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Summary

In this thesis we use techniques from algebraic geometry and homological algebra,

together with ideas from string theory to construct a class of 3-dimensional Calabi-Yau

algebras. The Calabi-Yau property appears throughout geometry and string theory

and is increasingly being studied in algebra.

Dimer models, first studied in theoretical physics, give a way of writing down a class

of non-commutative algebras, as the path algebra of a quiver with relations obtained

from a ‘superpotential’. Some examples are Calabi-Yau and some are not. We consider

two types of ‘consistency’ condition on dimer models, and show that a ‘geometrically

consistent’ dimer model is ‘algebraically consistent’. Finally we prove that the algebra

obtained from an algebraically consistent dimer model is a 3-dimensional Calabi-Yau

algebra.
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Chapter 1

Introduction

1.1 Overview

In this thesis we use techniques from algebraic geometry and homological algebra,

together with ideas from string theory to construct a class of 3-dimensional Calabi-Yau

algebras. The Calabi-Yau property appears throughout geometry and string theory

where, for example, 3-dimensional Calabi-Yau manifolds play an important role in

mirror symmetry. A characteristic property of an n-dimensional Calabi-Yau manifold

X, is that the nth power of the shift functor on D(X) := Db(coh(X)), the bounded

derived category of coherent sheaves on X, is a Serre functor. That is, there exists a

natural isomorphism

HomD(X)(A,B) ∼= HomD(X)(B,A[n])∗ ∀A,B ∈ D(X)

This property is not restricted to categories of the form D(X). The idea behind

Calabi-Yau algebras is to write down conditions on the algebra A such that D(A) :=

Db(mod(A)), the bounded derived category of modules over A, has the same property.

In this form the Calabi-Yau property is increasingly being studied in algebra.

Calabi-Yau algebras also appear in the context of non-commutative resolutions of

singularities. One way of studying resolutions of singularities is by considering their

derived categories. Of particular interest are crepant (i.e. suitably minimal) resolutions

of toric Gorenstein singularities. Crepant resolutions do not always exist and if they do,

they are not in general unique. However it is conjectured (Bondal and Orlov) that if

f1 : Y1 → X and f2 : Y2 → X are crepant resolutions then there is a derived equivalence

D(Y1) ∼= D(Y2). Thus the derived category of a crepant resolution is an invariant of

the singularity.

One way to try to understand the derived category of a toric crepant resolution Y ,
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is to look for a tilting bundle T , i.e. a bundle which determines a derived equivalence

D(Y ) ∼= D(A), where A = End(T ). If an equivalence of this form exists, then one could

consider the algebra A as a type of non-commutative crepant resolution (NCCR) of

the singularity. Van den Bergh [31] formalised this idea with a definition of an NCCR

which depends only on the singularity. Given an NCCR A, a (commutative) crepant

resolution Y such that D(Y ) ∼= D(A) can be constructed as a moduli space of certain

stable A-representations (Van den Bergh [31]). This is a generalisation of the approach

to the McKay correspondence in [5].

If X = Spec(R) is a Gorenstein singularity, then any crepant resolution is a Calabi-

Yau variety. Therefore if A is an NCCR it must be a Calabi-Yau algebra. The center

of A must also be the coordinate ring R of the singularity. Thus any 3-dimensional

Calabi-Yau algebra whose center R is the coordinate ring of toric Gorenstein 3-fold, is

potentially an NCCR of X = Spec(R).

In [4], Bocklandt proved that every graded Calabi-Yau algebra of global dimension

3 is isomorphic to a superpotential algebra. A superpotential algebra A = CQ/(dW )

is the quotient of the path algebra of a quiver Q by an ideal of relations (dW ), where

the relations are generated by taking (formal) partial derivatives of a single element

W called the ‘superpotential’. The superpotential not only gives a very concise way

of writing down the relations in a non-commutative algebra, it also encodes some

information about the syzygies, i.e. relations between the relations. The Calabi-Yau

condition is actually equivalent to saying that all the syzygies can be obtained from

the superpotential. Not all superpotential algebras are Calabi-Yau, and it is a open

question to understand which ones are.

1.2 Structure of the thesis and main results

Chapter 2 acts as a general introduction to dimer models. A dimer model is finite

bipartite tiling of a compact (oriented) Riemann surface Y . The examples that will

be of particular interest are tilings of the 2-torus, and in this case, we can consider

the dimer model as a doubly periodic tiling of the plane. Given a dimer model we

also consider its dual tiling, where faces are dual to vertices and edges dual to edges.

The edges of this dual tiling inherit an orientation from the bipartiteness of the dimer

model. This is usually chosen so that the arrows go clockwise around a face dual

to a white vertex. Therefore the dual tiling is actually a quiver Q, with faces. In the

example below we draw the dimer model and the quiver together, with the dimer model

highlighted in the left hand diagram. The dotted lines show a fundamental domain.
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The faces of the quiver encode a superpotential W , and so there is a superpotential

algebra A = CQ/(dW ) associated to every dimer model.

In [16] Hanany et al describe a way of using ‘perfect matchings’ to construct a

commutative ring R from a dimer model. A perfect matching is subset of the edges of

a dimer model with the property that every vertex of the dimer model is the end point

of precisely one of these edges. For example the following diagram shows the three

perfect matchings of the hexagonal tiling, where the edges in the perfect matchings are

shown as thick grey lines.
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The difference of two perfect matchings defines a homology class of the 2-torus and

so, by choosing a fixed ‘reference matching’ to subtract from each perfect matching, we

obtain a set of points in the integer homology lattice of the 2-torus H1(T ) ∼= Z2. The

convex hull of these points is a lattice polygon. Taking the cone on the polygon and

using the machinery of toric geometry, this defines R = C[X], the coordinate ring of an

affine toric Gorenstein 3-fold X. Given a lattice point in the polygon, its multiplicity is

defined to be the number of perfect matchings corresponding to that point. A perfect

matching is said to be extremal if it corresponds to a vertex of the polygon. Looking at

the example above we see that the polygon is a triangle, with each of the three perfect

matching corresponding to a vertex, and no other lattice points. The ring R is the

polynomial ring in three variables.

Since we have a superpotential algebra associated to every dimer model, it is natu-

ral to ask if these algebras are Calabi-Yau. In fact there are some examples which are

Calabi-Yau and some which are not. Therefore we ask what conditions can be placed

on a dimer model so that its superpotential algebra is Calabi-Yau. In Chapter 3 we

discuss the two ideas of ‘consistency’ first understood by Hanany and Vegh [17]. Con-

sistency conditions are a strong type of non-degeneracy condition. Following Kenyon

and Schlenker [24], we give necessary and sufficient conditions for a dimer model to be

‘geometrically consistent’ in terms of the intersection properties of special paths called

zig-zag flows on the universal cover Q̃ of the quiver Q. Geometric consistency amounts

to saying that zig-zag flows behave effectively like straight lines.

In Chapter 4 we introduce the concept of (non-commutative, affine, normal) toric

algebras. These are non-commutative algebras which have an underlying combinatoric

structure. They are defined by knowledge of a lattice containing a strongly convex

rational polyhedral cone, a set and a lattice map. It is hoped that they may play a

similar role in non-commutative algebraic geometry to that played by toric varieties in

algebraic geometry. We show that there is a toric algebra B naturally associated to

every dimer model, and moreover, the center of this algebra is the ring R associated to

the dimer model that we described above.

Therefore a given dimer model has two non-commutative algebras A and B and

there is a natural algebra map h : A −→ B. We call a dimer model ‘algebraically

consistent’ if this map is an isomorphism. Algebraic and geometric consistency are the

two consistency conditions that we will study in the core of the thesis.

In Chapters 5 we study some properties of zig-zag flows in a geometrically consistent

dimer model. The homology class of a zig-zag flow encodes information about the

‘direction’ of that flow. We show that at each quiver face f , there is a ‘local zig-zag

fan’ in the homology lattice of the torus generated by the homology classes of zig-
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zag flows which intersect the boundary of f . Furthermore, the cyclic order of the

intersections around the face, is the same as the order of the rays in the local zig-zag

fan. There is also a ‘global zig-zag fan’ generated by the homology classes of all zig-zag

flows. Using these fans we construct, in a very explicit way, a collection of perfect

matchings indexed by the 2-dimensional cones in the global zig-zag fan. We prove that

these perfect matchings are extremal perfect matchings and they are all the extremal

perfect matchings. We also see that each perfect matching of this form corresponds to

a different vertex of the polygon described above, so these vertices are of multiplicity

one.

In Chapter 6 we prove the following main theorem

Theorem 1.2.1. A geometrically consistent dimer model is algebraically consistent.

The proof relies on the explicit description of extremal perfect matchings from

Chapter 5. We actually prove the following proposition, which provides the surjectivity

of the map h : A −→ B, while the injectivity is provided by a result of Hanany, Herzog

and Vegh (see Theorem 3.5.2 and Remark 4.4.3).

Proposition 1.2.2. Given a geometrically consistent dimer model, for all vertices i, j

in the universal cover of Q, there exists a path from i to j which avoids some extremal

perfect matching.

Thus we see that the extremal perfect matchings play a key role in the theory.

In Chapter 7 we discuss Ginzburg’s definition of a Calabi-Yau algebra and prove

the following main theorem

Theorem 1.2.3. If a dimer model on a torus is algebraically consistent then the algebra

A obtained from it is a Calabi-Yau algebra of global dimension 3.

Therefore we have shown that for dimer models on the torus, algebraic consistency

and consequently geometric consistency, is a sufficient condition to obtain a Calabi-Yau

algebra. Thus we have produced a class of superpotential algebras which are Calabi-

Yau. Finally we note that both Stienstra in [29], and Gulotta in [14] prove that for any

lattice polygon V , there exists a geometrically consistent dimer model which has V as

its perfect matching polygon. Therefore to every Gorenstein affine toric threefold, there

is an associated geometrically consistent model. Hence, by using dimer models we can

construct a Calabi-Yau algebra of global dimension 3, whose center is the coordinate

ring of any given Gorenstein affine toric threefold and which is conjecturally an NCCR.

Remark 1.2.4. Recently there have been several papers proving results that are re-

lated to parts of this thesis. In [26] Mozgovoy and Reineke prove that if an algebra
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obtained from a dimer model satisfies two conditions then it is a 3 dimensional Calabi-

Yau algebra. Davison [9] goes on to show that the second of these conditions is actually

a consequence of the first. The first condition states that the algebra should satisfy

a cancellation property. This holds in algebraically consistent cases as cancellation is

a property of toric algebras. Therefore the condition also holds in the geometrically

consistent case. Geometric consistency, as we shall see in Section 3.3, can be checked

readily and thus gives examples where the cancellation property can be easily verified.

9



Chapter 2

Introduction to the Dimer Model

The aim of this chapter is to provide a mathematical introduction to the theory of

dimer models as introduced by Hanany et al (see [22, 16, 11] for example).

2.1 Quivers and Algebras from Dimer models

The theory begins with a finite bipartite tiling of a compact (oriented) Riemann surface

Y . By ‘bipartite tiling’ we mean a polygonal cell decomposition of the surface, whose

vertices and edges form a bipartite graph i.e. the vertices may be coloured black and

white in such a way that all edges join a black vertex to a white vertex. In particular we

note that each face must have an even number of vertices (and edges) and each vertex

has valence at least 2. We call a tiling of this type, a dimer model. This definition is

quite general and as we progress we will describe additional non-degeneracy conditions,

the strongest of which is ‘consistency’. We note here that in principle faces in a dimer

model which have two edges (di-gons) and bivalent vertices are allowed. However we

will see that models with these features fail to satisfy certain of the non-degeneracy

conditions. Furthermore we shall observe that the ‘consistency’ condition forces the

Riemann surface Y to be a 2-torus T . Therefore in the majority of this thesis, we shall

focus on bipartite tilings of T . In this case, we may (and shall) consider the dimer

model instead as a doubly periodic tiling of the plane.

Remark 2.1.1. In some of the literature it is included as part of the definition of a

bipartite graph, that there are the same number of black and white vertices. We do

not impose this as a condition here, however if it does hold we call the dimer model

‘balanced’.
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2.1.1 Examples

The two simplest bipartite tilings of the 2-torus T , are the regular ones by squares and

by hexagons. In each case, a fundamental domain is indicated by the dotted line.
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For a tiling of T which is not balanced, consider the following tiling by three rhombi:
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On the 2-sphere, the only regular (Platonic) bipartite tiling is the cube (shown here

in stereographic projection):
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2.1.2 The quiver

Given a dimer model one can consider the dual tiling (or dual cell decomposition)

with a vertex dual to every face, an edge dual to every edge and a face dual to every

vertex. Crucially, since the dimer model is bipartite, the edges of the dual tiling inherit

a consistent choice of orientation. In particular, it is the convention that faces dual

to white vertices are oriented clockwise and faces dual to black vertices are oriented

anti-clockwise. This is equivalent to requiring that black vertices are on the left and

white vertices on the right of every arrow dual to a dimer edge. Thus the dual graph

is a quiver Q (i.e. a directed graph), with the additional structure that it provides a

tiling of the Riemann surface Y with oriented faces. We will refer to the faces of the

quiver dual to black/white vertices of the dimer model, as black/white faces.

In the usual way, we denote by Q0 and Q1 the sets of vertices and arrows (directed

edges) of the quiver and by h, t : Q1 → Q0 the maps which take an arrow to its head

and tail. To this information we add the set Q2 of oriented faces. We may write down a

homological chain complex for the Riemann surface Y , using the fact that this ‘quiver

with faces’ forms a cell decomposition,

ZQ2

∂
−→ ZQ1

∂
−→ ZQ0 (2.1.1)

where ZQi
denotes the free abelian group generated by the elements in Qi. We also

have the dual cochain complex

ZQ0 d
−→ ZQ1 d

−→ ZQ2 (2.1.2)

where ZQi denotes the Z-linear functions on ZQi
. Note that, because of the way the

faces are oriented, the coboundary map d : ZQ1 → ZQ2 simply sums any function of the

edges around each face (without any signs). Let f 7→ (−1)f be the map which takes

12



the value +1 on black faces of Q, and -1 on white faces. Then the cycle

∑

f∈Q2

(−1)ff ∈ ZQ2

is a generator for the kernel of the boundary map ∂. Thus it defines a fundamental

class, i.e. a choice of generator ofH2(Y ) ∼= Z. We note that the function 1 ∈ ZQ2 , which

takes the constant value 1 on every face, evaluates to |B| − |W | on this fundamental

cycle (where |B| and |W | denote the number of black and white faces respectively). If

we have a balanced dimer model, i.e. |B| = |W |, then this implies that the function

1 ∈ ZQ2 is exact.

2.1.3 The quiver algebra

We construct the path algebra CQ of the quiver; this is a complex algebra with gen-

erators {ei | i ∈ Q0} and {xa | a ∈ Q1} subject to the relations e2i = ei, eiej = 0 for

i 6= j and etaxaeha = xa. The ei are idempotents of the algebra which, we observe, has

a monomial basis of paths in Q. Following Ginzburg [13], let [CQ,CQ] be the complex

vector space in CQ spanned by commutators and denote by CQcyc := CQ/[CQ,CQ]

the quotient space. This space has a basis of elements corresponding to cyclic paths

in the quiver. The consistent orientation of any face f of the quiver means that we

may interpret ∂f as a cyclic path in the quiver. Therefore the set of faces determines

an element of CQcyc which, following the physics literature [11], we refer to as the

‘superpotential’

W =
∑

f∈Q2

(−1)f∂f. (2.1.3)

Remark 2.1.2. In this thesis we will use the notation ∂f for several distinct objects,

namely the boundary of f considered as an element of ZQ1 , the boundary of f consid-

ered as an element of CQcyc, and the set of arrows which are contained in the boundary

of f . It should be clear from context which of these we mean in any given instance.

