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Summary

We study orthogonal modular varieties associated with the moduli of generalised Kum-

mer manifolds. We are particularly interested in understanding the singularities that

arise in certain toroidal compactifications. Throughout, we place particular emphasis

on the application of these results to problems involving the birational classification of

moduli spaces.
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Chapter 2
Index of Notation

An The positive definite even lattice corresponding to the An root system

(see also [CS99]).

Cn The cyclic group of order n.

D(L) The discriminant group L∨/L of L.

DL A Hermitian symmetric domain of type IV defined as the component of

ΩL fixed by the group O+(L).

DvL The rational quadratic divisor DvL = {[x] ∈ DL | (x, v) = 0} for v ∈ L.

E8 The positive definite even unimodular lattice of rank 8 corresponding to

the E8 root system (see also [CS99]).

FL(Γ) The orthogonal modular variety Γ\DL where L is a lattice of signature

(2, n) and Γ ≤ O+(L).

FL6,2p2
The orthogonal modular variety FL(Γ) where L = L6,2p2 and Γ is the

group O+(L6, h
s
2p2) defined in Theorem 4.0.6.

L∨ The dual lattice of the lattice L.

L(m) The lattice whose Gram matrix is equal to that of L multiplied by m.

L2n,2d The lattice 2U ⊕ 〈−2n〉 ⊕ 〈−2d〉.

Mk(Γ, χ) The space of weight-k modular forms with character χ for the group Γ.

nL The direct sum L⊕ L⊕ . . .⊕ L (n times).

O(L) The orthogonal group of the lattice L.
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O+(L) The spinor kernel of the group O(L).

Õ(L) The stable orthogonal group of the lattice L. (See Equation 3.2).

O(m,n) The indefinite orthogonal group of type (m,n).

ΩL The space defined by ΩL = {[x] ∈ P(L⊗ C) | (x, x) = 0, (x, x) > 0}.

Qp The p-adic numbers.

U The hyperbolic plane: the even unimodular lattice of signature (1, 1).

By a standard basis of U , we mean one for which the Gram matrix has

the form ( 0 1
1 0 ).

Zp The p-adic integers.
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Chapter 3
Introduction

A classical problem in moduli theory is to determine the Kodaira dimension of a moduli

space M. For many moduli spaces, such as the moduli of abelian varieties and the

moduli of K3 surfaces, strong results exist [O’G89], [San97] [Tai82] [GHS07] [Kon93].

However, for many other moduli spaces, less is known. In particular, there are few

specific results for families of irreducible symplectic manifolds.

Families of irreducible symplectic manifolds are especially appealing classes of ob-

jects to work with. Because of the existence of a period map fromM to an orthogonal

modular variety F (see Chapter 4 of [GHS13]), one may prove results about the Kodaira

dimension of M by studying the modular variety F , as in [GHS10]. This frequently

results in interesting problems involving lattices and modular forms.

One typically expects the orthogonal modular variety F to be of general type and

this can often be proved by using a technique known as the the low-weight cusp form

trick (see §3.7). This approach involves understanding the growth behaviour of spaces

of modular forms satisfying certain conditions determined by the geometry of a com-

pactification F of F . In particular, one needs to pay attention to the boundary of F ,

the branch locus of F and, in many cases, the singular locus of F .

This approach was used in [GHS07] to show that almost all of the components

of the moduli of K3 surfaces are of general type. It has also been used to study the

moduli of two of the known families of irreducible symplectic manifolds: in particular,

8



the moduli of deformation K3[2] manifolds in [GHS10] and the moduli of O’Grady’s

10-dimensional irreducible symplectic manifold in [GHS11].

All of the general type results in [Kon93], [GHS07], [GHS10] and [GHS11] are for

orthogonal modular varieties of high dimension. In high dimension, the low-weight

cusp form trick can be applied without having to consider the singularities. This is

because there exists a compactification F with only canonical singularities (Theorem

5.26 of [GHS13]). In lower dimensions, such compactifications might not exist and

one therefore needs a more detailed understanding of the singularities in F and the

conditions that they impose.

Here we study such a low dimensional example: a toroidal compactification of

the orthogonal modular variety associated with the moduli of deformation generalised

Kummer 4-folds of split polarisation of degree 2p2 where p is an odd prime.

We pay particular attention to the singularities in these spaces and describe a

set of divisors whose union contains the non-canonical part of the singular locus in

the interior, as well as the branch divisor. We also discuss the problem of extending

pluricanonical forms to a resolution of singularities and give some information about

the types of singularities that may occur.

We also study the boundary. In particular, we study the 1-dimensional boundary

components. We give some bounds on the number of such boundary components and we

provide bounds for the number of components of the singular locus in such a boundary

component. We also give some information about the non-canonical singularities that

may occur.

3.1 Irreducible symplectic manifolds

A generalised Kummer manifold is an example of an irreducible symplectic manifold.

Irreducible symplectic manifolds arise naturally in a number of settings: they generalise

K3 surfaces and are one of the three building blocks of compact Kähler manifolds

with trivial canonical bundle. Indeed, up to a finite cover, all such manifolds can be

decomposed as a product of abelian varieties, Calabi-Yau manifolds, and Irreducible
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symplectic manifolds [Bog74]. We outline some of the theory below, paying particular

attention to their moduli. More detailed surveys can be found in [GHS13] and [GHJ03].

Our approach mostly follows [GHS13].

Definition 3.1.1. A compact complex Kähler manifold X is called an irreducible sym-

plectic manifold if

1. X is simply connected

2. H0(X,Ω2
X) ∼= Cω where ω is an everywhere non-degenerate holomorphic 2-form.

Note that, in particular, all irreducible symplectic manifolds have even complex

dimension 2n. The irreducible symplectic manifolds have not been classified, but all

currently known examples are deformation equivalent to one of four types:

1. K3[n] type which are given by the length n Hilbert scheme S[n] = Hilbn(S)

parametrising n points on a K3 surface S [Bea83].

2. Generalised Kummer varieties, which are defined as follows: if A is an abelian

surface and A[n+1] is the length n+ 1 Hilbert scheme Hilbn+1(A) with the mor-

phism p : A[n+1] → A given by addition on A, the associated generalised Kummer

variety is the fibre p−1(0) [Bea83].

3. O’Grady’s 6-dimensional example, which is given in terms of a certain moduli

space of sheaves on an abelian surface and depends on 6 parameters [O’G03].

4. O’Grady’s 10-dimensional example, which is given in terms of a certain moduli

space of sheaves on a K3 surface and depends on 22 parameters [O’G99].

A great deal of information is encoded in the cohomology group H2(X,Z). As

for K3 surfaces, H2(X,Z) comes with the structure of a lattice. That is, an integral

symmetric bilinear form. For irreducible symplectic manifolds, this lattice structure is

given by the Beauville-Bogomolov form [Bea83]. We define the Beauville-Bogomolov

form below. Suppose thatX is an irreducible symplectic manifold of complex dimension
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2n and let the Hodge decomposition of H2(X,C) be given by

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,1(X).

If ω ∈ H2,0(X) is normalised so that
∫
X(ωω)n = 1, we define q′ by

q′X(α) =
n

2

∫
X
α2(ωω)n−1 + (1− n)

(∫
X
αωn−1ωn

)(∫
X
αωnωn−1

)
.

One can show that after possibly normalising q′ by a suitable positive constant, one

obtains a lattice on H2(X,Z) with quadratic form q. By a result of Fujiki [Fuj87], there

exists c ∈ Q>0 (the Fujiki invariant) such that if α ∈ H2(X,Z) then

α2n = cqX(α)n

where α2n is given by the intersection product on H2(X,Z).

The Beauville lattices of the known irreducible symplectic manifolds were computed

in [Rap07] [Rap08] and are given by:

1. Deformation K3[n]: 3U ⊕ 2E8(−1)⊕ 〈−2(n− 1)〉

2. Generalised Kummer: 3U ⊕ 〈−2(n+ 1)〉

3. O’Grady’s 6 dimensional example: 3U ⊕ 〈−2〉 ⊕ 〈−2〉

4. O’Grady’s 10 dimensional example: 3U ⊕ 2E8(−1)⊕A2(−1).

(For lattice theoretic notation, see Chapter 2.)

3.2 Moduli of irreducible symplectic manifolds

We now show that moduli spaces parametrising polarised irreducible symplectic man-

ifolds exist, and we explain how they are related to orthogonal modular varieties via

the period map. Our treatment broadly follows [GHS13].

Let X be an irreducible symplectic manifold with Beauville lattice L = H2(X,Z).

A polarisation on X is defined as a choice of ample line bundle L on X. We shall call a
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pair (X,L) consisting of an irreducible symplectic manifold X and a polariation L for

X a polarised irreducible symplectic manifold. Once we have selected a polarisation

L for X, we can identify it with its first Chern class h := c1(L) ∈ H2(X,Z). Our

polarisations will be assumed to be primitive. That is, h ∈ H2(X,Z) will be assumed

to be a primitive lattice vector. The polarisation type of L is defined as the O(L)-

orbit of h. The degree of L is the length h2 = 2d of h in L. The numerical type

of the polarised irreducible symplectic manifold (X,L) is the tuple consisting of the

dimension 2n of X, the Beauville lattice L, the Fujiki invariant c and the polarisation

type h. The numerical type of (X,L) will be denoted by N .

In order to define the period map, we need to define marked families of irreducible

symplectic manifolds.

Definition 3.2.1. Let X be an irreducible symplectic manifold with Beauville lattice

L. Suppose that the polarisation type of (X,L) is represented by h ∈ L which will be

taken as fixed. A marking on X is a isomorphism

φ : H2(X,Z)→ L.

If (X,L) is a polarised irreducible symplectic manifold with c1(L) = h ∈ L, then a

marking φ on X is said to be a polarised marking if φ(c1(L)) = h.

If X is marked by φ then we can define its period point. We define the domain

ΩL = {[x] ∈ P(L⊗ C) | (x, x) = 0, (x, x) > 0}

and consider the Hodge decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

The marking φ defines an obvious map from H2(X,C) to ΩL. Any symplectic form

ω generating H2,0(X) satisfies the property that (ω, ω) = 0 and (ω, ω) > 0 and so

[φ(ω)] ∈ ΩL. We call [φ(ω)] the period point of (X,φ).
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For a flat family ρ : X → U , a marking φ on the central fibre X0 of ρ can be

extended to the whole family by defining

φU : R2ρ∗ZU → LU

where LU is the constant sheaf with fibre L on U . One then obtains a holomorphic

map πU : U → ΩL by sending each point in U to its period. We call this map the

period map defined by the family ρ : X → U and the marking φ. We wish to define

a period map for the moduli MN of irreducible symplectic manifolds of fixed numeric

type N . We begin by stating some facts about MN .

By Viehweg’s results [Vie95], there is a moduli spaceMN parametrising irreducible

symplectic manifolds of fixed numerical type N . The spaceMN is quasi-projective and

exists as a group quotient in the sense of GIT.

In general, if S is the set of polarized irreducible symplectic manifolds of fixed

numeric type N then, by Matsusaka’s big theorem and a result of Kollár and Matsusaka

[Mat72] [KM83], there exists N0 ∈ Z so that L⊗N0 is very ample for all (X,L) ∈ S.

Therefore, for all (X,L) ∈ S, the linear system L⊗N0 embeds X into Pm−1 where m =

h0(X,L⊗N ). From the Hilbert scheme Hilbp(Pm−1), where p is the Hilbert polynomial

of the line bundle L, we select an irreducible component H that contains at least

one smooth irreducible symplectic manifold X, and from H we take the open part

Hsm parametrising smooth manifolds. One can show that there is universal family

Ssm → Hsm and that the group SL(m,Z) acts on Hsm. Crucially, each componentM′N

of MN is of the form Hsm/ SL(m,Z), and so one can define a period map on MN by

defining a polarised marking on each universal family Ssm → Hsm. Any two markings

differ by an element in the group O(L, h) = {g ∈ O(L) | g.h = h} and so the period

map descends to a map from Hsm → ΩL\O(L, h). Furthermore, one can show that this

map factors through the action of SL(N,C) on Hsm. By noting that ω and h are such

that (ω, h) = 0, it is easy to see that the image lies in the set ΩL,h = {[x] ∈ h⊥} ∩ ΩL

and so one obtains a holomorphic map π′ :MN → ΩL,h\O(L, h). The domain ΩL,h has

two components that are interchanged by elements in O(L, h) of negative spinor norm
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(see Definition 3.5.10) and so ΩL,h\O(L, h) is isomorphic to DLh
\O+(L, h) where DLh

is one of the connected components of ΩL,h and O+(L, h) is the kernel of the spinor

norm on O(L, h). We shall instead consider the map

π :MN → DLh
→ O+(L, h)\DL.

The varieties ΩL,h\O(L, h) and DLh
\O+(L, h) are examples of orthogonal modular

varieties (see also Section 3.4). By a result of Baily and Borel [BB66] they are quasi-

projective and, therefore, by a result of Borel [Bor72], the map π is a morphism of

quasi-projective varieties.

3.3 The Torelli theorems

As in the case of K3 surfaces, one can prove a number of Torelli theorems for irreducible

symplectic manifolds.

Theorem 3.3.1. (The Local Torelli Theorem) [Bea83] [Bog74] If X is an irreducible

symplectic manifold and p : X → U is a representative of the Kuranishi family of

deformations of X with sufficiently small contractible base, then the differential of the

period map pU is an isomorphism. Therefore, the period map is a local isomorphism.

If ML is the moduli of marked irreducible symplectic manifolds with Beauville

lattice L then (as in Section 3.2) one can define a map

p :M′L → ΩL

from each component M′L of ML by mapping each manifold to its period. By the

following theorem of Huybrechts, the map p is surjective.

Theorem 3.3.2. [Huy99] If L is the Beauville lattice of an irreducible symplectic

manifold and M′L is non-empty then the period map

p :M′L → ΩL
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is surjective.

As for K3 surfaces, one also has a Hodge theoretic Torelli theorem. It should be

noted, however, that this theorem is somewhat weaker than the K3 case. In order to

state it, we must firstly define Markman’s monodromy operators [Mar08] [Mar] [Mar10].

We follow [GHS13].

Let X1 and X2 be irreducible symplectic manifolds that are isomorphic to the fibres

over b1, b2 ∈ B of a smooth, proper flat family

π : X → B

under the isomorphisms α1 and α2, respectively. The map

f : H∗(X1,Z)→ H∗(X2,Z)

is said to be a parallel transport operator if there exists a continuous path

γ : [0, 1]→ B

such that γ(0) = b1, γ(1) = b2 and the parallel transport in the local system Rπ∗Z

along γ induces an isomorphism

(α−1
2 )∗ ◦ f ◦ α∗1 : H∗(Xb1 ,Z)→ H∗(Xb2 ,Z).

If X is an irreducible symplectic manifold, then an element

g ∈ Aut(H∗(X,Z))

is called a monodromy operator if it is a parallel transport operator for X1 = X2 = X.

The group of monodromy operators is denoted by Mon(X) and the image in O(L) is

denoted by Mon2(X). The group Mon2(X) has been characterised by Giovanni Mon-

gardi for deformation generalised Kummer manifolds and O’Grady’s 10 dimensional
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example in [Mon14]. We can now state the Hodge theoretic Torelli theorem, which is

due to Markman [Mar11] and uses the results of Verbitsky [Ver13].
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Theorem 3.3.3. (Hodge Theoretic Torelli) Suppose that X1 and X2 are irreducible

symplectic manifolds

1. If

f : H2(X2,Z)→ H2(X1,Z)

is an isomorphism of integral Hodge structures which is a parallel transport oper-

ator, then X1 and X2 are bimeromorphic.

2. If, in addition, f maps a Kähler class of X2 to a Kähler class of X1, then X1

and X2 are isomorphic.

3.4 Orthogonal modular varieties

Let L be a lattice of signature (2, n) with n ≥ 3 and let O(L) be the orthogonal group

of L. The group O(L) acts naturally on symmetric space ΩL where

ΩL = {[x] ∈ P(L⊗ C) | (x, x) = 0, (x, x) > 0}.

The space ΩL has two connected components. These components are interchanged by

elements in O(L) of negative spinor norm. To simplify matters, we pick one of the

components and call it DL. It is fixed by the kernel of the spinor norm O+(L).

Definition 3.4.1. If Γ ≤ O+(L) is a subgroup of finite index, then we call quotients

of the form

FL(Γ) = Γ\DL

orthogonal modular varieties. We may sometimes broaden this definition to arithmetic

subgroups Γ ≤ O+(L).

Orthogonal modular varieties can be studied from a number of different angles.

They are examples of locally symmetric varieties, i.e. they are quotients of a symmetric

space by a discrete group of automorphisms; they are complex analytic spaces; by the

results of Baily and Borel [BB66], they are quasi-projective; and, if Γ is torsion free,

they are complex manifolds.
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The elliptic elements of Γ are especially important to us as they determine the

branch locus of the cover

π : DL → FL(Γ)

and careful attention needs to be paid to the branch locus if one tries to prove general

type results using the low-weight cusp form trick (see Section 3.7). The branch locus of

π is precisely the image of points in DL that are fixed by elliptic elements (elements of

finite order) in Γ. The branch locus can have both a smooth and a singular part. The

stabiliser in Γ of any fixed point in DL(Γ) is a finite subgroup of Γ and, by a theorem

of Cartan [Car57], the action can be locally linearised. Therefore, the singularities of

FL(Γ) are finite quotient singularities, i.e. they are locally isomorphic to quotients of

the form Cn/G where G < GL(n,C) is a finite subgroup. By a theorem of [Che55],

Cn/G is smooth if and only if G is generated by quasi-reflections. We recall that

a quasi-reflection g is an elliptic element of GL(n,C) with 1 as an eigenvalue ξ of

multiplicity n − 1. If ξ = −1, then g is called a reflection. By a result of [GHS07]

(Corollary 2.13), if n > 2 the elements of Γ that act as quasi-reflections correspond

precisely to ±σ ∈ Γ where σ is a reflection. Therefore, the smooth part of the branch

locus of FL(Γ) corresponds precisely to the image of points in DL that a are fixed only

by ±σ ∈ Γ where σ is a reflection.

3.5 Lattices

In this section, we collect some of the lattice theoretic results and definitions that will

be needed later. Particular emphasis will be placed on their classification as this plays

a significant role in many of our later results. More detailed treatments can be found

in [Kit93], [Cas78] and [CS99].

Definition 3.5.1. A lattice L is an integral symmetric bilinear form. Equivalently, L

is a finitely generated Z-module in an Q-vector space V so that V is endowed with a

symmetric bilinear form (−,−) that is integral on L.

If x2 = (x, x) is even for all x ∈ L, we say that L is an even lattice. By the rank of
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L, we mean the rank of L as a Z-module.

Definition 3.5.2. If L is a lattice in the vector space V , the orthogonal group O(L)

of L is defined by

O(L) = {g ∈ GL(V ) | (gx, gy) = (x, y) ∀x, y ∈ L}.

For many purposes, the above definition of a lattice is sufficiently general. How-

ever, when we discuss the classification of lattices it becomes necessary to work with

lattices defined over the p-adic numbers and for these purposes it becomes convenient

to introduce a broader definition.

Definition 3.5.3. For a prime p, a Zp-lattice is a finitely generated Zp-module in a

Qp-vector space. We also permit p to formally assume p = −1 and, in such a case, we

let Zp = Z and Qp = Q.

3.5.1 The classification problem

We start by introducing some invariants. If L is a lattice with bilinear form B

then, by Sylvester’s law of inertia, there exists M ∈ GL(n,R) so that tMBM =

diag(−1, . . . ,−1, 1, . . . , 1). If n+ and n− denote the number of positive and negative

terms in this decomposition then the pair (n+, n−) is called the signature of the lattice.

If n+n− < 0, then L is said to be indefinite; otherwise, L is said to be definite. If L is

definite and n+ > 0 (n− > 0), L is said to be positive (negative) definite. We define

the determinant of L det(L) by detB.

By the classification of lattices, we mean a classification up to class or integral

equivalence.

Definition 3.5.4. If L1 and L2 are lattices in the vector space V , then we say that

L1 and L2 belong to the same class (or that L1 and L2 are integrally equivalent, or

isomorphic) if there exists σ ∈ O(V ) such that

σ(L1) = L2.
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The set of all lattices in the same class as the lattice L is denoted by cls(L).

It turns out that the method of classification depends strongly upon the signature of

the lattice. In the indefinite case, the classification is given in terms of p-adic invariants:

either the the genus or a refinement of the genus called the spinor genus. Subject to

minor restrictions, one can show that the notions of spinor genus, genus, and class

coincide. The classification can then be given in terms of the genus (which is usually

easy to express). Indeed, we shall establish some simple notation for the genus later.

The full details of the classification of indefinite lattices are lengthy and lie outside the

scope of this introduction. Two good references on the subject, with an emphasis on the

arithmetic aspects, are [Kit93] and [Cas78]. Our intention here is mostly to introduce

the main results of the classification, and introduce Conway’s genus notation. Much of

our approach will follow [CS99] §15.

In the definite case, the genus and spinor genus are far weaker invariants and the

classification is instead given in terms of combinatorial algorithms: either the reduction

algorithms of Gauss and Minkowski, or the glueing theory of Kneser and Niemeier. We

shall not say much about the classification of definite lattices other than to say that

tables have been produced for lattices of low rank and small determinant and that the

classification of higher rank lattices tends to be impractical due to the complexity of

the algorithms involved. More details may be found in [CS99].

3.5.2 The genus

We now introduce the first p-adic invariant: the genus. If L is a lattice in a Q-vector

space V , we define Lp := L⊗ Zp and Vp := V ⊗Qp.

Definition 3.5.5. If L1 and L2 are lattices in the Q-vector space V , we say that L1

and L2 belong to the same genus if for every prime p and p =∞ there exists σp ∈ O(Vp)

so that

(L1)p = σp(L2).

The set of all lattices in the same genus as L1 is denoted by gen(L1).
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The genus arises naturally when one tries to prove statements via local-global argu-

ments (that is, understanding the ‘global’ Z-lattice L by studying the ‘local’ properties

of Lp for all primes p). Such results can be quite strong. For example, one can consider

the classical problem of representability of an integer by a lattice. We say that an

integer a is representable by a lattice L if there exists x ∈ L such that (x, x) = a. One

can prove the following statements.

Theorem 3.5.6. [Cas78] Let L be a regular lattice and let a ∈ Z be non-zero. If a

is represented by Lp for all primes p (and p = −1), then a is represented (over Z) by

some H ∈ gen(L).

Theorem 3.5.7. [Cas78] Let L be a regular lattice of rank n ≥ 4 and let a ∈ Z be

non-zero. If a is represented by Lp for all primes p (and p = −1) then a is represented

by L over Z.

When studying the classification of lattices one finds that, in the most general

setting, the genus of a lattice defines a strictly weaker equivalence relation than the

class. For example, 〈1〉⊕ 〈82〉 and 〈2〉⊕ 〈41〉 belong to the same genus but they do not

belong to the same class [Cas78].

In order to obtain stronger statements, one can consider a refinement of the genus:

the spinor genus. In particular, the spinor genus usually contains at most one class.

Moreover, one can show that subject to minor restrictions, the class, genus and spinor

of a lattice all coincide. Following [CS99] §15, we define some notation to describe the

genus of a lattice. The first step is to introduce the p-adic Jordan decomposition.

Theorem 3.5.8. [CS99] If L is a lattice and p 6= 2 then Lp can be diagonalised over

Zp. If p = 2, then Lp can be written as an orthogonal product of Zp lattices whose

forms are given by

(qx) and

qa qb

qb qc


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where q is a power of 2, a and c are divisible by 2 but 2 divides neither of x nor b nor

d = ac− b2.

We can therefore express Lp as

Lp = L1 ⊕ pLp ⊕ p2Lp
2 ⊕ . . .⊕ qLq ⊕ . . . (3.1)

where each Lq is a p-adic unit form. That is, a Zq-lattice whose determinant is coprime

to p (if p ≥ 2) or a positive definite form p = −1. The factors qLq are called Jordan

constituents of L and the decomposition given in Equation (3.1) is called the Jordan

decomposition of L. The number q is called the scale of the factor qLq.

If p 6= 2 then, from the decomposition given in Equation (3.1), we define the di-

mensions nq = dimLq and the signs

εq =

(
detLq

p

)

where the left-hand is the Legendre symbol of detLq for the prime p.

We now define the p-adic symbol. For p 6= 2, we can define the p-adic symbol of

the lattice L from the Jordan decomposition given in Equation (3.1). If p = −1, this

is defined as the formal product

+n+−n−

where (n+, n−) is the signature of L.

If p > 2, the p-adic symbol of L is defined as the formal product of the terms

qεqnq .

For p 6= 2, two lattices are equivalent over Zp if and only if they have the same p-adic

symbol ( [CS99] §15.7). In order to define a complete set of invariants for the genus of

a lattice, one also has to consider p = 2. In this case, there are slightly more invariants
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to consider. If L has a 2-adic decomposition given by

L = L1 ⊕ 2L2 ⊕ 4L4 ⊕ . . .⊕ qLq ⊕ . . .

