 � U
0 � T1 � T2

U 
W = T1 � T2

U 
W 0 = M1 � U
0

U 0 
 U 0 = L� T �W 0

U 0 
 T1 = M2 � L� T �W

U 0 
 T2 = M2 � L� T �W

U 0 
 T = M1 � U � T1 � T2

U 0 
W = M1 � U

U 0 
W 0 = T1 � T2

T1 
 T1 = I � 2M2 � L� T �W �W
0

T1 
 T2 = 2M2 � 2L� T

T1 
 T = 2M1 � U � U
0 � T1 � T2

T1 
W = M1 � U
0 � T1

T1 
W
0 = M1 � U � T1

T2 
 T2 = I � 2M2 � L� T �W �W
0

T2 
 T = 2M1 � U � U
0 � T1 � T2

T2 
W = M1 � U
0 � T2

T2 
W
0 = M1 � U � T2
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T 
 T = I � 2M2 � L� 2T

T 
W = M2 � L�W
0

T 
W 0 = M1 � L�W

W 
W = T �W 0

W 
W 0 = I �M2

W 0 
W 0 = T �W

A.3 Decompositions of SL2(Z7) representations

Consider now the decomposition of V into eigenspaces of �:

V = V� � V� where:

V� = spanfe1 � e6; e4 � e3; e2 � e5g

V� = spanf2e0; e1 + e6; e4 + e3; e2 + e5g:
Restricting �; � and Æ to V� and V� respectively, one gets:

�+ =

0B@ 0 0 1

1 0 0

0 1 0

1CA ; �� =

0BBBB@
1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1CCCCA ;

�+ = diag(�; �4; �2); �� = diag(1; �; �4; �2);

Æ+ =

r
�1

7

0B@ � � �6 �2� �5 �4 � �3

�2� �5 �4 � �3 � � �6

�4 � �3 � � �6 �2� �5

1CA ;

Æ� =

r
�1

7

0BBBB@
1 1 1 1

2 � + �6 �2 + �5 �4 + �3

2 �2 + �5 �4 + �3 � + �6

2 �4 + �3 � + �6 �2 + �5

1CCCCA :

From the character table of SL2(Z7) one sees that, as a SL2(Z7)-module, V =

W 0�U 0 and from the above computations one gets concrete realisations ofW 0 and

U 0, namely W 0 = V� and U 0 = V�.

Furthermore the following computations play a crucial role:

S2W = T

S3W = L�W 0

S4W = I �M2 � T

S2W 0 = T

S3W 0 = L�W

S4W 0 = I �M2 � T:
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If we denote by

v1 = e1 � e6; v2 = e4 � e3 and v3 = e2 � e5

the chosen basis ofW 0, then the only SL2(Z7)-invariant quartic is the Klein quartic:

fKlein = v31v2 + v32v3 + v33v1:

Notice also that

S2U 0 = L�W 0:

We choose as basis for L � S2U 0 the following elements:

f0 = u20; f1 = u2u3; f2 = u3u1; f3 = u1u2;

f4 = u0u3 + u21; f5 = u0u1 + u22; f6 = u0u2 + u23;

and as basis for W 0 the elements

v2 = u0u3 � u
2
1; v3 = u0u1 � u

2
2; v1 = u0u2 � u

2
3:

Then in the decomposition

S3V3 = (I � U 0 � L)
 V4

the elements corresponding to fje0 are given by

f0e0 = x1x2x4 + x3x5x6 � x
3
0 f1e0 = x0x1x6 f4e0 = x22x3 + x25x4

f2e0 = x0x2x5 f5e0 = x24x6 + x23x1

f3e0 = x0x3x4 f6e0 = x21x5 + x26x2

(A.1)

From here one obtains all fjek via cyclic permutation, in other words via the action

of �.
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The Klein quartic Q

We think this interesting curve deserves some space in this thesis, so we give the

following presentation that was suggested by Alastair King. We use the notation

(�)0 for the dual of a vector space. The interested reader can �nd a beautiful and

classic treatise on this topic in [Kle79], where most of these material can be found.

Notice that all the notation is consistent with A.2 and A.3.

Let X(7) be the abstract modular curve of level 7. It is embedded in the

projective plane P2(W ) by the canonical linear system W 0 = H0(X(7); !), where

! is the canonical line bundle. There is a choice of basis v1; v2; v3 for W
0 so that

the homogeneous coordinate vector (v1; v2; v3) of a point in the concrete model

Q � P2(W ) of X(7) satis�es

fKlein = v31v2 + v32v3 + v33v1 (B.1)

The simple group G = PSL2(Z7) of order 168 acts on the Klein quartic as its full

automorphism group.

The space W 0 is a 3-dimensional `fundamental' representation of G: it is faith-

ful, of minimal dimension and all other irreducible representations are contained

in spaces of tensors over it.