For each arrow a ∈ Q1 there is a linear map ∂
∂xa

: CQcyc → CQ which is a (formal)

cyclic derivative. The image of a cyclic path is obtained by taking all the representatives

in CQ which start with xa, removing this and then summing them. We note that

because of the cyclicity, this is equivalent to taking all the representatives in CQ which

end with xa, removing this and then summing. The image of a cycle is in fact an

element in ehaCQeta, and if the cycle contains no repeated arrows then this is just the

path which begins at ha and follows the cycle around to ta.
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This superpotential W determines an ideal of relations in the path algebra CQ

IW =

(
∂

∂xa
W : a ∈ Q1

)
. (2.1.4)

The quotient of the path algebra CQ by this ideal is the superpotential (or ‘Jacobian’,

or quiver) algebra

A = CQ/IW

From an algebraic point of view, the output of a dimer model is this algebra, and we

are interested in understanding the special properties that such algebras exhibit.

Remark 2.1.3. Each arrow a ∈ Q1 occurs in precisely two oppositely oriented faces

f+, f− ∈ Q2 (this also implies that no arrow is repeated in the boundary of any one

face). Therefore each relation ∂
∂xa

W can be written explicitly as a difference of two

paths,
∂

∂xa
W = p+

a − p
−
a

where p±a is the path from ha around the boundary of f± to ta. The relations p+
a = p−a

for a ∈ Q1 are called ‘F-term’ relations. They generate an equivalence relation on paths

in the quiver such that the equivalence classes form a natural basis for the algebra A.

2.1.4 Examples

Example 2.1.4. We return to the tilings of the torus by regular hexagons and by

squares that we saw in Section 2.1.1. We start by considering the hexagonal tiling of

the torus. The figures below both show the bipartite tiling and the dual quiver, drawn

together so it is clear how they are related. The left hand figure highlights the bipartite

tiling, and the right hand figure highlights the quiver.
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Observe that the bipartite tiling has one face, three edges and two vertices, and dually,

the quiver has one vertex, three arrows and two faces. Since the quiver has one vertex,
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this is the head and tail of each of the arrows. Therefore the path algebra CQ is actually

the free algebra C〈a, b, c〉 with three generators corresponding to the three arrows. We

see that the cyclic elements corresponding to the boundaries of the black and white

faces, are (abc) and (acb) respectively. Thus the superpotential is:

W = (abc)− (acb)

and differentiating this with respect to each arrow, we obtain the three relations:

∂W
∂c

= ab− ba = 0
∂W
∂b

= ca− ac = 0
∂W
∂a

= bc− cb = 0

Therefore, the ideal IW is generated by the commutation relations between all the

generators of CQ, and the algebra

A = C〈a, b, c〉/IW = C[a, b, c]

is the polynomial ring in three variables.

Example 2.1.5. The tiling of the torus by squares has two faces and is therefore

slightly more complicated. We show the bipartite tiling and the quiver below.
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Observe that the quiver has two vertices, with two arrows in each direction between

them:
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y1 y2

x1x2

Thus, the path algebra CQ is generated by two idempotents and elements correspond-

ing to the four arrows. As in the previous example, the quiver has two faces so the

superpotential has two terms. The cyclic elements corresponding to the boundaries

of the black and white faces, are (x1y2x2y1) and (x1y1x2y2) respectively, and so the

superpotential is:

W = (x1y2x2y1)− (x1y1x2y2)

Applying the cyclic derivative with respect to each arrow, we obtain four relations:

∂W
∂x1

= y2x2y1 − y1x2y2 = 0
∂W
∂x2

= y1x1y2 − y2x1y1 = 0
∂W
∂y1

= x1y2x2 − x2y2x1 = 0
∂W
∂y2

= x2y1x1 − x1x1x2 = 0

We note that unlike in the hexagonal tiling example above, the algebra A = CQ/IW

is a non-commutative algebra. We will see later that its centre is isomorphic to the

coordinate ring of the threefold ordinary double point, or conifold singularity. It is

known that A is a non-commutative crepant resolution of this singularity (see Propo-

sition 7.3 of [31], [30]), and for this reason the example is usually referred to as the

‘non-commutative conifold’ in the physics literature [22, 16, 17].

Example 2.1.6. We now give an example which has the same algebra A, as the conifold

example above.
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This quiver also has two vertices, there are three arrows in each direction between

them. Thus, the path algebra CQ is generated by two idempotents and elements

corresponding to the six arrows. The quiver has four faces so the superpotential has

four terms:

W = (a3b1)− (a3b3) + (b3a2b2a1)− (b1a1b2a2)

Applying the cyclic derivative with respect to each arrow, we now obtain six relations:

∂W
∂a1

= b3a2b2 − b2a2b1 = 0
∂W
∂a2

= b2a1b3 − b1a1b2 = 0
∂W
∂a3

= b1 − b3 = 0
∂W
∂b1

= a3 − a1b2a2 = 0
∂W
∂b2

= a1b3a2 − a2b1a1 = 0
∂W
∂b3

= a2b2a1 − a3 = 0

We can use the relations ∂W
∂a3

and ∂W
∂b3

respectively, to write b3 and a3 in terms of

the other generators, namely, b3 = b1 and a3 = a2b2a1. The path algebra subject to

these two relations, is patently isomorphic to the path algebra of the quiver from the

conifold example. Furthermore, substituting b3 and a3 into the relations, we obtain

four relations:
∂W
∂a1

= b1a2b2 − b2a2b1 = 0
∂W
∂a2

= b2a1b1 − b1a1b2 = 0
∂W
∂b1

= a2b2a1 − a1b2a2 = 0
∂W
∂b2

= a1b1a2 − a2b1a1 = 0

which are the relations in the conifold example. Therefore we have demonstrated a
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dimer model which outputs the same algebra A.

2.1.5 Minimality

As we have just seen, it is possible for two distinct dimer models to have the same

quiver algebra A. In fact, if we choose any vertex of dimer model, we can ‘split’ this

into two vertices of the same colour, connected together via a bivalent vertex of the

other colour:

�

�

�

��

The resulting dimer model has two additional edges and so the quiver has two

additional arrows. However the relations dual to these arrows equate the new arrows

to paths which previously existed, and the resulting quiver algebras for the two dimer

models are in fact the same. We call a dimer model ‘non-minimal’ if it can be obtained

from a dimer model with fewer edges in this way. Note that Example 2.1.6 is non-

minimal as it can be obtained from Example 2.1.5.

If a dimer model has a bivalent vertex which is connected to two distinct vertices,

then is possible to do the converse of the above process, i.e. remove the bivalent vertex

and contract its two neighbours to a single vertex. For an example where it is not

possible to remove the bivalent vertices, see (2.3.1).

2.2 Symmetries

A global symmetry is a one-parameter subgroup ρ : C∗ → Aut(A) that arises from an

action on the arrow fields

ρ(t) : xa 7→ tvaxa,

for some v ∈ ZQ1 , which we may think of as a 1-cochain in the complex (2.1.2). Then

its coboundary dv ∈ ZQ2 gives precisely the weights of the ρ-action on the terms in the
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superpotential W .

Thus, ρ is a well-defined map to Aut(A) when it acts homogeneously on all terms

in the superpotential W , in other words, when

dv = λ1 (2.2.1)

for some constant λ ∈ Z, which we will also call the degree of ρ.

Using intentionally toric notation, we shall write

N = d−1(Z1) ⊂ ZQ1 and N+ = N ∩NQ1 (2.2.2)

Then N is the one-parameter subgroup lattice of a complex torus T ≤ Aut(A) contain-

ing all global symmetries.

The other differential in the cochain complex (2.1.2) also has a natural interpreta-

tion in this context. The lattice Nin = ZQ0 is the one-parameter subgroup lattice of a

complex torus Tin of invertible elements of A, namely

Tin =
{∑

i∈Q0

tiei : ti ∈ C∗
}
,

where ei ∈ A are the idempotents corresponding to the vertices of Q. Then the lattice

map d : ZQ0 → N corresponds to the map Tin → T ≤ Aut(A) giving the action on

A by inner automorphisms, i.e. by conjugation. Then the cokernel of d : ZQ0 → N

is the lattice of one-parameter subgroups of outer automorphisms arising from global

symmetries. In other words, we have an exact sequence of complex tori

1→ C∗ → Tin → T→ To → 1,

with corresponding exact sequence of one parameter subgroup lattices

0→ Z→ Nin → N → No → 0 (2.2.3)

In the physics literature (e.g. [22]), elements of Nin are usually referred to as baryonic

symmetries, and elements of No as mesonic symmetries.

Finally in this section we define the notion of an R-symmetry, whose name comes

from physics, but which is important mathematically as it makes A into a graded

algebra with finite dimensional graded pieces.

Definition 2.2.1. An R-symmetry is a global symmetry that acts with strictly positive

weights (or ‘charges’) on all the arrows.
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The R-symmetries are the ‘interior lattice points’ of the cone N+. In the physics

literature (e.g. [22]) it is traditional to normalise the R-symmetries so they are of

degree 2, (i.e. they act homogeneously with weight 2 on the superpotential) but also

to extend the definition to allow the weights to be real, i.e. in RQ1 . By this definition,

R-symmetries are real one-parameter subgroups whose weights lie in the interior of the

degree 2 slice of the real cone corresponding to N+. Since this is a rational polyhedral

cone, the interior is non-empty if and only if it contains rational points and hence if and

only if N+ itself contains integral points with all weights strictly positive. Therefore

for the purposes of this thesis we consider R-symmetries to be integral, as we defined

above, and we do not impose the degree 2 normalisation.

Note finally that the existence of an R-symmetry is equivalent to the fact that N+

is a ‘full’ cone, i.e. it spans N .

2.3 Perfect matchings

A perfect matching on a bipartite graph is a collection of edges such that each vertex

is the end point of precisely one edge. The edges in a perfect matching are sometimes

also referred to as dimers and the perfect matching as a dimer configuration.

Using the notation from (2.1.2), we take the essentially equivalent dual point of

view; we consider a perfect matching to be a 1-cochain π ∈ ZQ1 , with all values in

{0, 1}, such that dπ = 1. This is equivalent to requiring that π ∈ NQ1 and dπ = 1, and

so perfect matchings are the degree 1 elements of N+.

Not every dimer model has a perfect matching. This is obvious for dimer models

which are not balanced, but even those with equal numbers of black and white vertices

need not have a perfect matching. For example, the following case drawn on the torus:

� ��

� ��

�� �	 
 �

(2.3.1)
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The condition that a perfect matching does exist is provided by Hall’s (Marriage)

Theorem:

Lemma 2.3.1. A bipartite graph admits a perfect matching if and only if it has the

same number of black and white vertices and every subset of black vertices is connected

to at least as many white vertices.

In the example in figure 2.3.1 above, it can be see that the two black vertices in the

interior of the fundamental domain are connected to just one vertex and so there are

no perfect matchings.

Remark 2.3.2. The above example contains bivalent vertices which can not be re-

moved in the way explained in Section 2.1.5. However these are not the source of the

‘problem’, in fact by doubling one of the edges ending at each bivalent vertex:

�� �� �� ��

we obtain a new dimer model which, by Lemma 2.3.1, admits a perfect matching if and

only if the original dimer model did. The resulting dimer model doesn’t have bivalent

vertices, but it does have di-gons. We can in turn replace each di-gon as follows:

�	




�

�


��

� ��

�

��

�
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It is simple to check (again using Lemma 2.3.1) that the altered dimer model has

a perfect matching if and only if the original did. Therefore, in the example, if we

replaced each bivalent vertex and then each di-gon as above, we would obtain a dimer

model without bivalent vertices or di-gons but which still has no perfect matchings.

The moral of this is that for simplicity we can leave the bivalent vertices alone (and let

di-gons be di-gons)!

We will be particularly interested in dimer models which satisfy a slightly stronger

condition.

Definition 2.3.3. We call a dimer model non-degenerate when every edge in the

bipartite graph is contained in some perfect matching.

Given a non-degenerate dimer model, the sum all perfect matchings (as an element of

N+) is strictly positive on every arrow. Therefore it defines an R-symmetry.

In fact, the existence of an R-symmetry and the non-degeneracy condition are

equivalent. This is a straightforward consequence of the following integral version of

the famous Birkhoff-von Neumann Theorem for doubly stochastic matrices [3].

Lemma 2.3.4. The cone N+ is integrally generated by the perfect matchings, all of

which are extremal elements.

Proof. We adapt the standard argument [2] to the integral case. Every perfect matching

is an element of N+ and therefore the cone generated by the perfect matchings is

contained in N+. Conversely, choose any element v ∈ N+, and suppose deg v > 0. We

construct a graph Gv whose vertex set is the same as the dimer model (bipartite graph)

and whose edges are the subset of edges e of the dimer model, such that v evaluated

on the dual arrow ae is non-zero.

We claim that Gv satisfies the conditions of Lemma 2.3.1. To see this, let A be

any subset of vertices of one colour (black or white) and denote by N(A) the set of

neighbours of A, i.e. the vertices (of the other colour) which have an edge connecting

them to some element of A. In an abuse of notation we shall also consider A,N(A) ⊆ Q2

as sets of faces of the dual quiver Q. We note that

deg v.|A| =
∑

f∈A

〈d(v), f〉 =
∑

f∈A
g∈N(A)

〈v, ∂f ∩ ∂g〉

where ∂f ∩ ∂g denotes the class in ZQ1 corresponding to the sum of the arrows which

are in the boundary of faces f and g. If B = N(A), then since A ⊆ N(B),

|B| =
1

deg v

∑

f∈B
g∈N(B)

〈v, ∂f ∩ ∂g〉 ≥
1

deg v

∑

f∈B
g∈A

〈v, ∂f ∩ ∂g〉 = |A|
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Thus |N(A)| ≥ |A| as required.

Applying Lemma 2.3.1, we see that Gv has a perfect matching which extends by

zero to a perfect matching π ∈ ZQ1 of the dimer model. Since by construction, v takes

strictly positive integral values on all the arrows on which π is non-zero, we see that

v−π ∈ N+, and has degree deg v− 1. We proceed inductively and, using the fact that

0 is the only degree zero element in N+, we see that v is equal to a sum of deg v perfect

matchings.

To show that all perfect matchings are extremal elements it is sufficient to prove

that no perfect matching is a non-trivial convex sum of distinct perfect matchings.

However if
∑n

s=1 κsπs is a non-trivial convex sum, i.e. κs > 0 for all s = 1, . . . , n and
∑n

s=1 κs = 1, then this sum evaluates to a number in the closed interval [0, 1] on every

arrow in Q. Furthermore we see that the values {0, 1} are attained if and only if all

of the perfect matchings evaluate to the same number on that arrow. Therefore if this

convex sum is a perfect matching, i.e. a {0, 1}-valued function, then πs evaluate to

the same number on every arrow for all s = 1, . . . , n, so the perfect matchings are not

distinct.

Remark 2.3.5. Another straightforward corollary of Hall’s theorem states that a dimer

model is non-degenerate if and only if the bipartite graph has an equal numbers of black

and white vertices and every proper subset of the black vertices of size n is connected

to at least n+1 white vertices. We shall refer to this condition as the ‘strong marriage’

condition. Using this, it is easy to construct examples of dimer models which have

a perfect matching but do not satisfy the non-degeneracy condition. In the following

example the two white vertices in the interior of the fundamental domain are connected

to two black vertices, so it is degenerate. It can also be checked directly that the edge

marked in grey must be contained in every perfect matching. Therefore the other edges

which share an end vertex with this edge are not contained in any perfect matching.
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Let N+
o be the saturation of the projection of the cone N+ ⊂ N into the rank 2g+1

lattice No, where g is the genus of Y . In other words N+
o is the intersection of No with

the real cone generated by the image of N+ in No ⊗Z R. Because of Theorem 2.3.4, it

is natural to use the perfect matchings to describe N+
o . From its construction there is

a short exact sequence

0→ H1(Y ; Z) −→ No
deg
−→ Z→ 0 (2.3.2)

and, since every perfect matching has degree 1, their images in No span a lattice

polytope in a rank 2g affine sublattice such that N+
o is the cone on this polytope.

By choosing some fixed reference matching π0, this polytope may be translated into

H1(Y ; Z) and described more directly as follows: for any perfect matching π, the

difference π − π0 is a cocycle and hence has a well-defined cohomology class. We call

this the relative cohomology class of π. The lattice polytope described above, is the

convex hull of all relative cohomology classes of perfect matchings. We note that there

is usually not a 1-1 correspondence between perfect matchings and lattice points in the

polytope.