The term qLq has invariants consisting of

(i) The scale q of qLq

(ii) The type Sq of Lq which assumes the value I or II (see below)

(iii) The dimension nq = dimLq

(iv) The sign

εq =

(
detLq

2

)

(v) The oddity tq of Lq (see below).

The type Sq of Lq is defined to be I if qLq represents an odd multiple of q; otherwise,

Sq is defined to be II. One can also show that Sq = I if and only if there is an odd

entry on the main diagonal of the matrix representing Lq; otherwise, II. If Sq = I, the

oddity tq is defined as the trace of Lq read modulo 8; otherwise, tq = 0.

We can now define the 2-adic symbol of the Jordan decomposition. If p = 2, the

2-adic symbol of the Jordan decomposition given by (3.1) is a formal product of terms

of the form

q
εqnq

tq

if Lq is of type I; or

qεqnq

if Lq is of type II.

Neither the p-adic Jordan decomposition of L nor its associated p-adic symbol are

unique. Therefore, there is an associated equivalence relation on all the possible p-adic

symbols of a lattice. This equivalence can be given in combinatorial terms, but is a

little lengthy to state. For details see [CS99] (§15 7.5).
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Given the p-adic symbols of L, we write

Ir,s(. . . q
±m
t . . .) or IIr,s(. . . q

±m
t . . .)

where I or II correspond to the type of the 2-adic form L1 (sometimes called the parity

of L); the subscripts r, s is the −1-adic symbol +r−s (i.e. the signature of the lattice);

and the terms q±mt run over all of the factors p-adic symbols for p ≥ 2. It can be shown

that the above notation expresses the genus of L [CS99].

3.5.3 The spinor genus and the spinor norm

One can also study lattices in terms of a refinement of the genus: the spinor genus. The

spinor genus takes a little more work to define, but one is rewarded with significantly

stronger results; in particular, one obtains strong general results on integral equivalence.

If V is a regular quadratic space of dimension n > 2 over a field k where char k 6= 2

then, for all v ∈ V is such that v2 6= 0 then the reflection σv ∈ O(L) in v is defined as

the map

σv : x 7→ x− 2
(x, v)

(v, v)
v

for all x ∈ V . We define O(V ) = {g ∈ GL(V ) | (gx, gx) = (x, x) ∀x ∈ V }.

Theorem 3.5.9. [Cas78] For V as above, O(V ) is generated by reflections.

Definition 3.5.10. If g ∈ O(V ) is such that g = σv1 . . . σvs then the spinor norm

snV (g) of g is defined by

snV (g) = −(v1, v1)

2
. . .

(vs, vs)

2
k∗/(k∗)2.

One can show (see [Cas78], §10, for example) that this definition is a well defined

group homomorphism. (We remark that our definition of the spinor norm has a different

sign convention than many other sources.) If L is a lattice in V , the spinor norm on
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O(L) will be taken to mean the restriction to O(L) ≤ O(V ) of the spinor norm on

O(V ). The kernel of the spinor norm on O(V ) is denoted by O+(V ). We define the

groups O+(L) := O+(V ) ∩O(L) and SO+(L) := O+(L) ∩ SO(L) etc.

Definition 3.5.11. If L1 and L2 are lattices in the Q-vector space V , we say that L1

and L2 belong to the same spinor genus if there exists η ∈ O(V ) such that for all primes

p there exists δp ∈ O(L1) such that

η(L2) = δp((L1)p)

for all p.

We denote the spinor genus of a lattice L by sg(L). It is clear that

sg(L) ⊂ gen(L) ⊂ cl(L).

The number of spinor genera contained in a genus can be determined effectively and is

always finite and a power of 2 ( [Cas78] §11). It is clear that classifying spinor genera

is somewhat more involved than classifying genera. It is therefore desirable to know

when the two notions conincide. In fact, this happens quite often.

Theorem 3.5.12. ( [Cas78] §11, Theorem 1.3 ) Let L be a lattice of determinant d in

the quadratic space V . If genL contains more than one spinor genus then at least one

of the following occur:

1. There is an odd prime p such that pn(n−1)/2 | d

2. 2n(n−3)/2+[(n+1)/2] | d.

(where [(n+ 1)/2] denotes the integral part of (n+ 1)/2.)

Remarkably, the notions of spinor genus, genus and class all coincide for indefinite

lattices of rank greater than or equal to three.

Theorem 3.5.13. ( [Cas78] §11, Theorem 1.4) If L is an indefinite lattice of dimension

n ≥ 3, then cls(L) = sg(L).
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This is a particularly useful result as it allows one to work at the level of the genus

and still obtain strong classification results.

3.5.4 The Discriminant form

The discriminant group D(L) of an even lattice L is the abelian group is defined by

D(L) = L∨/L

(where L∨ is the dual lattice of L). The discriminant group comes with a Q/2Z-valued

quadratic form (the discriminant form) inherited from L. We shall often denote this

form by q. Many lattice theoretic results can be succinctly expressed in terms of the

discriminant form (which is due to Nikulin). For more details, the reader is referred

to [Nik79b]. A particularly useful fact, that we use often, is that the signature and

discriminant form of a lattice form a set of invariants for the genus ( [Nik79b] Corollary

1.9.4). From the discriminant form on L, one can can also define a natural subgroup

(the stable orthogonal group) Õ(L) of O(L) by

Õ(L) := {g ∈ O(L) | g = id} (3.2)

where g denotes the natural action of g on D(L). The group Õ(L) is particularly

important in moduli theory and the theory of orthogonal modular forms and has the

useful property that if S ≤ L then Õ(S) ≤ Õ(L) (see [GHS13] Lemma 7.1, cf. [Nik79b]

Proposition 1.15.1).

3.5.5 The two dimensional space groups

For later applications, we need to know about the orthogonal group O(B) of a definite

lattice B of rank 2. The group O(B) is, of course, finite and by the crystallographic

restriction theorem ( [Sen95] p. 50), if g ∈ O(B) then g has order 1, 2, 3, 4 or 6 and B
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admits a basis such that g is given by ±I2 or by

1 0

0 −1

 if χg(x) = φ1(x)φ2(x)

 0 1

−1 −1


±1

if χg(x) = φ3(x)

0 −1

1 0


±1

if χg(x) = φ4(x)

0 −1

1 1


±1

if χg(x) = φ6(x).

3.6 Orthogonal modular forms

We start with a definition. More details can be found in [GHS13].

Definition 3.6.1. If L is a lattice of signature (2, n) where n ≥ 3 and Γ ≤ O+(L) is

of finite index with character χ : Γ→ C∗ then a weight k (k ∈ Z) modular form F for

Γ with character χ is defined as a holomorphic function F : D•L → C (where D•L is the

affine cone of D) such that

F (tZ) = t−kF (Z) ∀t ∈ C∗

F (gZ) = χ(g)F (Z) ∀g ∈ Γ

and F is called a cusp form if it vanishes at each cusp of DL.

Definition 3.6.2. If Γ < O(L) is of finite index and χ : Γ → C∗ is a character of Γ

we denote the space of weight k modular forms for Γ with character χ by

Mk(Γ, χ)
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and the subspace of cusp forms by

Sk(Γ, χ)

respectively.

We shall often omit the character χ and refer simply to Mk(Γ) and Sk(Γ).

3.7 Kodaira dimension of Orthogonal modular varieties

Recall that the Kodaira dimension of a smooth projective variety X is defined by

κ(X) = trdeg
⊕
k≥0

H i(X, kKX)− 1

or by −∞ if H i(X, kKX) = 0 for all k > 0. Equivalently, as h0(X, kKX) ∼ kκ(X) for

sufficiently divisible k, one can define κ(X) in terms of the growth of the kth plurigenus

h0(X, kKX) of X. In the case κ(X) = dim(X), we say that X is of general type.

Many orthogonal modular varieties F are of general type. This can often be proved

by using special modular forms to produce pluricanonical forms. This method is based

on the fundamental observation (the Hirzebruch-Mumford proportionality principle)

that if Γ is a discrete subgroup of O(2, n) then the dimension of the space of weight-

k modular forms for Γ grows like kn. Therefore, if one can produce pluricanonical

forms from a sufficiently large subspace of Mk(Γ), then one should arrive at general

type results. We discuss Hirzebruch-Mumford proportionality in more detail in Section

3.9. It is straightforward to construct a pluricanonical form on the regular part of

a modular variety from a modular form. However, in order to prove general type

results, one must also check that the forms constructed extend to a smooth projective

model F̃ of the modular variety F . In order to solve this extension problem, one needs

to understand the geometry of the branch locus, the singularities and the boundary

components of a suitable compactification in order to determine which modular forms

define pluricanonical forms on F̃ . From this point, we will take F to mean a toroidal

compactification of F and F̃ to mean a desingularisation of F .

One method of producing pluricanonical forms on F from special modular forms
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is the low-weight cusp form trick (see [GHS13] pp. 497-499). Here one starts with a

cusp form Fa of weight a < n and a modular form G(n−a)k of weight (n− a)k and one

defines the modular form

Fnk := F kaG(n−a)k

and the differential form

Ωnk := Fnk(dZ)k

where dZ = dz1 ∧ . . .∧ dzn is a volume form on the regular part of D. The form Ωnk is

Γ-invariant and therefore descends to a differential form ωnk on F that defines a section

of the pluricanonical bundle of F away from the cusps and away from the branch locus.

The form Ωnk has zeros of order k along along the boundary of F and therefore, by the

results of [AMRT10], ωnk defines a section of the pluricanonical bundle of F away from

the branch locus. We must therefore understand the conditions imposed by the branch

locus of F on Fnk so that ωnk extends to F̃ . As explained in Section 3.4, the smooth

part of the branch locus corresponds precisely to the fixed locus of elements in Γ that

act as quasi-reflections. These elements are given by ±σ ∈ Γ where σ is a reflection.

Therefore, as can be shown by direct calculation in the spirit of Chapter I of [Rei87],

the form ωnk extends over the smooth part of the branch locus if Fnk vanishes to order

k along the fixed loci of all ±σ ∈ Γ.

One still has to consider the singular part of the branch locus but, in some cases,

the singularities of F do not impose any conditions on Fnk. This is the case if all the

singularities of F are canonical.

Definition 3.7.1. If X is a normal complex variety, we say that X has canonical

singularities if it is Q-Gorenstein and for some resolution of singularities

f : X̃ → X

the discrepancy ∆ = K
X̃
− f∗KX is an effective Weil Q-divisor.

We recall that X is Q-Gorenstein if there exists r ∈ N so that if KX is the canonical

(Weil) divisor KX is then rKX is Cartier. Equivalently, X has canonical singularities
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if for all open U ⊂ X, any pluricanonical form on the smooth part of U extends

holomorphically to a desingularisation Ũ .

3.8 Canonical singularities in orthogonal modular vari-

eties

In order to apply the low-weight cusp form trick, we wish to be able to decide whether

or not a singularity is canonical. As the singularities in an orthogonal modular variety

are all finite quotient singularities, one can use the Reid-Tai criterion. An excellent

introduction to canonical singularities is [Rei87]. Many of the following results can be

found in [GHS07] or [GHS13].

Definition 3.8.1. If g ∈ GL(n,C) is of finite order m > 1 with eigenvalues ζa1 , . . . , ζam

for ζ = e2πi/m, the Reid-Tai sum Σ(g) is defined by

Σ(g) =
m∑
i=1

{ai
m

}

where 0 ≤ {x} < 1 denotes the fractional part of x. We define Σ(1) := 1.

The Reid-Tai criterion is given by the following:

Theorem 3.8.2. [GHS13] If G ≤ GL(n,C) is a finite subgroup not containing quasi-

reflections, then Cn/G is non-canonical if and only if

Σ(g) ≥ 1

for all g ∈ G.

If G contains quasi-reflections, we have a modified version of the Reid-Tai sum due

to Katharina Ludwig:

Definition 3.8.3. If g ∈ GL(n,C) is of finite order m > 1, let k ∈ N0 be minimal with

the property that gk is a quasi-reflection or the identity. Let s be such that m = sk
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and let g have eigenvalues ζa1 , . . . , ζam for ζ = e2πi/m where {ai} are ordered so that

ζka1 = ζkan−1 = 1. The modified Reid-Tai sum Σ′(g) is defined by

Σ′(g) =
{san
m

}
+
∑{ai

m

}

and Σ′(1) := 1. (Note that Σ′(g) = Σ(g) if no power of g is a quasi-reflection.)

For applications, one needs to be able to apply the criteria to each element of G in

turn. In such a case, one can use the following proposition:

Proposition 3.8.4. [GHS13] If G ≤ GL(n,C) is a finite group, then Cn/G has

canonical singularities if Cn/〈g〉 has canonical singularities for all g ∈ G.

And so,

Theorem 3.8.5. [GHS13] If G ≤ GL(n,C) is a finite subgroup, then Cn/G has

canonical singularities if

Σ′(g) ≥ 1

for all g ∈ G.

In order to apply the above results to FL(Γ), one needs to understand the local

action of an isotropy subgroup G ≤ Γ around a point [w] in its fixed locus. Around

[w], the tangent space T[w]DL is locally isomorphic to

T[w]DL ∼= Hom(W,W⊥/W) =: V

where W = C.w ≤ L ⊗ C and the group G acts on W ≤ L ⊗ C as a character

α : G → C∗. In [GHS07], bounds for Σ(g) were produced by carefully studying the

rational representations of g ∈ G on the g-modules

S = (W⊕W)⊥ ∩ L

and

T = S⊥ ≤ L.
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By using this method, (and a similar approach at the boundary) they proved that a

toroidal compactification of FL(Γ) exists with at most canonical singularities whenever

n ≥ 9. In smaller dimensions, however, compactifications with only canonical singular-

ities may not exist. However, some details about these compactifications are known.

A fact that we shall use later (established in the proof of Theorem 2.10 of [GHS07])

is that the non-canonical singularities in an orthogonal modular variety of dimension

n ≤ 5, are fixed by quasi-reflections or elements of order 3, 4 or 6.

3.9 The Hirzebruch-Mumford volume

In order to prove general type results by using the low-weight cusp form trick, we

need to understand the growth of the spaces Mk(Γ, χ). The growth of such spaces is

governed by the Hirzebruch-Mumford proportionality principle. As proved in [GHS08],

the principle implies that

dimMk(Γ) =
2

n!
volHM (Γ)kn +O(kn−1).

The constant volHM (Γ) is known as the Hirzebruch-Mumford volume of the group Γ.

The Hirzebruch-Mumford volume essentially compares the volume of Γ\DL with the

volume of the compact dual D(c)
L . Each of these volumes may be expressed in terms of

the Tamagawa measure of O(L) and, due to a result of Siegel, one can compute these

volumes by local methods in terms of the local densities αp(L) of L. Here,

αp(S) =
1

2
limr→∞ p

− rn(n−1)
2 |{X ∈ Matn(Zp) modpr, tXSX ∼= S modpr}|

for a quadratic form S defined by the matrix S ∈Mn(K) over a number field K. Such

local densities can be computed explicitly (as in [Kit93]). In [GHS08], it is proved that

Theorem 3.9.1. If L is an indefinite lattice of rank ρ ≥ 3, then the Hirzebruch-

Mumford volume of O(L) is equal to

VolHM (O(L)) =
2

g+
sp(L)

|detL|(ρ+1)/2
ρ∏

k=1

π−k/2Γ(k/2)
∏
p

αp(L)−1
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where αp(L) are the local densities of L, g+
sp(L) is the number of spinor genera in the

genus of L, and Γ is the gamma function.

They also calculate a number of explicit examples. Moreover, they show (in the

proof of Proposition 4.1) that if M2b(−ηDK) is the subspace of weight 2b modular

forms vanishing on the rational quadratic divisor

DK = {[x] ∈ DL | (x, k) = 0} for k ∈ L, k2 < 0

then

0→M2b(Γ)(−(2 + 2η)DK)→M2b(Γ)(−2ηDK)→M2(b+η)(Γ ∩ Õ
+

(K))

where K = k⊥ ⊂ L. Therefore, if given a list of rational quadratic divisors containing

the singular locus and formulae for their associated Hirzebruch-Mumford volumes, one

can establish results on the growth of the space of modular forms vanishing along the

divisors.

3.10 Statement of results

In this thesis, we study the geometry of a toroidal compactification of the orthogonal

modular variety F2d associated with deformation generalised Kummer 4-folds with a

degree 2d polarisation of split type. If L6,2d = 2U ⊕ 〈−6〉 ⊕ 〈−2d〉, then F2d is the

orthogonal modular variety given by

F2d = Γ6,2d\DL6,2d

where Γ6,2d = O+(L6, h
s
2d) ≤ O(L6,2d) and O(L6, h

s
2d) is the group that we determine

in Theorem 4.0.6. Where no confusion is likely, we shall also denote Γ6,2d by Γ.

As explained in Section 3.7, if one is interested in proving general type results for
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F2d, then it is important to understand the branch locus of

DL6,2p2
→ FL(Γ2p2).

If one seeks an exact solution to this problem, the question of determining the obstruc-

tion in the interior of F2d is mostly a question of determining the conjugacy classes of

finite subgroups in Γ. This, it turns out, is a hard problem. Nevertheless, an estimate

will suffice if one is only interested in proving general type results. Such an estimate is

given by Theorem 5.3.4.

Our intention throughout has been to provide results that are as exact as possible.

In order to use methods that yield good bounds, we have made certain arithmetic

restrictions. The first restriction we make is that we only consider the orthogonal

modular varieties F2d for 2d = 2p2 where p is an odd prime. By doing so, we obtain

better results than we would expect to obtain for arbitrary d. We shall make some

comparisons with the general case in the introduction of Chapters 5.

1. The starting point for our most of our bounds is Theorem 4.0.11.

Theorem 4.0.11. The group O+(L6, h
s
2p2) is of finite index in O+(L6, h

s
2) and

|O+(L6, h
s
2) : O+(L6, h

s
2p2)| ≤ 16(p5 + p2).

Here we show that Γ2p2 is of finite index in Γ2 and provide a bound on the index.

The index estimate comes from studying the action of the orthogonal group on

a finite quadratic space, and using a classical result on the order of orthogonal

groups of finite type in order to arrive at a final sharp bound. Such a problem

was studied in [Kon93] and [Sca87] for the moduli of K3 surfaces, but their results

were not effective. Effective bounds for the number of boundary components in

the moduli of certain abelian surfaces were produced in [HKW93] but by using

very different methods, which do not appear to generalise to our setting.

2. As explained in Section 3.7, if one is interested in proving general type statements
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then only the non-canonical singularities are significant. By a result of [GHS07],

the non-canonical part of the singular locus in the interior is contained in the fixed

loci of certain involutions and 3-torsion elements. In Theorem 5.3.4, we determine

the rational quadratic divisors containing these singularities by adapting a recent

result of Boissière, Nieper-Wißkirchen, and Sarti [BNWS13].

Theorem 5.3.4. If [w] ∈ FL6,2p2
is a non-canonical singularity,

[w] ∈ DvL6,2p2
⊂ DL6,2p2

where DvL6,2p2
is one of, at most, 8(p2 + 1) rational quadratic divisors. The vector

v can be chosen to be of length ±2 or ±2p2.

3. In order to produce general type results by using the low-weight cusp form trick,

one needs to understand when the forms constructed extend to a smooth model of

F2p2 . We provide effective criteria for establishing whether or not a pluricanonical

form extends over the interior obstructions in Theorem 5.4.3.

Theorem 5.4.3. If Ω is a Γ-invariant pluricanonical form on DL6,2p2
, then Ω de-

fines a pluricanonical form on a smooth model of FL6,2p2
if Ω vanishes to suitably

high order over the pre-image of the obstructions under the map

π : DL6,2p2
→ FL6,2p2

.

Moreover, the order of vanishing required can be determined effectively.

This involves lengthy computer calculations (the results of which are given in

Appendix B) involving the Reid-Tai criterion. We only consider the interior

obstructions here, but these results could be extended to the singularities in the

boundary.

4. In Theorem 5.5.3 we classify the possible singularities that can occur in the inte-

rior by using representation theoretic methods.
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Theorem 5.5.3. Around [w] ∈ FL6,2p2
, the space FL6,2p2

is locally isomorphic to

C4/G where G ≤ GL(4,C) and G ∼= G1 × G2 × G3 where G1 is cyclic, and G2

and G3 are binary polyhedral groups. Every element in G has order not exceeding

56 and the action of G on C4 is given precisely by the degree 4 representations of

G, which can be deduced from Appendix A.

Lastly, we study the geometry and combinatorics of the boundary.

5. In Theorem 6.4.3 we count number of rank 2 boundary components in F(Γ2p2).

Theorem 6.4.3. The modular variety FΓ has at most 320(p5 +p2) rank 2 bound-

ary components.

The problem of counting the number of boundary components in a modular

variety was studied for the moduli of abelian surfaces in [HKW93] and the moduli

of K3 surfaces in [Sca87]. We restrict our attention to the rank 2 boundary

components as, by Theorem 6.2.1, these are the important for the purposes of

proving general type results. Besides being intrinsically interesting, the boundary

components can all impose conditions on the space of extensible modular forms.

The number of conditions imposed by the boundary depends on the number of

boundary components, and so one may need an estimate of these in order to

provide dimension formulae. Our approach involves counting isotropic planes in

L6,2 before using the index estimate of Theorem 4.0.11.

6. In Theorem 6.5.3, we provide bounds on the number of components of the singular

locus in a rank 2 boundary component.

Theorem 6.5.3. If (a1, a1a2) = (1, 1) the singular locus of a boundary component

contains of the order of p6 points and p5 lines. The number of surfaces in the

boundary component does not depend on p. If (a1, a1a2) = (1, 2p) the singular

locus of a boundary component contains of the order of p14 points, p12 lines, and

p9 surfaces.
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(The pair of integers (a1, a1a2) depends on the choice of boundary component

and is explained in Lemma 6.3.1.) Here, we take a very different approach to the

study of the singularities in the interior. We describe the neighbourhood of each

rank 2 boundary component explicitly, in terms of coordinates, as the quotient

of a toric variety by the action of an arithmetic group, and we obtain equations

for the fixed points. These equations are solved by studying two classical objects:

the congruence subgroups of SL(2,Z) and the automorphisms groups of definite

integral binary quadratic forms. We find that the components of the fixed locus

correspond to points in a lattice. We let the group act on the lattice and show

that the solutions can be taken to lie inside a box. The final step involves counting

the number of points inside the box.

We think that it is worthwhile to end by comparing these results to the moduli of

abelian surfaces, in which most of the above problems have been solved in a pleasingly

exact way. (For example, [Bra95] [HKW93] [San97].) The moduli space of polarised

(1, t) abelian surfaces is the quotient

At = Γt\H2

where

Γt =


γ ∈ Sp(2,Q) | γ ∈



Z Z Z tZ

tZ Z tZ tZ

Z Z Z tZ

Z 1
tZ Z Z




.

But because of the 2:1 morphism

Sp(2,R)→ SO(2, 3)

there is no harm in thinking of At as an orthogonal modular variety (see [GH98] for

an explict example of this sort of construction). With this picture in mind, the frame-
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work we use to study the orthogonal modular varieties associated with deformation

generalised Kummer varieties can at once be applied to the moduli of abelian surfaces.

The essential difference between the two is that all of the lattice classification problems

that we encounter for the orthogonal modular varieties associated with deformation

generalised Kummer varieties are completely trivial for the moduli of abelian surfaces.
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Chapter 4
Moduli of generalised Kummer varieties

In this chapter, we study the modular group Γ = O+(L2n, hd) ≤ O+(h⊥d ) of a family of

deformation generalised Kummer manifolds. In order to do so, we must first classify

polarisation types. The classification of polarisation types for deformation generalised

Kummer manifolds is essentially identical to the classification for manifolds of K3[2n]

type as the two Beauville lattices differ only by a factor of 2E8(−1). The classification

for the K3[n] case is given in [GHS10], and so we omit the details here.

Proposition 4.0.1. If hd ∈ L2n is primitive of length 2d > 0 with div(hd) = f . Let

g =
(

2n
f ,

2d
f

)
, w = (g, f), g = wg1, f = wf1. Then 2n = fgn1 = w2f1g1n1 and

2d = fgd1 = w2f1g1d1 where (n1, d1) = (f1, g1) = 1.

1. If g1 is even then hd exists if and only if (d1, f1) = (f1, n1) = 1 and d1/n1 is

a quadratic residue modulo f1. Moreover, the number of Õ(L2(n−1))-orbits of hd

with fixed f is equal to w+(f1)φ(w−(f1)).2ρ(f1) where w = w+(f1)w−(f1) and

w+(f1) is the product of all powers of primes dividing (w, f1), ρ(n) is the number

of prime factors of n and φ(n) is the Euler function.

2. if g1 is odd and f1 is even or f1 and d1 are both odd, then such an hd exists if

and only if (d1, f1) = (t1, 2f1) = 1 and −d1/n1 is a quadratic residue modulo 2f1.

The number of Õ(L2n) orbits is equal to w+(f1)φ(w−(f1)).2ρ(f1/2) if f1 is even.

and w+(f1)φ(w−(f1)).2ρ(f1) if f1 and d1 are both odd.
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3. If g1 and f1 are both odd and d1 is even, then such an hd exists if and only if

(d1, f1) = (n1, 2f1) = 1, −d1/(4t1) is a quadratic residue modulo f1 and w is odd.