Note thatW 0 is unimodular but not self-dual, i.e. W �= ^2W 0 6�= W 0, and so it is

important to distinguish W and W 0, and consequently P2(W ) and P2(W 0). In par-

ticular, P2(W 0) also contains a unique G-invariant quartic Q0, which is isomorphic

to Q as an abstract curve, but not as a curve with G-action.

PSL2(Z7) also has a 4-dimensional projective representation U = H0(Q; !3=2).

In other words, U is a representation of the central extension bG = SL2(Z7) in which

the centre �1 acts non trivially. It is necessary to pass to this central extension
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to lift the G-action to the chosen square root !1=2 of the canonical bundle. In the

case of Q there is a natural choice (see [Kle79], Section 9). The representation U

is also unimodular and is also not self-dual.

We give some results we use in the thesis. Consider the kernel R of the multi-

plication map

U 
W 0 ! H0(Q; !5=2):

Taking a certain basis a0; a1; a2; a3 for U , the kernel R has a basis of `bilinear

relations'

v1a1 + v2a2 + v3a3 = 0

v1a0 � v3a1 = 0

v2a0 � v1a2 = 0

v3a0 � v2a3 = 0

(B.2)

which can be written either as

�
a0 a1 a2 a3

�
0BBBB@
0 v1 v2 v3

v1 �v3 0 0

v2 0 �v1 0

v3 0 0 �v2

1CCCCA = 0; (B.3)

or �
v1 v2 v3

�0B@a1 a0 �a2 0

a2 0 a0 �a3

a3 �a1 0 a0

1CA = 0 (B.4)

Thus the consistency conditions for the bilinear system B.2 are

det

0BBBB@
0 v1 v2 v3

v1 �v3 0 0

v2 0 �v1 0

v3 0 0 �v2

1CCCCA = �
�
v31v2 + v32v3 + v33v1

�
= 0; (B.5)

and

rank

0B@a1 a0 �a2 0

a2 0 a0 �a3

a3 �a1 0 a0

1CA � 2 (B.6)

i.e. the system of cubics (2.4),. . . ,(2.7).
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This latter system gives the equations satis�ed by the embedding of X(7) in

the projective 3-space P3(U 0) by the linear system U . In this thesis we have called

C this concrete curve in P3(U 0).

Note further that the bilinear system (B.2) also implies a further system of

equations

0B@a1 a0 �a2 0

a2 0 a0 �a3

a3 �a1 0 a0

1CA
0BBBB@

0 �v2v3 �v3v1 �v1v2

v3v2 0 v21 �v23

v1v3 �v21 0 v22

v1v2 v23 �v22 0

1CCCCA = 0 (B.7)

These 12 equations are a basis for the kernel of the multiplication map

U 
 S2W 0 ! H0(Q; !7=2):

The PfaÆan of the second matrix in (B.7) is simply the Klein's quartic equation

(B.1) again. This matrix also reects the isomorphism

S2W �= �2U 0 � Hom(U; U 0):

In [Kle79] the system (B.6) and most of (B.2) are worked out via another

relationship between U and W 0, namely the isomorphism

S2U �= H0(Q; !3) �= S3W 0:

This is expressed explicitly by the following system of equations, the �rst seven of

which make up the summand L:

a2a3 = v2v
2
3 a1a2 = v1v

2
2 a3a1 = v3v

2
1 a20 = v1v2v3 (B.8)

2a0a1 + a22 = v21v2 � v
3
3 2a0a2 + a23 = v22v3 � v

3
1 2a0a3 + a21 = v23v1 � v

3
2

while the three others make up the summand W

2a0a1 � a
2
2 = 3v21v2 + v33 2a0a2 � a

2
3 = 3v22v3 + v31 2a0a3 � a

2
1 = 3v23v1 + v32 :

Note that the right hand sides are the derivatives of the Klein quartic. Combina-

tions of the last six equations give expressions for the various other monomials:

a0a1 = v21v2 a0a2 = v22v3 a0a3 = v23v1

a22 = �(v
2
1v2 + v33) a23 = �(v

2
2v3 + v31) a21 = �(v

2
3v1 + v32)

v33 = �(a0a1 + a22) v31 = �(a0a2 + a23) v32 = �(a0a3 + a21)

(B.9)



APPENDIX B. THE KLEIN QUARTIC Q 74

These equations easily imply three of the four equations in (B.2) in the following

form which Klein records in [Kle79], Equation (43).

a1

a0
=
v1

v3

a2

a0
=
v2

v1

a3

a0
=
v3

v2

The remaining equation is then e�ectively the equation of the quartic itself, which

follows by computing e.g. (a1a2)
2 in two di�erent ways. Note that the system (B.9)

can not follow directly from (B.2) because the later is unchanged by independent

rescaling of the variables, while the system above determines (a0; a1; a2; a3) from

(v1; v2; v3) up to a sign. However, (B.2) does imply (B.9) up to a single overall

constant of proportionality.
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