Definition 2.3.6. The multiplicity of a lattice point in the polytope is defined to be

the number of perfect matchings whose relative cohomology class is that point.

In the cases which will be of most interest, when the Riemann surface is a torus,

then No is a rank 3 lattice, and the images of the perfect matchings span a polygon in

a rank 2 affine sublattice.
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Definition 2.3.7. A lattice point is called external if it lies on a facet of the polygon,

and extremal if it lies at a vertex of the polygon. A perfect matching is external

(extremal) if it corresponds to an external (extremal) lattice point.

The translated polygon in H1(T ; Z) ∼= Z2 may be computed by various explicit

methods, e.g using the Kastelyn determinant as in [16].

From the point of view of toric geometry, it is natural to think of N+ and N+
o as

describing two (normal) affine toric varieties X and Xo, such that Xo = X//Tin where

the Tin action is determined by the map Nin → N . Furthermore, X and Xo both have

Gorenstein singularities, since the corresponding cones are generated by hyperplane

sections.
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Chapter 3

Consistency

In Chapter 2 we saw some non-degeneracy conditions which we can impose on dimer

models. For example we saw what it means for a dimer model to be balanced (2.1.1)

and non-degenerate (2.3.3). We now come to the most important and strongest of

these conditions which are called consistency conditions. We describe the types of

consistency which appear in the physics literature and state how they relate to each

other. We will see in later chapters that some kind of consistency condition is needed

in order to prove properties we are interested in, such as the Calabi-Yau property.

3.1 A Further Condition on the R-symmetry

We defined, in Section 2.2, an R-symmetry to be a global symmetry that acts with

strictly positive weights on all the arrows. We recall that the existence of an R-

symmetry is equivalent to non-degeneracy of a dimer model. The first definition of

consistency is a strengthening of this, and states that a dimer model is consistent if

there exists an ‘anomaly-free’ R-symmetry.

We recall that in the physics literature (e.g. in [22]) it is traditional to allow real

R-symmetries, but to normalise so they are of degree 2, i.e. a real R-symmetry R ∈ RQ1

which acts on each arrow a ∈ Q1 with weight Ra, satisfies

∑

a∈∂f

Ra = 2 ∀f ∈ Q2 (3.1.1)

Of these real R-symmetries, physicists are particularly interested in ones which have

no ‘anomalies’. Formulated mathematically, these are R-symmetries which satisfy the
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following ‘anomaly-vanishing’ condition at each vertex of the quiver

∑

a∈Hv∪Tv

(1−Ra) = 2 ∀v ∈ Q0 (3.1.2)

where Hv := {b ∈ Q1 | hb = v} and Tv := {b ∈ Q1 | tb = v}.

As stated before, we usually work with integral R-symmetries, without any normal-

isation, and let deg(R) be the degree of an R-symmetry R ∈ ZQ1 . Therefore, if R acts

on each arrow a ∈ Q1 with weight Ra ∈ Z, it satisfies

∑

a∈∂f

Ra = deg(R) ∀f ∈ Q2 (3.1.3)

The corresponding un-normalised ‘anomaly-vanishing’ condition at each vertex of the

quiver is given by

∑

a∈Hv∪Tv

Ra = deg(R)(|Hv| − 1) ∀v ∈ Q0 (3.1.4)

We note that since Q is dual to a bipartite tiling, the arrows around any given vertex

v alternate between outgoing and incoming arrows, so |Hv| = |Tv|.

Remark 3.1.1. Since the conditions (3.1.4) are rational linear equations, the inter-

section of their zero locus and the cone N+ is a rational cone. Thus, using a similar

argument to that in Section 2.2, we see that there exists an ‘anomaly-free’ real R-

symmetry if and only if there exists an ‘anomaly free’ integral R-symmetry.

Definition 3.1.2. A dimer model is called consistent if there exists an R-symmetry

satisfying the condition (3.1.4).

We note that in particular a consistent dimer model has an R-symmetry and so it is

non-degenerate (Definition 2.3.3). Up to this point we have considered dimer models on

an arbitrary Riemann surface Y . However the following argument, given by Kennaway

in Section 3.1 of [22], shows that consistency forces this surface to be a torus.

Consider an R-symmetry which satisfies conditions (3.1.3) and (3.1.4). Summing

these equations over all the quiver faces Q2 and the quiver vertices Q0 respectively and

using the fact that each arrow is in exactly two faces and has two ends we observe that:

deg(R)|Q2| = 2
∑

a∈Q1

Ra = deg(R)(|Q1| − |Q0|) (3.1.5)

Hence |Q0|− |Q1|+ |Q2| = 0. Since the quiver gives a cell decomposition of the surface

Y , this implies that Y has Euler characteristic zero and must be a 2-torus.
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3.2 Rhombus Tilings

We now define another consistency condition which we call ‘geometric consistency’.

This will imply the consistency condition (Definition 3.1.2) and when it holds, it gives a

geometric interpretation of the conditions (3.1.1) and (3.1.2). This was first understood

by Hanany and Vegh in [17]. In practice it is not easy to see directly if a dimer model

is geometrically consistent, however we will explain an equivalent characterisation in

terms of ‘train tracks’ on the ‘quad graph’ due to Kenyon and Schlenker which will be

easier to check.

Given a dimer model on a torus, we construct the ‘quad graph’ associated to it. This

is a tiling of the torus whose set of vertices is the union of the vertices of the bipartite

tiling and its dual quiver Q. The edges of the quad graph connect a dimer vertex f to

a quiver vertex v if and only if the face dual to f has vertex v in its boundary. The

faces of this new tiling, which we call ‘quads’ to avoid confusion, are by construction

quadrilaterals and are in 1-1 correspondence with the arrows in the quiver Q; given

any arrow a in the quiver we have remarked previously (Remark 2.1.3) that it lies in

the boundary of exactly two quiver faces f+ and f− of different colours. Therefore,

there are edges in the quad graph between each of f± and both ha and ta. These four

edges form the boundary of a quad, and every quad is of this form. In particular, the

corresponding arrow and dual edge in the dimer are the two diagonals of the quad.

f+ f−�

�

�

��a

�

�

�

�

	




�

We draw the bipartite graph, the quiver and the quad graph of the hexagonal tiling

below as an example.
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Definition 3.2.1. A dimer model on a torus is called geometrically consistent if there

exists a rhombic embedding of the quad graph associated to it, i.e. an embedding in

the torus such that all edges are line segments with the same length.

There exists a flat metric on the torus, so line segments are well defined, and each

quad in a rhombic embedding is a rhombus. We note that the hexagonal tiling example

above, is a geometrically consistent dimer model and the quad graph drawn is a rhombic

embedding.

Suppose we have a geometrically consistent dimer model and consider a single

rhombus in the rhombus embedding. The interior angles at opposite corners are the

same, and the total of the internal angles is 2π, so its shape is determined by one angle.

To each rhombus, and so to each arrow a of the quiver, we associate Ra, the interior

angle of the rhombus at the dimer vertices divided by π.
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π(1−Ra)

πRa�

�

�

��

The conditions that the rhombi fit together around each dimer vertex and each

quiver vertex, are exactly the conditions (3.1.1) and (3.1.2) for an ‘anomaly free’ real R-

charge, normalised with deg(R) = 2. Thus, recalling Remark 3.1.1, every geometrically

consistent dimer model is consistent.

The converse however is not true. Given a normalised anomaly-free R-symmetry,

we certainly require the additional condition that Ra < 1 for all a ∈ Q1 in order to be

able to produce a genuine rhombus embedding with angles in (0, π). This does not hold

in all cases; for example, the following dimer model is consistent but not geometrically

consistent, as we shall see shortly.

Example 3.2.2.
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In [24], Kenyon and Schlenker prove a necessary and sufficient condition for the

existence of a rhombus embedding, and thus in the dimer model case, for geometric

consistency. They define a ‘train track’ to be a path of quads (each quad being adjacent

along an edge to the previous quad) which does not turn, i.e. for each quad in the train

30



track, its shared edges with the previous and subsequent quads are opposite each other.

Train tracks are assumed to extend in both directions as far as possible. The shaded

quads in the example below, form part of a train track.
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Theorem 3.2.3. (Theorem 5.1, [24]) Suppose G is a quad graph on a torus. Then

G has a rhombic embedding on a torus if and only if the following two conditions are

satisfied:

1. Each train track is a simple closed curve.

2. The lift of two train tracks to the universal cover intersect at most once.

The knowledge of a quad, and a pair of opposite edges is enough to completely

determine a train track. Thus there are at most two train tracks containing any given

quad, and since there are a finite number of quads on the torus, there are a finite

number of train tracks. Therefore Theorem 3.2.3 gives a practical way of checking if a

dimer model is geometrically consistent.

It will sometimes be more convenient to consider (and draw) paths, rather than

paths of quads. For this reason we define the spine of a train track t to be the path

which, on each quad of t, connects the mid-points of the opposite edges which are in

adjacent quads in t. The diagram below shows part of a train track, with its spine

dawn in grey:

+
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./
0

1

23

4
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The spine of a train track is a closed curve on the torus. We note that two train tracks

intersect in a quad if and only if their spines intersect, and the intersection of two spines

may be assumed to be transversal.

Returning to Example 3.2.2 above, we draw part of the universal cover of the quad

graph. The grey paths are lifts of the spines of two train tracks which can be seen to

intersect more than once. Using Theorem 3.2.3, this shows that the example is not

geometrically consistent.
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3.3 Zig-Zag Flows

Although we now have a way of checking if a given dimer model is geometrically

consistent, this is done on the quad graph and we would prefer to return to the language

of quivers which we used in previous chapters. We consider how the properties of train

tracks transfer to the quiver.

We saw in the previous section that there is a 1-1 correspondence between quads

and arrows, for example the arrow corresponding to a quad is the one in the boundary

of the quiver faces dual to the dimer vertices of the quad. Therefore, if two quads are

adjacent along an edge {v, f}, the corresponding arrows a, b have ha = v = tb, and are

both in the boundary of f . Furthermore, since the dimer vertices on opposite edges of

a quad, are different colours, the pairs of arrows corresponding to adjacent quads in a

train track alternate between being in the boundary of black and white faces.
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Definition 3.3.1. A zig-zag path η is a map η : Z −→ Q1 such that,

i) hηn = tηn+1 for each n ∈ Z.

ii) η2n and η2n+1 are both in the boundary of the same black face and, η2n−1 and η2n

are both in the boundary of the same white face.

We observe that shifting the indexing by an even integer, generates a different zig-

zag path with the same image. We call this a reparametrisation of the path, and we

will always consider paths up to reparametrisation.

Definition 3.3.2. An arrow a in a zig-zag path η is called a zig (respectively a zag)

of η if it is the image of an even (respectively odd) integer.

This is independent of the choice of parametrisation.

zag

zig

zag

�

�

�

�

�

� �

�

��

��

�

�

We saw in the previous section that the knowledge of a quad, and a pair of opposite

edges is enough information to completely determine a train track. Let a be any arrow
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in Q and suppose we decide that it is a zig (respectively zag). Then similarly,we see

that this is enough to uniquely determine a zig-zag path (up to reparametrisation).

Thus every arrow is in at most two zig-zag paths. Furthermore since there are a finite

number of arrows in Q, we see that all zig-zag paths are periodic.

We now turn our attention to the universal cover Q̃ of Q, and maps η̃ : Z −→ Q̃1

into this, which satisfy the same ‘zig-zag’ property.

Definition 3.3.3. A zig-zag flow η̃ is a map η̃ : Z −→ Q̃1 such that,

i) hη̃n = tη̃n+1 for each n ∈ Z.

ii) η̃2n and η̃2n+1 are both in the boundary of the same black face and, η̃2n−1 and η̃2n

are both in the boundary of the same white face.

We define reparametrisation, zigs and zags in the same way as above, and observe

that if we decide that an arrow a ∈ Q̃1 is a zig (respectively zag), then this is enough

to uniquely determine a zig-zag flow (up to reparametrisation).

Remark 3.3.4. We use the terms zig-zag path and zig-zag flow in order to distinguish

between objects on the quiver Q, and on its universal cover Q̃. We note that composing

a zig-zag flow with the projection from the universal cover Q̃ to the quiver Q produces

a zig-zag path. The ‘zig-zag’ property may also be characterised by saying that the

path turns ‘maximally left’ at a vertex, then ‘maximally right’ at the following vertex,

and then left again and so on. This is how it is defined in the physics literature, for

example in [23]. In this language, knowing that a is a zig or a zag of a zig-zag path

or flow, is equivalent to knowing whether the zig-zag path or flow turns left or right at

the head of a.

Since there exists a unique zig-zag path or flow containing any given arrow a as a

zig (respectively zag), we will refer to this as the zig-zag path or flow generated by the

zig (respectively zag) a. In particular, the lift of a single zig or zag of a zig-zag path η

to Q̃, (remembering that it is a zig or zag), generates a zig-zag flow η̃ which projects

down to η.

Let η̃ be a zig-zag flow and denote by η, the zig-zag path obtained by projecting

this down to Q. Since η is periodic, there is a well defined element (η) ∈ ZQ1 which is

the sum of the arrows in a single period. This is obviously closed and has a homology

class [η] ∈ H1(Q) i.e. in the homology of the torus. Thus each zig-zag flow η̃ (and

zig-zag path η), has a corresponding homology class.

Remark 3.3.5. The 2-torus is the quotient of the plane by the fundamental group

π1(T ) which is isomorphic to H1(T ) as it is abelian. The action is by deck transfor-

mations. Given a point x on the plane and a homology class λ we find a curve on the
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torus with this homology class which passes through the projection of x. We lift this

curve to a path in the plane starting at x and define λ.x to be the end point. This

depends only on the homology class, and not on the choice of curve. We note that in

particular, the action of [η] ∈ H1(Q) on an arrow η̃n in a representative zig-zag flow η̃,

is the arrow η̃n+$, where $ is the length of one period of η̃.

We note that there is an obvious homotopy between the spine of a train track and

the zig-zag path corresponding to that train track.

�

�

�

��

�

�

Therefore the spine of a train track and the corresponding zig-zag path have the same

class in the homology of the torus.

Remark 3.3.6. We will often talk about the intersection between two zig-zag paths or

flows. We have defined a zig-zag path or flow as a doubly infinite sequence of arrows,

and as such, we will consider them to intersect if and only if they have an arrow in

common. Thus there may exist zig-zag paths which share a vertex but not intersect.

This is consistent with the train tracks definitions where two paths of quads intersect

if and only if they have a quad in common which happens if and only if the spines of

the train tracks intersect. Furthermore since the spines of zig-zag paths intersect each

other transversally, each intersection of spines counts as ±1 in the intersection product

of the corresponding homology classes. Thus each arrow in the intersection between two

zig-zag paths contributes ±1 to the intersection number, and the intersection number

is the sum of these contributions. In particular if a is a zag of [η] and a zig of [η ′], then

it contributes +1 to [η] ∧ [η′].

We now give a proposition that describes necessary and sufficient conditions for a

dimer model to be geometrically consistent in terms of zig-zag flows. We note that

unlike Theorem 3.2.3, all conditions are formulated on the universal cover.

Proposition 3.3.7. A dimer model is geometrically consistent if and only if the fol-

lowing conditions hold.
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(a) No zig-zag flow η̃ in Q̃ intersects itself, i.e. η̃ is an injective map.

(b) If η̃ and η̃′ are zig-zag flows and [η], [η′] ∈ H1Q are linearly independent, then they

intersect in precisely one arrow.

(c) If η̃ and η̃′ are zig-zag flows and [η], [η′] ∈ H1Q are linearly dependent, then they

do not intersect.