The number of Õ(L2n)-orbits of such an hd is equal to w+(f1)φ(w−(f1)).2ρ(f1).

4. If c ∈ Z, determined modulo f satisfies (c, f) = 1 and b = (d+ c2n)/f2 then

(hd)
⊥
L2n
∼= 2U ⊕B

where B =

−2b c2n
f

c2n
f −2t

.

Proof. See [GHS10].

Corollary 4.0.2. If w = 1 and if there exists a primitive vector hd ∈ L2n such that

h2
d = 2d and div(hd) = f , then all vectors belong to the same Õ(L2n)-orbit.

Corollary 4.0.3. If f = 1, then for any n and d, there is only one Õ(L2n) orbit of

primitive vectors hd with div(hd) = 1. Moreover, c = 0 and so

(hd)
⊥
L2n
∼= 2U ⊕ 〈−2(n+ 1)〉 ⊕ 〈−2d〉

We define the lattice L2n,2d by

L2n,2d = 2U ⊕ 〈−2n〉 ⊕ 〈−2d〉.

Definition 4.0.4. A polarisation determined by a primitive vector hd ∈ L2n is called

split if div(hd) = 1 and non-split otherwise. If a primitive vector hd ∈ L2n is split, we

indicate this by writing hsd instead of hd.

We shall consider a family of deformation generalised Kummer 4-folds with split

polarisation of degree 2p2 where p > 3 is prime. Because of Corollary 4.0.3, this choice

of split polarisation is an extremely natural one to study.

Later on, we shall be interested in determining the singular locus of F2d and this

involves studying lattice embeddings. In the general case, we are led to arithmetic
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problems regarding the classification of definite lattices, and these make the locus

difficult to describe. However with the assumption that d = 2p2, we can use an idea of

Kondō [Kon93] and regard

2U ⊕ 〈−6〉 ⊕ 〈−2p2〉 ≤ 2U ⊕ 〈−6〉 ⊕ 〈−2〉

and

O+(L6, h2p2) ≤ O+(L6, h2).

This approach allows us to replace problems involving the classification of lattices with

problems of a more combinatorial flavour, which admit a more exact solution. Geo-

metrically, we can think of the inclusion O+(L6, h2p2) ≤ O+(L6, h2) as corresponding

to a finite cover F2p2 → F2.

We now characterise the inclusion O(L6, h
s
2d) ≤ O(L6,2d). We start by outlining the

general theory for O(L, S) = {g ∈ O(L) | g|S ∈ Õ(S)} where S ≤ L is primitive. As

explained in [Nik79b], the inclusion S ⊂ L defines the series of overlattices

S⊥ ⊕ S < L < L∨ < (S⊥)∨ ⊕ S∨.

The overlattice S⊥ ⊕ S is defined by the isotropic subgroup H = L/(S⊥ ⊕ S) and

because

H = L/(S⊥ ⊕ S) < (S⊥)∨/S⊥ ⊕ S∨/S = D(S⊥)⊕D(S),

H can be regarded as a subgroup of D(S⊥)⊕D(S). We can then define the projections

pS : H → D(S) and pS⊥ : H → D(S⊥). Because of Lemma 4.0.5

Lemma 4.0.5. [Nik79b] [GHS10] Let S be a primitive sublattice in L. Then g ∈

O(L, S) if and only if g(S) = S, g|D(S) = id and g|p
S⊥ (H) = id.

we can prove the following theorem.

Theorem 4.0.6. If d > 2, the group O(L6, h
s
d) ≤ O(L6,2d) and

O(L6, h
s
2d)
∼= {g ∈ O(L6,2d) | g = ( ∗ 0

∗ 1 ) ∈ O(D(L6,2d))}
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Moreover, if p is an odd prime, O(L6, h
s
2p2) ≤ O(L6,2).

Proof. The first part of the argument is essentially a specialisation of Part (i) of Propo-

sition 3.12 in [GHS10].

We can at once consider O(L6, hd) as a subgroup of O((h⊥d )L6,2d
) because O(L6, hd)

acts on both 〈hd〉 and h⊥d in

〈hd〉 ⊕ 〈hd〉⊥ ≤ L6

but acts trivially on 〈hd〉 (as D(〈hd〉) ∼= Cd 6= C2).

If hd ∈ L6 is split then, by Lemma 4.0.1, we can take an Õ(L6) representative of hd

to be hd = e3 + bf3 = e3 +df3 ∈ U ⊕〈−6〉. If k1 = e3−df3 and k2 = l6, then a basis for

(h⊥d )∨ is given by {e1, f1, e2, f2, k
′
1, k
′
2, k
′
3} where k′1 = k1

2d , k′2 = k2
6 and k′3 = hd

2d . where

l6 is a generator of the 〈−6〉 factor in L6 = 3U ⊕ 〈−6〉. Consider

〈hd〉 ⊕ h⊥d < L6 < L∨6 < 〈h∨d 〉 ⊕ (h⊥d )∨

where h∨d = 1
2dhd and h⊥d := (hd)

⊥ ⊂ L6 is given by h⊥d
∼= 2U ⊕〈−2d〉⊕〈−6〉. A simple

calculation shows that the subgroup

H = L6/(〈hd〉 ⊕ h⊥d ) < D(〈hd〉)⊕D(h⊥d )

is equal to 〈k′3 − k′1, d(k′1 + k′3)〉 ≤ L6/(〈hd〉 ⊕ h⊥d ), and so ph⊥d
(H) = 〈k′1〉.

By Lemma 4.0.5 and because D(h⊥d ) = 〈k′1〉 ⊕ 〈k′2〉,

O(L6, hd) ∼= {g ∈ O(h⊥d ) | g|p(H) = id}

and we obtain the first part of the claim.

For the second part of the claim, let L6,2p2 and L6,2 have bases {e1, f1, e2, f2, v1, v2}

and {e′1, f ′1, e′2, f ′2, v′1, v′2} where {ei, fi}, {e′i, f ′i} are the standard bases for U and v1 and

v′1 are generators for the copies of 〈−6〉 in L6,2p2 and L6,2, respectively and v2 and v′2

are generators for the copies of 〈−2p2〉 and 〈−2〉 in L6,2p2 and L6,2, respectively. Define

the embedding L6,2p2 ≤ L6,2 by (e1, f1, e2, f2, v1, v2) 7→ (e′1, f
′
1, e
′
2, f
′
2, v
′
1, pv2) and define
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the totally isotropic subspace M by

M = L6,2/L6,2p2 ≤ D(L6,2p2).

We can recover L6,2 from M by noting that

L6,2 = {x ∈ L∨6,2p2 | x mod L6,2p2 ∈M}.

Moreover, M is of the form (0, ∗) ∈ D(L6,2p2) = 〈k′2〉 ⊕ 〈k′1〉. The element

g ∈ O(L6, h2p2) ≤ O(L6,2p2)

extends naturally to an element ĝ ∈ O(L∨6,2p2) and because g(k′1) = k′1, the element

ĝ preserves M . Therefore, ĝ(L6,2) ≤ L6,2 and so g extends to a unique element in

O(L6,2).

Corollary 4.0.7. If p is an odd prime and h2p2 ∈ L6 is split, then

Õ
+

(L6,2p2) ≤ O+(L6, h2p2).

We next use an idea in [Kon93] to show that O(L6, h2p2) is of finite index in O(L6,2)

by considering the action of O(L6,2) on a finite quadratic space. We begin by outlining

some classical results on the orthogonal groups of finite type. These can be found

in [Die71], for example.

A non-degenerate quadratic space V over a finite field Fq of odd characteristic is

classified in terms of dimV and the discriminant ∆ = detB ∈ F∗q/(F∗q)2, where B is

the bilinear form on V .

If dimV = 2m, then V falls into one of two isomorphism classes depending on the

value of ε := (−1)m∆ ∈ F∗q/(F∗q)2. They are:
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V 2m
ε = H1 ⊕ . . .⊕Hm if ε = 1

V 2m
ε = Vθ ⊕H1 ⊕H2 ⊕ . . .⊕Hm−1 if ε = −1.

Here, Hi are hyperbolic planes over Fp and Vθ is the quadratic space 〈u, v〉Fp whose

bilinear form is given by (u, u) = 1, (u, v) = 0 and (v, v) = θ for some −θ /∈ (F∗q)2.

If dimV = 2m + 1, there is only one isomorphism class for V , which is given by

V 2m+1 = H1 ⊕ . . . Hm ⊕ 〈θ〉 for some 0 6= θ ∈ Fq.

We show that O(L6,2p2) is of finite index in O(L6,2) by considering the action of

O(L6,2p2) on the finite quadratic space Qp, where

Qp := L6,2/pL6,2 ≤ L6,2p2/pL6,2.

In order to do so, we need to show that O(L6,2) acts transitively on Qp. We remark

that this is not immediate from Witt’s theorem [Asc00] as it is not clear that O(L6,2)→

O(Qp) is surjective. In order to show transitivity, we shall use the following two lemmas

to construct elements of O(L6,2p2).

Definition 4.0.8. Let L be an indefinite lattice. If e ∈ L is isotropic and a ∈ e⊥ ⊂ L

then the map on L defined by

t(e, a) : v 7→ v − (a, v)e+ (e, v)a− 1

2
(a, a)(e, v)e

is called an Eichler transvection and belongs to the group S̃O
+

(L) (see also [GHS09]).

Lemma 4.0.9. The group S̃O
+

(2U) is isomorphic to SL(2,Z)× SL(2,Z).

Proof. Full details of the proof may be found in [GHS09]. The isomorphism is defined

by mapping (w, x, y, z) ∈ U ⊕ U to (w −yz x ) ∈ M2(Z), where (w, x, y, z) is given on the

standard basis for U ⊕ U . The inner product on U ⊕ U is defined by the determinant
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on M2(Z). An element (A,B) ∈ SL(2,Z)× SL(2,Z) acts on U ⊕ U by mapping

w −y

z x

 7→ A

w −y

z x

B.

Lemma 4.0.10. The group O(L6,2) acts transitively on hyperplanes of the same type

in Qp.

Proof. Let {e1, f1, e2, f2, v1, v2} be a basis for L6,2 = 2U ⊕ 〈−6〉 ⊕ 〈−2〉 where v1 and

v2 generate 〈−6〉 and 〈−2〉, respectively and {ei, fi} are the standard basis for U . If

w = (w1, w2, w3, w4, w5, w6) ∈ L6,2 then the Eichler transvections t(e1, v1) and t(e1, v2)

act as

t(e2, v1)w = (w1, w2, w3 + 3w4 + 6w5, w4, w5 + w4, w6)

and

t(e2, v2)w = (w1, w2, w3 + w4 + 2w6, w4, w5, w6 + w4).

Let x = (x1, x2, x3, x4, x5, x6) ∈ L6,2/pL6,2 be non-zero. We can assume that x4 6= 0

by (if required) applying t(e2, v1) and permuting {x1, x2, x3, x4} by elements in O(2U).

Rescale x so that x4 = 1. After repeated application of t(e2, v1) and t(e2, v2), we can

transform x to an element of the form (∗, ∗, ∗, ∗, 0, 0) and thereby identify x with an

element of 2U . By using the copy of SL(2,Z)×SL(2,Z) in O(2U), we can send x to an

element of the form (r, s, 0, 0, 0, 0) and then, after rescaling, to an element of the form

(1, a, 0, 0, 0, 0). Now suppose that u, v ∈ L6,2/pL6,2 are such that u = (1, a, 0, 0, 0, 0) and

v = (1, b, 0, 0, 0, 0). If ab−1 ∈ (F∗p)2 then there exists µ, λ ∈ Fp such that (µu)2 = (λv)2.

Let û := µu = (u1, u2, 0, 0, 0, 0) and v̂ := λv = (v1, v2, 0, 0, 0, 0) and suppose that

û− v̂ = (r, s, 0, 0, 0, 0) is non-zero. Let d = gcd(r, s) and let r1, r2, s1, s2 be solutions to

r2u1 + r1u2 = d

s2v1 + y2v2 = d
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and let

u′ := (r1, r2, 0, 0, 0, 0) ∈ L6,2

v′ := (s1, s2, 0, 0, 0, 0) ∈ L6,2

w := (
r

d
,
s

d
, 0, 0, 0, 0) ∈ L6,2

be lifts to L6,2 such that u′, v′, w ∈ e⊥1 ∩ f⊥1 ⊂ L6,2. Then, over Fp, (û, u′) = d and

(v̂, v) = d and so the element t(e2, v
′)t(f2, w)t(e2, u

′) sends û to v̂. Therefore, O(L6,2)

is transitive on hyperplanes of the same type in L6,2/pL6,2.

We shall also need to know about the order of O+(V ) for a finite quadratic space

V . As in [Die71], these are given by

|O+(V 2m+1)| = (q2m − 1)q2m−1(q2m−2 − 1) . . . (q2 − 1)q (4.1)

and

|O+(V 2m
ε )| = (q2m−1 − εqm−1)(q2m−2 − 1)q2m−3 . . . (q2 − 1)q. (4.2)

We can now prove our main theorem.

Theorem 4.0.11. The group O+(L6, h
s
2p2) is of finite index in O+(L6, h

s
2) and

|O+(L6, h
s
2) : O+(L6, h

s
2p2)| ≤ 16(p5 + p2).

Proof. There are natural homomorphisms from O(L6,2)→ O(L6,2/pL6,2) and by Lemma

4.0.10, O(L6,2) acts transitively on Qp and so O(L6,2/pL6,2) also acts transitively on

Qp. The group O(L6, h2p2) ≤ O(L6,2) stabilises a hyperplane Π ⊂ Qp and so, by the

Orbit-Stabiliser theorem,

|O(L6,2) : stabO(L6,2)(Π)| = |O(L6,2/pL6,2) : O(L6,2p2/pL6,2)|

and

|O+(L6,2) : stabO+(L6,2)(Π)| = |O+(L6,2/pL6,2) : O+(L6,2p2/pL6,2)|
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(where we have used the fact that stabO(L6,2/pL6,2)(Π) = O(L6,2p2/pL6,2) and the fact

that the spinor kernel is of index two in the full orthogonal group). By Lemma 4.0.6,

O(L6, h
s
2p2) ≤ O(L6,2) and so

Õ
+

(L6,2p2) ≤ O+(L6, h
s
2p2) ≤ stabO+(L6,2) Π ≤ O+(L6,2p2).

As O(D(L6,2p2)) ∼= V4 ⊕ C2 ⊕ C2 where V4 is the Klein 4-group,

| stabO(L6,2) Π : O(L6, h
s
2p2)| ≤ |O(L6,2p2) : Õ(L6,2p2)| = 16

and therefore

|O+(L6,2) : O+(L6, h
s
2p2)| ≤ 16|O+(L6,2/pL6,2) : O+(L6,2p2/pL6,2)|

≤ 16
(p5 − εp2)(p4 − 1)p3(p2 − 1)p

(p4 − 1)p3(p2 − 1)p

≤ 16(p5 + p2)
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Chapter 5
Singularities in the interior

5.0.1 Introduction

As explained in the introduction, we need to understand the singularities of FL6,2p2
in

order to prove general type results. Unfortunately, giving an exact description of the

singularities of FL6,2p2
is a difficult problem. There are two ways to view the problem:

as a problem in group theory, or as a problem in geometry. The group theoretic

perspective takes the view that singularities of FL6,2p2
(Γ) correspond to finite subgroups

in O(L6, h
s
2p2) and that one should solve the problem by classifying conjugacy classes

of such subgroups. The folklore approach to classifying elliptic elements is to construct

a fundamental domain for the group and examine the stablisers at the boundary. This

is the approach taken in [Got61a] and [Got61b] (see also [Uen72]) for the symplectic

group Sp(4,Z) and finds application in the study of singularities in moduli spaces of

abelian varieties [Bra95] [HKW91]. Unfortunately, it is usually difficult to exhibit a

fundamental domain for an arithmetic group in a form that is suitable for calculation.

Exact polyhedral fundamental domains exist for groups whose symmetric space is a

cone [AMRT10], such as SL(2,Z), Sp(4,Z) or O+(2, 3), but outside of these cases,

there are very few results.

The geometric perspective, which comes from considering the local Torelli theorem

(Theorem 3.3.1), takes the view that the singularities of FL6,2p2
(Γ) correspond to defor-

mation generalised Kummer varieties with a non-trivial automorphism group and that
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one should solve the problem by understanding automorphisms, such as in [Nik79a].

However, while the the study of automorphisms of irreducible symplectic manifolds is

an active field of research, there are still many open problems.

Nevertheless, the situation improves if one is only interested in proving general type

results, as results can be obtained from much weaker considerations. One only needs an

estimate for the branch locus and some results on the generators of the finite quotient

singularities that can occur.

We shall determine the singular locus by adapting a recent result of Boissière,

Nieper-Wißkirchen, and Sarti. This involves a large amount of calculation, for which

we apologise.

By results of Gritsenko, Hulek and Sankaran, the non-canonical part of the singular

locus lie in the image of subvarieties of DL the form

DTgL = {[x] ∈ DL | (x, Tg) = 0} = [Sg ⊗ C].

Therefore, in order to determine the singular locus, one only needs to determine the

embeddings of Sg in L. Because our intention has been to obtain results that are exact

as possible, we have chosen to work with split polarisation of degree 2p2. Our methods,

however, may be used for arbitrary polarisation if one is willing to accept weaker

bounds. The classification of Sg is unchanged, and one can provide a list of candidates

for the genus of Tg and thereby count the number of pairs (Sg, Tg). One expects this to

result in poorer bounds because it is more difficult to determine inclusions of the form

Sg ⊂ Sg′ .

However, in many cases Tg is a negative definite binary quadratic form and one can

provide bounds on the integers represented by Tg (see, for example, §15.3 of [CS99]).

Therefore, by using the Eichler criterion (Theorem 5.3.2), one can provide a list of

rational quadratic divisors whose union contains the non-canonical locus.

We then use a result of Tai to show that the order of vanishing required to ensure

extension can be effectively calculated by toric methods, and is independent of the

degree of polarisation. We shall also briefly mention some results on the structure of
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the possible automorphisms groups of generalised Kummer varieties.

5.0.2 Singularities in orthogonal modular varieties

As discussed in Section 3.8, the modular varieties associated with Generalised Kummer

manifolds can contain non-canonical singularities.

Proposition 5.0.1. [GHS07] If g ∈ G does not act as a quasi-reflection on V and

r = 1 or r = 2, then Σ(g) ≥ 1.

Theorem 5.0.2. [GHS07] If g ∈ G does not act as a quasi-reflection on V and n ≥ 6,

then Σ(g) ≥ 1.

In fact, in the proof of the above theorem, a stronger result is proved: if g is not a

quasi-reflection, Σ(g) ≥ 1 unless φ(r) = 2 or 4. Moreover, if φ(r) = 4, Σ(g) ≥ 1 unless

n ≤ 3; and if φ(r) = 2, Σ(g) ≥ 1 unless n ≤ 5. For our modular varieties, n = 4, and

so we are left to consider [w] ∈ DL fixed by a quasi-reflection or by an element of order

3, 4, or 6.

Proposition 5.0.3. [GHS07] If n > 2, then the quasi-reflections on V and hence the

ramification divisors of

DL → FL(Γ)

are given by elements h ∈ O(L) such that ±h is equal to a reflection σv ∈ O(L).
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5.1 Invariant and perp-invariant lattices in O(L6, h
s
2)

We modify a result of [BNWS13] to classify the invariant and perp-invariant lattices

of certain elliptic elements in O(L6, h
s
2) ≤ O(L6,2) in terms of p-elementary lattices.

We are essentially following the approach taken in [BCS14] for automorphisms of Hy-

perkähler manifolds of K3[2] type. By combining this with the results of the previous

section, we deduce that the non-canonical singularities are contained in certain rational

quadratic divisors, which we determine.

Definition 5.1.1. Let L be a lattice and let g ∈ O(L) be an elliptic element (an element

of finite order). We define the invariant lattice Tg of g to be

Tg = {x ∈ L | gx = x}

and the perp-invariant lattice Sg to be

Sg = T⊥g ⊂ L.

Where no confusion is likely to arise, we drop the subscript g. We call the pair Sg and

Tg the invariant lattices of g.

Lemma 5.1.2. Let S be the perp-invariant lattice of an elliptic element g ∈ O(L6, h
s
d).

If g′ is the induced action on h⊥d , then Sg = Sg′.

Proof. By definition, if g ∈ O(L6, h
s
d) then g(hd) = hd and so hd ∈ Tg. Therefore,

Sg = (Tg)
⊥ ⊂ h⊥d ⊂ L6. By definition, Sg′ = Sg ∩ h⊥d and because Sg and Sg′ are

primitive and Sg ⊂ h⊥d , we conclude that Sg = Sg′ .

The following is essentially Lemma 4.3 in [BNWS13].

Lemma 5.1.3. Suppose that g ∈ O(L) is of order p where 2 ≤ p ≤ 19 is prime. Then,

for all k,

L6

Tg(X)⊕ Sg(X)

is a p−torsion module. Moreoever, it is a trivial g-module.
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Proof. See [BNWS13].

Definition 5.1.4. By Lemma 5.1.3, there exists a ∈ N0 such that

L6

Sg(X)⊕ Tg(X)
∼= Cap .

Definition 5.1.5. Let p be a prime. A lattice L is called p-elementary if

D(L) ∼= Cap

for some a ∈ N.

The p-elementary lattices are classified as follows.

Theorem 5.1.6. [CS99] For p ≥ 3, the distinct genera of even p−elementary lattices

are given by

IIr,s(p
±k) for r − s ≡ ±2− 2− (p− 1)k (mod 8)

but, when k = n(= r + s), the sign must be
(
−1
p

)s
. Moreover, if n ≥ 3, each genus

contains one spinor genus and therefore each genus contains one class.

In the Lorentzian case, the sign consideration can be ignored.

Theorem 5.1.7. [RS81] If p > 2, an even Lorentzian p−elementary lattice of rank r

is uniquely determined by the integer a. Moreover, an even Lorentzian p−elementary

lattice with invariants a and r exists if and only if

1. a ≤ r, r ≡ 0 mod2

2. If a ≡ 0 (2), r ≡ 2 mod4

3. If a ≡ 1 (2), p ≡ (−1)r/2−1 mod4.
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Theorem 5.1.8. [Nik79b] Let δS ∈ {0, 1}. A 2−elementary lattice with invariants

(δS ; t+, t−, a) exists if and only if the following conditions are satisfied:

1. t+ + t− ≥ a

2. t+ + t− + a ≡ 0 mod 2

3. t+ − t− ≡ 0 mod 4 if δS = 0

4. δS = 0, t−t− ≡ 0 mod 8 if a = 1

5. δS = 0 if a = 2 and t+ − t− ≡ 4 mod 8

6. t+ − t− ≡ 0 mod 8 if δS = 0 and a = t− + t−.

Proposition 5.1.9. Let g ∈ O(L6) be of order p. Then D(S) is p-elementary. More-

over,

1. If p = 2, then D(S) = Ca+1
2 and D(T ) = C3 ⊕ Ca2 or D(S) = Ca2 and D(T ) =

C3 ⊕ Ca+1
2 .

2. If p = 3, then D(S) = Ca+1
3 and D(T ) = C2 ⊕ Ca3 or D(S) = Ca3 and D(T ) =

C2 ⊕ Ca+1
3 .

3. If p > 3, then D(S) = Cap and D(T ) = C2 ⊕ C3 ⊕ Cap .

Proof. It is well known that (see [BHPVdV04] Chapter I.1)

|L6 : S ⊕ T |2 = disc(S).disc(T ).disc(L)−1

and so

disc(T ).disc(S) = 6.p2a.

Therefore,

disc(S) = 2δ3εpα

disc(T ) = 21−δ31−εpβ
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where α + β = 2a and where ε, δ ∈ {0, 1}. Because both S and T are primitive in L6,

by Proposition 1.4.1 of [Nik79b]

M =
L6

S ⊕ T
⊂ D(T )⊕D(S)

and so the projections pT : M → D(T ) and pS : M → D(S) are g-equivariant monomor-

phisms. Therefore, a ≤ α and a ≤ β and so α = β = a.

We next examine the action of g onD(S). The possible cases for the pair (D(S), D(T ))

are as follows:

D(S) = C2 ⊕ C3 ⊕M D(T ) = M (5.1)

D(S) = C3 ⊕M D(T ) = C2 ⊕M (5.2)

D(S) = C2 ⊕M D(T ) = C3 ⊕M (5.3)

D(S) = M D(T ) = C2 ⊕ C3 ⊕M. (5.4)

Let x2 and x3 be generators for the C2 and C3 factors of D(S) in the above decompo-

sitions (if present). Note that S is the kernel of σ = 1 + g + . . .+ gp−1. If p = 2, then

g acts trivially on x3 and so σ(x3) = 2x3. But, by assumption, σ(x3) = 0, which is a

contradiction as x3 is of order 3 in D(S). Therefore cases (5.1) and (5.2) cannot occur

if p = 2. If p = 3, then g acts trivially on x2 and so σ(x2) = 3x2. But, by assumption,

σ(x2) = 0, which is a contradiction as x2 is of order 2 in D(S). Accordingly cases (5.1)

and (5.3) cannot occur if p = 3. If p > 3, then g acts trivially on x2 and x3 and so

σ(x2) = px2 and σ(x3) = px3. But, by assumption, σ(x2) = σ(x3) = 0, which is a

contradiction as (2, p) = 1 and (3, p) = 1 as x2 and x3 are of order 2 and 3 in D(S),

respectively. Accordingly, cases (5.1), (5.2) and (5.3) cannot occur.

We deduce that the only cases that can occur are:

D(S) = C2 ⊕M , D(T ) = C3 ⊕M or D(S) = M , D(T ) = C2 ⊕ C3 ⊕M if p = 2

D(S) = C3 ⊕M , D(T ) = C2 ⊕M or D(S) = M , D(T ) = C2 ⊕ C3 ⊕M if p = 3

D(S) = M , D(T ) = C2 ⊕ C3 ⊕M if p > 3.
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Note that, in particular, D(S) is always p−elementary.

5.1.1 The locus of non-canonical singularities

In order to prove general type results, we need only consider the non-canonical part

of the singular locus of FL6,2p2
(Γ) and the branch divisor. By Theorem 5.0.2, we

need only to consider the fixed locus of 3 and 4 torsion and special reflections. We

begin by classifying the invariant lattices of such elements in O(L6,2) before considering

O(L6,2p2).

We need to classify the lattices in Lemma 5.1.9 before deciding which embed in

L6,2. The embeddings can be dealt with by 5.1.10, below.

Theorem 5.1.10. [Nik79b] The primitive embeddings of a lattice S into another lattice

M with gen(M) = (m+,m−, D(M)) are determined by the sets (HS , HM , γ;K, γK)

where K is a lattice, HS ⊂ D(S) and HM ⊂ D(M) are subgroups, γ : qS |HS → qM |HM

is an isomorphism of finite quadratic forms. The lattice K lies in the genus

gen(K) = (m+ − t+,m− − t−,−δ) where δ ∼= (qS ⊕ (−qM ))|Γ⊥γ /Γγ. The group Γγ is

the pushout of γ in D(S)⊕D(M) and the map γK : qK → (−δ) is an isomorphism of

finite quadratic forms.

Two sets (HS , HM , γ;K, γK) and (H ′S , H
′
M , γ

′;K ′, γ′) determine isomorphism prim-

itive sublattices if and only if HS and H ′S are conjugate under some element in O(S).

For the primitive embeddings of S determined by (HS , HM , γ;K, γK), the lattice K

is isomorphic to the orthogonal complement of S.

We note that Theorem 5.1.10 only provides the genus of the orthogonal complement

K. In our applications K is often of definite signature and so gen(K) need not coincide

with cls(K). However, because of the following theorem, we can usually argue that

gen(K) contains only one class.
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Theorem 5.1.11. [CS99] If L is an indefinite lattice of rank n and determinant d

then, if L has more than one class in its genus, |d| ≥ d0 where d0 is given by the

following

n 2 3 4, 6, 8 . . . 5, 7, 9 . . .

d0 17 128 5( 5
2 ) 2.5(n2 )

5.1.2 Invariant lattices of 3-torsion

We classify Sg for g of order 3.

Lemma 5.1.12. If g ∈ O(L6,2) is 3-torsion then the perp-invariant lattice S is one of

the following lattices: A2(±1), 2A2(−1), U , U⊕A2(−1), U(3)⊕A2(−1), 2U , U⊕U(3),

A2 ⊕A2(−1).

Proof. Suppose that S is of signature (r, s) and that D(S) ∼= Ca3 . As S ≤ L6,2 we have

r ≤ 2 and s ≤ 4. By Lemma 5.1.6, r and smust be solutions to r−s ≡ ±2−2−2k mod 8.

We solve each for k ≤ r + s (as k is the rank of the discriminant group). Moreover,

because T ≤M is of signature (3− r, 4−s) and, by Proposition 5.1.9, has discriminant

group Ca+1
3 ⊕ C2 or Ca3 ⊕ C2 we have that a ≤ 7− (r + s), which allows us to exclude

more cases. We note also that the case (r, s) = (2, 4) can be ignored because S ≤ L6,2

is primitive, rankS = rankL6,2 and so L6,2 = S, but L6,2 is not 3-elementary. We find

that the only possibilities are

(r, s, a) ∈ {(0, 2, 1), (0, 4, 2), (0, 4, 0), (1, 1, 0), (1, 3, 1), (1, 3, 3), (2, 0, 1), (2, 2, 0), (2, 2, 2)}.

For the definite cases, we refer to tables in [CS99] and [Nip91].

For case (0, 2, 1) there is precisely one such lattice: A2(−1). For case (2, 0, 1)

there is precisely one such lattice: A2. For case (0, 4, 0) there is no such lattice by

the classification of unimodular lattices. For case (0, 4, 2), we examine all integral

quaternary quadratic forms of discriminant 9 and we find that there is precisely one:

2A2.

For the Lorentzian cases, because of Lemma 5.1.7 it suffices to find a representative

for each a. For case (1, 1, 0) there is precisely one such lattice: U . For case (1, 3, 1)
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there is precisely one such lattice: U ⊕A2(−1). For case (1, 3, 3) there is precisely one

such lattice: U(3)⊕A2(−1). For the signature (2,−) cases, by Lemma 5.1.6 there are

two genera for each a > 0.

For case (2, 2, 0), there is precisely one such lattice: 2U (by the classification of

unimodular lattices). For case (2, 2, 2), S is either U ⊕U(3) or A2⊕A2(−1). It is easy

to see that U⊕U(3) and A2⊕A2(−1) are inequivalent by considering their discriminant

forms.

Proposition 5.1.13. If g ∈ O(L6,2) is 3-torsion, then the invariant lattices of g in

L6,2 are given by one of the following pairs:

S = U ⊕ U T = 〈−2〉 ⊕ 〈−6〉

S = A2(−1) T = A2(−1)⊕ 〈−2〉 ⊕ 〈−6〉

S = 2A2(−1) T = 〈2〉 ⊕ 〈6〉

S = U ⊕A2(−1) T = 〈−2〉 ⊕ 〈−6〉

S = U ⊕ U(3) T = 〈−2〉 ⊕ 〈−6〉

S = A2 ⊕A2(−1) T = 〈−2〉 ⊕ 〈−6〉.

Proof. By Lemma 5.1.12, S ∈ {A2(±1), 2A2(±1), U ⊕ A2(−1), U(3) ⊕ A2(−1), U ⊕

U(3), A2 ⊕ A2(−1), U(3) ⊕ U(3)}. We calculate the embeddings by using Theorem

5.1.10. Throughout, we shall assume that D(L6,2) = ((1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3).

Throughout, we shall refer to the canonical basis of an abelian group Ci1 ⊕ . . . ⊕ Cik

by {e1, . . . , ek}, {f1, . . . , fk} or {g1, . . . , gk}.

5.1.3 S = A2

If S = A2, then D(S) = ((−1/3), C3) and so HS
∼= {0} or C3.

If HS
∼= {0}, then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS)⊕ (−q) = δ = Γ⊥γ = ((1/2)⊕2⊕ (−1/3)⊕ (1/3), C⊕2
2 ⊕C

⊕2
3 ).

Therefore, gen(T ) = (0, 4,−δ) = (0, 4, (1/2)⊕2 ⊕ (1/3) ⊕ (−1/3), C⊕2
2 ⊕

C⊕2
3 ) and so T is a quaternary quadratic form of determinant 36. By using
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tables in [Nip91], there are five negative definite quaternary quadratic

forms of determinant 36:

T1 := −
(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 10

)
,

T2 := −
(

2 0 0 1
0 2 0 1
1 0 2 0
1 0 0 10

)
,

T3 := −
(

2 1 0 0
1 2 0 0
0 0 2 0
0 0 0 6

)
,

T4 := −
(

2 1 0 0
1 2 0 0
0 0 4 2
0 0 2 4

)
,

T5 := −
(

2 0 1 1
0 2 1 1
1 1 4 1
1 1 1 4

)
.

Of these, only T3, T4 and T5 have discriminant group equal to C⊕2
2 ⊕C

⊕2
3 .

We find that

D(T3) = ((−1/6)⊕2, C⊕2
6 )

which is clearly equivalent to −δ; and

D(T4) = (
(

1/3 1/2
1/2 −1/3

)
, C⊕2

6 )

which is inequivalent to −δ because all order 2 elements are isotropic;

and

D(T5) = (
(
−1/3 1/6
1/6 −2/3

)
, C⊕2

6 )

which is also inequivalent to −δ because all order 2 elements are isotropic.

We conclude that T = T3 = A2(−1)⊕ 〈−2〉 ⊕ 〈−6〉.

If HS
∼= C3, then HS is generated by ±e1 ∈ D(S) and γ : ±e1 7→ ±f3 ∈ D(L6,2).

It is clear that all such γ yield isomorphic T , so suppose γ : e1 7→ f3.

We find that Γγ = 〈g1 + g4〉 and Γ⊥γ = 〈x1, x2, x3〉 where x1 = g1 + g4,

x2 = g2, x3 = g3 and so

Γ⊥γ /Γγ = 〈x2, x3〉 ∼= C⊕2
2

58



with form ((1/2)⊕2, C⊕2
2 ) = δ. Therefore gen(T ) = (0, 4, (1/2)⊕2, C⊕2

2 ).

By using tables in [Nip91], we find that there is exactly one negative

definite quaternary quadratic form of determinant 4:

T6 :=

(
2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2

)
.

but

D(T6) = (
(

0 1/2
1/2 0

)
, C⊕2

2 )

which is totally isotropic, and therefore inequivalent to −δ. We conclude

that no such T exists.

5.1.4 S = A2(−1)

If S = A2(−1) then D(S) = ((1/3), C3) and HS
∼= {0} or C3.

If HS
∼= {0}, then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS) ⊕ (−q) = Γ⊥γ = ((1/3)⊕2 ⊕ (1/2)⊕2, C⊕2
3 ⊕ C⊕2

2 ) = δ.

Therefore gen(T ) = (2, 2;−δ) = ((−1/3)⊕2 ⊕ (1/2)⊕2, C⊕2
3 ⊕ C⊕2

2 ). By

Lemma 5.1.11, T is unique in its genus and one checks that a represen-

tative is given by A2 ⊕ 〈−2〉 ⊕ 〈−6〉.

If HS
∼= C3, then HS is generated by ±e1. Both are of length 1/3 in D(S) but

D(L6,2) has no order 3 element of length 1/3, and so there is no embedding.

5.1.5 S = 2A2(−1)

If S = 2A2(−1) then D(S) = ((1/3)⊕2, C⊕2
3 ) and HS

∼= {0} or C3.

If HS = {0}, then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS)⊕(−q) = Γ⊥γ = ((1/3)⊕3⊕(1/2)⊕2, C⊕3
3 ⊕C

⊕2
2 ) = δ. There-

fore gen(T ) = (2, 0;−δ) but a minimal generating set for −δ contains at

least 3 generators, and so no such T exists.

If HS
∼= C3 then, up to O(S) equivalence, HS is generated by e1 + e2 ∈ D(S) and so

γ : e1 + e2 7→ ±f3.

59



If HS = 〈e1 + e2〉 ∼= C3 and if

γ : e1 + e2 7→ f3 then

Γ⊥γ = 〈x1, x2, x3, x4〉 where x1 = g1 − g2, x2 = g1 − g5, x3 = g3,

x4 = g4 and Γγ = 〈x1 + x2〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x1, x3, x4〉 ∼= C⊕2

2 ⊕ C3 = δ

with form (−1/3)⊕ (1/2)⊕2.

If γ : e1 + e2 7→ f3 then

Γ⊥γ = 〈x1, x2, x3, x4〉 where x1 = g1 − g2, x2 = g1 + g5, x3 = g3,

x4 = g4 and Γγ = 〈x1 + x2〉. Therefore,

Γ⊥γ /Γγ = 〈x1, x3, x4〉 ∼= C2 ⊕ C⊕2
2 = δ

with form (−1/3)⊕ (1/2)⊕2.

In each case, gen(T ) = (2, 0,−δ). By using tables in [CS99], we find that there

are two even forms of determinant 12: T7 = 〈2〉 ⊕ 〈6〉 and T8 = ( 4 2
2 4 ). It is clear

that D(T7) = −δ. However,

D(T8) = (
(

0 1/2
1/2 1/3

)
, C2 ⊕ C6)

which cannot be equivalent to −δ as all order 2 elements are isotropic.

Therefore, T = 〈2〉 ⊕ 〈6〉.

5.1.6 S = U ⊕ A2(−1)

If S = U ⊕ A2(−1), D(S) = ((1/3), C3) and the maps γ, the groups Γ⊥γ /Γγ and the

finite quadratic forms on Γ⊥γ /Γγ are the same as for the case S = A2(−1) and so

gen(T ) = (1, 1; (−1/3)⊕2 ⊕ (1/2)⊕2, C⊕2
3 ⊕ C⊕2

2 ). By referring to tables in [CS99], we

find that there are four indefinite even rank 2 lattices with determinant 36: T9 = ( 0 6
6 0 ),

T10 = ( 0 6
6 2 ), T11 = ( 0 6

6 4 ) T12 = ( 0 6
6 6 ). Of these, only T9 and T12 have discriminant
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group equal to C⊕2
2 ⊕ C⊕2

3 . One checks that

D(T12) = (
(

0 1/6
1/6 −1/6

)
, C6 ⊕ C6)

which, by examining the generators given by 3e2, 3e1, 2e2, 2e1 + 2e2, is equivalent to

((1/2)⊕2 ⊕ (1/3)⊕ (−1/3), C⊕2
2 ⊕ C⊕2

3 )

and therefore inequivalent to −δ. One also checks that

D(T9) = (
(

0 1/6
1/6 0

)
, C⊕2

6 )

which is inequivalent to −δ = ((−1/3)⊕2 ⊕ (1/2)⊕2, C⊕2
3 ⊕ C⊕2

2 )) because all order 2

elements in (
(

0 1/6
1/6 0

)
, C6 ⊕C6) are isotropic, which is not the case for −δ. Therefore

no such T exists.

5.1.7 S = U(3)⊕ A2(−1)

If S = U(3)⊕A2(−1) then D(S) = (
(

0 1/3
1/3 0

)
⊕ (1/3), C⊕3

3 ) and HS
∼= {0} or C3.

If HS = {0}, then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (−qS) ⊕ (−q) = (
(

0 1/3
1/3 0

)
⊕ (1/3) ⊕ (1/2)⊕2 ⊕ (1/3), C⊕3

3 ⊕

C⊕2
2 ⊕C3) = δ. Therefore, gen(T ) = (1, 1,−δ), but a minimal generating

set for −δ contains at least 4 generators, and so no such T exists.

If HS
∼= C3, HS is generated by one of ±(e1+e2),±(e1−e2+e3),±(e1−e2−e3) ∈ D(S).

The elements e1−e2+e3 and (e1−e2−e3) are equivalent under O(S) and so we consider

only ±(e1 + e2),±(e1 − e2 + e3).

If HS = 〈(e1 + e2)〉 ∼= C3 and if

γ : e1 + e2 7→ f1 then

Γ⊥γ = 〈x1, x2, x3, x4, x5〉 where x1 = g1 − g2, x2 = g1 − g6, x3 = g4,

x4 = g5, x5 = g3 and Γγ = 〈x1 + x2〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5〉 ∼= C3 ⊕ C⊕2

2 ⊕ C3
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with form δ = (1/3)⊕(1/2)⊕2⊕(1/3). Therefore gen(T ) = (1, 1,−δ)

and as for the case S = U ⊕A2(−1), no such T can exist.

If γ : e1 + e2 7→ −f1 then

Γ⊥γ = 〈x1, x2, x3, x4, x5〉 where x1 = g1 − g2, x2 = g1 + g6, x3 = g4,

x4 = g5, x5 = g3 and Γγ = 〈x1 + x2〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5〉 ∼= C3 ⊕ C⊕2

2 ⊕ C3 = δ

with form (1/3) ⊕ (1/2)⊕2 ⊕ (1/3). Therefore gen(T ) = (1, 1,−δ),

and no such T exists as in the case γ : e1 + e2 7→ f1.

If γ : e1 − e2 + e3 7→ f1 then

Γ⊥γ = 〈x1, x2, x3, x4, x5〉 where x1 = g1 + g2, x2 = g1 + g3, x3 =

g1 + g6, x4 = g4, x5 = g5 and Γγ = 〈x2 − x1 + x3〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5〉 ∼= C⊕2

3 ⊕ C⊕2
2 = δ

with form (1/3)⊕2 ⊕ (1/2)⊕2. Therefore, gen(T ) = (1, 1,−δ), and

no such T exists as in the case γ : e1 + e2 7→ f1.

If γ : (e1 − e2 + e3) 7→ −f1 then

Γ⊥γ = 〈x1, x2, x3, x4, x5〉, where x1 = g1 + g2, x2 = g1 + g3, x3 =

g1 − g6, x4 = g4, x5 = g5 and Γγ = 〈x2 − x1 + x3〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5〉 ∼= C⊕2

3 ⊕ C⊕2
2 = δ

with form (1/3)⊕2 ⊕ (1/2)⊕2. Therefore, gen(T ) = (1, 1,−δ), and

no such T exists as in the case γ : e1 + e2 7→ f1.

5.1.8 S = U ⊕ U(3)

If S = U ⊕ U(3) then D(S) = (
(

0 1/3
1/3 0

)
, C⊕2

3 ) and HS
∼= {0} or C3.

If HS = {0}, then γ : 0 7→ 0 and
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Γ⊥γ = (qS) ⊕ (−q) = δ =
(

0 1/3
1/3 0

)
⊕ (1/2)⊕2 ⊕ (1/3), C⊕2

3 ⊕ C⊕2
2 ⊕

C3). Therefore gen(T ) = (0, 2,−δ) but a minimal generating set for −δ

contains at least 3 generators, and so no such T exists.

If HS
∼= C3, then, up to O(S) equivalence, HS must be generated by e1 + e2 ∈ D(S).

If HS = 〈e1 + e2〉 ∼= C3

γ : e1 + e2 7→ f3 then

Γ⊥γ := 〈x1, x2, x3, x4〉 where x1 = g1 − g2, x2 = g1 − g5, x3 = g3,

x4 = g4 and Γγ = 〈x1 + x2. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4〉 ∼= C3 ⊕ C⊕2

2 = δ

with form (1/3) ⊕ (1/2)⊕2. Therefore, gen(T ) = (0, 2,−δ). By

using tables in [CS99], T must be one of T13 = 〈−2〉 ⊕ 〈−6〉 or

T14 =
(−4 −2
−2 −4

)
. One checks that

D(T14) = (
(

0 −1/2
−1/2 −1/3

)
, C2 ⊕ C6)

which is inequivalent to −δ as all order 2 elements are isotropic.

Therefore, T = T13, which has discriminant form equal to −δ.

If γ : e1 + e2 7→ −f3 then

Γ⊥γ := 〈x1, x2, x3, x4〉 where x1 = g1 − g2, x2 = g1 + g5, x3 = g3,

x4 = g4 and Γγ = 〈x1 + x2. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4〉 ∼= C3 ⊕ C⊕2

2 = δ

with form (1/3) ⊕ (1/2)⊕2. Therefore, gen(T ) = (0, 2,−δ). As in

the case γ : e1 + e2 7→ f3, we conclude that T = 〈−2〉 ⊕ 〈−6〉.

5.1.9 S = A2 ⊕ A2(−1)

If S = A2 ⊕A2(−1) then D(S) = ((−1/3)⊕ (1/3), C⊕2
3 ) and HS

∼= {0} or C3.

If HS = {0} then γ : 0 7→ 0 and
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Γ⊥γ = (qS)⊕ (−q) = δ = ((−1/3)⊕ (1/3)⊕ (1/2)⊕2⊕ (1/3), C⊕2
3 ⊕C

⊕2
2 ⊕

C3). Therefore gen(T ) = (0, 2,−δ) but a minimal generating set for −δ

contains at least 3 generators, and so no such T exists.

If HS
∼= C3, HS = 〈±e1〉. Both are equivalent under O(S).

If HS〈e1〉 ∼= C3 and if

γ : e1 7→ f3, then

Γ⊥γ = 〈x1, x2, x3, x4〉 x1 = g1 + g5, x2 = g2, x3 = g3, x4 = g4 and

Γγ = 〈x1〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4〉 ∼= C3 ⊕ C⊕2

2 ,

with form (1/3) ⊕ (1/2)⊕2. Therefore, gen(T ) = (0, 2,−δ). As in

the case S = U ⊕ U(3), HS
∼= C3, γ : e1 + e2 7→ f3, we conclude

that T = 〈−2〉 ⊕ 〈−6〉.

If γ : e1 7→ −f3 then

Γ⊥γ = 〈x1, x2, x3, x4〉 x1 = g1 − g5, x2 = g2, x3 = g3, x4 = g4 and

Γγ = 〈x1〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4〉 ∼= C3 ⊕ C⊕2

2 ,

with form (1/3) ⊕ (1/2)⊕2. Therefore, gen(T ) = (0, 2,−δ). As in

the case S = U ⊕ U(3), HS
∼= C3, γ : e1 + e2 7→ f3, we conclude

that T = 〈−2〉 ⊕ 〈−6〉.

5.1.10 S = 2U

If S = 2U then D(S) = {0} and HS = {0}. Therefore γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS)⊕ (−q) = δ = ((1/2)⊕ (1/6), C2 ⊕ C6).
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Therefore, gen(T ) = (0, 2;−δ). By referring to tables in [CS99], T is either

T15 := 〈−2〉 ⊕ 〈−6〉 or T16 :=
(−4 −2
−2 −4

)
. The lattice T15 has discriminant form

D(T15) = ((1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3)

and T16 has discriminant form

D(T16) = (
(

0 1/2
1/2 0

)
⊕ (−1/3), C⊕2

2 ⊕ C3).

It is clear that D(T16) is inequivalent to ((1/2)⊕2⊕ (−1/3), C⊕2
2 ⊕C3) and so T = T15.

5.1.11 S = 2U(3)

If S = 2U(3), D(S) = (
(

0 1/3
1/3 0

)
⊕
(

0 1/3
1/3 0

)
, C⊕4

3 ). Then HS
∼= {0} or C3.

If HS = {0} then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS) ⊕ (−q) = Γ⊥γ /Γγ = C⊕4
3 ⊕ C⊕2

2 ⊕ C3 = δ with form(
0 1/3

1/3 0

)⊕2
⊕ (1/2)⊕2 ⊕ (1/3) and gen(T ) = (0, 2,−δ) but a minimal

generating set for −δ contains at least 5 generators, and so no such T

exists.

If HS
∼= C3 then, up to O(S) equivalence, HS is generated by one of e1 + e2, e1 − e2 +

e3 − e4, e1 + e2 + e3.

If HS = 〈e1 + e2〉 ∼= C3 and if

γ : e1 + e2 7→ e3 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 − g2, x2 = g1 − g7,

x3 = g3, x4 = g4, x5 = g5, x6 = g6 and Γγ = 〈x1 + x2〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x5〉 ∼= C⊕3

3 ⊕ C2 = δ

with form (1/3)⊕
(

0 1/3
1/3 0

)
⊕(1/2)⊕2. Therefore, gen(T ) = (0, 2,−δ)

but a minimal generating set for −δ contains at least 3 generators,

and so no such T exists.

If γ : e1 + e2 7→ −f3 then
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Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 − g2, x2 = g1 + g7,

x3 = g3, x4 = g4, x5 = g5, x6 = g6 and Γγ = 〈x1 + x2〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x5〉 ∼= C⊕3

3 ⊕ C2 = δ

with form (1/3)⊕
(

0 1/3
1/3 0

)
⊕(1/2)⊕2. Therefore, gen(T ) = (0, 2,−δ)

but a minimal generating set for −δ contains at least 3 generators,

and so no such T exists.

If HS = 〈e1 + e2 + e3〉 ∼= C3 and if

γ : e1 + e2 + e3 7→ f3 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 − g2, x2 = g1 − g4,

x3 = g1 − g7, x4 = g3, x5 = g5, x6 = g6 and Γγ = 〈x1 + x3 − x4〉.

Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 ∼= C⊕3

3 ⊕ C⊕2
2 = δ.

Therefore, gen(T ) = (0, 2,−δ) but a minimal generating set for −δ

contains at least 3 generators, and so no such T exists.

If γ : e1 + e2 + e3 7→ −f3 then,

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 − g2, x2 = g1 − g4,

x3 = g1 + g7, x4 = g3, x5 = g5, x6 = g6 and Γγ = 〈x1 + x3 − x4〉.

Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 ∼= C⊕3

3 ⊕ C⊕2
2 = δ.

Therefore, gen(T ) = (0, 2,−δ) but a minimal generating set for −δ

contains at least 3 generators, and so no such T exists.

If HS = 〈(1,−1, 1,−1)〉 ∼= C3 and if

γ : e1 − e2 + e3 − e4 7→ f3 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g2, x2 = g1 − g3, x3 =
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g1 +g4, x4 = g5, x5 = g6, x6 = g1 +g7 and Γ⊥γ = 〈x1 +x2 +x3−x6〉.

Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 ∼= C2

3 ⊕ C⊕2
2 ⊕ C3 = δ.