Proof. First we suppose conditions (a)-(c) hold, and prove that these imply conditions

(1) and (2) of Theorem 3.2.3. As there are a finite number of quads on the torus, all

train tracks are closed. Therefore to prove condition (1), we need to show that they

are simple. Suppose there is a train track which is not, and so intersects itself in a

quad. This quad corresponds to an arrow in the quiver Q, which is contained in the

corresponding zig-zag path as both a zig and a zag. Lifting this arrow to an arrow a in

the universal cover, we consider the flows generated by a considered as a zig and as a

zag. We either obtain one zig-zag flow which intersects itself, contradicting condition

(a), or we obtain two zig-zag flows which intersect in the arrow a. By construction these

project down to the same zig-zag path η, and therefore have the same corresponding

homology class, but this contradicts condition (c). Therefore we have shown that

condition (1) of Theorem 3.2.3 holds. Since the lift of a train track corresponds to a

zig-zag flow, we observe that condition (2) of Theorem 3.2.3 follows directly from (b)

and (c).

Now conversely, assuming that we have a geometrically consistent dimer model,

so conditions (1) and (2) of Theorem 3.2.3 hold, we show that (a)-(c) hold. First we

consider the case where η̃ and η̃′ are distinct zig-zag flows which project down to the

same zig-zag path η, and show that they don’t intersect. If they did, then there is

an arrow a ∈ Q̃ which is (without loss of generality) a zig of η̃ and a zag of η̃ ′. This

projects down to an arrow which is both a zig and a zag of η. Thus η intersects itself

and the corresponding train track is not a simple closed curve. This contradicts (1),

and so η̃ and η̃′ do not intersect. This proves part of condition (c).

Now we prove that (a) holds. A zig-zag flow can intersect itself in two ways. If

an arrow a occurs as a zig and a zag in η̃, then η̃ projects down to a zig-zag path

η which contains the image of a as a zig and a zag. Thus η intersects itself and the

corresponding train track is not a simple closed curve. This contradicts (1).

On the other hand, suppose an arrow a occurs more than once as a zig (or zag) in

η̃. Then η̃ is a periodic sequence of arrows, whose support is a finite closed path in

Q̃. In particular, the corresponding homology class [η] = 0. Let η̃ ′ be the zig-zag flow

generated by a considered as a zag (or zig). We note that if η̃ and η̃ ′ are the same

then they contain a as a zig and a zag which we showed could not happen in the case

above. Therefore they must be distinct. Since [η] = 0, we see that [η] and [η ′] have zero
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intersection number. We know from Remark 3.3.6 that each arrow in the intersection

of η and η′ contributes either ±1 to the intersection number, so they must intersect in

an even number of arrows. They intersect in at least one, namely the image of a, and

so they must intersect at least twice which contradicts (2).

Finally we complete the proof of (b) and (c). We may suppose η̃ and η̃ ′ are zig-zag

flows which project down to distinct zig-zag paths η and η ′ in Q, as the other case of

(c) was already done above. Then η̃ and η̃ ′ correspond to the lifts of two distinct train

tracks, and so by condition (2) they intersect at most once.

To prove (b) we suppose η̃ and η̃′ are zig-zag flows with the property that [η] and

[η′] are linearly independent. If v is any vertex of η̃, then repeatedly applying the

deck transformations corresponding to the homology classes ±[η] we obtain a sequence

of vertices of η̃ which lie on a line ` in the plane which has gradient given by [η].

In particular η̃, and therefore the spine of the corresponding train track, lie within a

bounded region of `. Similarly, the spine of the train track corresponding to η̃ ′ lies

within a bounded region of a line `′ which has gradient given by [η′]. Since [η] and [η′]

are linearly independent, the lines ` and `′ are not parallel and so intersect. Using the

boundedness we see that the two spines must also intersect at least once. Thus η̃ and

η̃′ intersect at least once and therefore exactly once. This proves (b).

Finally suppose [η] and [η′] are linearly dependent, so there exists a non-zero ho-

mology class c = k[η] = k′[η′] which is a common multiple of [η] and [η ′]. If η̃ and η̃′

intersect in an arrow a, we consider applying the deck transformation corresponding

to c to this arrow. The image is an arrow which is both k periods along η̃ from a, and

k′ periods along η̃′ from a. Thus the image of a is a second arrow which is contained

in both η̃ and η̃′. This is a contradiction, so η̃ and η̃ ′ do not intersect. This completes

the proof of condition (c).

Remark 3.3.8. We note here that the property that a zig-zag flow η̃ doesn’t intersect

itself (condition (a) of Proposition 3.3.7) implies that the homology class [η] is non-zero.

Also, condition (1) of Theorem 3.2.3 implies that the homology class corresponding to

any zig-zag flow is primitive (or zero). Thus the homology class corresponding to any

zig-zag flow in a geometrically consistent dimer model is non-zero and primitive. This

observation will be useful in the next chapter.

Remark 3.3.9. Suppose we have a geometrically consistent dimer model and η̃ and

η̃′ are such that [η] ∧ [η′] > 0. Considering the lines ` and `′ as in the proof of part (b)

in the proposition above, we note that ` crosses `′ from left to right. Since η̃ and η̃′ lie

within a bounded region of ` and `′ respectively and η̃ and η̃′ intersect exactly once,
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we see that η̃ crosses η̃′ from left to right. Therefore this intersection is a zag of η̃ and

a zig of η̃′.

3.4 Marginal Geometric Consistency

We saw in Section 3.2 that geometric consistency is a stronger condition than con-

sistency. We discuss in this section two ways of weakening the geometric consistency

condition, which we obtain by weakening the original definition, and the conditions

of Proposition 3.3.7 respectively. We conjecture that these weakened conditions are

equivalent.

Remark 3.4.1. We note here that Stienstra in [29], and Gulotta in [14] both prove

that for any lattice polygon V , there exists a geometrically consistent dimer model

which has V as its perfect matching polygon (as defined in Section 2.3). Thus to every

lattice polygon, and so to every Gorenstein affine toric threefold, we can associate

a geometrically consistent model. Therefore, in order to construct a CY3 algebra

associated to every Gorenstein affine toric threefold it is sufficient to prove the CY3

condition in the geometrically consistent case and considering marginally geometrically

consistent dimer models is not required.

3.4.1 Rhombus Tilings

We recall that in the quad graph associated to a dimer model, each quad has opposite

vertices which are either both dimer vertices or both quiver vertices. Given a rhombus

with this property, then it can be ‘flattened’, so it has no area, in two distinct ways.

Namely, we can consider the limits as the two dimer vertices, or the two quiver vertices

come together. These are equivalent to letting the interior angle of the rhombus at

the dimer vertices, tend to π or zero respectively, i.e. using the notation of Section 3.2

letting Ra → 1 or Ra → 0 respectively. We call a dimer model on a torus marginally

geometrically consistent if there exists a rhombus embedding of the quad graph, where

we allow ‘flat’ rhombi whose dimer vertices coincide but not those whose quiver vertices

coincide.

Using the same argument as in Section 3.2, we see that we can construct an anomaly

free R-symmetry given such an embedding. Therefore marginal geometric consistency

implies consistency. The weakened condition allows examples where the normalised

R-symmetry has Ra = 1 for some a ∈ Q1. Returning again to Example 3.2.2, we see

that this has a rhombus embedding with flat rhombi of the correct sort, obtained by

flattening the shaded quads in the diagram below:

38



�

�

� �

�

�

�

�

�

	




�

�


�

�

�

��

�

��

��

�

��

�

�

��

� 

!

"#

$

%

&'

()

*

+

,-

./

0

We saw at the end of Section 3.2 that it is not geometrically consistent. Therefore,

this is an example of a marginally geometrically consistent dimer model which is not ge-

ometrically consistent. In the physics literature, it is described as a ‘non-mimimal toric

phase’ of F0, on the other hand, the ‘mimimal toric phase’ is geometrically consistent

[17].

3.4.2 Zig-Zag Flows

We now consider how one might weaken the conditions of Proposition 3.3.7 and still

obtain a sensible and hopefully equivalent definition of marginal consistency. One might

consider weakening condition (c) of Proposition 3.3.7 to allow certain zig-zag flows

with dependent homology classes to intersect. Looking at the marginally geometrically

consistent Example 3.4.1, we see that the two zig-zag flows which do intersect more

than once, have dependent homology classes which are negative rational multiples of

each other. However, the two zig-zag flows which intersect more than once in the

following example, satisfy these same properties, but the way they intersect forces any

rhombus tiling to have rhombi which are flattened in the ‘wrong’ way.
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Remark 3.4.2. We note here that di-gons are ‘bad’. If a dimer model has a di-gon,

then looking at the two quads corresponding to the two edges of the face, we see that

they can not both be rhombi, even allowing flat rhombi where the dimer vertices come

together (see the diagram below). Therefore any dimer model with di-gons is not

marginally geometrically consistent.


 ���
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There are also examples of dimer models which are marginally geometrically con-

sistent, which have zig-zag flows whose corresponding homology classes are linearly

independent, and which intersect more than once. In the example below, we can ob-

tain a rhombic embedding by flattening the light grey quads. The dark grey lines

are the lifts of the spines of two train tracks which can be seen to intersect, but have

linearly dependent homology classes. Two periods of each are shown.
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Therefore we need to consider more carefully how zig-zag flows intersect. We suggest

the following conditions:

(a) No zig-zag flow η̃ in Q̃ intersects itself in an arrow.

(b) Suppose η̃ and η̃′ are zig-zag flows which intersect more than once, and let η̃k1 = η̃′n1

and η̃k2 = η̃′n2
be any two arrows in their intersection. If k1 < k2, then n1 > n2.

We conjecture that these conditions are equivalent to marginal geometric consistency.

3.5 Some Consequences of Geometric Consistency

We now return to dimer models that are geometrically consistent. In Section 2.1 we

explained the construction of the algebra A which from an algebraic point of view is the

output of a dimer model. This is quotient of the path algebra CQ by the ideal generated

by ‘F-term relations’. If a dimer model is geometrically consistent, a theorem of Hanany,

Herzog and Vegh gives a concrete criterion for two paths to be F-term equivalent. In
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this section we set up the notation required and then state this result. This will also

act as motivation for the definition of ‘non-commutative toric algebras’ which we shall

introduce in Chapter 4.

Recall that every arrow a ∈ Q1 occurs in precisely two oppositely oriented faces

f+, f− ∈ Q2. Then each F-term relation can be written explicitly as an equality of two

paths p+
a = p−a for some a ∈ Q1, where p±a is the path from ha around the boundary

of f± to ta. We say that two paths differ by a single F-term relation if they are of the

form q1p
+
a q2 and q1p

−
a q2 for some paths q1, q2 and some a ∈ Q1. The F-term relations

generate an equivalence relation on paths in the quiver.

Definition 3.5.1. Two paths p1 and p2 in Q are F-term equivalent denoted p1 ∼F p2

if there is a finite sequence of paths p1 = σ0, σ1, . . . , σk = p2 such that σi and σi+1

differ by a single F-term relation for i = 0, . . . , k − 1.

The F-term equivalence classes of paths form a natural basis for A.

We recall that the quiver Q gives a cellular decomposition of the Riemann surface

Y of a dimer model which, in consistent examples, is a 2-torus. Therefore there exist

corresponding chain and cochain complexes

ZQ2

∂
−→ ZQ1

∂
−→ ZQ0 (3.5.1)

ZQ0 d
−→ ZQ1 d

−→ ZQ2 (3.5.2)

In Section 2.2 we defined a sublattice N := d−1(Z1) ⊂ ZQ1 . We now wish to consider

the dual lattice to N which we denote by M . This is the quotient of ZQ1 by the

sub-lattice ∂(1⊥), where 1⊥ := {u ∈ ZQ2 | 〈u, 1〉 = 0}. Since ∂(1⊥) is contained in

the kernel of the boundary map, this boundary map descends to a well defined map

∂ : M → ZQ0 on the quotient.

Every path p in Q defines an element of (p) ∈ ZQ1 , obtained by simply summing up

the arrows in the path. This in turn defines a class [p]M ∈M , for which ∂[p]M = hp−tp.

Now consider any F-term relation p+
a = p−a for some a ∈ Q1. Since p±a is the path from

ha around the boundary of f± to ta, we note that (p±a ) + (a) = ∂f±. In particular

(p+
a )− (p−a ) = ∂(f+ − f−) in ZQ1 , so [p+

a ]M = [p−a ]M . Thus we see that it is necessary

for F-term equivalent paths to have the same class in M . The result due to Hanany,

Herzog and Vegh says that for geometrically consistent dimer models, this condition

is also sufficient i.e. if two paths have the same class in M then they are F-term

equivalent.

Let Mo := ∂−1(0) and note that this is a rank 3 lattice which is dual to No.
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Therefore it sits in the short exact sequence dual to (2.3.2)

0 −→ Z −→Mo
H
−→ H1(T ; Z) −→ 0 (3.5.3)

The kernel of H is spanned by the class � = ∂[f ]M for any face f ∈ Q2. If R is

any R-symmetry then by definition 〈R,�〉 = degR 6= 0. Therefore, from (3.5.3), we

observe that p and q have the same class in M , i.e. [p]M − [q]M = 0, precisely when

they are homologous, i.e. H([p]M − [q]M ) = 0, and they have the same weight under

R, i.e. 〈R, [p]M 〉 = 〈R, [q]M 〉.

Theorem 3.5.2. (Hanany, Herzog, Vegh, Lemma 5.3.1 in [15]) For a geometrically

consistent dimer model, two paths in Q are F-term equivalent (i.e. represent the same

element of A) if and only if they are homologous and have the same weight under a

fixed R-symmetry.

Remark 3.5.3. In the terminology of [15] homologous paths are called ‘homotopic’

and paths which evaluate to the same integer on a fixed R-symmetry are said to be of

the same ‘length’.

43



Chapter 4

Toric Algebras and Algebraic

Consistency

In this chapter we introduce the concept of (non-commutative, affine, normal) toric

algebras. We prove some general properties, and relate the definition back to dimer

models by showing that there is a toric algebra naturally associated to every dimer

model. This leads to the definition of another consistency condition which we call

‘algebraic consistency’. This will play a key role in the rest of this thesis. Finally we

give some examples of algebraically consistent, and non algebraically consistent dimer

models.

4.1 Toric Algebras

We start the story with two objects, a finite set Q0, and a lattice N . Suppose this pair

is equipped with two further pieces of information: Firstly a map of lattices

ZQ0
d

−−−−→ N

with the property that its kernel is Z1, and secondly a subset N+ ⊂ N which is the

intersection of a strongly convex rational polyhedral cone in N ⊗Z R with the lattice

N . Following the standard abuse of notation from toric geometry, we will simply refer

to N+ as a cone.

We consider the corresponding dual map of dual lattices

ZQ0

∂
←−−−− M
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where M = N∨ := Hom(N,Z) contains the dual cone of N+,

M+ = (N+)∨ := {u ∈M | 〈u, v〉 ≥ 0 ∀v ∈ N+}

Let Mij := ∂−1(j − i) for i, j ∈ Q0, and denote the intersection with cone M+ by

M+
ij := Mij ∩M

+. We define M gen to be the submonoid of M+ generated by the

elements of M+
ij for all i, j ∈ Q0.

Definition 4.1.1. We call (N,Q0, d,N
+) non-commutative toric data if it satisfies the

following two conditions:

1. M+
ij is non-empty for all i, j ∈ Q0

2. N+ = (M gen)∨ := {v ∈ N | 〈u, v〉 ≥ 0 ∀u ∈M gen}

Given some non-commutative toric data, we can associate a non-commutative toric

algebra

B = C[M+] =
⊕

i,j∈Q0

C[M+
ij ]

where C[M+
ij ] is the vector space with a basis of monomials of the form xm for m ∈M+

ij .

The algebra may be considered as a formal matrix algebra

B =




C[M+
11] . . . C[M+

1n]
...

...

C[M+
n1] . . . C[M+

nn]




with product

C[M+
ij ]⊗ C[M+

jk]→ C[M+
ik ] : x

m1 ⊗ xm2 7→ xm1+m2

Remark 4.1.2. We note that Mii = ∂−1(0) is obviously independent of the vertex

i ∈ Q0. We denote it by Mo := ∂−1(0), and let M+
o := Mo ∩M

+. Then C[M+
o ] is

the coordinate ring of a commutative (affine normal) toric variety where C[Mo] is the

coordinate ring of its torus.