Therefore, gen(T ) = (0, 2,−δ) but a minimal generating set for −δ

contains at least 3 generators, and so no such T exists.

If γ : e1 − e2 + e3 − e4 7→ −f3 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g2, x2 = g1 − g3, x3 =

g1 +g4, x4 = g5, x5 = g6, x6 = g1−g7 and Γ⊥γ = 〈x1 +x2 +x3−x6〉.

Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 ∼= C2

3 ⊕ C⊕2
2 ⊕ C3 = δ.

Therefore, gen(T ) = (0, 2,−δ) but a minimal generating set for −δ

contains at least 3 generators, and so no such T exists.

5.1.12 Invariant lattices of 4-torsion

We next turn out attention to 4-torsion. As we are only interested in determining the

non-canonical part of the singular locus of FL(Γ), because of the following lemma it

suffices to examine only the perp-invariant lattice S of g2.

Lemma 5.1.14. Suppose that g ∈ O(L6,2p2) is 4-torsion and [P ] ∈ Fix(g) ⊂ DL6,2p2
is

non-canonical. Then, P ∈ Sg2 ⊗ C ⊂ L6,2p2 ⊗ C or [P ] lies in the branch divisor.

Proof. If g ∈ O(L6,2p2) then, over C, the action of g on L6,2p2 ⊗ C decomposes into

V1⊕V2⊕V3⊕V4 where Vi is a (possibly empty) ζi eigenspace where ζ = eπi/2. Because

of Lemma 5.0.1, if [P ] ∈ Fix(g) is non-canonical, then P ∈ V1 ∪V3 or [P ] lies inside the

brach divisor.

We now classify the invariant and perp-invariant lattices Sg2 and Tg2 for 4-torsion
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g.

Lemma 5.1.15. If g ∈ O(L6,2p2) is 4-torsion then Sg2 is one of the following: 2〈2〉, U ,

U(2), 〈2〉 ⊕ 〈−2〉, U ⊕ 2〈−2〉, 3〈−2〉 ⊕ 〈2〉, 2U , U ⊕U(2), 2U(2), 2〈−2〉 ⊕ 2〈2〉, 2〈−2〉.

Proof. If g ∈ O(L6,2p2) is 4-torsion then, as a g-module,

L6,2p2 ⊗Q =
2⊕
i=0

ai⊕
j=0

V2i

as dimV4 = 2 and dimV2 = dimV1 = 1, the rank of Sg2 is even (consider the V4

part). By Proposition 5.1.9, where Sg2 and Tg2 are taken inside L6, D(S) ∼= Ca2 and

D(T ) ∼= C3 ⊕ Ca±1
2 .

It is immediate that a ≤ rankS ≤ 6 (similar considerations for T do not yield

any further a priori constraints), and so if gen(S) = (s+, s−, a, δ) (in the notation of

Theorem 5.1.8) then, by Theorem 5.1.8, only the following cases can occur:

(2, 0, 2,−) which corresponds to 2〈2〉

(1, 1, 0,−) which corresponds to U

(1, 1, 2,−) which corresponds to U(2) or 〈2〉 ⊕ 〈−2〉

(1, 3, 2,−) which corresponds to U ⊕ 2〈−2〉

(1, 3, 4,−) which corresponds to 3〈−2〉 ⊕ 〈2〉

(2, 2, 0,−) which corresponds to 2U

(2, 2, 2,−) which corresponds to U ⊕ U(2)

(2, 2, 4,−) which corresponds to 2U(2) or 2〈2〉 ⊕ 2〈−2〉

(0, 2, 2,−) which corresponds to 2〈−2〉

(0, 4, 2,−) which corresponds to −
(

2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2

)
by considering the tables of [Nip91]

(0, 4, 4,−) which corresponds to 4〈−2〉.
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Proposition 5.1.16. If g ∈ O(L6,2) is 4-torsion, then the invariant lattices of g2 in

L6,2 are given by one of the following pairs:

Sg2 = 〈2〉⊕2 Tg2 = 〈−2〉⊕3 ⊕ 〈−6〉

Tg2 =

(−2 −1 −1 −1
−1 −2 0 0
−1 0 −2 0
−1 0 0 4

)
Sg2 = 〈−2〉⊕2 Tg2 = 〈2〉⊕2 ⊕ 〈−2〉 ⊕ 〈−6〉

Tg2 = A2 ⊕ 〈−2〉⊕2

Tg2 = K1

Sg2 = U Tg2 = U ⊕ 〈−2〉 ⊕ 〈−6〉

Sg2 = U⊕2 Tg2 = 〈−2〉 ⊕ 〈−6〉

Sg2 = U(2) Tg2 = U ⊕ 〈−2〉 ⊕ 〈−6〉

Tg2 = 〈2〉 ⊕
(−4 −2
−2 −4

)
⊕ 〈−6〉

Sg2 = U ⊕ U(2) Tg2 = 〈−2〉 ⊕ 〈−6〉

Sg2 = U ⊕ 〈−2〉⊕2 Tg2 = 〈−2〉 ⊕ 〈−6〉

Sg2 = 〈−2〉 ⊕ 〈2〉 Tg2 = 〈2〉 ⊕ 〈−2〉⊕2 ⊕ 〈−6〉

Tg2 = U ⊕ 〈−2〉 ⊕ 〈−6〉

Tg2 = K2

where, if either exist,

gen(K1) = (2, 2;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (−1/3), C⊕3

2 ⊕ C3)

and

gen(K2) = (1, 3;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (−1/3), C⊕3

2 ⊕ C3).

Proof. As in Proposition 5.1.13, we shall refer to the canonical basis of an abelian group

Ci1 ⊕ . . .⊕ Cik by {e1, . . . , ek}, {f1, . . . , fk} or {g1, . . . , gk}.
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5.1.13 S = 2〈2〉

If S = 2〈2〉 then D(S) = ((1/2)⊕2, C⊕2
2 ) and HS = {0} or C2 or C⊕2

2 .

If HS
∼= {0} then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS)⊕(−q) = δ = Γ⊥γ = (C⊕4
2 ⊕C3; (1/2)⊕4⊕(1/3)). Therefore,

gen(T ) = (0, 4,−δ) = (0, 4, (1/2)⊕4 ⊕ (−1/3), C⊕4
2 ⊕ C3). By referring

to tables in [Nip91], there are 9 even, negative definite rank 4 lattices of

determinant 48, but only two of these have discriminant group isomorphic

to C⊕4
2 ⊕ C3. These are

T7 := 〈−2〉⊕3 ⊕ 〈−6〉,

which clearly has discriminant form equal to −δ and

T8 := −
(

2 0 0 0
0 2 0 0
0 0 4 2
0 0 2 4

)

which has discriminant form

D(T8) = (
(

0 −1/2
−1/2 −1/4

)
, C2 ⊕ C6).

The case T = T8 cannot occur as all order 2 elements in the discriminant

group are isotropic. We conclude that T = 〈−2〉⊕3 ⊕ 〈−6〉.

If HS
∼= C2 then, up to O(S)-equivalence, HS is generated by one of (1, 0) or (1, 1)

in D(S).

If HS = 〈e1〉 ∼= C2 and if

γ : e1 7→ f1, then

Γ⊥γ = 〈x1, x2, x3, x4〉 where x1 = g1 + g3, x2 = g2, x3 = g4, x4 = g5

and Γγ = 〈x1〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4〉 ∼= C⊕2

2 ⊕ C3 = δ

with form (1/2)⊕2⊕(1/3). Therefore, gen(T ) = (0, 4,−δ) = (0, 4; (1/2)⊕2⊕
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(−1/3), C⊕2
2 ⊕ C3). By referring to tables in [Nip91], we find that

there are 2 even, negative definite rank 4 lattices of determinant:

T9 := −
(

2 0 0 1
0 2 0 0
0 0 2 0
1 0 0 2

)

which has discriminant group

D(T9) = ((1/2)⊕ (−1/6), C2 ⊕ C6),

which cannot occur because all order 3 elements have length 1/3

and

T10 := −
(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 4

)
which has discriminant group

D(T10) = (
(

0 −1/2
−1/2 1/6

)
, C2 ⊕ C6).

With respect to the generators (1, 3), (0, 3) and (0, 1), D(T10) =

((1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3) = −δ, and so T = T10.

If γ : e1 + e2 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4〉 where x1 = g1 + g2, x2 = g1 + g3, x3 = g1 + g4,

x4 = g5 and Γγ = 〈x1 + x2 + x3〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5〉 = δ ∼= C⊕3

2 ⊕ C3

with form

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (1/3). Therefore, gen(T ) = (0, 4,−δ).

If HS
∼= C⊕2

2 , then HS = 〈e1, e2〉.

If HS = 〈e1, e2〉, we let γ : e1 7→ f1 and γ : e2 7→ f2. (Other choices of γ

exist, but it is clear that these all yield isomorphic T .) Then,

Γ⊥γ = 〈x1, x2, x3〉 where x1 = g1 + g3, x2 = g2 + g4, x3 = g5 and
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Γγ = 〈x1, x2〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x3〉 = δ ∼= C3

with form (1/3). Therefore, gen(T ) = (0, 4,−δ) but by examining

[Nip91] there is no negative definite rank 4 lattice of determinant

3.

5.1.14 S = U

If S = U then D(S) = {0} and HS = {0}. Therefore γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS)⊕ (q) = δ = ((1/2)⊕2 ⊕ (1/3), C⊕2
2 ⊕ C3)

and so gen(T ) = (1, 3,−δ). By Theorem 5.1.11, T is unique in its genus and a repre-

sentative is given by U ⊕ 〈−2〉 ⊕ 〈−6〉.

5.1.15 S = U(2)

If S = U(2) then D(S) = (
(

0 1/2
1/2 0

)
, C⊕2

2 ) and HS = {0}, C2 or C⊕2
2

If HS = {0} then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (−qS) ⊕ (−q) = δ = (
(

0 1/2
1/2 0

)
⊕ (1/2)⊕2 ⊕ (1/3), C⊕4

2 ⊕ C3).

Therefore, gen(T ) = (1, 3,−δ). By Theorem 5.1.11, T is unique in its

genus and a representative is given by 〈2〉 ⊕
(−4 −2
−2 −4

)
⊕ 〈−6〉

If HS
∼= C2 then HS is generated by one of e1 or e1 + e2 in D(S).

If HS = 〈e1〉 ∼= C2 and if

γ : e1 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4〉 where x1 = g1, x2 = g2 + g3, x3 = g2 + g4,

x4 = g5 and Γγ = 〈x1 + x2 + x3〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4〉 = δ ∼= C⊕2

2 ⊕ C3

with form
(

1/2 0
0 1/2

)
⊕ (1/3) and so gen(T ) = (1, 3,−δ). By The-
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orem 5.1.11, T is unique in its genus and a representative is given

by U ⊕ 〈−2〉 ⊕ 〈−6〉.

If γ : e1 + e2 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4〉 where x1 = g1 + g2, x2 = g1 + g3, x3 = g1 + g4,

x4 = g5 and Γγ = 〈x1 + x2 + x3〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4〉 = δ ∼= C⊕2 ⊕ C3

with form (1/2)⊕2 ⊕ (1/3). Therefore, gen(T ) = (1, 3,−δ). By

Theorem 5.1.11, T is unique in its genus and a representative is

given by

U ⊕ 〈−2〉 ⊕ 〈−6〉.

If HS
∼= C⊕2

2 , then HS = 〈e1, e2〉 with form
(

0 1/2
1/2 0

)
, but there is no embedding

ofHS inD(L6,2p2) because the only isotropic elements in ((1/2)⊕2⊕(−1/3), C⊕2
2 ⊕

C3) are ±(1, 1, 0), but HS is of rank 2.

5.1.16 S = 3〈−2〉 ⊕ 〈2〉

If S = 3〈−2〉 ⊕ 〈2〉 then D(S) = ((1/2)⊕4, C⊕4
2 ) and HS = {0}, C2 or C⊕2

2 .

If HS = {0} then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS)⊕ (−q) = δ = ((1/2)⊕6 ⊕ (1/3), C⊕6
2 ⊕ C3)

Therefore, gen(T ) = (1, 1,−δ) but a minimal generating set for −δ con-

tains at least 6 generators, and so no such T exists.

If HS
∼= C2 then, up to O(S)-equivalence, HS is generated by one of e1 or e1 + e2 + e3,

which are of length 1/2; or e1 + e2 or e1 + e2 + e3 + e4, which are of length 0.

If HS = 〈e1〉 ∼= C2 and if

γ : e1 7→ f1 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g5, x2 = g2, x3 = g3,
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x4 = g4, x5 = g6, x6 = g7 and Γγ = 〈x1〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x4, x6〉 = δ ∼= C⊕4

2 ⊕ C3

with form (1/2)⊕4⊕C3. Therefore, gen(T ) = (1, 1,−δ) but a mini-

mal generating set for −δ contains at least 4 generators, and so no

such T exists.

If γ : e1 + e2 + e3 7→ f1 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = e1 + e2, x2 = e1 + e3,

x3 = e1 + e5, x4 = e4, x5 = e6, x6 = e7 and Γγ = 〈x1 + x2 + x3〉.

Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 = δ ∼= C⊕4

2 ⊕ C3.

Therefore, gen(T ) = (1, 1,−δ) but a minimal generating set for −δ

contains at least 4 generators, and so no such T exists.

If γ : e1 + e2 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g2, x2 = g1 + g5,

x3 = g1 + g6, x4 = g7, x5 = g3, x6 = g4 and Γγ = 〈x1 + x2 + x3〉.

Therefore,

Γ⊥γ /Γγ = 〈x2, x3, x4, x5, x6〉 = δ ∼= C⊕4
2 ⊕ C3.

Therefore, gen(T ) = (1, 1,−δ) but a minimal generating set for −δ

contains at least 4 generators, and so no such T exists.

If γ : e1 + e2 + e3 + e4 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g2, x2 = g1 + g3,

x3 = g1 + g4, x4 = g1 + g5, x5 = g1 + g6, x6 = g7 and Γγ =

〈x1 + x2 + x3 + x4 + x5〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 = δ ∼= C⊕4

2 ⊕ C3.
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Therefore, gen(T ) = (1, 1,−δ) but a minimal generating set for −δ

contains at least 4 generators, and so no such T exists.

5.1.17 S = 2U(2)

If S = 2U(2) then D(S) = (
(

0 1/2
1/2 0

)⊕2
, C⊕4

2 ) and HS = {0}, C2 or C⊕2
2 .

If HS = {0} then γ : 0 7→ 0 and

Γ⊥γ /Γγ = (qS) ⊕ (−q) = (
(

0 1/2
1/2 0

)⊕2
⊕ (1/2)⊕2 ⊕ (1/3), C⊕6

2 ⊕ C3) = δ

and gen(T ) = (0, 2,−δ), but a minimal generating set for −δ contains at

least 6 generators, and so no such T exists.

If HS
∼= C2 then, up to O(S)-equivalence, HS is generated by one of e1, e1 + e2,

e1 + e2 + e3 or e1 + e2 + e3 + e4 in D(S).

If HS = 〈e1〉 ∼= C2 and if

γ : e1 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1, x2 = g2 + g5,

x3 = g2+g6, x4 = g3, x5 = g4, x6 = g7 and Γγ = 〈x1+x2+x3〉.

Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 = δ ∼= C⊕4

2 ⊕ C3

and gen(T ) = (0, 2,−δ), but a minimal generating set for −δ

contains at least 4 generators, and so no such T exists.

If HS = 〈e1 + e2〉 ∼= C2 and if

γ : e1 + e2 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g2, x2 = g1 + g5,

x3 = g1+g6, x4 = g3, x5 = g4, x6 = g7 and Γγ = 〈x1+x2+x3〉.

Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 = δ ∼= C⊕4

2 ⊕ C3

and gen(T ) = (0, 2,−δ), but a minimal generating set for −δ
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contains at least 4 generators, and so no such T exists.

If HS = 〈e1 + e2 + e3〉 ∼= C2 and if

γ : e1 + e2 + e3 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g2, x2 = g1 + g4,

x3 = g1 + g5, x4 = g1 + g6, x5 = g3, x6 = g7 and Γγ =

〈x1 + x3 + x4 + x5〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 = δ ∼= C⊕4

2 ⊕ C3

and gen(T ) = (0, 2,−δ), but a minimal generating set for −δ

contains at least 4 generators, and so no such T exists.

If HS = 〈e1 + e2 + e3 + e4〉 ∼= C2 and if

γ : e1 + e2 + e3 + e4 7→ f1 + f2 then

Γ⊥γ = 〈x1, x2, x3, x4, x5, x6〉 where x1 = g1 + g2, x2 = g1 + g3,

x3 = g1 + g4, x4 = g1 + g5, x5 = g1 + g6, x6 = g7 and

Γγ = 〈x1 + x2 + x3 + x4 + x5〉. Therefore,

Γ⊥γ /Γγ
∼= 〈x2, x3, x4, x5, x6〉 = δ ∼= C⊕4

2 ⊕ C3

and gen(T ) = (0, 2,−δ), but a minimal generating set for −δ

contains at least 4 generators, and so no such T exists.

5.1.18 S = 〈2〉 ⊕ 〈−2〉

If S = 〈2〉⊕〈−2〉 then D(S) = ((1/2)⊕2, C⊕2
2 ) which is the same as in the case S = 2〈2〉.

Therefore,

gen(T ) =



(1, 3, (1/2)⊕4 ⊕ (−1/3), C⊕4
2 ⊕ C3)

(1, 3; (1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3)

(1, 3;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (−1/3), C⊕3

2 ⊕ C3)

(1, 3; (−1/3), C3)
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1. If gen(T ) = (1, 3, (1/2)⊕4 ⊕ (−1/3), C⊕4
2 ⊕ C3) then, by Theorem 5.1.11, T is

unique in its genus and a representative is given by 〈2〉 ⊕ 〈−2〉⊕2 ⊕ 〈−6〉.

2. If gen(T ) = (1, 3; (1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3) then, by Theorem 5.1.11, T is

unique in its genus and a representative is given by U ⊕ 〈−2〉 ⊕ 〈−6〉.

3. If gen(T ) = (1, 3;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (−1/3), C⊕3

2 ⊕ C3) then, by Theorem 5.1.11, T

is unique in its genus.

4. By Theorem 5.1.6, the genus (1, 3; (−1/3), C3) is empty.

5.1.19 S = 2U

If S = 2U then D(S) = {0} which is the same as in the case S = U . Therefore,

gen(T ) = (0, 2; (1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3) and is therefore a negative definite even

lattice of determinant 12. By referring to tables in [CS99], T is either

T11 := 〈−2〉 ⊕ 〈−6〉

T12 :=
(−4 −2
−2 −4

)
.

The lattice T11 has discriminant form ((1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3) and T12 has

discriminant form (
(

0 1/2
1/2 0

)
⊕ (−1/3), C⊕2

2 ⊕ C3), which is clearly inequivalent to

((1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3) by consider the length of order 2 elements. Therefore,

T = T11.

5.1.20 S = U ⊕ 2〈−2〉

If S = U⊕2〈−2〉 then D(S) = ((1/2)⊕2, C⊕2
2 ) which is the same as in the case S = 2〈2〉.

Therefore,

gen(T ) =



(0, 2, (1/2)⊕4 ⊕ (−1/3), C⊕4
2 ⊕ C3)

(0, 2; (1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3)

(0, 2;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (−1/3), C⊕3

2 ⊕ C3)

(0, 2; (1/3), C3)
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1. The genus (0, 2, (1/2)⊕4 ⊕ (−1/3), C⊕4
2 ⊕ C3) is empty, because the minimum

number of generators of C⊕4
2 ⊕ C3 is greater than 2.

2. If gen(T ) = (0, 2; (1/2)⊕2⊕ (−1/3), C⊕2
2 ⊕C3), then T is a negative definite even

rank 2 lattice of determinant 12. As in a previous case, the genus (0, 2;
(

1/2 0
0 1/2

)
⊕

(−1/3), C⊕2
2 ⊕C3) contains one class which is given by the form T11 := 〈−2〉⊕〈−6〉.

Therefore, T = 〈−2〉 ⊕ 〈−6〉.

3. The genus (0, 2;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕(−1/3), C⊕3

2 ⊕C3) is empty, because the minimum

number of generators of C⊕3
2 ⊕ C3 is greater than 2.

4. The genus (0, 2; (1/3), C3) is empty. This can be seen by considering Theorem

5.1.6.

5.1.21 S = U ⊕ U(2)

If S = U ⊕ U(2) then D(S) = (
(

0 1/2
1/2 0

)
, C⊕2

2 ) which is the same as in the case

S = U(2). Therefore,

gen(T ) =


(0, 2;

(
0 1/2

1/2 0

)
⊕ (1/2)⊕2 ⊕ (−1/3), C⊕4

2 ⊕ C3)

(0, 2;
(

1/2 0
0 1/2

)
⊕ (−1/3), C⊕2

2 ⊕ C3)

(0, 2; (1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3)

1. The genus (0, 2;
(

0 1/2
1/2 0

)
⊕ (1/2)⊕2 ⊕ (−1/3), C⊕4

2 ⊕ C3) is empty because the

minimum number of generators of C⊕4
2 ⊕ C3 is greater than 2.

2. As in a previous case, the genus (0, 2;
(

1/2 0
0 1/2

)
⊕ (−1/3), C⊕2

2 ⊕C3) contains one

class which is given by the form T11 := 〈−2〉⊕〈−6〉. Therefore, T = 〈−2〉⊕〈−6〉.
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5.1.22 S = 2〈−2〉

If S = 2〈−2〉 then D(S) = ((1/2)⊕2, C⊕2
2 ) which is the same as in the case S = 2〈2〉.

Therefore,

gen(T ) =



(2, 2, (1/2)⊕4 ⊕ (−1/3), C⊕4
2 ⊕ C3)

(2, 2; (1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3)

(2, 2;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (−1/3), C⊕3

2 ⊕ C3)

(2, 2; (1/3), C3)

1. If T lies in the genus (2, 2, (1/2)⊕4⊕ (−1/3), C⊕4
2 ⊕C3) then, by Theorem 5.1.11,

T is unique in its genus and a representative is given by 〈2〉⊕2 ⊕ 〈−2〉 ⊕ 〈−6〉.

2. If T lies in the genus (2, 2; (1/2)⊕2⊕ (−1/3), C⊕2
2 ⊕C3) then, by Theorem 5.1.11,

T is unique in its genus and a representative is given by A2 ⊕ 〈−2〉⊕2.

3. By Theorem 5.1.11, the genus (2, 2;

(
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

)
⊕ (−1/3), C⊕3

2 ⊕ C3) contains

at most one class.

4. Because of Theorem 5.1.6, the genus (2, 2; (1/3), C3) is empty.

5.1.23 S = 2〈2〉 ⊕ 2〈−2〉

If S = 2〈2〉 ⊕ 2〈−2〉 then D(S) = (1/2)⊕4, C⊕4
2 ) which is the same as in the case

S = 3〈−2〉⊕ 〈2〉. Therefore, gen(T ) = (1, 1,−δ) where −δ is a finite quadratic form on

a group isomorphic to C⊕4
2 ⊕ C3 or C⊕6

2 ⊕ C3 as, in each case, the minimal number of

generators exceeds 2, no such T can exist.

5.2 Branch divisors in FL6,2p2
(Γ)

We determine the branch divisor of FL6,2p2
(Γ). The branch divisor corresponds precisely

to the fixed locus of elements in Γ that act as quasi-reflections and, by Lemma 5.0.3,

these correspond to elements of the form ±σv ∈ Γ where σv ∈ O(L6,2p2) is a reflection.
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Lemma 5.2.1. If p > 3 and v ∈ L6,2p2 is primitive so that σv is a reflection, then

div(v) ∈ {1, 2, 3, 6, p2, 2p2, 3p2, 6p2}

and

±v2 ∈ {2, 4, 6, 12, 2p2, 4p2, 6p2, 12p2}.

Proof. (The first part of the argument makes use of a number of observations in Chapter

3 of [GHS07].) The reflection σv ∈ O(L) is defined by

σv : x 7→ x− 2
(x, v)

(v, v)
v

and, therefore, div(v)|v2 and v2|2 div(v). Because div(v) is the order of v∗ = v/div(v)

in D(L6,2p2) = C6⊕C2p2 , we conclude that div(v)|6p2. We can exclude the cases where

p properly divides div(v): if p|div(v) then, on the standard basis of L6,2p2 , x belongs

to the set (pZ, pZ, pZ, pZ, pZ,Z). Therefore p2|x2 and as div(v)|v2|2 div(v), the cases

div(v) = p, 2p, 3p, 6p cannot occur.

Throughout, we shall identify D(L6,2p2) with C6 ⊕ C2p2 . We begin by classify-

ing the reflective primitive vectors v ∈ L6,2p2 (as in, primitive v ∈ L6,2p2 such that

σv ∈ O(L6,2p2)) up to Õ(L6,2p2)-equivalence, before deciding whether±σv ∈ O+(L6, h
s
2p2).

We can immediately assume that v2 < 0 as we are working with O+(L6, h
s
2p2).