4.2 Some Examples

Example 4.2.1. If Q0 = {•} is the set with one element and N is any lattice, then

the zero map

ZQ0
0

−−−−→ N
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has kernel Z1. If N+ is a cone in N then (N,Q0, d,N
+) satisfies all the conditions for

non-commutative toric data. In particular M•• = M so M+
•• = M+ = (N+)∨, and

B = C[M+]

is a commutative ring. Thus we get the usual toric construction of the coordinate ring

of the (normal) affine toric variety, defined by the cone N+ in N .

Example 4.2.2. Let Q0 = {i, j} and let N ∼= Z2 be a rank 2 lattice with some chosen

basis. The map

ZQ0

“

1 −1
−1 1

”

−−−−−−→ N

has kernel Z1. We consider the family of cones N+
k for k ∈ N with rays which have

primitive generators (1, 0) and (−k, k + 1).

(1, 0)

(−k, k + 1)

(k + 1, k)

(Mk)ij (Mk)ji

(Mk)o

� � � � � �

� � � 	 
 �

� 
 � � � �

� � � � � �

� � � � � �

Then the dual cone (Mk)
+ in the dual lattice Mk is shown below. We can see that the

slices (Mk)
+
o , (Mk)

+
ij and (Mk)

+
ji are all non-empty, and also that (M gen)∨ = N+.
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(1, 0)
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(k + 1, k)
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Therefore we have well defined non-commutative data, and the corresponding non-

commutative toric algebra is

B = C[M+
k ] =

(
C[XY ] Y C[XY ]

Xk+1Y kC[XY ] C[XY ]

)

Example 4.2.3. Let Q = (Q0, Q1) be a strongly connected quiver and consider any

sublattice L ⊂ ZQ1 with a torsion free quotient, which is contained in the kernel of the

boundary map ∂ : ZQ1 → ZQ0 . Using this we can construct some non-commutative

toric data and the corresponding algebra. We define M := ZQ1/L to be the quotient

lattice and let N := M∨. Since L is in the kernel, the boundary map descends to a

map ∂ : M → ZQ0 which has a dual map d : ZQ0 → N . Furthermore, as the quiver is

connected, we see that the kernel of d is Z1 as we required.

Let M ef be the image of NQ1 in M under the quotient map, and define N+ :=

(M ef )∨. This is a strongly convex rational polyhedral cone in N .

We now see that (N,Q0, d,N
+) is non-commutative toric data. First note that M ef

is generated by the images of the arrows in M+. The image of an arrow is in M+
ta,ha,

so M ef ⊆Mgen ⊆M+. Dualising this we see that

N+ = (M+)∨ ⊆ (M gen)∨ ⊆ (M ef )∨ = N+
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so condition (2) of Definition 4.1.1 is satisfied. Condition (1) is a consequence of the

fact that Q is strongly connected. Given any two vertices i, j ∈ Q0, there exists an

(oriented) path from i to j. This defines an element of NQ1 and therefore a class in

M ef ⊂ M+. Furthermore since the path is from i to j, applying the boundary map

to the class we get the element (j − i) ∈ ZQ0 , and we have therefore constructed an

element in M+
ij .

4.3 The Centre

Lemma 4.3.1. The centre Z(B) of a non-commutative toric algebra B = C[M+] is

isomorphic to R := C[M+
o ].

Proof. First we note that we can consider B as an R-algebra, using the map R →

R Id ⊂ B, where Id is the identity element of B (which exists because M+
o is a cone).

This is true because xmxmkl = xm+mkl = xmklxm for any m ∈M+
o and mkl ∈M

+
kl . In

particular R Id ⊂ Z(B).

Now suppose z = (zij) ∈ Z(B). For every k, l ∈ Q0, by definition M+
kl is non-empty,

so we may fix some mkl ∈M
+
kl . Let xmkl ∈ B be the corresponding element in B. Then

(zxmkk)ij =




zikx

mkk j = k

0 otherwise

and

(xmkkz)ij =




xmkkzkj i = k

0 otherwise

Since z is central these must be equal and thus for all i 6= k we have zikx
mkk = 0. We

note that C[M+
ik ] is a torsion free right C[M+

kk]- module and therefore zik = 0 for all

i 6= k. Thus every off-diagonal entry in z is zero.

Similarly considering (zxmkl)kl and (xmklz)kl we observe that zkkx
mkl = xmklzll.

Therefore zkkx
mkl = zllx

mkl and so zkk = zll in R. Thus Z(B) ⊆ R Id and we are done.

4.4 Relationship with dimer models and Algebraic Con-

sistency

We observe that there is a non-commutative toric algebra naturally associated to every

non-degenerate dimer model. Given any dimer model, we saw in Section 2.1.3 that
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there is a corresponding quiver. This quiver is strongly connected. This follows from

the fact that the quiver is a tiling and given any unoriented path we can construct

an oriented one by replacing any arrow a which occurs with the wrong orientation by

the path from ha to ta around the boundary of one of the faces containing a. Let

L := ∂(1⊥) be the sublattice of ZQ1 where 1⊥ := {u ∈ ZQ2 | 〈u, 1〉 = 0}, as defined in

Section 3.5. We recall that this is contained in the kernel of the boundary map, and

that the quotient M = ZQ1/L is torsion free. Then using Section 4.2.3 we can associate

to this a non-commutative toric algebra B := C[M+].

Remark 4.4.1. We observe that the notation has been set up in a consistent way, i.e.

the objects N,Q0, d,N
+ and also M,M+,Mo corresponding to this toric algebra are

the objects of the same name, seen in Sections 2.2 and 3.5 respectively.

We are now in a position to introduce a final consistency condition which we shall

call ‘algebraic consistency’. We saw in Section 3.5 that every path p from i to j in

Q defines a class [p]M ∈ M which has boundary j − i. Since this was obtained by

summing the arrows in the path it is clear that this class actually lies in M ef
ij ⊂ M+

ij .

Furthermore we saw that if two paths are F-term equivalent, then they define the same

class.

The F-term equivalence classes of paths in the quiver form a natural basis for the

quiver algebra A. By definition the classes in M+
ij for all i, j ∈ Q0 form a basis for the

algebra B = C[M+]. Therefore, since it is defined on a basis, there is a well defined

C-linear map from A to B. It follows from the definition that if paths p and q are

composable then [pq]M = [p]M + [q]M and thus the map respects the multiplication,

i.e. we have defined an algebra morphism:

h : A −→ C[M+]; p 7→ x[p]M (4.4.1)

Definition 4.4.2. A dimer model is called algebraically consistent if the morphism

(4.4.1) is an isomorphism.

We note that the map is an isomorphism if and only if restricts to an isomorphism

on each i, jth piece, i.e. eiAej
∼=
−→ C[M+

ij ] for each i, j ∈ Q0.

Remark 4.4.3. Theorem 3.5.2 says that for a geometrically consistent dimer model

two paths are F-term equivalent if and only if they have the same class in M . This

is equivalent to saying that for geometrically consistent dimer models the map h is

injective.
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4.5 Example

We will construct a large class of examples of dimer models which are algebraically

consistent in Chapter 6. For now we look at an example which is not algebraically

consistent to see how things can go wrong.
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In this example the map h is neither injective nor surjective. To see the lack of injec-

tivity we consider the two paths xy and yx around the boundary of the fundamental

domain in the diagram above. Neither path can be altered using F-term relations and

so they are distinct elements in A. However, considered as sum of arrows in ZQ1, they

are the same element, so they have the same class in M .

To see the lack of surjectivity we consider the path x which is a loop at a vertex.

Therefore this path maps to an element m ∈ M+
o . If the map h is surjective, then

there must also be a path in e1Ae1 and e2Ae2 which maps to m, where e1, e2 are the

idempotents corresponding to the other two vertices. However, no such paths exist.
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Chapter 5

Zig-zag flows and perfect

matchings

In Chapter 3 we saw how properties of the intersections of zig-zag flows could be used

to characterise geometric consistency. In this chapter we assume geometric consistency,

and use this to prove some properties about the intersections between zig-zag flows and

paths. We will be particularly interested in zig-zag flows which intersect the boundary

of a given face. We define ‘zig-zag fans’ which encode information about intersections

of these flows, and use some of their properties to explicitly write down all the external

and extremal perfect matchings (as defined in Section 2.3) of a geometrically consistent

dimer model. We prove that the extremal perfect matchings have multiplicity one

and that the multiplicities of the external perfect matchings are binomial coefficients.

Several of the ideas and results introduced in this chapter will be important throughout

the remainder of this thesis.

We start by recalling (Definition 3.3.3) that a zig-zag flow η̃ is a doubly infinite

path η̃ : Z −→ Q̃1 such that, η̃2n and η̃2n+1 are both in the boundary of the same black

face and, η̃2n−1 and η̃2n are both in the boundary of the same white face. We called an

arrow a in a zig-zag flow η̃, a zig (respectively a zag) of η̃ if it is the image of an even

(respectively odd) integer.

Remark 5.0.1. For a geometrically consistent dimer model, a zig-zag flow does not

intersect itself in an arrow. Therefore each arrow in a zig-zag flow η̃ is either a zig or

a zag of η̃ but can not be both. Furthermore we recall that knowledge that an arrow

is a zig (or a zag) in a zig-zag flow, is enough to uniquely determine that zig-zag flow.

Thus every arrow is in precisely two zig-zag flows, and is a zig in one and a zag in the

other.
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5.1 Boundary Flows

We start by defining the ‘boundary flows’ of a zig-zag flow η̃. By definition, for each

n ∈ Z we see that the ‘zig-zag pair’ η̃2n and η̃2n+1 both lie in the boundary of a black

face fn. The other arrows in the boundary of this face form an oriented path p(n) from

hη̃2n+1 = tη̃2(n+1) to tη̃2n = hη̃2n−1, i.e. a finite sequence of consecutive arrows.

fn−1 fn fn+1

η̃2n−2 η̃2n−1

η̃2n

η̃2n+1

η̃2n+2

η̃2n+3

p(n)

p(n+1)

p(n−1)

�

�

�

�

�

�

�

�

�

	


�

�




�

We piece these p(n) together in the obvious way, to construct a doubly infinite sequence

of arrows which we call the black boundary flow of η̃. By considering pairs of arrows

η̃2n−1 and η̃2n which lie in the boundary of a white face for each n ∈ Z, (i.e. the

‘zag-zig pairs’) we can similarly construct the white boundary flow of η̃. The two

boundary flows of a zig-zag flow η̃, project down to ‘boundary paths’ of the zig-zag

path η. The construction we have just described, is well defined on the quiver Q and

so the boundary paths can be constructed directly in Q. Since η is periodic, it follows

that each boundary path is also periodic.

We recall from Section 3.3 that the image of a single period of η is a closed cycle

(η) ∈ ZQ1 which defines a homology class [η] ∈ H1(Q). Similarly the image of a single

period of a boundary path is a closed cycle in ZQ1 and also defines a homology class.

Each ‘zig-zag pair’ of η is in the boundary of a unique black face. Summing these faces

over a single period of η, defines an element in ZQ0 whose boundary, by construction

contains all the arrows in a period of η. If we subtract the cycle (η) ∈ ZQ1 from this

boundary, we obtain a cycle which is the sum of all arrows in the boundary of each

of the faces except the zig-zag pair of η. Thus we see that by construction this cycle

is the one corresponding to the black boundary flow of η̃. The same argument follows

through with white faces and zag-zig pairs. Thus we have shown:

Lemma 5.1.1. For each zig-zag flow η̃, the black and white boundary flows on Q̃ project

to boundary paths on Q whose corresponding homology classes are both −[η] ∈ H1(Q).
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5.2 Some Properties of zig-zag flows

It will now be useful to consider the intersections of zig-zag flows and more general

paths. We consider a path in Q̃ to be a (finite or infinite) sequence of arrows (an) such

that han = tan+1. We will call a path simple if it contains no repeated arrows. We will

also consider ‘unoriented’ paths, where we do not have to respect the orientation of the

arrows. These can be considered as paths in the doubled quiver and where we denote

the opposite arrow to a by a−1. We call an unoriented path simple if it contains no

arrow which is repeated with either orientation.

Remark 5.2.1. We note that the support of a simple path does not have to be a

simple curve in the usual sense, and may intersect itself as long as the intersections

occur at vertices.

Lemma 5.2.2. Let p be a (possibly unoriented) finite simple closed path in Q̃ and η̃

be any zig-zag flow. If p and η̃ intersect in an arrow a, then they must intersect in at

least two arrows.

Proof. Without loss of generality we can consider the case when the support of p is a

Jordan curve. Indeed, if the support of p is not simple, there is a path p′ containing

a whose support is a simple closed curve which is contained in the support of p. This

is true because the curve only intersects itself at vertices of the quiver. The path p ′

can be constructed by considering the path starting at a, and each time a vertex is

repeated, removing all the arrows between the repeated vertices. If η̃ intersects p ′ in

at least two arrows, it must intersect p in at least these arrows.

Since the universal cover Q̃ is planar we may apply the Jordan curve theorem which

implies that p is the boundary of the union of a finite number of faces. Let F denote

the set consisting of these faces. We observe that the arrows in the path p are those

which are contained in the boundary of precisely one face in F . We say that an arrow

is ‘interior’ if it is contained in the boundary of two distinct faces in F . In particular

since F contains a finite number of faces, there are a finite number of arrows in the

interior.

Since a = η̃k is an arrow in p, it is in the boundary of one face f ∈ F . Using the

zig-zag property, one of the arrows η̃k−1 or η̃k+1 in η̃ must also be in the boundary of f .

Either this arrow in the path p, and we are done, or it lies in the interior. Without loss

of generality, assume that η̃k+1 lies in the interior. There are a finite number of arrows

in the interior, and η̃ is an infinite sequence of arrows which, by geometric consistency,

never intersects itself. Therefore, there exists a first arrow η̃k′ with k′ > k + 1, which

is not in the interior.
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In particular the arrow η̃k′−1 is in the interior, and therefore is in the boundary of

two faces in F . Using the zig-zag property, we see that η̃k′ is in the boundary of one of

these faces and, because it is not in the interior, it must be an arrow in p. Finally, since

a = η̃k and η̃k′ are both in η̃, which does not intersect itself, they must be distinct.

Now let f be a face in the universal cover Q̃, and consider the the intersections

between zig-zag flows and the boundary of f .

Lemma 5.2.3. If η̃ is a zig-zag flow which intersects the boundary of f , then it inter-

sects in exactly two arrows which form a zig-zag pair of η̃ if f is black and a zag-zig

pair if f is white.

Proof. Let η̃ be a zig-zag flow that intersects the boundary of f . We assume that f is

black, the result for white faces follows by a symmetric argument. Using the zig-zag

property we see that each intersection between η̃ and the boundary of f must occur as

a pair of arrows and by definition, this is a zig-zag pair of η̃.

Suppose for a contradiction that some zig-zag flow intersects the boundary of face

f in more than one pair. We choose such a flow η̃ so that the number of arrows around

the boundary of f , from one zig-zag pair (η̃0, η̃1) to another pair (η̃k, η̃k+1), where

k ≥ 2, is minimal (it could be zero). We note that minimality ensures that η̃ does not

intersect the part of the boundary of f between η̃1 and η̃k. The arrow η̃1 is a zig of a

different zig-zag flow which we call η̃ ′, and without loss of generality η̃1 = η̃′0. By the

zig-zag property, η̃′1 is also in the boundary of f .

If the number of arrows around the boundary of f , between hη̃1 = hη̃′0 and tη̃k is zero

then η̃′1 = η̃k and η̃ and η̃′ intersect in at least two arrows, which contradicts geometric

consistency. Otherwise there are two finite oriented simple paths from hη̃1 = hη̃′0 to

tη̃k; the path p along the boundary of f and the path q which is part of η̃. Then pq−1

is a (finite) simple closed path which intersects η̃ ′ in the arrow η̃′0. Simplicity follows

since p and q are both simple and η̃ does not intersect p. Applying Lemma 5.2.2 we see

that η̃′ must intersect pq−1 in another arrow. It can not intersect q otherwise η̃ and η̃ ′

intersect in at least two arrows, so it must intersect p in a second arrow. We show that

this leads to a contradiction.

First note that it can not intersect p in an arrow η̃ ′l for l ≥ 2, as this would

contradict the minimality condition above. Suppose it intersects in an arrow η̃ ′l for

l < 1. Without loss of generality assume there are no other intersections of η̃ ′ with

the boundary between η̃′1 and η̃′l. Then since η̃′ doesn’t intersect itself, the path along

the boundary from hη̃′1 to tη̃′l followed by the path along η̃′ from tη̃′l to hη̃′1 is a simple

closed path. However this intersects η̃ in the single arrow η̃1 = η̃′0, which contradicts

Lemma 5.2.2.
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Corollary 5.2.4. A zig-zag flow does not intersect its black (or white) boundary flow.

5.3 Right and left hand sides

Intuitively, one can see that since zig-zag flows do not intersect themselves in a geo-

metrically consistent dimer model, any given zig-zag flow η̃ splits the universal cover of

the quiver into two pieces. We formalise this idea by defining an equivalence relation

on the vertices as follows.

Lemma 5.3.1. There is an equivalence relation on Q̃0, where i, j ∈ Q̃0 are equivalent

if and only if there exists a (possibly unoriented) finite path from i to j in Q̃ which

doesn’t intersect η̃ in any arrows. There are exactly two equivalence classes.

Proof. It is trivial to check that the equivalence relation is well defined. To prove that

there are two equivalence classes we consider the following sets of vertices

R(η̃) := {v ∈ Q̃0 | v = ha where a is a zig of η̃}

L(η̃) := {v ∈ Q̃0 | v = ta where a is a zig of η̃}

The black and white boundary flows of η̃ don’t intersect η̃ in an arrow by Corollary 5.2.4.

We note that the black (white) flow is a path which passes through all the vertices of

L(η̃) (respectively R(η̃)). Thus all the vertices in L(η̃) (respectively R(η̃)) lie in a single

equivalence class. We show that these two classes are distinct.

If they were not, then for any zig a of η̃, there would exist a (possibly unoriented)

finite path in Q̃ from ha ∈ R(η̃) to ta ∈ L(η̃) which doesn’t intersect η̃ in an arrow.

By removing the part of the path between any repeated arrows (including the arrows

themselves if they occur with opposite orientations), we may assume the path is simple.

We prove that such a path does not exist. If p is any finite simple path from ha to

ta which doesn’t intersect η̃, then in particular it doesn’t contain a, so ap is a finite

simple closed path. Then as η̃ intersects this in the arrow a, by Lemma 5.2.2 it must

intersect in another distinct arrow. Thus η̃ must intersect p in an arrow which is a

contradiction.

Finally we prove that the equivalence classes containing L(η̃) and R(η̃) are the only

two equivalence classes. Let v ∈ Q̃0 be any vertex. The quiver Q̃ is strongly connected

so, if a is some zig in η̃, there exists a finite path from v to ha. Either the path doesn’t

intersect η̃ in an arrow, and we are done, or it does. Let b be the first arrow in the
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intersection. Then by construction the path from v to tb doesn’t intersect η̃ and tb is

obviously in L(η̃) or R(η̃).

Definition 5.3.2. We say a vertex v ∈ Q̃0 is on the left (right) of a zig-zag flow η̃ if

it is in the same equivalence class as an element of L(η̃) (respectively R(η̃)) under the

equivalence relation defined above.

Corollary 5.3.3. Any path which passes from one side of a zig-zag flow to the other

side, must intersect the flow in an arrow.

Remark 5.3.4. We note here that the above definition is consistent with the usual

understanding of right and left, however it also gives a well defined notion of right or

left to vertices which actually lie on the zig-zag flow itself. We recall that the lift spine

of the corresponding train track (see the end of Section 3.2) to the universal cover of

the quad graph is a periodic path which doesn’t pass through any quiver vertices. This

splits Q̃0 into the same two classes.

5.4 Zig-zag fans

We have seen that if a zig-zag flow intersects the boundary of a face, then it does so in

a single zig-zag pair. We now consider the collection of zig-zag flows which intersect the

boundary of a given face and construct fans in the integer homology lattice generated

by the classes of these flows. We observe that these fans encode the information about

the intersections of zig-zag flows which occur around the boundary of the face.

If f is some face of Q̃, we define:

X (f) = {η̃ | η̃ intersects the boundary of f}.

For any zig-zag flow η̃, recall (Remark 3.3.8) that [η] is a non-zero primitive homology

class in the integer homology lattice H1(Q). We consider the collection of rays in H1(Q)

generated by the classes [η] where η̃ ∈ X (f).

Lemma 5.4.1. Given a ray γ generated by [η] where η̃ ∈ X (f), there exists η̃ ′ ∈ X (f)

such that the ray generated by [η′] is at an angle less than π in an anti-clockwise

direction from γ.

Proof. Since η̃ ∈ X (f), by Lemma 5.2.3 it intersects the boundary of f in a zig and a

zag. The zag of η̃ is a zig of a uniquely defined zig-zag flow η̃ ′ ∈ X (f) which crosses η̃

from right to left. This intersection contributes +1 to the intersection number [η]∧ [η ′],

and therefore recalling Remark 3.3.9 this implies that intersection number is strictly
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positive. Therefore the ray generated by [η ′] is at an angle less than π in an anti-

clockwise direction from γ.

Definition 5.4.2. The local zig-zag fan ξ(f) at the face f of Q̃, is the complete fan

of strongly convex rational polyhedral cones in H1(Q) whose rays are generated by the

homology classes corresponding to zig-zag flows in X (f).

Since they are primitive, we note that if the homology classes corresponding to η̃

and η̃′ are linearly dependent, then [η] = ±[η ′]. We say η̃ and η̃′ are parallel if [η] = [η′],

and anti-parallel if [η] = −[η′].

Lemma 5.4.3. If η̃ and η̃′ are distinct parallel zig-zag flows, then at most one of them

intersects the boundary of any given face.

Proof. Without loss of generality let f be a black face. Suppose η̃, η̃ ′ ∈ X (f) are

parallel. Since they don’t intersect by Proposition 3.3.7, all vertices of η̃ lie on the

same side of η̃′ and vice-versa. Both η̃ and η̃′ intersect the boundary of f in a zig-zag

pair, and, by geometric consistency, these pairs of arrows are distinct. By considering

paths around the boundary of f we observe that all vertices of η̃ lie on the left of η̃ ′

and all vertices of η̃′ lie on the left of η̃.

η̃η̃′

zig

zagzig

zag

�

�

�

�

�

�

�

However, choosing any other zig-zag flow which is not parallel to η̃, this intersects each

of η̃ and η̃′ in precisely one arrow. Recalling Remark 3.3.9, we see that these arrows are

either both zigs of their respective flows, or both zags. Therefore, by considering the

path along the zig-zag flow between these two arrows, we see that if all vertices of η̃ lie

on the left of η̃′ then all vertices of η̃′ lie on the right of η̃. This is a contradiction.

Remark 5.4.4. We have just shown that for every ray γ of ξ(f), there is a unique

representative zig-zag flow which intersects the boundary of f , i.e. a unique flow which
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intersects the boundary of f and whose corresponding homology class is the generator

of γ. Together with Lemma 5.2.3 this also implies that if a zig-zag path intersects a

face then it does so in a zig and a zag.

Proposition 5.4.5. Two rays γ+ and γ− span a two dimensional cone in ξ(f) if and

only if they have representative zig-zag flows η̃+ and η̃− which intersect each other in

the boundary of f .

Proof. Without loss of generality we assume that f is black, as the general result follows

by symmetry. Suppose zig-zag flows η̃+ and η̃− intersect in arrow a contained in the

boundary of f . Without loss of generality we assume that η̃+ crosses η̃− from right to

left. As in the proof of Lemma 5.4.1 we see that corresponding ray γ− is at an angle

less than π in a clockwise direction from γ+. We prove that γ+ and γ− span a two

dimensional cone in ξ(f). If they do not, then there is a zig-zag flow η̃ which intersects

the boundary of f in zig-zag pair (η̃0, η̃1) and whose ray in the local zig-zag fan lies

strictly between γ1 and γ2 (so η̃ is not parallel or anti-parallel to η̃+ or η̃−.) Therefore η̃

crosses η̃− from right to left and crosses η̃+ from left to right. Let b be the intersection

of η̃ and η̃− which we note is a zig of η̃.

By considering paths around the boundary of f we see that vertex v := hη̃0 is on

the left of both η̃+ and η̃−. Therefore it must occur in η̃ before η̃ intersects η̃2 but after

η̃ intersects η̃1.

η̃−

η̃−

a

b

η̃+

η̃+

η̃

η̃

η̃1

η̃0

v
�

�

�

�

�

�

�

�

� 	
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In particular η̃ crosses η̃− before it crosses η̃+ and the vertex hb must be on the
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left of η̃+. Since η̃− crosses η̃+ from left to right, we see that b occurs before a in

η̃−. The path from hb to ta along η̃1 doesn’t intersect η̃ (since geometric consistency

implies that b is the unique arrow where they intersect). Therefore ta is on the right

of η̃. However there is a path around the boundary of f from hb1 to ta which doesn’t

intersect η̃. This implies that ta is on the left of η̃. Therefore we have a contradiction

and so γ1 and γ2 generate a two-dimensional cone in ξ(f), where γ1 is the negative ray.

Remark 5.4.6. The previous two lemmas together imply that the zig-zag flows which

intersect the boundary of a face f , intersect it in pairs of arrows in such a way that

the cyclic order of these pairs around the face is (up to orientation) the same as the

cyclic order of the corresponding rays around the local zig-zag fan. In [14] Gulotta

also observes that this is an important property. He calls a dimer model where this

is satisfied at each face ‘properly ordered’ and proves that this happens if and only if

the number of quiver vertices is equal to twice the area of the polygon whose edges

are normal to the directions of the zig-zag paths. He proposes this as an alternative

‘consistency condition’.

Given a two-dimensional cone σ in the local zig-zag fan of some face f , we call the

unique arrow in the boundary of f , which is the intersection of representative zig-zag

flows of the rays of σ, the arrow corresponding to σ.

Definition 5.4.7. The global zig-zag fan Ξ in H1(Q) ⊗Z R, is the fan whose rays are

generated by the homology classes corresponding to all the zig-zag flows on Q̃.

This is a refinement of each of the local zig-zag fans and is therefore a well defined

fan.

5.5 Constructing Some Perfect Matchings

In this section we use the zig-zag fans we have just introduced to construct a particular

collection of perfect matchings that will play a key role in the rest of this thesis. The

construction is a local one in the sense that the restriction of the perfect matching to

the arrows in the boundary of a quiver face is determined by the local zig-zag fan at

that face.

We start by noting that the identity map on H1(Q) is a well defined map of fans

ιf : Ξ→ ξ(f) for each f ∈ Q2. If σ is a two dimensional cone in Ξ, its image in ξ(f) is

contained in a unique two dimensional cone which we shall denote σf .
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The cone σf corresponds to a unique arrow in the boundary of f . We define

Pf (σ) ∈ ZQ1 to be the function which evaluates to 1 on this arrow, and zero on all

other arrows in Q. Finally we define the following function:

P (σ) :=
1

2

∑

f∈Q2

Pf (σ)

Lemma 5.5.1. The function P (σ) is a perfect matching.

Proof. First we show that P (σ) ∈ NQ1 . Any arrow a is in the boundary of precisely

two faces, one black and one white, which we denote fb and fw respectively. Since

Pf (σ) is zero on all arrows which don’t lie in the boundary of f , we observe that

P (σ)(a) = 1
2 (Pfb

(σ)(a) + Pfw
(σ)(a)). If η̃+ and η̃− are the zig-zag flows containing

a then, by Lemma 5.4.5, the cones σb in ξ(fb) and σw in ξ(fw) dual to a, are both

spanned by the rays generated by [η+] and [η−]. Therefore the inverse image of σb

and σw under the respective maps of fans is the same collection of cones in the global

zig-zag fan Ξ. Thus for any cone σ in Ξ, the functions Pfb
(σ) and Pfw

(σ) evaluate to

the same value on a. We conclude that

P (σ) =
1

2

∑

f∈Q2

Pf (σ) =
∑

f∈Q2
f is black

Pf (σ)

and evaluates to zero or one on every arrow in Q. By construction Pf (σ) is non-zero

on a single arrow in the boundary of f , and we have just seen that P (σ) is non-zero

on an arrow in the boundary of f if and only if Pf (σ) is non-zero. Therefore P (σ)

evaluates to one on a single arrow in the boundary of each face. Recalling that the

coboundary map d simply sums any function of the edges around each face we see that

d(P (σ)) = 1.

We have produced an identified perfect matching P (σ) ∈ NQ1 for each two dimen-

sional cone σ in the global zig-zag fan Ξ. We now consider some properties of perfect

matchings of this form.

Definition 5.5.2. If η is a zig-zag path, we define Zig(η) ∈ ZQ1 (respectively Zag(η) ∈

ZQ1) to be the function which evaluates to one on all zigs (zags) of η and zero on all

other arrows. Similarly if γ is a ray in the global zig-zag fan Ξ, then Zig(γ) ∈ ZQ1

(respectively Zag(γ) ∈ ZQ1) is the function which evaluates to one on all zigs (zags) of

every representative zig-zag path of γ, and is zero on all other arrows.
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Remark 5.5.3. We see that

Zig(γ) =
∑

〈[η]〉=γ

Zig(η).

The functions defined in Definition 5.5.2, like perfect matchings, are functions which

evaluate to one on each arrow in their support. Therefore they can be thought of

as sets of arrows. We now show that P (σ) is non-zero on the zigs or zags of certain

zig-zag paths, in other words that these zigs or zags are contained in the set of arrows

on which P (σ) is supported. In the language of functions, this is equivalent to the

following lemma.

Lemma 5.5.4. Suppose σ is a cone in the global zig-zag fan Ξ spanned by rays γ+ and

γ− (see diagram below). Then the functions P (σ)− Zig(γ+) and P (σ)−Zag(γ−) are

elements of NQ1.

σ

γ+ γ−

�

Proof. Let f ∈ Q2 be any face. If γ+ is not a ray in the local zig-zag fan ξ(f), then by

definition, no representative zig-zag flow intersects the boundary of f . Thus Zig(γ+)

is zero on all the arrows in the boundary, and so P (σ) − Zig(γ+) is non-negative on

these arrows.

If γ+ is a ray in the local zig-zag fan ξ(f), we consider the cone τ in ξ(f) which is

generated by γ+ and the next ray around the fan in a clockwise direction (this is γ−

if and only if γ− is a ray in ξ(f)). Since σ in the global zig-zag fan is generated by γ+

and γ− which is the next ray around in the clockwise direction, the image of σ under

the map of fans lies in τ . Then by definition Pf (σ), and therefore P (σ), evaluates

to 1 on the arrow in the boundary of f corresponding to the cone τ . This arrow is

the intersection of the two zig-zag flows in X (f) corresponding the rays of τ . Since

the anti-clockwise ray is γ+, this arrow is the unique (by Lemmas 5.2.3 and 5.4.3) zig

of the representative of γ+ in the boundary of f . Therefore P (σ) − Zig(γ+) is non-

negative on all the arrows in the boundary of f . The statement holds on the arrows

in the boundary of all faces, and therefore in general. The result follows similarly for

P (σ)− Zag(η̃−).
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Corollary 5.5.5. Suppose σ is a cone in Ξ spanned by rays γ+ and γ−. For any

representative zig-zag paths η+ of γ+ and η− of γ−, the functions P (σ)−Zig(η+) and

P (σ)− Zag(η−) are elements of NQ1.

Proof. This follows from the Lemma 5.5.4 together with Remark 5.5.3.

5.6 The Extremal Perfect Matchings

We show that the perfect matchings we have just constructed are precisely the extremal

perfect matchings of the dimer model (Definition 2.3.7).

We start by identifying an element of M ef
o ⊂ M+

o associated to every ray γ of Ξ.