Lemma 5.2.2. Suppose that v ∈ L6,2p2 is such that div(v)|v2|2 div(v). Then, up to

Õ(L6,2p2)-equivalence, v is represented by one of the following in L6,2p2.

v = (1,−1, 0, 0, 0, 0) div(v) = 1, v2 = −2

v = (α, β, 0, 0, 0, 1) div(v) = 2, v2 = −2

or, if p2|div(v), by v = (α, β, 0, 0, x5,±1) where div(v)|α, β and where v∗ has image
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(µ,±1) ∈ D(L6,2p2). In such a case, the following conditions are satisfied:

if v2 = −2p2 and div(v) = p2, then µ = 0 mod 6

if v2 = −2p2 and div(v) = 2p2, then µ = 0, 3 mod 6

if v2 = −6p2 and div(v) = 6p2, then µ = 0, 1, 2 mod 6

if v2 = −6p2 and div(v) = 6p2, then µ = 1, 2, 4, 5 mod 6.

Moreover, there are no other solutions.

Proof. We can restrict our attention to v ∈ L6,2p2 satisfying the conditions of Lemma

5.2.1.

If v2 = −2 and div(v) = 1, then v∗ = (0, 0) and an Õ
+

(L6,2p2)-representative is

given by (1,−1, 0, 0, 0, 0).

If v2 = −2 and div(v) = 2, then v = (2x1, 2x2, 2x3, 2x4, x5, x5) and v∗ = (0, 1/2),

(1/2, 0), or (1/2, 1/2) and by considering v2/2,

4x1x2 + 4x3x4 − 3x2
5 − p2x6 = −1 (5.5)

and the image of v∗ in D(L6,2p2) corresponds to taking (x5, x6) modulo 2. Taking

Equation (5.5) modulo 4, we have

x2
5 − p2x2

6 = 3 mod 4

which, by considering squares modulo 4, has solutions if and only if x6 ≡ 0 modulo

2 and x5 ≡ 0 modulo 2. Accordingly, v∗ = (0, 1) ∈ D(L6,2p2) and a representative is

given by v = (α, β, 0, 0, 0, 1) where 4αβ = p2 − 1.

If v2 = −6 and div(v) = 3, v = (3x1, 3x2, 3x3, 3x4, x5, 3x6) (with the assumption

that p 6= 3), and v∗ = (2, 0) or (4, 0). By considering v2/3, we obtain

3x1x2 + 3x3x4 − x2
5 − 3p2x2

6 = −3. (5.6)
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By considering squares modulo 3, we conclude that 3|x5, but as div(v) = 3, x5 ≡ 1, 2

modulo 3 and so so no solution exists.

If v2 = −6 and div(v) = 6, v = (6x1, 6x2, 6x3, 6x4, x5, 3x6) and v∗ = (1, p2) or

(5, p2) and x6 = ±1 modulo p2; or div(v) = (1, 0), or (5, 0) and x6 = ±0 modulo 6.

By considering v2/6 we obtain

3(4x1x2 + 4x3x4 − p2x2
6) = −1 + x2

5. (5.7)

If v∗ = (±1, 0), a representative for v is given by (0, 0, 0, 0,±1, 0). If v∗ = (±1, p2),

we conclude that x6 = 2y6 + 1 and

12(x1x2 + x3x4 − p2y6 − p2y6)− x2
5 − 3p2 = −1

− 3p2x2
6 = −1 + x2

5 mod 4

by consider squares modulo 4 and noting that x5 is odd, we see that there is no solution.

If v2 = 12 and div(v) = 6, v = (6x1, 6x2, 6x3, 6x4, x5, 3x6) and by considering v2/6

we obtain

12(x1x2 + x3x4) = −2 + x2
5 + 3p2x2

6

which, by considering squares modulo 4, has no solution.

If v2 = −2p2 and div(v) = p2, v = (p2x1, p
2x2, p

2x3, p
2x4, p

2x5, x6) and by consid-

ering v2/2p2 we obtain

p2(x1x2 + x3x4)− 3p2x5 − x2
6 = −1 (5.8)

and so

x2
6 = 1 mod p2

which has two solutions x6 ≡ ±1 modulo p. A representative is given by v = (α, β, 0, 0, 0,±1)

and v∗ = (0,±γ).

If v2 = −2p2 and div(v) = 2p2, v = (2p2x1, 2p
2x2, 2p

2x3, 2p
2x4, p

2x5, x6) and by
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considering v2/2p2, we obtain

4p2(x1x2 + x3x4)− 3p2x2
5 − x2

6 = 1 (5.9)

and so

x2
6 = ±1 mod p

which has two solutions x6 ≡ ±1 modulo p if
(
−1
p2

)
= 1. In such a case, Equation 5.9

is always satisfied. A representative is given by v = (α, β, 0, 0, 0,±1) and v∗ = (0,±1)

or (3,±1).

If v2 = −4p2 and div(v) = 2p2, v = (2p2x1, 2p
2x2, 2p

2x3, 2p
2x4, p

2x5, x6) and by

considering v2/2p2, we obtain

4p2(x1x2 + x3x4)− 3p2x2
5 − x2

6 = −2 (5.10)

x2
5 − x2

6 = 2 mod 4

which has, by considering squares modulo 4, has no solution.

If v2 = −6p2 and div(v) = 3p2, v = (3p2x1, 3p
2x2, 3p

2x3, 3p
2x4, p

2x5, 3x6) and by

considering v2/6p2 we obtain

3p2(x1x2 + x3x4)− 2p2x2
5 − 3x2

6 = −1 (5.11)

and so

3x2
6 − 1 = 0 mod p2

which has at most two solutions ±γ modulo p2. By assumption, x5/3p
2 ≡ 0, 1, 2

modulo 6. If such an x6 exists, then Equation (5.11) clearly has a solution for any

suitable x5 chosen modulo 6. A representative for v is given by v = (α, β, 0, 0, µ,±γ)

and v∗ = (0,±γ) (1,±γ), (2,±γ) where 3γ2 − 1 ≡ 0 (p2).

If v2 = −6p2 and div(v) = 6p2, v = (6p2x1, 6p
2x2, 6p

2x3, 6p
2x4, p

2x5, 3x6) and, by
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considering v2/6p2, we obtain

12p2(x1x2 + x3x4)− p2x2
5 − 3x2

6 = −1 (5.12)

and so

3x2
6 − 1 = 0 mod p2

which has at most two solutions ±γ modulo p2. If such an x6 exists, then Equation

(5.12) clearly has a solution for any x5 chosen suitably modulo 6. In order to satisfy

the condition that div(v) = 6p2, x5 ≡ 1, 2, 4, 5 (6). A representative for v is given by

v = (α, β, 0, 0, µ,±γ) and v∗ = (i,±γ) where i ∈ {1, 2, 3, 4} and 3γ2 + 1 ≡ 0 (p2).

If v2 = −6p2 and div(v) = 12p2, v = (6p2x1, 6p
2x2, 6p

2x3, 6p
2x4, p

2x5, 3x6) and, by

considering v2/6p2, we obtain

12p2(x1x2 + x3x4)− p2x2
5 − 3x2

6 = −2 (5.13)

and so

2 + p2x2
5 − x2

6 = 0 mod 4

which, by considering squares modulo 4, has no solution. The result then follows.

We next determine which of the reflective vectors v determine σv ∈ O(L6, h
s
2p2) by

using the characterisation of Theorem 4.0.6.

Proposition 5.2.3. If v ∈ L6,2p2 and σv ∈ O+(L6, h
s
2p2) then, up to Õ

+
(L6,2p2)-

equivalence, v = (1,−1, 0, 0, 0, 0).

Proof. We consider the action of σv on v∗6 ∈ D(L6,2p2) where v∗6 = (0, 0, 0, 0, 0, 1/2p2)

for each of the v ∈ L6,2p2 in Lemma 5.2.2. If v = (1, 1, 0, 0, 0, 0), one checks that

σv(v
∗
6) = v∗6 ∈ D(L6,2p2). If v = (α, β, 0, 0, 0, 1), σv(v

∗
6) = −v∗6 ∈ D(L6,2p2).

If v = (p2α, p2β, 0, 0, p2x5, x6) where v2 = 2p2, div(v) = p2 v∗ = (0,±1). Then,

σv(v
∗
6) = (0, 0, 0, 0, 0,

1− 2x2
6

2p2
) ∈ D(L6,2p2)
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which is equal to v∗6 ∈ D(L6,2p2) if and only if p2|x2
6. This is never true as x2

6 ≡ 1 (p2)

and so σv /∈ O(L6, h
s
2p2).

If v = (2p2α, 2p2β, 0, 0, 2p2x5, x6) where div(v) = 2p2 and v2 = 2p2 and where

v∗ = (µ,±1) ∈ D(L6,2p2) where µ = 0 or 3.

σv(v
∗
6) = (0, 0, 0, 0, 0,

1 + 2x2
6

2p2
) ∈ D(L6,2p2)

and so σv /∈ O(L6, h
s
2p2) for the same reason as the above case.

If v = (3p2α, 3p2β, 0, 0, p2x5, 3x6) where div(v) = 3p2 and v2 = 6p2 and where

v∗ = (µ,±1) ∈ D(L6,2p2) where µ = 0,1, or 2 and 3x2
6 − 1 ≡ 0 (p2).

σv(v
∗
6) = (0, 0, 0, 0, ∗, 3 + 6x2

6

6p2
) ∈ D(L6,2p2)

and so if σv(v
∗
6) = v∗6, p2|x2

6 which is never true as 3x2
6 + 1 ≡ 0 (p2).

If v = (6p2α, 6p2β, 0, 0, p2x5, 3x6) where div(v) = 6p2 and v2 = 6p2 and where

v∗ = (µ,±γ) ∈ D(L6,2p2) where x5 = 1, 2, 4, 5 (6) and 3x2
6 + 1 ≡ 0 (p2).

σv(v
∗
6) = (0, 0, 0, 0, ∗, 1 + 2x2

6

2p2
) ∈ D(L6,2p2)

and so if σv(v
∗
6) = v∗6, p2|x2

6 which is never true as 3x2
6 + 1 ≡ 0 (p2).

5.3 Non-canonical singularities in FL6,2p2
(Γ)

We begin with a definition.

Definition 5.3.1. Let L be a lattice of signature (2, n) and let v ∈ L⊗Q. The subset

DvL = {[x] ∈ DL | (x, v) = 0} ⊂ DL

is called a rational quadratic divisor.

We note that rational quadratic divisors are especially important if one is interested
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in proving general type results, as there exists a theory of reflective orthogonal modular

forms, which are modular forms which vanish along DvL for reflective v ∈ L (see, for

example, [Bor98], [Gri10]).

Theorem 5.3.2. (The Eichler criterion) [Eic74] If the lattice L assumes the form

L = 2U ⊕ L0 and v, w ∈ L are primitive such that v2 = u2 and u∗ = v∗ mod L, then

there exists τ ∈ Õ
+

(L) such that τv = w.

Proof. [GHS09] or [Eic74] §10.

Lemma 5.3.3. If g is of order 3 and [x] ∈ DL6,2 and x ∈ Sg ⊗ C or if g is of order 4

and [x] ∈ DL and x ∈ Sg2 ⊗ C then

[x] ∈ Dv
L6,2p

where v2 = ±2.

Proof. If g is 3-torsion then, by Proposition 5.1.13, T contains a −2-vector, with the

exception of the case S = 2A2(−1), for which we have a 2-vector. If g is 4-torsion then,

by Proposition 5.1.16, all Tg2 contains a −2-vector except for possibly Sg2 = 〈−2〉⊕〈2〉

and Sg2 = 〈−2〉⊕2. In these exceptional cases, we examine the possible actions of g

on S. Let S = 〈−2〉⊕2 and consider
(

0 1
−1 0

)
∈ O(〈−2〉⊕2), which is of order 4. We

determine the embeddings of 〈−2〉⊕2 in a more explicit way, and show that the case

T = K1 does not occur.

By the Eichler criterion (Theorem 5.3.2), there are at most four O(L6,2) equivalence

classes of −2-vectors in L2,6. If v ∈ L6,2 is a −2-vector, then v∗ has image (0, 0) ∈

D(L6,2) if div v = 1, or (1, 0), (0, 3) or (1, 3) if div v = 2. If div v = 2, then v is of the

form (2x1, 2x2, 2x3, 2x4, x5, x6) ∈ L6,2 and satisfies

8(x1x2 + x3x4)− 2x2
5 − 6x2

6 = −2.

By considering squares modulo 4, we conclude that x5 and x6 have different parities,

which excludes the case (1, 3); and by working modulo 8, we exclude the case (0, 3).
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We are then left with two cases represented by (1, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 1, 0). One

then calculates that the orthogonal complement of each case is given by 2U ⊕ 〈−6〉

and U ⊕ 〈−6〉 ⊕
(−2 2

2 0

)
, respectively. A further calculation using Theorem 5.1.10 (and

Theorem 5.1.11 to check completeness), shows that the orthogonal complement of a

second -2-vector in each is given by U ⊕ 〈2〉 ⊕ 〈−6〉 with discriminant group C⊕3
2 ⊕C3

or
(−4 6

6 6

)
⊕
(−2 2

2 0

)
with discriminant group C⊕4

2 ⊕ C3. Accordingly, the case T = K1

does not occur.

Because of the case S = 2A2(−1), where g acts as 3-torsion on S, the inclusion of

a 2-vector is unavoidable, as we show below.

The group O(2A2(−1)) can be decomposed as G1 o G2 where G1 is the subgroup

preserving both copies of A2(−1) and G2 is the permutation group induced on the

two factors in the sum A2(−1) ⊕ A2(−1) (this technique is referred to as glue theory

in [CS99]). It is well known (see, for example, [Hum72]) that the automorphism group

of a root system R is generated by the Weyl group W (R) and the group of diagram

automorphisms D(R) of R. For A2(−1), W (A2(−1)) ∼= S3 and D(A2(−1)) ∼= C2 and

so G1
∼= S3 o C2 and, clearly, G2

∼= C2. Therefore, O(2A2(−1)) ∼= (S3 o C2) o C2.

We take generators for each of the subgroups, and compute the conjugacy classes of

3-torsion in O(2A2(−1)).

We did our calculations in the computer algebra system GAP. We found that

O(2A2(−1)) is a group of order 288 and that there are two conjugacy classes of 3

torsion. These are represented by the elements

(
0 1 0 0
−1 −1 0 0
0 0 0 1
0 0 −1 −1

)
and

(
0 1 0 0
−1 −1 0 0
0 0 1 0
0 0 0 1

)
.

and first case does not fix a -2-vector.

It is clear that if g is 4-torsion then g also acts on Sg2 = 〈−2〉 ⊕ 〈2〉. A direct

calculation shows that O(〈−2〉 ⊕ 〈2〉) = 〈( 1 0
0 1 ) ,

(−1 0
0 1

)
〉 ∼= V4. Therefore O(〈−2〉 ⊕ 〈2〉)

contains no 4-torsion.
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Theorem 5.3.4. If [w] ∈ FL6,2p2
is a non-canonical singularity,

[w] ∈ DvL6,2p2
⊂ DL6,2p2

where DvL6,2p2
is one of, at most, 8(p2 + 1) rational quadratic divisors. The vector v

can be chosen to be of length ±2 or ±2p2.

Proof. By Theorem 5.0.2, if [w] ∈ F6,2p2 is non-canonical, then [w] lies in the fixed

locus of a quasi-reflection or an element of 3 or 4 torsion. If [w] lies in the fixed locus of

a quasi-reflection, then the result follows by Proposition 5.2.3. If not, we consider the

inclusion Γ6,2p2 ≤ O(L6,2) of Theorem 4.0.6 and denote the action of g ∈ Γ6,2p2 on L6,2

by g′. By Lemma 5.3.3, Tg′ ⊂ L6,2 contains a ±2-vector and because of the inclusion

pL6,2 ⊂ L6,2p2 ⊂ L6,2

Tg ⊂ L6,2p2 contains a vector of length ±2 or ±2p2, which we assume to be primitive.

If v2 = ±2, then div v = 1 or 2 and so v∗ belongs to C2 ⊕ C2 ≤ D(L6,2p2), which is

of order 4. If v2 = ±2p2, then div v = 1 or 2 or p or 2p or 2p2 and v∗ belongs to

C2 ⊕ C2p2 ≤ D(L6,2p2), which is of order 4p2. And so, by the Eichler criterion, up to

Õ
+

(L6,2p2) equivalence, there are at most 8(p2 + 1) such elements.

5.4 Extension of pluricanonical forms

A Γ6,2p2-invariant pluricanonical form on DL6,2p2
will extend to a smooth model of

FL6,2p2
if it vanishes to sufficiently high order over the interior obstructions. By using

the Reid-Tai criterion and a result of Tai, we show that the required order can be

determined effectively by toric methods. We begin by establishing bounds on the order

of the elliptic elements of O(L6,2p2).

Lemma 5.4.1. If g ∈ O(L6,2p2) is of finite order m, then m ≤ 30.

Proof. The element g ∈ O(L6,2p2) has a representation on L6,2p2⊗Q, which is of degree

6. By general theory on the representations of the cyclic group over Q, if h is of order
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d, there is a unique faithful irreducible representation of degree φ(d). Therefore, if

qr|o(g), then q ≤ 7 and qr is one of 2, 22, 23, 3, 32, 5. One checks that the only d with

such factors satisfying φ(d) ≤ 6 are

d 1 2 3 4 5 6 7 8 9 10 12 14 18

φ(d) 1 1 2 2 4 2 6 4 6 4 4 6 6

and so m ≤ 30.

Theorem 5.4.2. [Tai82] If G ≤ GL(n,C), X = Cn/G and Xg = Cn/〈g〉 for g ∈ G,

then a G-invariant pluricanonical form η on Cn extends to X̃ if and only if η extends

to X̃g for every g ∈ G.

Theorem 5.4.3. If Ω is a Γ-invariant pluricanonical form on DL6,2p2
, then Ω defines

a pluricanonical form on a smooth model of FL6,2p2
if Ω vanishes to suitably high order

over the pre-image of the obstructions under the map

π : DL6,2p2
→ FL6,2p2

.

Moreover, the order of vanishing required can be determined effectively.

Proof. Suppose that [w] ∈ FL6,2p2
is singular or lies in the branch divisor. We assume

that FL6,2p2
is locally isomorphic to C4/G in a neighbourhood of [w]. By Theorem

5.4.2, we only need to check that Ω extends to C̃4/〈g〉 for each g ∈ G. Because of

Lemma 5.4.1, this is a finite problem.

A computer search (by using Theorem 3.8.2 and 3.8.5) of the possible represen-

tations of elliptic g ∈ O(L6,2p2) on Hom(W,W⊥/W) found that, at most, 34 possible

non-canonical cyclic quotient singularities can arise. These are listed in Appendix B.

Cyclic quotient singularities are toric singularities and can be resolved effectively by

the usual method of subdivision as in [Ful93]. One can then compute the order of

vanishing required by Ω to ensure extension.
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5.5 Automorphisms of deformation generalised Kummer

manifolds and finite quotient singularities

In this section, we classify the possible local forms of the singularities in FL6,2p2
(Γ) and

say a little about the automorphisms of deformation generalised Kummer manifolds.

If G ≤ O+(L6,2p2) is a finite group, then G fixes a point in [w] ∈ DL6,2p2
. Furthermore,

by general symmetric space theory [Hel78], if

[w] ∈ DL6,2p2
∼= SO(2, 4)/ SO(2)× SO(4),

then the isotropy subgroup G[w] ≤ O+(2, 4) of [w] lies in the maximal compact subgroup

SO(2)× SO(4) of O+(2, 4). Therefore, the isotropy subgroup G of [w] in O+(L6,2p2) is

a finite subgroup of SO(2)× SO(4).

Due to the work of Zassenhaus, the finite subgroups of SO(n) can effectively (albeit

expensively) be calculated and tables exist up to n = 4 (see, also, [CS03] for SO(4)).

However, we choose to exploit the 2:1 cover of SO(4) by SU(2)×SU(2) given by the ex-

ceptional isomorphism between SO+(4) and SU(2)×SU(2) (see, for example, [Kna02]),

as it results in a slightly simpler statement. Indeed, if one is only interested in com-

puting a full list of possible singularities, it is sufficient to classify the representations

of finite groups in SO(2) × SU(2) × SU(2) and, for the sake of simplificity, this is the

approach we take.

There is also a 2:1 cover SU(2)→ SO(3) and so one can classify the finite subgroups

of SO(2)× SO(4) (as is explained in [Ste08]) in terms of the finite subgroups of SO(3),

which were known to Plato. The finite subgroups of SO(3) are

1. The cyclic group Cn = 〈a | an = e〉

2. The dihedral group D2n = 〈a, i | an = i2 = (ai)2 = e〉

3. The tetrahedral group T = 〈r, s, t | r3 = s2 = t2 = rst〉

4. The octahedral group O = 〈r, s, t | r3 = s2 = t4 = rst〉

5. The icosahedral group I = 〈r, s, t | r3 = s2 = t5 = rst〉
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and the pre-images in SU(2) are known as the binary polyhedral groups. The case of the

pre-image of the cyclic group Cn is exceptional, and yields C2n. The binary polyhedral

groups are

1. The cyclic group Cn = 〈a | an = e〉

2. The binary dihedral group BD2n = 〈r, s, t | r2 = s2 = tn = rst〉

3. The binary tetrahedral group BT = 〈r, s, t | r2 = s3 = t3 = rst〉

4. The binary octahedral group BO = 〈r, s, t | r2 = s3 = t4 = rst〉

5. The binary icosahedral group BI = 〈r, s, t | r2 = s3 = t5 = rst〉

Remark 5.5.1. If X is a polarised deformation generalised Kummer manifold then,

by using Lemma 5.4.1, one obtains a list (see Theorem 5.5.3) of the possible images of

Aut(X) on H2(X,Z) up to abstract isomorphism (see also [BNWS11] [Ogu12]).

As in Chapter 5.0.1, around a point [w] ∈ FL6,2p2
, the space is locally isomorphic to

the quotient of Hom(W,W⊥/W) =: V by the stabiliser G ≤ Γ6,2p2 of [w]. The action of

G on V corresponds to a 4-dimensional twisted representation of G. Therefore, in order

to classify the local form of the singularities of FL6,2p2
(Γ), it is sufficient to classify the

four dimensional complex representations of the finite subgroups of SO(2)× SO(4).

The character tables of the binary polyhedral groups, and their associated irre-

ducible representations are given in Appendix A. The case of Cn is well known, the

case of BD2n can be found in [Ste08], and we used the computer algebra system GAP

to compute for BT, BO and BI. The full set of representations can be determined by

semisimplicity and Proposition 5.5.2.

Proposition 5.5.2. [JL01] If G and H are finite groups with whose irreducible rep-

resentations are given by ρi and θj, respectively, then the irreducible representations of

G×H are given precisely by ρi ⊗ θj.

We may summarise the above discussion as follows:
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Theorem 5.5.3. Around [w] ∈ FL6,2p2
, the space FL6,2p2

is locally isomorphic to C4/G

where G ≤ GL(4,C) and G ∼= G1 × G2 × G3 where G1 is cyclic, and G2 and G3 are

binary polyhedral groups. Every element in G has order not exceeding 56 and the action

of G on C4 is given precisely by the degree 4 representations of G, which can be deduced

from Appendix A.
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Chapter 6
Toroidal compactifications and

singularities in the boundary

6.1 Toroidal compactifications

In this section, we describe the construction of a toroidal compactification of FL6,2p2

and study the singularities in the boundary. We begin by describing the Baily-Borel

compactification, which is a canonical compactification that can be defined for any

Hermitian symmetric space H, or an arithmetic quotient of H. Our notation will often

view H as the symmetric space H = G/K. However, all of the the spaces we consider

will be of the form H = SO(2, n)/ SO(2) × SO(n) and can be concretely realised in

terms of the quadric

DL = {[x] ∈ P(L⊗ C) | (x, x) = 0, (x, x) > 0}

for a lattice L of signature (2, n).

A more extensive overview can be found in [BJ06] or [GHS13] (our treatment follows

[GHS13]). In general, one defines the Baily-Borel compactification of H by taking the

closure of H in the embedding H ⊂ H∨ given by the Harish-Chandra embedding.

For the domain DL, this is simply the Zariski closure of DL inside P(L ⊗ C) (where

P(L⊗C) lies in side the compact dual D∨L = {x ∈ P(L⊗C) | (x, x) = 0}). We shall refer
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to the Baily-Borel compactification of DL by DBBL . Given DBBL , we define boundary

components as follows:

Definition 6.1.1. Let x, y ∈ DBBL . We define an equivalence relation on DBBL by

letting x ∼ y if and only if there exist finitely many holomorphic maps

fi : ∆ = {z ∈ C | |z| < 1} → DBBL

such that x ∈ f1(∆) and y ∈ fk(∆) and fi(∆) ∩ fi+1(∆) 6= ∅ for 1 ≥ 1 < k. The

equivalence classes are called the boundary components of DBBL .

The Baily-Borel compactification can be decomposed as

DBBL = DL
⊔
P∈P

FP

where P is a set of certain parabolic subgroups of G and FP is the symmetric space

of P . In order to describe the Baily-Borel compactification of the arithmetic quotient

DL/Γ, we need to restrict our attention to rational boundary components.

Definition 6.1.2. We define the normaliser N(FP ) and the centraliser Z(FP ) of the

boundary component FP inside G by

N(FP ) = {g ∈ G | g(FP ) = FP }

Z(FP ) = {g ∈ G | g|FP
= id}.