We will prove that for each cone σ, the perfect matching P (σ) evaluates to zero on two

such elements which are linearly independent. Therefore the image of P (σ) in No lies

in a one dimensional facet of the cone N+
o . In other words it is an extremal perfect

matching.

Given a zig-zag flow, we defined its black and white boundary flows in Section 5.1.

Recall that the image of a single period of a boundary path is a cycle in NQ1 .

Definition 5.6.1. The system of boundary paths S(γ) ∈ NQ1 of a ray γ of Ξ, is the

sum of all the cycles corresponding to the boundary paths (black and white) of every

representative zig-zag path of γ.

Since S(γ) is the sum of cycles it is closed and, as it is non-negative, it defines an

element [S(γ)]M ∈ M
ef
o ⊂ M+

o . If σ is a two dimensional cone in Ξ spanned by rays

γ+ and γ−, then the classes [S(γ)]M and [S(γ)]M are linearly independent: if they

were not, then they would have linearly dependent homology classes (see the exact

sequence (3.5.3)), however, by Lemma 5.1.1 we know that these classes are −k+[η+]

and −k−[η−] which are linearly independent, where k± > 0 is the number of boundary

paths of γ±, and η± is a representative zig-zag path of γ±.

Proposition 5.6.2. Suppose σ is a cone in Ξ spanned by rays γ+ and γ−. The perfect

matching P (σ) ∈ NQ1 is the unique perfect matching which evaluates to zero on the

two systems of boundary paths S(γ+) and S(γ−).

Proof. First we prove that P (σ) evaluates to zero on the two systems of boundary

paths. Let η be a representative zig-zag path of γ+ or γ−. Since P (σ) is a perfect

matching we know that it is non-zero on precisely one arrow in the boundary of every

face. By construction, the boundary path of a zig-zag path was pieced together from

paths back around faces which have a zig-zag or zag-zig pair in the boundary. By

Corollary 5.5.5, P (σ) is non-zero on either the zig or zag of η in the boundary of each
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of these faces and therefore it is zero on all the arrows in the boundary path. This

holds for all boundary paths of representative zig-zag paths of γ+ or γ−.

Now we prove that P (σ) is the unique perfect matching which evaluates to zero on

the two systems of boundary paths. Let η̃+ and η̃− be representative zig-zag flows of

γ+ and γ− respectively. Since they are not parallel or anti-parallel, the black boundary

flows of η̃+ and η̃− have at least one vertex in common. Let v00 ∈ Q̃0 be such a vertex

and let v be its image in Q0.

Let the finite path p+
0 be the lift of a single period of the black boundary flow of

η+ to the universal cover, starting at v00 and ending at vertex v10. Then let p−1 be the

lift of a single period of the black boundary flow of η− starting at v10. Similarly let p−0
be the lift of a period of the black boundary flow of η− starting at v00 and ending at

v01, and p+
1 be the lift of a period of the black boundary flow of η+ starting at v01.

The paths p1 := p+
0 p

−
1 and p2 := p−0 p

+
1 have the same class [p1]M = [p2]M in M .

This follows trivially as p±0 and p±1 project down to the same paths in Q. This implies

that both paths end at the same vertex; they have the same homology class, and start

at the same vertex. Also recalling Section 3.5 we see that they are F-term equivalent.

Furthermore, since p±0 and p±1 are shifts of each other by deck transformations, i.e.

by elements in the period lattice, we see that p1p
−1
2 forms the boundary of a region

which certainly contains at least one fundamental domain of Q̃. Therefore, for every

face in Q, there is a lift f in Q̃ such that the winding number, Windf (p1p
−1
2 ) 6= 0.

Let q0 = p1, q1, . . . , qk = p2 be a sequence of paths such that qi and qi+1 differ by a

single F -term relation for i = 0, . . . , k − 1. Fix a face in Q, and let f be the lift to Q̃

satisfying the winding number condition above. Then since

Windf (p1p
−1
2 ) 6= 0 = Windf (p2p

−1
2 )

there exists i ∈ {1, . . . , k − 1} such that Windf (qip
−1
2 ) 6= Windf (qi+1p

−1
2 ). As they

differ by a single F -term relation we can write qi = α1ε1α2 and qi+1 = α1ε2α2, where

ε1a and ε2a are the boundaries of two faces fb, fw ∈ Q̃2 (one black, one white) which

meet along the arrow a. Using properties of winding numbers,

Windf (ε1a)−Windf (ε2a) = Windf (qip
−1
2 )−Windf (qi+1p

−1
2 ) 6= 0

The winding number around f of the boundary of a face, is non-zero if and only if

the face is f . Therefore either f = fb or f = fw so all the arrows in the boundary of

f except a, lie in either qi or qi+1. Let n ∈ N+ and suppose n evaluates to zero on

the element of M+ corresponding to the path p1. Since they are F-term equivalent,

[p1]M = [qi]M = [qi+1]M , so n evaluates to zero on [qi]M and [qi+1]M . Using the
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positivity, this implies that n evaluates to zero on every arrow in the image in Q of

both qi and qi+1. In particular it evaluates to zero on all the arrows in the boundary

of the image of f except a. This argument holds for any face, and thus n is non-zero

on a unique arrow in the boundary of each face in Q.

Suppose there exist two perfect matchings π1 and π2 which evaluate to zero on the

both systems of boundary flows. By construction π1 + π2 ∈ N
+ is zero on the path p1

and therefore by the above argument, it is non-zero on a unique arrow in the boundary

of each face. Since perfect matchings are degree 1 elements of N+ this forces π1 and

π2 to evaluate to the same value on all the arrows in the boundary of each face. We

conclude that π1 = π2 and we have proved uniqueness.

We have just proved that for each σ in the global zig-zag fan, the image of the

perfect matching P (σ) in N+
o evaluates to zero on two linearly independent classes in

M+
o . Thus the perfect matchings P (σ), map to some set of extremal vertices of the

degree 1 polygon in N+
o . Furthermore these are the unique perfect matchings to map

to any of these vertices. We now prove that every extremal vertex is the image of P (σ)

for some σ.

Recall from Section 2.3 that the cone N+
o is the intersection of No with the real

cone (N+)R generated by the image of N+ in No ⊗Z R. We show that the images of

P (σ) in N+
o , for all two dimensional cones σ of Ξ, generate (N+

o )R. Therefore perfect

matchings of the form P (σ) map to generators of all the extremal rays of N+
o , i.e. to

all the extremal vertices of the degree 1 polygon in N+
o . Together with the uniqueness

property we saw above, this shows that the perfect matchings of the form P (σ) are

precisely the extremal perfect matchings.

Lemma 5.6.3. The real cone (N+
o )R is generated over R+ by the images in N+

o of

P (σ) for all two dimensional cones σ of Ξ.

Proof. Let CN be the real cone in No⊗Z R generated by the images of P (σ) for all two

dimensional cones σ of Ξ, and let CM be the real cone in Mo⊗Z R generated by [S(γ)]M

for all rays γ of Ξ. We claim that C∨M = CN . Since [P (σ)] ∈ N+
o , every element of

M+
o evaluates to a non-negative number on this class. In particular [P (σ)] ∈ C∨M for

every two dimensional cone σ in Ξ, so CN ⊆ C
∨
M . For the converse, we restrict to the

degree 1 plane in No. The functions [S(γ)]M restrict to affine linear functions on this

plane which evaluate to zero on neighbouring points [P (σ+)] and [P (σ−)], where σ± are

the two, 2-dimensional cones in Ξ containing ray γ, and are non-negative on all other

points [P (σ)]. These functions define a collection of half planes whose intersection is

the convex hull of the points 1. Thus the cone over this intersection, namely C∨M equals

1This ‘obvious’ fact is the justification for the ‘gift wrapping algorithm’ in two dimensions [21].
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the cone over the convex hull, namely CN .

Finally, using the fact that CM ⊆ (M+
o )R where (M+

o )R is the real cone generated

by M+
o ,

(N+
o )R = (M+

o )∨R ⊆ C
∨
M = CN

since we also know that CN ⊆ (N+
o )R, the result follows.

Remark 5.6.4. Thus, the real cone (M+
o )R = (N+

o )∨R is dual to the real cone in No⊗ZR

generated by the images of perfect matchings of the form P (σ) for σ of Ξ. We have

also shown that the real cone (N+
o )R is dual to the real cone in Mo ⊗Z R generated by

[S(γ)]M for all rays γ of Ξ, so (M+
o )R is generated by the classes [S(γ)]M .

5.7 The External Perfect Matchings

We next see that given an extremal perfect matching constructed in the previous sec-

tion, we can alter it along a zig-zag path in such a way that we still have a perfect

matching. Furthermore the resulting perfect matchings still evaluate to zero on one of

the two systems of boundary flows and are thus external.

Lemma 5.7.1. If σ is a cone in the global zig-zag fan spanned by the rays γ+ and γ−,

and η+ and η− are representative zig-zag paths, then P (σ) − Zig(η+) + Zag(η+) and

P (σ)− Zag(η−) + Zig(η−) are perfect matchings.

Proof. By Lemma 5.5.5 we know P (σ)−Zig(η+) and P (σ)−Zag(η−) are elements of

NQ1 . Given any face f ∈ Q2, its boundary either does not intersect η+ or it intersects it

in a zig and a zag (see Lemma 5.2.3 and Lemma 5.4.3). Recalling that the coboundary

map adds up the function on the edges in the boundary of each face, we see that in

either case d(Zig(η+)− Zag(η+)) = 0. Consequently we see that:

d(P (σ) − Zig(η+) + Zag(η+)) = d(P (σ)) = 1

so P (σ)−Zig(η̃+) +Zag(η̃+) is a perfect matching. Similarly we can see that P (σ)−

Zag(η̃−) + Zig(η̃−) is a perfect matching.

We will refer to such perfect matchings as those obtained by ‘resonating’ P (σ) along

η+ and η− respectively. By resonating along all representative zig-zag paths of a ray,

we can go from one extremal perfect matching to another.

Lemma 5.7.2. Let γ be any ray in the global zig-zag fan Ξ, and let σ+ and σ− be the

two 2-dimensional cones containing γ (see diagram below). Then P (σ−) − Zig(γ) =

P (σ+)− Zag(γ).
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γ+ γ−

σ+ σ−

γ

�

Proof. Let f ∈ Q2 be any face. There are two cases which we consider separately. In

the first case γ is a ray in the local zig-zag fan ξ(f), i.e. there exists a representative

zig-zag flow of γ intersecting the boundary of f . This intersection consists of a zig and

a zag and therefore d(Zig(γ))f = d(Zag(γ))f = 1. Since P (σ−) and P (σ+) are perfect

matchings, so are of degree 1, we note that

d(P (σ−)− Zig(γ))f = d(P (σ+)− Zag(γ))f = 0

and together with the fact that P (σ−) − Zig(γ), P (σ+) − Zag(γ) ∈ NQ1 , this implies

that P (σ−)−Zig(γ) and P (σ+)−Zag(γ) are both zero on all arrows in the boundary

of f .

In the second case, γ is not a ray in the local zig-zag fan ξ(f). Then no representative

zig-zag flow of γ intersects the boundary of f and so Zig(γ) and Zag(γ) both evaluate to

zero on all arrows in the boundary. Furthermore, in this case we observe that the images

of σ+ and σ− lie in the same cone in the local zig-zag fan ξ(f), so Pf (σ
−) = Pf (σ

+).

Thus P (σ−)−Zig(γ) and P (σ+)−Zag(γ) are equal on all arrows in the boundary of

f . The functions are equal on the boundary of all faces, and therefore are equal.

Corollary 5.7.3. The perfect matching P (σ−) = P (σ+)−Zag(γ)+Zig(γ), i.e. P (σ−)

can be obtained from P (σ+) by ‘resonating’ along all representative zig-zag flows of γ.

We have seen that given an extremal perfect matching we can resonate along certain

zig-zag paths. We now show that it is always possible to resonate along zig-zag paths

in an external perfect matching.

Lemma 5.7.4. Let π be any perfect matching which satisfies 〈π, S(γ)〉 = 0 and let η be

any representative zig-zag flow of γ. Then either π−Zig(η) ∈ NQ1 or π−Zag(η) ∈ NQ1.

Proof. Using the fact that π ∈ NQ1 and S(γ) ∈ NQ1, we observe that 〈π, S(γ)〉 = 0 if

and only if 〈π, a〉 = 0 for every arrow a in the black or white boundary path of any

representative of γ. Let fk be the black or white face with ηk and ηk+1 in its boundary.
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By construction, ever arrow in the boundary of this face except ηk and ηk+1, is in the

boundary path of η. Therefore, the perfect matching π (which is of degree 1) must

evaluate to 1 on either ηk or ηk+1, and to zero on all the other arrows in the boundary

of fk. Because this holds for each k ∈ Z, we note that this forces π to evaluate to 1

either on all the zigs, or all the zags of η̃.

We now show that every external perfect matching, i.e. every perfect matching

which evaluates to zero on some boundary flow can be obtained by resonating the

extremal perfect matchings.

Proposition 5.7.5. Every perfect matching π which satisfies 〈π, S(γ)〉 = 0 is of the

form:

π = P (σ+)−
∑

η∈Z

(Zag(η) − Zig(η))

where Z is some set of zig-zag paths which are representatives of γ.

Proof. Let π be such a perfect matching. Let Z be the set of representative zig-zag

paths η of γ for which π−Zig(η) ∈ NQ1 . We note that π′ := π+
∑

η∈Z(Zag(η)−Zig(η))

is a perfect matching which satisfies 〈π ′, S(γ)〉 = 0 and by Lemma 5.7.4 we see that

π′ − Zag(γ) ∈ NQ1 . Since

π = π′ −
∑

η∈Z

(Zag(η) − Zig(η))

it is sufficient to prove that any perfect matching which satisfies, 〈π ′, S(γ)〉 = 0 and π′−

Zag(γ) ∈ NQ1 is equal to P (σ+). We will be show that if π′ is such a perfect matching,

then 〈π′, S(γ+)〉 = 0. The result follows using the uniqueness part of Proposition 5.6.2.

Consider the elements [π′−P (σ+)] and [P (σ−)−P (σ+)] 6= 0 in H1(Q), embedded

as the rank 2 sublattice of No consisting of degree zero elements (see equation 2.3.2).

We note that the class [S(γ)]M ∈ Mo restricts to a linear map on H1(Q) which has

[π′ − P (σ+)] and [P (σ−) − P (σ+)] in its kernel. The kernel is rank 1, so there exists

k ∈ Q such that

[π′ − P (σ+)] = k[P (σ−)− P (σ+)]

We observe that k ≥ 0 since 〈P (σ−), S(γ+)〉 > 0 and

0 ≤ 〈π′, S(γ+)〉 = 〈[π′ − P (σ+)], [S(γ+)]M 〉

= k〈[P (σ−)− P (σ+)], [S(γ+)]M 〉

= k〈P (σ−), S(γ+)〉
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Then using Lemma 5.7.2 and the fact that π ′ − Zag(γ) ∈ NQ1 we see that

0 ≥ −k〈P (σ+), S(γ−)〉 = k〈[P (σ−)− P (σ+)], [S(γ−)]M 〉

= 〈[π′ − P (σ+)], [S(γ−)]M 〉

= 〈[π′ − P (σ−)− Zag(γ) + Zig(γ)], [S(γ−)]M 〉

= 〈π′ − Zag(γ) + Zig(γ), S(γ−)〉 ≥ 0

so k = 0 and thus 〈π′, S(γ+)〉 = 0.

Finally we see that resonating a perfect matching along different parallel zig-zag

paths changes the class in No in the same way.

Lemma 5.7.6. Let η, η′ be representative zig-zag paths of γ. Then Zag(η)−Zig(η) ∈ N

and Zag(η′)− Zig(η′) ∈ N project to the same class in No.

Proof. First note that if η is any zig-zag path, then Zag(η) − Zig(η) ∈ N and has

degree zero: given any face, η̃ either does not intersect the boundary in which case the

function Zag(η) − Zig(η) is non-zero on all arrows in the boundary, or it intersects

in a pair of arrows one of which is a zig, and one a zag. In either case, the sum of

Zag(η)−Zig(η) on the arrows in the boundary is zero. Thus Zag(η)−Zig(η) defines

a class in H1(Q) considered as the degree zero sublattice of No.