Definition 6.1.3. A boundary component F of DBBL is called a rational boundary

component if

1. The normalizer N(F ) of F is a parabolic subgroup of G and defined over Q.

2. The centralizer Z(F ) contains a co-compact subgroup that is

(a) normal in N(F ).

(b) an algebraic subgroup over Q.
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The group Γ acts on the set of rational boundary components. Moreover, if FP is

a rational boundary component, ΓP = N(FP ) ∩ Γ is a discrete group and so FP /ΓP is

also an arithmetic quotient of a Hermitian symmetric space. One can then define the

Baily-Borel compactification (DL/Γ)∗ of DL/Γ by taking the quotient of

D∗L = DL
⊔
P∈P

P rational

FP

by Γ [BB66].

Theorem 6.1.4. [GHS13] [BB66] The Baily-Borel compactification (DL/Γ)∗ is an

irreducible normal complex projective variety. It contains DL/Γ as a Zariski-open subset

and can be decomposed as

(DL/Γ)∗ = DL/Γ t
⊔
P∈P

P rational

FP /ΓP

where P runs over all the Γ-equivlence classes of parabolic subgroups determining ra-

tional boundary components.

When Γ ≤ O(L), the maximal parabolic subgroups of Γ are precisely the stabilisers

of totally isotropic subspaces in L⊗Q, and we can refine the above decomposition:

Definition 6.1.5. Let (DL/Γ)∗ be the Baily-Borel compactification of DL/Γ as in

Theorem 6.1.4 where L is a lattice of signature (2, n). If ΓP ≤ Γ is the stabiliser

of a totally isotropic subspace of rank 1, we say that FP /ΓP is a rank 1 boundary

component; If ΓP ≤ Γ is the stabiliser of a totally isotropic subspace of rank 2, we say

that FP /ΓP is a rank 2 boundary component. Collectively, the boundary components

in (DL/Γ)∗ are called cusps.

In the above situation, the rank 1 boundary components are points and the rank 2

boundary components are modular curves.

We can now begin to define toroidal compactifications of FL(Γ). Toroidal com-

pactifications exist for general arithmetic quotients of Hermitian symmetric domains,
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but we shall restrict our attention to the case FL(Γ). Full details can be found in the

monograph [AMRT10]. Toroidal compactifications are an especially appealing class

of compactification to work with if one is interested in proving general type results

because their singularities are, at worst, quotients of toric singularities, and these are

usually easy to resolve.

The construction begins with a local construction at each cusp F , and ends by

gluing the local constructions together. Ordinarily (for example, in the case of abelian

surfaces [HKW93]), one has to check that certain compatibility conditions are satisfied

for the gluing procedure to be well defined, but if Γ ≤ O(2, n), these conditions are

automatically satisfied. This turns out to be a major simplification.

For a boundary component F , we define the domain DL(F ) as

DL(F ) = F × V (F )× U(F )C (6.1)

where, if W (F ) is the unipotent radical of N(F ), U(F ) is the centre of W (F ) and

V (F ) = W (F )/U(F ) is a complex vector space. We have the natural maps

DL(F )

DL(F )′

F

π′F

pF

πF

where DL(F )′ = DL(F )/U(F )C. The domain DL can then be realised as a Siegel

domain inside DL(F ) by the tube domain condition

DL = {x ∈ DL(F ) | Im(prU (x)) ∈ C(F )}

for a cone C(F ) ⊂ U(F ) where prU is the projection map from D(F ) to U(F )C in
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Equation (6.1). If we define the map φF by

φF : DL(F )→ U(F )

by φF : x 7→ Im(prU (x)), we obtain the diagram

C(F ) ⊂ U(F )

DL ⊂ DL(F ) ⊂ D∨L

DL(F )′

F

φF

πF

pF

π′F

φF

Indeed, the spaces π′F : DL(F )→ DL(F )′ and pF : DL(F )′ → F are principal homoge-

neous spaces for U(F )C and V (F ), respectively. The group N(F )Z = Γ ∩ N(F ) acts

on DL(F ) and if we restrict to U(F )Z := Γ ∩ U(F ), we obtain a principal fibre bundle

DL(F )/U(F )Z → DL(F )′ (6.2)

whose fibre is U(F )C/U(F )Z, which is an algebraic torus T (F ). To obtain a partial

compactification over the cusp F , one first obtains a fan by taking an N(F )Z-invariant

decomposition of the cone C(F ) into rational polyhedral cones. The fan defines a toric

variety XΣ(F ) ⊃ T (F ) and we can replace T (F ) in the bundle of equation (6.2)

with XΣ(F ) to obtain a new bundle over DL(F ) with fibre XΣ(F ). One then takes the

closure of DL/U(F )Z in the new bundle and then the quotient by N(F )Z to obtain

a partial compactification for the cusp F . The final step involves glueing the partial

compactifications together by identifying the copies of DL/Γ contained in each one.

In general, the decomposition of C(F ) is not arbitrary and compatibility conditions

must be satisfied by fans that occur when one cusp lies in the closure of another cusp.
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These are conditions are automatically satisfied for subgroups of O(2, n): two cusps

F1 and F2 have intersecting closures if and only if their associated isotropic subspaces

E1, E2 ∈ L ⊗ Q satisfy E1 ⊂ E2. Therefore, we need only consider the intersection of

a 1 dimensional boundary component with a 0 dimensional boundary component. For

the orthogonal group O(2, n), dimU(F ) = 1 at a one dimensional cusps and so the

decomposition of C(F ) ⊂ U(F ) is trivial.

For the rest of this section, we shall work with an explicit description of a toroidal

compactication of FL(Γ) but, because of the following results, only the one dimensional

boundary components will concern us.

6.2 Rank 1 boundary components

All of the results in this subsection can be found in [GHS07]. Suppose that dimE = 1;

then, as V (F ) is trivial,

DL(F ) ∼= F × U(F )C = U(F )C.

We let M(F ) = U(F )Z and T (F ) = U(F )C/U(F )Z. We obtain the partial com-

pactification in the direction of F by taking the closure of DL(F )/U(F )Z in the bundle

formed by replacing T (F ) in Equation (6.2) with a toric variety XΣ(F ), and then taking

the quotient by G(F ) = N(F )Z/U(F )Z. However, in this case, the resulting bundle is

XΣ(F ). Indeed, while it is not immediate from the construction, one can choose XΣ(F )

so that XΣ(F ) is smooth and so that G(F ) acts on the closure of DL(F )/U(F )Z in

XΣ(F ) (an explanation may be found in [FC90]) and so at the 0 dimensional boundary

components, determining the singularities is reduced to a purely toric problem.

Theorem 6.2.1. [GHS07] (Theorem 2.17) If XΣ ⊃ T is a smooth toric variety on

which a finite group of torus automorphisms G ≤ Aut(T ) acts, then XΣ/G has canon-

ical singularities

Therefore, the singularities at in the zero dimensional boundary components can

be ignored. One may still have to check if the branch divisor presents an obstruction
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but, because of the following theorem, this can also be ignored.

Theorem 6.2.2. [GHS07] (Corollary 2.22) There are no divisors at the boundary

over a zero dimensional cusp F that are fixed by a non-trivial element of G(F ).

We therefore need only to consider the one dimensional boundary components.

6.3 Rank 2 boundary components

We describe the compactification at the one dimensional boundary components explic-

itly, as in [Sca87], [Kon93] and [GHS07].

Lemma 6.3.1. Let E ≤ L6,2p2 be a primitive, totally isotropic subspace of rank 2

corresponding to the boundary component F . Then there exists a Z-basis {v1, . . . , v6}

of L6,2p2 such that {v1, v2} is a basis for E and {v1, . . . , v4} is a basis for E⊥. The

basis can be chosen so that the bilinear form Q has Gram matrix

Q = ((vi, vj)) =


0 0 A

0 B C

tA tC D

 (6.3)

where B is the form on E⊥/E and

A =

 0 a1

a1a2 0

 .

Here a1 and a2 are the elementary divisors of the group D(L6,2p2)/H⊥E . Moreover,

(a1, a1a2) ∈ {(1, 1), (1, 2p), (1, 6p)}.

Proof. As E and E⊥ are primitive, the claim about the existence of a basis on which

Q assumes the form of Equation (6.3) is immediate. We next consider the matrix A.

By considering the Smith normal form of A, we see that A embeds 〈v5, v6〉 in the dual

〈v∗5, v∗6〉 and so the elementary divisors of A correspond to the elementary divisors of the
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abelian group 〈v∗5, v∗6〉/〈v5, v6〉. If HE = E⊥⊥/E ≤ D(L6,2p2), then H⊥E = 〈v∗1, . . . , v∗4〉

in D(L6,2p2) and so 〈v∗5, v∗6〉/〈v5, v6〉 ∼= D(L6,2p2)/H⊥E . We next determine HE and H⊥E .

As E is totally isotropic in L6,2p2 , HE is totally isotropic in D(L6,2p2). If D(L6,2p2) is

identified with ((−1/6) ⊕ (−1/2p2), C6 ⊕ C2p2), then (x, y) ∈ D(L6,2p2) is isotropic if

and only if

p2x2 + 3y2 = 0 mod 6p2.

As (3, p) = 1, p|y and so, p2x2 + 3p2y2
1 = 0 mod 6p2 and x2 + py2

1 = 0 mod 6.

By considering squares modulo 6, we conclude that x = 0 or 3 and that x and y

must have different parities. The isotropic elements in D(L6,2p2) are, therefore,

(x, y) ∈ {(0, 2kp), (3, (2k + 1)p) | k ∈ Z}.

The primitive isotropic subspaces of rank 1 in D(L6,2p2) are generated by x1 = (0, 2p)

and x2 = (3, p) and the single rank 2 totally isotropic subspace is generated by 〈x1, x2〉.

If HE = 〈x1〉,

H⊥E = {(a, b) ∈ D(L6,2p2) | pa+ 6b ≡ 0 mod 6p}

and so p|b, 6|a and H⊥E = 〈(0, p)〉 ∼= C2p.

If HE = 〈x2〉,

H⊥E = {(a, b) ∈ D(L6,2p2) | pa+ b ≡ 0 mod 2p}

and so p|b, 2|(a + b) and H⊥E = 〈(1, p), (2, 0)〉. If y1 = (1, p) and y2 = (2, 0), we also

have the relations

6py1 = 0

3y2 = 0

and so p(2y1 − y2) = 0. Moreover, because p ≡ ±1 modulo (6), 2py1 = ±y2 and so
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H⊥E = 〈y1〉 = 〈(1, p)〉 ∼= C3 ⊕ C2p. If HE = 〈x1, x2〉 then H⊥E = 〈y1〉 = 〈(1, p)〉 ∼=

C3 ⊕ C2p. We conclude that,

1. If HE = {0}, then H⊥E = D(L6,2p2) and D(L6,2p2/H
⊥
E
∼= {0}.

2. If HE = 〈x1〉, then H⊥E = 〈(0, p)〉 ∼= C2p and D(L6,2p2)/H⊥E
∼= C6 ⊕ Cp.

3. If HE = 〈x2〉, then H⊥E = 〈(1, p)〉 ∼= C3 ⊕ C2p and D(L6,2p2)/H⊥E
∼= C2 ⊕ Cp.

4. If HE = 〈x1, x2〉, then H⊥E = 〈(1, p)〉 ∼= C3 ⊕ C2p and D(L6,2p2)/H⊥E
∼= C2 ⊕ Cp.

The result follows.

It is likely that the following lemma was proved in [Bri83], but we prove it here as

we were unable to locate a copy.

Lemma 6.3.2. Let L be a lattice of signature (2, n) and let E ⊂ L be a primitive

totally isotropic subspace of rank 2. If HE := E⊥⊥L∨ , then the discriminant form of the

lattice E⊥/E is given by

D(E⊥/E) ∼= H⊥E /HE ⊂ D(L)

Proof. Let E ≤ L be a primitive totally isotropic subspace of rank 2. As E and E⊥

are primitive in L, then as a Z-module, L ∼= (E⊥/E) ⊕ E ⊕ F for some F ≤ L. As a

Z−module, L∨ = Hom(L,Z) assumes the following form

L∨ ∼= (E⊥/E)∨ ⊕ (E ⊕ F )∨

Moreover, E⊥⊥ ⊂ L∨ is primitive in (E ⊕ F )∨ and we can take a basis {e∗1, f∗1 , e∗2, f∗2 }

of (E ⊕F )∨ so that E⊥⊥ = 〈e∗1, e∗2〉 and such that the bilinear form on (E ⊕F )∨ ⊂ L∨

is equal to U ⊕ U . Because (E⊥/E) is non-degenerate, (E⊥/E)∨ has a basis B in

(E⊥/E)⊗Q. With respect to the basis {e∗1, f∗1 , e∗2, f∗2 }∪B, the form on L∨ is U⊕U⊕L0.

Therefore,

D(L) = L∨/L ∼=
〈e∗1, f∗1 , e∗2, f∗2 〉

E ⊕ F
⊕D(E⊥/E).

As HE = 〈e∗1, e∗2〉/E, therefore D(E⊥/E) ∼= H⊥E /HE ⊂ D(L).
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Corollary 6.3.3. Only the case (a1, a1a2) = (1, 1) or (1, 2p) occurs in Lemma 6.3.1.

Proof. By Lemma 6.3.2, the negative definite lattice B has discriminant form D(B) =

H⊥E /HE ≤ D(L6,2p2) and so if (a1, a1a2) = (1, 6p), then D(B) = ((1/2), C2). By using

tables in [CS99], we see that no such B can exist. The other cases may exist, though.

If (a1, a1a2) = (1, 2p), D(B) = ((1/3), C3) and B = A2(−1). If (a1, a1a2) = (1, 1),

D(B) = ((−1/6)⊕ (−1/2p2), C6 ⊕ C2p2) and B may be equal to 〈−6〉 ⊕ 〈−2p2〉.

Lemma 6.3.4. There exists a basis {v1, . . . v6} for L6,2p2 ⊗Q such that {v1, v2} form

a Z−basis for E and {v1, . . . v4} form a Z− basis for E⊥ and

Q = ((vi, vj)) =


0 0 A

0 B 0

A 0 0


where A and B are as described previously in Lemma 6.3.1.

Proof. This is essentially Lemma 2.24 of [GHS07]. Let R = −B−1C ∈M2(Z[1/detB])

and let R′ ∈M2(Z[1/ detB]) satisfy

D − tCB−1C + tR′A+ tAR′ = 0

and define the base change matrix

N =


I 0 R′

0 I R

0 0 I

 .
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Lemma 6.3.5. The groups N(F ), W (F ) and U(F ) are given by

N(F ) =




U V W

0 X Y

0 0 Z

 |
tUAZ = A, tXBX = B, tV AZ = 0, tXBY +t V AZ = 0

tY BY +t ZAW +tWAZ = 0, det(U) > 0


W (F ) =




I V W

0 I Y

0 0 I

 | BY +t V A = 0, tY BY +AW +tWA = 0



U(F ) =




I 0

 0 a1a2x

−x 0


0 I 0

0 0 I


| x ∈ R


Proof. Direct calculation (as [Kon93]).

We also need a description forN(F )Z. As mentioned in Proposition 2.27 of [GHS07],

if g ∈ N(F ) is given on the above basis then g ∈ N(F )Z if

N−1gN =


U V −V B−1C +W + UR′ −R′Z

0 X Y −XB−1C +B−1CZ

0 0 Z

 ∈ GL(6,Z).

We next identify DL(F ) with (z, w1, w2, τ) ∈ C×C2×H as a Siegel domain (as ex-

plained in [Kon93] or [GHS07]). The identification proceeds by choosing homogeneous

coordinates [t1 : . . . : t6] on P(L⊗C). The map DL(F )→ P(L⊗C) is given by t6 := 1,

t1 7→ z ∈ C, t3 7→ w1 ∈ C, t5 7→ τ and t2 7→ −2δzτ−(w1,w2)Bt(w1,w2)
2δa2

.

Proposition 6.3.6. Let

g =


U V W

0 X Y

0 0 Z

 ∈ N(F )
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where Z =

a b

c d

. The action of g on DL(F ) is given by


z 7→ z

detZ + (cτ + d)−1
(

c
2δ detZ

twBw + V1w +W11τ +W12

)
w 7→ (cτ + d)−1 (Xw + Y ( τ1 ))

τ 7→ aτ+b
cτ+d

Proof. As in [GHS07].

6.4 Bounds on the boundary components

We wish to examine the non-canonical singularities in X. Because of Theorem 6.2.1 (as

in [GHS07]) the compactification may be chosen so that all the singularities at the 0 di-

mensional cusps are canonical. Therefore, we need only to consider the compactification

at the 1 dimensional cusps. The boundary components of FL(Γ) correspond to precisely

to Γ-orbits of totally isotropic subspaces in L⊗Q, with the zero dimensional cusps cor-

responding to the orbits of isotropic lines and the one dimensional cusps corresponding

to the orbits of totally isotropic planes. We begin by using the approach of [Sca87] to

determine the O(L6,2)-orbits of totally isotropic planes in L6,2 ⊗Q = L6,2p2 ⊗Q. This

involves showing that given a totally isotropic subspace E ≤ L6,2, the bilinear form on

L6,2 can be put into a certain normal form.

Lemma 6.4.1. If E ≤ L6,2 is primitive and totally isotropic of rank 2, then E⊥/E ∼=

〈−6〉 ⊕ 〈−2〉 or E⊥/E ∼= A2(−1).

Proof. We consider the subspaces HE ≤ D(L6,2). As E is totally isotropic, HE ≤

D(L6,2) is totally isotropic. As usual, identify D(L6,2) with C6⊕C2. If (a, b) ∈ D(L6,2)

is isotropic, then a2/6 − b2/2 = 0 (Q/Z) which has solutions (a, b) = (0, 0) or (a, b) =

(3, 1). If HE = {(0, 0)}, then H⊥E /HE = D(L6,2) with form ((−1/6)⊕ (1/2), C6 ⊕ C2).

If HE = 〈(3, 1)〉, then H⊥E = 〈(1, 1)〉 and H⊥E /HE
∼= 〈(2, 0)〉 with form ((1/3), C3).

By using tables in [CS99], we see that there are two negative definite even lattices of
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determinant 12: 〈−6〉⊕〈−2〉 and
(−4 −2
−2 −4

)
but, as calculated previously, the discriminant

form of the second lattice is inequivalent to ((1/2)⊕2 ⊕ (−1/3), C⊕2
2 ⊕ C3). Therefore,

in the case HE = 〈(0, 0)〉 we have E⊥/E ∼= 〈−6〉 ⊕ 〈−2〉; similarly, by using tables

in [CS99], in the case HE = 〈(3, 1)〉 we have E⊥/E ∼= A2(−1).

Lemma 6.4.2. Let E ≤ L6,2 ⊗Q be a totally isotropic subspace of rank 2. Then there

exists a Z−basis {v1, . . . v6} of L6,2 such that {v1, v2} is a basis for E and {v1, . . . , v4}

is a basis for E⊥ and the inner product on L6,2 becomes

Q = ((vi, vj)) =


0 0 P

0 B C

P tC Q


where

1. If HE = 〈(1, 1)〉, then B = 〈−6〉 ⊕ 〈−2〉 and P = ( 0 1
1 0 ) and Q = C = 0.

2. If HE = 〈(3, 1)〉, then B = A2(−1) and P = ( 0 1
3 0 ) and Q =

(
2d 0
0 0

)
for d ∈ {0, 1, 2}

and C = ( 0 0
c 0 ) for c ∈ {0, 1, 2}.

Proof. We start by taking a basis {v1, . . . v6} of L6,2 for which {v1, v2} is a basis for E

and {v1, . . . v4} is a basis for E⊥. Suppose that on this basis

Q = ((vi, vj)) =


0 0 A0

0 B0 C0

tA0
tC0 D0

 .

By Lemma 6.4.1, HE = 〈(0, 0)〉 or HE = 〈(3, 1)〉. If HE = 〈(0, 0)〉 then, by the

Elementary Divisor Theorem, there exist U,Z ∈ GL(2,Z) such that

UA0Z =

0 1

1 0

 .

Moreover, there exists X ∈ GL(2,Z) such that tXB0X = B = 〈−6〉⊕ 〈−2〉, and so the
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matrix g1 := diag(U,X,Z) ∈ GL(6,Z) transforms Q to Q′ where

Q′ =t g1Qg1 =


0 0 A

0 B C1

tA tC1 D1

 .

Now consider

g2 :=


I −tAtC1 0

0 I 0

0 0 I

 ∈ GL(6,Z).

The map g2 transforms Q′ to Q′′ where

Q′′ =


0 0 A

0 B 0

tA 0 D2



where A =

0 1

1 0

. We next require that D2 be put into the correct form. Consider

g3 :=


I 0 W

0 I 0

0 0 I

 ∈ GL(6,Z)

g3 sends D2 7→ D2 + tWA+ tAW . One checks that tWA+ tAW contains all matrices

of the form 2a b

b 2c


where a, b, c ∈ Z. Therefore, there exists W so that g3 sends

D2 7→

d11 0

0 d22


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where d11 and d22 are taken modulo 2. However, as the form Q is even, d11 and

d22 are both even. Therefore, there exists W so that g3 sends D2 to 0. The matrix

g3g2g1 ∈ GL(6,Z) gives the required base change.

If HE = 〈(3, 1)〉 then, by the Elementary Divisor Theorem, there exist U,Z ∈

GL(2,Z) such that

UA0Z =

0 1

3 0


Moreover, there exists X ∈ GL(2,Z) such that tXB0X = B = A2(−1), and so the

matrix g4 := diag(U,X,Z) ∈ GL(2,Z) transforms Q to Q′ where

Q′ =t g1Qg1 =


0 0 A

0 B C1

tA tC1 D1

 .

and

A =

0 1

3 0

 .

Now consider

g5 :=


I P 0

0 I Q

0 0 I

 ∈ GL(6,Z).

for some P,Q ∈M2(Z). We claim that P and Q can be chosen such that

tPA+BQ+ C1 =

0 0

a 0


where a is determined modulo 3. We have

tPA+BQ+ C1 =

3p21 − 2q11 − q21 + c11 p11 − 2q12 + q22 + c12

3p22 − 2q21 − q11 + c21 p12 − q12 − 2q22 + c22


The claim about the second column is immediate as p11 and p12 are both free. For the
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first column, we can work modulo 3 as p21 and p22 are free. As

δ := 2q11 + q21 = −(2q21 + q11) mod 3

the first column can be mapped to t(0, c11 + c21) modulo 3 for an appropriate choice of

δ.

Therefore,

g5 =


I P 0

0 I Q

0 0 I


with P and Q chosen as above transforms Q′ to

Q′′ =


0 0 A

0 B C0

tA tC0 D2


where C0 is as in the statement of the theorem. We next require that D2 be put into

the correct form. Consider

g6 :=


I 0 W

0 I 0

0 0 I

 ∈ GL(6,Z)

for W ∈M2(Z). The element g6 sends

D2 7→ D2 + tWA+ tAW.

One checks that the set {tWA+ tAW |W ∈M2(Z)} contains all matrices of the form

6a b

b 2c


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where a, b, c ∈ Z. Therefore, there exists W so that g3 sends

D2 7→

d11 0

0 d22


where d11 is taken modulo 6 and d22 is taken modulo 2. As the form Q is even, d11 and

d22 are both even and therefore there exists W so that g3 sends d11 to one of 0, 2 or 4

and the rest to 0. Therefore g6g5g3 ∈ GL(6,Z) gives the required base change.

Theorem 6.4.3. The modular variety FΓ has at most 320(p5 + p2) rank 2 boundary

components.

Proof. If E1, E2 ≤ L6,2 are primitive totally isotropic subspaces of rank 2 with the same

normal form, then by Lemma 6.4.2, there exist bases {v1, . . . , v6} and {w1, . . . , w6} of

L6,2 such that {v1, v2}, {w1, w2} are bases for E1 and E2 respectively and

((vi, vi)) = ((wi, wj)) =


0 0 A

0 B C

A tC D

 .

Accordingly, one can define g ∈ O(L6,2) by g : vi 7→ wi such that g(E1) = E2 and

so there are at most 20 totally isotropic rank 2 subspaces of L6,2 up to O+(L6,2)

equivalance. By Theorem 4.0.11,

|O+(L6,2) : O+(L6, h
s
2p2)| = 16(p5 + p2)

and so, up to O+(L6, h
s
2p2) equivalence, there are at most 320(p5 +p2) rank 2 boundary

components.
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6.5 A reduction procedure and singularities in a bound-

ary component

We next show that the set of fixed points can be reduced by application of special

elements in N(F )Z. This enables us to produce an upper bound for the number of

components of the singular locus. For a given boundary component F , we define

N = a1a2 detB. Without loss of generality, we can assume that the basis chosen in

Lemma 6.3.4 is such that the lattice given by B has a basis given by the fundamental

polyhedron.

Lemma 6.5.1. Let E be a rank 2 totally isotropic subspace corresponding to the bound-

ary component F . Let A = diag(a1, a1a2), as in Lemma 6.3.4. Then the principal

congruence subgroup of level N , Γ(N), embeds in N(F ). The embedding is given by

sending Z ∈ Γ(N) to

gZ =


Z ′ 0 0

0 I 0

0 0 Z

 ∈ N(F )Z

where, if

Z =

a b

c d

 we write Z ′ =

 d −ca2

−b/a2 a

 .

Proof. Let

g =


U V W

0 X Y

0 0 Z

 ∈ N(F ).

If g ∈ N(F )Z then, by Lemma 6.3.5, the following are integral matrices

U = X = Z (6.4)

− V B−1C +W + UR′ −RZ (6.5)

Y −XB−1C +B−1CZ. (6.6)
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Let

Z =

a b

c d

 ∈ Γ(N)

and let X = I and V = W = Y = 0. By Lemma 6.3.4, we can suppose that R′, B−1 ∈

M2(Z[1/ detB]). By Lemma 6.3.5, tUAZ = A and so

U =

 d −ca2

−b/a2 a

 .

As Z ∈ Γ(N), it follows that U ∈ M2(Z). Because of Equations (6.5) and (6.6), we

obtain the following integral matrices:

UR′ −R′Z (6.7)

−B−1C +B−1CZ. (6.8)

If

R′ =

w x

y z

 ,

then

UR′ −R′Z =

−a2cy − aw + dw − cx −a2cz − bw

−cz − bw/a2 −by + az − dz − bx/a2

 ∈M2(Z).

As Z ∈ Γ(N), then a ≡ d ≡ 1 modulo N and b ≡ c ≡ 0 modulo N and so Equation

(6.5) is satisfied. Furthermore, Z ≡ I modulo N and so C − CZ ≡ 0 modulo N . As

detB|N ,

−B−1C +B−1CZ = B−1(C − CZ) ∈M2(Z)

and so Γ(N) ≤ N(F )Z.
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Lemma 6.5.2. Let E be a rank 2 totally isotropic subspace corresponding to the bound-

ary component F . Let A = diag(a1, a1a2), as in Lemma 6.3.4. The group W (F )Z

contains all elements of the form

gY =


I ∗ ∗

0 I Y

0 0 I


where Y ∈M2(NZ).

Proof. If

gY =


I V W

0 I Y

0 0 I

 ∈W (F )Z

then by Lemma 6.3.5,

BY + tV A = 0 (6.9)

tY BY +AW + tWA = 0. (6.10)

Furthermore, by Lemma 6.3.4,

N−1gN =


I V W − V B−1C

0 I Y

0 0 I


subject to the conditions that

W − V B−1C (6.11)

V = Y = 0 (6.12)

are both integral. We look for solutions satisfying Equation (6.12). Equation (6.9) has

a solution in V if Y ∈ M2(a1a2Z) and Equation (6.11) is satisfied if V ∈ M2(detBZ).

Because of Equation (6.9), we can ensure that both are satisfied if Y ∈M2(NZ).
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If

W =

w11 w12

w21 w22

 ,

then Equation (6.10) becomes

−tY BY = AW +tWA

=

 2a1w11 a1w12 + a1a2w12

a1a2w21 + a1w12 2a1a2w22


and, by considering Equation (6.9), has a solution in W if Y ∈ M2(2a1a2Z). All such

conditions are clearly satisfied if Y ∈M2(NZ).

Theorem 6.5.3. If (a1, a1a2) = (1, 1) the singular locus of a boundary component

contains of the order of p6 points and p5 lines. The number of surfaces in the boundary

component does not depend on p. If (a1, a1a2) = (1, 2p) the singular locus of a boundary

component contains of the order of p14 points, p12 lines, and p9 surfaces.

Proof. By Proposition 6.3.6, g acts on (z, w, τ) by

z 7→ z

detZ
+ (cτ + d)−1

(
c

2δ detZ

t
wBw + V1w +W11τ +W12

)
w 7→ (cτ + d)−1 (Xw + Y ( τ1 ))

τ 7→ aτ + b

cτ + d
.

In particular (as noted in [GHS07]), τ is SL(2,Z) equivalent to i or a cube root of unity

ω. Indeed, τ ∈ SL(2,Z)i if Z is of order 4 and τ ∈ SL(2,Z)ξ3 if Z is of order 3 or 6.

Moreover, if

M =

α β

γ δ

 ∈ SL(2,Z)

then

τ =
αθ + β

γθ + δ
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where θ ∈ {i, ξ3} and so

τ =
(αγ + δβ) + (αδ + βγ) Re θ + (αδ − βγ) Im θi

γ2 + δ2 + 2γδRe θ
.

and we define J by

J = 2(γ2 + δ2 + 2γδRe θ)

and K1 and K2 by

τ =
K1

J
+
K2

J
υ,

where υ ∈ {i, ω}. At w,

w = (cτ + d)−1 (Xw + Y ( τ1 )) . (6.13)

For Z defined by g, we define ξ = (cτ + d)−1 and T by

T = I − ξX.

As observed in [GHS07] Proposition 2.28, ξ is a sixth or a fourth root of unity. This

follows because G4(i) 6= 0 and G6(ξ3) 6= 0 where Gk is the weight-k Eisenstein series

(see [DS05]). In particular, ξ is a sixth root of unity if Z is of order 3 or 6 and a fourth

root of unity if Z is of order 4.

If detT 6= 0, then

w ∈ T−1Y ( τ1 )

and so, by noting that Y ∈M2(Z[1/ detB]), we have that w ∈ L× L where

L =
〈1, τ〉

detT detB

(and where 〈1, τ〉 denotes the lattice in C generated by 1 and τ). We can assume that

the basis {v1, . . . , v6} is given so that {v3, v4} defines the fundamental polyhedron of

the lattice B. We can therefore assume that X is one of the standard automorphisms

of B given in the introduction. The value of detB in each case is given in Table 6.1.
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ξ i −1 −i 1 ξ6 ω ω2 ξ5
6

φ1(x)2 2i 4 −2i 0 ξ6 − 1 3ξ6 −3ξ6 + 3 −ξ6

φ1(x)φ2(x) 2 0 2 0 ξ6 + 1 ξ2
3 ξ6 + 1 ξ2

3

φ2(x)2 −2i 0 2i 4 −3ξ6 + 3 −ξ6 ξ6 − 1 3ξ6

φ3(x) −i 1 i 3 −2ξ6 + 2 0 0 2ξ6

φ4(x) 0 2 0 2 −ξ6 + 1 ξ6 −ξ6 + 1 ξ6

φ6(x) i 3 −i 1 0 2ξ6 −2ξ6 + 2 0

Table 6.1

We next consider L for each value of detB. By direct calculation we find that,

If Z is order 4, L ≤ 〈1, i〉
JK detB

K = 1, 2, 3, 4

if Z is order 3 or 6, L ≤ 〈1,
√

3i〉
2KJ detB

K = 1, 2, 3, 4, 6.

We next bound the number of components of the singular locus in each boundary

component by using the elements defined in Lemma 6.5.1 and Lemma 6.5.2.

By Lemma 6.5.1, Γ(N) ≤ N(F ). It is well known (see [DS05]) that

| SL(2,Z) : Γ(N)| = N3
∏
p|N

(
1− 1

p2

)

and as

|O+(L6,2p2) : Õ
+

(L6,2p2)| = 16,

there are at most

16N3
∏
p|N

(
1− 1

p2

)
=: KN

equivalence classes of τ modulo N(F ) ∩O(L6, h
s
2p2). If Z is of order 4, then

wj =
x1j

JK detB
+

x2ji

JK detB
∈ 〈1, i〉
JK detB

and

gY : wj 7→
x1j +KK1 detBYj1 + Yj2JK detB

JK detB
+

(x2j +K detBK2Yj1)i

JK detB
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and as Y ∈M2(NZ) can be chosen arbitrarily, x1j can be reduced modulo NJK detB

and x2j can be reduced modulo NKK2 detB.

If Z is of order 3 or 6, then

wj =
x1j

2JK detB
+

x2j

√
3i

2JK detB
∈ 〈1,

√
3i〉

2JK detB

and

gY : wj 7→
x1j + 2KK1 detBYj1 + 2Yj2JK detB

JK detB
+

(x2j + 2K detBK2Yj1)
√

3i

2JK detB

and as Y ∈M2(NZ) can be chosen arbitrarily, x1j can be reduced modulo 2NJK detB

and x2j can be reduced modulo 2NKK2 detB. We consider the cases where detT = 0

separately. They occur when

(χX(x), ξ) ∈ { (φ1φ2,−1), (φ2
2,−1), (φ4,−i),(φ2

2, 1), (φ1φ2, 1), (φ6, ξ6), (φ3, ξ3), (φ3, ξ
2
3),

(φ6, ξ
5
6)}. In each case we solve Equation (6.13) directly, and reduce as above. We find

that:

1. If (χX(x), ξ) = (φ1φ2,−1), w2 ∈ C is free and w1 ∈ 〈1,i〉
2J detB and so w1 can be

reduced to one of 2NJ detB points.

2. If (χX(x), ξ) = (φ2
2,−1), w1, w2 ∈ C are free.

3. If (χX(x), ξ) = (φ4,−i), w2 ∈ C is free and w1 = iw2 + x1 for x1 ∈ w1 ∈ 〈1,i〉
J detB

and so w1 can be reduced to one of NJ detB lines.

4. If (χX(x), ξ) = (φ2
2, 1), w1, w2 ∈ 〈1,i〉

J detB or w1, w2 ∈ 〈1,
√

3i〉
2J detB and so each of w1, w2

can be reduced to one of 2NJ detB points.

5. If (χX(x), ξ) = (φ1φ2, 1), w1 ∈ C is free and w2 ∈ 〈1,i〉
2J detB or w2 ∈ 〈1,

√
3i〉

4J detB and so

w1 can be reduced to one of 4NJ detB points.

6. If (χX(x), ξ) = (φ6, ξ6), w2 ∈ C is free, w1 = −ξ6 + x1 for x1 ∈ 〈1,
√

3i〉
2J detB and so w1

can be reduced to one of 2NJ detB points.
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7. If (χX(x), ξ) = (φ3, ξ3), w2 ∈ C is free and w1 = ξ3 + x1 for x1 ∈ 〈1,
√

3i〉
2J detB and so

w1 can be reduced to one of 2NJ detB points.

8. If (χX(x), ξ) = (φ3, ξ
2
3), w2 ∈ C is free and w1 = ξ3 + x1 for x1 ∈ 〈1,

√
3i〉

2J detB and so

w1 can be reduced to one of 2NJ detB points.

9. If (χX(x), ξ) = (φ6, ξ
5
6)}, w2 ∈ C and w1 = x1 + ξ6w2 for x1 ∈ 〈1,

√
3i〉

2J detB and so w1

can be reduced to one of 2NJ detB points.

After reduction by suitable gY gZ ∈ N(F ) ∩ O+(L6, h
s
2p2), we conclude that the sin-

gular locus of each boundary component consists of at most 96KNN
2JK2K2 detB +

14KNNJ detB points; KNNJ detB lines; and KN surfaces. We have at once that

|J | ≤ 3N3 and K ≤ 6. By Corollary 6.3.3,

detB =


12p2 if (a1, a1a2) = (1, 1)

3 if (a1, a1a2) = (1, 2p)

and one checks that

KN =


24 if (a1, a1a2) = (1, 1)

9216p7(p2 − 1) if (a1, a1a2) = (1, 2p)

and so

96KNN
2JK2K2 detB + 14KNNJ detB =


o(p6) if (a1, a1a2) = (1, 1)

o(p14) if (a1, a1a2) = (1, 2p)

and

KNNJ detB =


o(p5) if (a1, a1a2) = (1, 1)

o(p12) if (a1, a1a2) = (1, 2p).

In each case, a sharp bound can be given.
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We end by remarking that as in [Kon93] and [GHS07], the action of

g =


U V W

0 X Y

0 0 Z

 ∈ N(F )

on the tangent space is given by


expa2(t) 0 0

∗ (cτ + d)−1X 0

∗ ∗ (cτ + d)−2

 .

Here,

t = (cτ + d)−1
( c

2δ detZ
twBw + ctwBw/2a1 + V1w +W11τ +W12

)

and is, of course, equal to 0 at each boundary component. One can establish criteria

for the extension of pluricanonical forms as in Chapter 4. We find that the only non-

canonical singularities we must check are 1
3(3, 3, 1, 1) and 1

6(6, 2, 1, 1).
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Appendix A
Character tables

A.1 The cyclic group Cn

Let Cn = 〈a | an = e〉 and let ξ = e2πi/n.

χ e a a2 . . . an−2 an−1

χ0 1 1 1 . . . 1 1
χ1 1 ξ ξ2 . . . ξn−2 ξn−1

χ1 1 ξ2 ξ4 . . . ξ2(n−2) ξ2(n−1)

...
...

...

χ1 1 ξn−1 ξ2(n−1) . . . ξ(n−2)(n−1) ξ(n−1)(n−1)

Table A.1: Characters of Cn

The character ρi corresponding to the character χi is given by

ρi : a 7→ (ξi).
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A.2 The binary dihedral group BD2n

Let BD2n = 〈a, b | an = b2 = (ba)2〉 and let ξ = e2πi/n.

χ e b2 ak for k = 1, . . . , n− 1 b ba

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 −1 (−1)k i −i
χ4 1 −1 (−1)k −i i
χ′1 2 −2 ξk + ξ−k 0 0
χ′2 2 −2 ξ2k + ξ−2k 0 0
...

...
...

...
...

...

χ′n−1 2 (−2)n−1 ξ(n−1)k + ξ−(n−1)k 0 0

Table A.2: Characters of BD2n, n even

χ e b2 ak for k = 1, . . . , n− 1 b ba

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 −1 (−1)k 1 −1
χ4 1 −1 (−1)k −1 1
χ′1 2 −2 ξk + ξ−k 0 0
χ′2 2 −2 ξ2k + ξ−2k 0 0
...

...
...

...
...

...

χ′n−1 2 (−2)n−1 ξ(n−1)k + ξ−(n−1)k 0 0

Table A.3: Characters of BD2n, n odd

If n is even, the representations ρi and ρ′i corresponding to the characters χi and

χ′i are given by

ρ1 : a 7→ (1) ρ1 : b 7→ (1)

ρ2 : a 7→ (1) ρ1 : b 7→ (−1)

ρ3 : a 7→ (−1) ρ1 : b 7→ (i)

ρ4 : a 7→ (−1) ρ1 : b 7→ (−i)

ρ′i : a 7→

ξi 0

0 ξ−i

 ρ1 : b 7→

0 −1

1 0

 .

If n is odd, the representations ρi and ρ′i corresponding to the characters χi and χ′i
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are given by

ρ1 : a 7→ (1) ρ1 : b 7→ (1)

ρ2 : a 7→ (1) ρ1 : b 7→ (−1)

ρ3 : a 7→ (−1) ρ1 : b 7→ (1)

ρ4 : a 7→ (−1) ρ1 : b 7→ (−1)

ρ′i : a 7→

ξi 0

0 ξ−i

 ρ1 : b 7→

0 −1

1 0

 .

A.3 The binary tetrahedral group BT

Let BT = 〈a, b | a3 = b3 = (ab)2〉 and let ξ = e2πi/3.

χ e a3b a3ba a3 aba b a

χ1 1 1 1 1 1 1 1
χ2 1 ξ2 1 1 ξ ξ2 ξ
χ3 1 ξ 1 1 ξ2 ξ ξ2

χ4 2 −1 0 −2 −1 1 1
χ5 2 −ξ 0 −2 −ξ2 ξ ξ2

χ6 2 −ξ2 0 −2 −ξ ξ2 ξ
χ7 3 0 −1 3 0 0 0

Table A.4: Characters of BT
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The representations ρi corresponding to the characters χi are given by

ρ1 : a 7→ (1) b 7→ (1)

ρ2 : a 7→ (ξ) b 7→ (ξ2)

ρ3 : a 7→ (ξ2) b 7→ (ξ)

ρ4 : a 7→

−ξ −ξ2

0 −ξ

 b 7→

 1 1

−1 0


ρ5 : a 7→

−ξ −ξ2

0 −1

 b 7→

 0 −1

−ξ −ξ2


ρ6 : a 7→

 ξ ξ2

−1 0

 b 7→

ξ2 −ξ

1 0



ρ7 : a 7→


0 1 0

0 0 1

1 0 0

 b 7→


0 1 0

−1 −1 −1

0 0 1

 .

A.4 The binary octahedral group BO

Let BO = 〈a, b | a3 = b4 = (ab)2〉. The character table of BT is given in Table A.5.

χ e a5ba2 ab2 (a2b)2 a3 b a3b2a a2b

χ1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 1 −1 1 −1
χ3 2 0 −1 2 2 0 −1 0

χ4 2 0 −1 0 −2
√

2 1 −
√

2

χ5 2 0 −1 0 −2 −
√

2 1
√

2
χ6 3 1 0 −1 3 −1 0 −1
χ7 3 −1 0 −1 3 1 0 1
χ8 4 0 1 0 −4 0 −1 0

Table A.5: Characters of BO

Let ξ8 = eπi/4 and ξ3 = e2πi/3. The representations ρi corresponding to the charac-

ters χi are given by
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ρ1 : a 7→ (1) b 7→ (1)

ρ2 : a 7→ (1) b 7→ (−1)

ρ3 : a 7→

 0 1

−1 −1

 b 7→

−1 −1

0 1


ρ4 : a 7→

1 −1

1 0

 b 7→

ξ3
8 + ξ2

8 − ξ8 ξ8 − ξ3
8

ξ2
8 −ξ2

8


ρ5 : a 7→ 1

3

 2− ξ8 − ξ3
8 2ξ3

8 − ξ2
8 − 2ξ8

ξ8 − ξ2
8 − ξ3

8 1 + ξ8 + ξ3
8

 b 7→ 1

3

2 + ξ8 − 2ξ3
8 −1− ξ8 − ξ3

8

2− ξ8 − ξ3
8 ξ8 − ξ2

8 − ξ3
8



ρ6 : a 7→


0 −1 −1

1 0 1

−1 0 0

 b 7→


1 0 −1

0 −1 −1

1 1 1



ρ7 : a 7→


1 0 1

0 −1 −1

0 1 0

 b 7→


1 1 1

0 0 −1

−1 0 0



ρ8 : a 7→



−ξ2
3 0 0 0

0 0 ξ2
3 0

0 −ξ2
3 ξ2

3 0

−ξ3 0 0 −1


b 7→



−ξ3 ξ3 −ξ3 0

ξ3 0 0 0

−ξ2
3 0 0 −ξ3

0 0 −1 0


.
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A.5 The binary icosahedral group BI

Let BI = 〈a, b | a3 = b5 = (ab)2〉 The character table of BI is given in Table A.6.

χ e a(ba2b)2 b2a2 a a(a2b2)2 a3b2 ab3a b a3

χ1 1 1 1 1 1 1 1 1 1

χ2 2 −1+
√

5
2

−1−
√

5
2 1 0 1−

√
5

2 −1 1+
√

5
2 −2

χ3 2 −1−
√

5
2

−1+
√

5
2 1 0 1+

√
5

2 −1 1−
√

5
2 −2

χ4 3 1+
√

5
2

1−
√

5
2 0 −1 1+

√
5

2 0 1−
√

5
2 3

χ5 3 1−
√

5
2

1+
√

5
2 0 −1 1−

√
5

2 0 1+
√

5
2 3

χ6 4 −1 −1 11−
√

5
2 0 −1 1 −1 4

χ7 4 −1 −1 −1 0 1 1 1 −4
χ8 5 0 0 −1 1 0 −1 0 5
χ9 6 1 1 0 0 −1 0 −1 −6

Table A.6: Characters of BI

Let ξ5 = e2πi/5. The representations ρi corresponding to the characters χi are given

by

ρ1 : a 7→ ( 1 ) b 7→ ( 1 )

ρ2 : a 7→
(
−ξ35 −ξ35
−ξ5−ξ45 −ξ5−ξ25−ξ45

)
b 7→

(
−ξ35 −ξ5−ξ35−ξ45

0 −ξ25

)
ρ3 : a 7→

(
−ξ5−ξ25−ξ35 −ξ25−ξ35−ξ45

ξ5 −ξ45

)
b 7→

(
−ξ5 0
−ξ25−ξ35 −ξ45

)
ρ4 : a 7→

(
ξ25+ξ35 ξ

2
5+ξ35 1

0 0 1
ξ25+ξ35 −1 −ξ25−ξ35

)
b 7→

(
1 0 0

ξ25+ξ35 ξ
2
5+ξ35 1

0 −1 0

)
ρ5 : a 7→

(
0 −1 0

−ξ25−ξ35 ξ25+ξ35 −1

ξ25+ξ35 1 −ξ25−ξ35

)
b 7→

(
−ξ25−ξ35 ξ25+ξ35 −1

1 0 0
0 −1 0

)

ρ6 : a 7→

 0 0 0 ξ35
ξ5−ξ35 1 −ξ25−ξ35−ξ45 ξ5+ξ25+ξ35
ξ25 0 0 0
0 0 1 0

 b 7→

( ξ5 0 0 0
−ξ25+ξ45 ξ

2
5+ξ35+ξ45 ξ

3
5+ξ45 1

0 1 0 0
0 0 ξ45 0

)

ρ8 : a 7→

(
0 1 0 0 0
0 0 0 1 0
−1 −1 −1 −1 −1
1 0 0 0 0
0 0 1 0 0

)
b 7→

(
0 0 0 1 0
1 0 0 0 0
−1 −1 −1 −1 −1
0 0 1 0 0
0 0 0 0 1

)
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ρ7 : a 7→

( 0 0 −ξ5 0
ξ5−ξ25+ξ35 −1 ξ5+ξ35 ξ5+ξ25+ξ45

0 0 0 1
ξ45 0 0 0

)

ρ7 : b 7→

−3ξ5−2ξ25−ξ35−4ξ45 ξ5−ξ25+ξ35−ξ45 −ξ5−2ξ25−2ξ45 3ξ5+2ξ35+2ξ45
−ξ25+ξ35−ξ45 ξ5 −ξ25−ξ45 ξ5+ξ45

2ξ5+2ξ25+3ξ45 −ξ5+ξ25−ξ35+ξ45 −ξ5+ξ25−ξ35+ξ45 −4ξ5−ξ25−2ξ35−3ξ45
−ξ5−2ξ25−2ξ45 ξ5+ξ35 ξ5−ξ25+ξ35−ξ45 2ξ5+ξ35+2ξ45



ρ9 : a 7→


ξ5 ξ25+ξ35+ξ45 −ξ5−ξ25−ξ35 0 −ξ5−ξ25 −ξ45
−ξ5 −ξ5−ξ25−ξ45 −ξ45 −1 ξ5 ξ45
−ξ25 0 0 0 0 0

0 −ξ45 0 0 0 0

−ξ25 ξ5 ξ25+2ξ35+ξ45 −ξ5 ξ5+2ξ25+ξ35+ξ45 −ξ5−ξ25−2ξ35−ξ45
−ξ5−ξ25 −ξ25−ξ35−ξ45 ξ5+2ξ25+2ξ35 −1 ξ5+ξ25−ξ45 −ξ5−ξ25−ξ35



ρ9 : b 7→


−1 −ξ5−ξ25−ξ35 −ξ35−ξ45 0 −ξ25−ξ35−ξ45 ξ35
0 0 0 0 0 −1
0 0 −ξ5 0 0 0
ξ5 −1 −ξ5−ξ25 0 ξ25+ξ35+ξ45 −ξ35−ξ45
ξ35 −ξ25 ξ5+ξ25−ξ45 ξ25 ξ5−ξ35 −ξ5+ξ45
−1 ξ25+ξ45 −ξ35 −ξ45 1 ξ35

 .
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Appendix B
Non-canonical singularities

1. 1
6(6, 6, 2, 3)

2. 1
6(6, 6, 1, 1)

3. 1
6(6, 1, 1, 2)

4. 1
6(6, 1, 2, 4)

5. 1
6(6, 1, 1, 3)

6. 1
6(6, 6, 1, 2)

7. 1
6(1, 1, 1, 1)

8. 1
6(1, 1, 1, 2)

9. 1
10(10, 10, 6, 7)

10. 1
10(10, 10, 1, 7)

11. 1
10(10, 10, 2, 5)

12. 1
10(10, 10, 1, 6)

13. 1
10(10, 10, 2, 3)

14. 1
10(10, 10, 1, 2)

15. 1
10(10, 10, 2, 6)

16. 1
10(10, 1, 2, 5)

17. 1
10(1, 1, 2, 3)

18. 1
12(12, 1, 2, 3)

19. 1
12(12, 1, 2, 10)

20. 1
12(12, 1, 3, 4)

21. 1
12(12, 2, 3, 4)

22. 1
12(1, 2, 3, 4)

23. 1
12(12, 12, 3, 4)

24. 1
12(12, 12, 2, 3)

25. 1
12(12, 12, 1, 2)

26. 1
12(12, 12, 1, 4)

27. 1
12(12, 12, 1, 3)

28. 1
12(12, 1, 2, 4)
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29. 1
20(2, 3, 4, 5)

30. 1
30(30, 3, 4, 6)

31. 1
30(30, 3, 5, 6)

32. 1
30(30, 4, 5, 6)

33. 1
30(30, 3, 4, 5)

34. 1
30(3, 4, 5, 6)
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