Let η, η′ be distinct representative zig-zag paths of γ. If η ′′ is any zig-zag path, then

we observe that evaluating Zag(η)−Zig(η) on η ′′ counts the number of intersections of

η and η′′, with signs depending on whether the intersecting arrow is a zig or zag of η ′′.

Recalling Remark 3.3.6 we see that this is precisely the intersection number [η ′′] ∧ [η].

Therefore, since [η′] = [η], the functions Zag(η)−Zig(η) and Zag(η ′)−Zig(η′) evaluate

to the same value on each zig-zag path. The classes of zig-zag paths span a full sublattice

of H1(Q), and therefore [Zag(η) − Zig(η)] = [Zag(η ′) − Zig(η′)] in H1(Q) considered

as the degree zero sublattice of No.

Therefore the multiplicities of the external perfect matchings along the edge dual

to [S(γ)]M are binomial coefficients
(
r
n

)
given by choosing n zig-zag paths to resonate

out of r, the total number of representative zig-zag paths of γ.

In [14] Gulotta describes the extremal and external perfect matchings for a ‘properly

ordered’ dimer model in essentially the same way that we do. He also calculates their

multiplicities. Recall from Remark 5.4.6 that a geometrically consistent dimer model

is properly ordered. In [29] Stienstra also produces a correspondence between cones in
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a fan and perfect matchings. At first sight this looks different to the construction in

Section 5.5 but it is presumably closely related.

Remark 5.7.7. I conjecture that many of the results in this chapter can be proved in

a similar way assuming only the weaker marginal geometric consistency.
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Chapter 6

Geometric consistency implies

algebraic consistency

In this chapter we prove the following main result.

Theorem 6.1. If a dimer model on a torus is geometrically consistent, then it is

algebraically consistent.

Our proof will rely on the explicit description of extremal perfect matchings we gave

in the previous chapter, together with the knowledge of their values on the boundary

flows of certain zig-zag paths. We will actually prove the following proposition which

we shall see in Section 6.1 implies the theorem.

Proposition 6.2. For all vertices i, j ∈ Q̃0 in the universal cover there exists a path

from i to j on which some extremal perfect matching evaluates to zero.

Thus we see that the extremal perfect matchings play a key role in the theory.

6.1 Proving algebraic consistency

Recall that a dimer model is algebraically consistent if the algebra map h : A −→ C[M+]

(4.4.1) from the path algebra of the quiver modulo F-term relations to the toric algebra,

is an isomorphism. We noted in Remark 4.4.3 that for a geometrically consistent dimer

model injectivity is equivalent to the statement of Theorem 3.5.2. It therefore remains

for us to prove that the map h is surjective.

Lemma 6.1.1. If there exists a path on the universal cover Q̃ from ĩ to j̃, which is zero

on a perfect matching, for all ĩ, j̃ ∈ Q̃0, then the map h : A −→ C[M+] is surjective.
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Proof. To prove surjectivity, we need to show that for i, j ∈ Q0 and any element

m ∈M+
ij there exists a representative path, that is, a path p from i to j in Q such that

[p]M = m.

First we prove that it is sufficient to show that there exists a representative path for

elements of M+
ij which lie on the boundary of the cone M+. Recall that the cone M+

is the dual cone of the cone N+ which is integrally generated by the perfect matchings.

Therefore the elements in the boundary of M+, are precisely those which evaluate to

zero on some perfect matching.

Suppose that there exists a representative path for all elements m ∈M+
ij which lie

on the boundary of M+. Recall that the coboundary map d : ZQ1 −→ ZQ2 sums the

function on the edges around each face and d(π) = 1 for any perfect matching π. Thus

if p is a path going once around the boundary of any quiver face f ∈ Q2 (starting at

any vertex of f) and π is a perfect matching, then 〈π, p〉 = 1. Define � := [p]M to be

the image of p in M which we note is independent of the choice of p since the 2-torus

is connected. Now let i, j ∈ Q0 and consider any element m ∈M+
ij . If we evaluate any

perfect matching π on m by definition we get an non-negative integer. Let

n := min{〈π,m〉 | π is a perfect matching }

Then for each perfect matching π, we observe that 〈π, (m−n�)〉 = 〈π,m〉−n ≥ 0 and

by construction there exists at least one perfect matching where the equality holds. In

other words (m − n�) lies in the boundary of M+. Then by assumption, there is a

representative path q of m− n�, from i to j in Q.

Finally we construct a representative path for m. Let f be any face which has j

as a vertex, and let p(n) be the path which starts at j and goes n times around the

boundary of f . Then the path qp(n) from i to j is a well defined path, and

[qp(n)]M = [q]M + n[p]M = (m− n�) + n� = m

Now we prove that if there exists a path on the universal cover Q̃ from ĩ to j̃, which

is zero on a perfect matching, for all ĩ, j̃ ∈ Q̃0, then there exists a representative path

for all elements m ∈M+
ij which lie on the boundary of M+.

We start by fixing i, j ∈ Q0, and let m ∈ M+
ij be an element in the boundary of

M+. Then some perfect matching πm evaluates to zero on m. Recall the short exact

sequence (2.3.2)

0 −→ Z −→Mo
H
−→ H1(T ; Z) −→ 0

where the kernel of H is spanned by the class � = ∂[f ]M for any face f ∈ Q2. Fix
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some path p from j̃ ∈ Q̃0 to ĩ ∈ Q̃0 where ĩ and j̃ project down to i and j respectively.

Since there is a path from ĩ to every lift of j in the universal cover, there exists a path

q which is zero on some perfect matching, such that pq projects down to a closed path

with any given homology class. In particular, there exists a path q which is zero on

some perfect matching πp and has

H([p]M + [q]M ) = H([pq]M ) = H([p]M +m)

Therefore [q]M − m ∈ Mo is in the kernel of H, and so [q]M − m = k� in Mo, for

some k ∈ Z. Since every perfect matching evaluates to 1 on �, applying πm and πp to

[q]M −m, we see that

−〈πq,m〉 = k = 〈πm, [q]M 〉

Finally, since m and [q]M are both in M+, we see that k = 0 and so [q]M = m in Mo.

Using this lemma we see that Proposition 6.2 implies Theorem 6.1. We shall prove

Proposition 6.2 in Section 6.3.

6.2 Flows which pass between two vertices

We fix two vertices i, j of the universal cover of the quiver Q̃. In this section we study

the zig-zag flows which pass between i and j, i.e. they have i and j on opposite sides.

These are important as they are the flows that intersect every path from i to j. We

will see that the classes of these flows generate two convex cones in H1(Q)⊗Z R. These

will be used in proof of Proposition 6.2 in the next section.

We define the two sets of zig-zag flows which pass between i and j as follows:

X+ := {η̃ | η̃ has i on the left and j on the right}

X− := {η̃ | η̃ has i on the right and j on the left}

First we show that there always exist flows which pass between distinct vertices:

Lemma 6.2.1. If i, j ∈ Q̃0 are distinct vertices then X+ and X− are non-empty.

Proof. We consider the collection of black faces which have i as a vertex. We are

interested in zig-zag flows which intersect the boundary of one or more of these faces

and have i on the left. Any zig-zag pair in the boundary of one of these faces defines

such a flow if and only if i is not the head of the zig. Let p be any path from j to a

vertex v0 contained in one of these flows, say η̃. We may assume that v0 is the first
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such vertex in p, so p doesn’t intersect any of the flows. Since η̃ intersects the boundary

of one of the black faces, there is a path p′ along η̃ from v0 to v1, a vertex of one of

the black faces. We may also assume that this is the first such vertex along p′, so p′

does not intersect the boundary of any of the black faces in an arrow; this implies that

v1 6= i. We note that v1 is the head of a zig η̃′0 of a zig-zag pair in the boundary of one

of the black faces. Since v1 6= i this defines a zig-zag flow η̃′ which has i on the left.

η̃

η̃

v0

i

v1 j

η̃′

η̃′

p
�

�

��

�

�

�

�

�

	




�

By construction, the flows η̃′ and η̃ intersect in either η̃′0 or η̃′1. Since this intersection

is unique, η̃′ doesn’t intersect p′ in an arrow. Since η̃′ doesn’t intersect p, the path pp′

from j to the head of a zig of η̃′ doesn’t intersect η̃′. Therefore j is on the right of

η̃′.

Lemma 6.2.2. If η̃ and η̃′ are parallel zig-zag flows which pass between i and j then

they are both in X+ or both in X−. If η̃ and η̃′ are anti-parallel zig-zag flows which pass

between i and j then one is in X+ and the other is in X−.

Proof. We prove the parallel case, the anti-parallel case follows using a similar argu-

ment. Without loss of generality, suppose that η̃ ∈ X+. Then there is a path from i

to a vertex v of η̃ which does not intersect η̃. In particular all vertices of this path are

also on the left of η̃. If η̃′ is on the right of η̃ then this path does not intersect η̃ ′, and

so i is on the left of η̃′.
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η̃

v

i

η̃′

�

�

Since we assume that η̃′ passes between i and j, we conclude that η̃ ′ ∈ X+. If η̃′ is on

the left of η̃ then a symmetric argument works considering j instead of i.

Consider two zig-zag flows η̃, η̃′ which are in X+. We see by Lemma 6.2.2 that they

are not anti-parallel, and therefore their homology classes [η̃], [η̃ ′] generate a strongly

convex cone in H1(Q)⊗Z R. We now prove that no zig-zag flow in X− has a homology

class which lies in this cone.

Lemma 6.2.3. Let η̃, η̃′ ∈ X+ and denote the rays in H1(Q) ⊗Z R generated by their

respective homology classes by γ and γ ′. Suppose that η̃′′ is a zig-zag path which passes

between i and j. If [η̃′′] ∈ H1(Q) is in the cone spanned by γ and γ ′, then η̃′′ ∈ X+.

Proof. We first note that if [η̃′′] equals [η̃] or [η̃′] then the result follows from Lemma 6.2.2.

Otherwise suppose that γ, γ ′ and γ′′ are all distinct. Without loss of generality we

assume that η̃′ crosses η̃ from right to left. Then since [η̃ ′′] is in the cone spanned by γ

and γ′, we note that η̃′′ crosses η̃ from right to left, and η̃ ′ from left to right. Therefore

η̃′′ intersects η̃ in a zig η̃′′k and intersects η̃′ in a zag η̃′′n. Suppose k < n; the result for

k > n follows by a symmetric argument.
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η̃′′

η̃′′n

η̃′′k

b

p1

j

η̃

η̃
η̃′

η̃′

�

�

�

�

�

�

� �

�

Take any (possibly unoriented) path p1 from j to the head of some zig b of η̃ which

intersects neither η̃ nor η̃′. Such a path exists: since j is on the right of η̃ there is a

path from j to the head of a zig which does not intersect η̃. If this path intersects η̃ ′

we consider instead the path up to but not including the first arrow in the intersection,

followed by part of the boundary flow of η̃ ′.

We observe that p1 does not intersect η̃′′ since all the vertices along it are on the

right of both η̃ and η̃′, while all the vertices of η̃′′ are on the left of either η̃1 or η̃2

(using the fact that k < n, so η̃ crosses η̃1 from right to left before it crosses η̃2 from

left to right). The arrow η̃′′k occurs before b in η̃, since hη̃′′k is on the left and hb is on

the right of η̃′.

Therefore the path p2 along η̃ from hη̃′′k to hb does not contain η̃′′k and so does not

intersect η̃′′. Finally we see that the path p2p
−1
1 is a path from the head of a zig of η̃′′

to j which doesn’t intersect η̃′′, so j is on the right of η̃. If η̃′′ passes between i and j

then it also has i on the left, and we are done.

We now consider the cones generated by homology classes of flows in X+ and X−.

Definition 6.2.4. Let C+ (resp. C−) be the cone in H1(Q) ⊗Z R generated by the

homology classes [η̃] of zig-zag flows η̃ ∈ X+ (respectively η̃ ∈ X−).

We note that C+ and C− are non-empty by Lemma 6.2.1. If any set of rays

corresponding to zig-zag flows η̃ ∈ X+ is not contained in some half-plane, then every
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point in H1(Q) ⊗Z R is in the cone generated by a pair of these rays. However using

Lemma 6.2.3, this would then imply that C− is empty. Therefore C+ is contained in a

some half-plane. Furthermore, by Lemma 6.2.2 we see that C+ can not contain both

rays in the boundary of this half-plane, as they are anti-parallel. Therefore C+ is a

strongly convex cone. Similarly we see that C− is a strongly convex cone. Furthermore

we note that the intersection C+ ∩ C− = {0}. There exists a line ` separating C+ and

C− which must pass through the origin. It can be chosen such that the origin is its

only point of intersection with C+ or C−, or in fact with any ray in the global zig-zag

fan. We choose such an `, and let H+ and H− be the corresponding closed half spaces

containing C+ and C− respectively.

We consider the 2-dimensional cone σ in the global zig-zag fan which intersects

the line `, and lies between the clockwise boundary ray of C+ and the anti-clockwise

boundary ray of C−. This cone σ may intersect C+ or C− in a ray, but is not contained

in either. The diagram below shows the cones C+ and C−, and a possible choice of `

and σ.

`
σ

C+

C−

�

We denote the anti-clockwise and clockwise rays of σ by σ+ and σ− respectively. Using

polar coordinates, any ray may be described by an angle in the range (−π, π], where

` ∩ σ has angle zero. Let α+ ∈ (0, π) and α− ∈ (−π, 0) be the angles of σ+ and σ−

respectively.

6.3 Proof of Proposition 6.2

Finally we come to the proof of Proposition 6.2 which we showed was sufficient in order

to prove Theorem 6.1.
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6.3.1 Overview of proof

Fix two vertices i, j of the universal cover of the quiver Q̃. We will construct a path

from j to i which is zero on the extremal perfect matching P (σ) where σ is the choice

of cone in the global zig-zag fan made at the end of the previous section. First we use

an iterative procedure to construct a different path p, ending at i, from pieces of the

boundary flows of a sequence zig-zag flows. These zig-zag flows all have vertices i and

j on the left, and satisfy a minimality condition which will allow us to prove, using

results from Chapter 5, that P (σ) evaluates to zero on p.

Similarly we construct a path q ending at i, from boundary flows of zig-zag flows

which have i and j on the right. We will see that P (σ) also evaluates to zero on q.

The paths p and q intersect at some vertex v 6= i, and we are interested in the parts

p(≤n) and q(≤k) of p and q respectively which go from v to i. We prove that they are

F-term equivalent and observe that either p(≤n) or q(≤k) pass through j, or the closed

path p(≤n)(q(≤k))−1 has a non-zero winding number around j. In this case, we show

that there exists an F-term equivalent path which passes through j. Since it is F-term

equivalent, P (σ) also evaluates to zero on this path. By taking the piece of this path

from j to i we have the required path.

i j

p

q

�

a

b

c

d

e

f

�

6.3.2 The starting point

In this section we find the first zig-zag flow in our sequence. This must have the property

that its black boundary flow passes through i. Therefore we start by considering the

black faces which have i as a vertex, and look at all the zig-zag flows which intersect

the boundary of these faces.
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Lemma 6.3.1. There exists a zig-zag flow which has the following properties:

1. It has vertices i and j on the left,

2. It intersects the boundary of a black face which has i as a vertex,

3. The corresponding ray in Ξ has angle, measured with respect to `, in the interval

(−π, 0].

Proof. Consider the set of black faces which have i as a vertex, and let Y(i) be the set

of zig-zag flows which intersect the boundary of one or more of these faces and have i

on the left. If η̃ ∈ Y(i) then it intersects the boundary of the black face f in a zig-zag

pair (η̃0, η̃1). Without loss of generality we may assume that tη̃0 6= i; otherwise we can

consider instead the zig-zag pair (η̃−2, η̃−1) which is in the boundary of a black face

which patently has i as a vertex, and tη̃−2 6= i since in a geometrically consistent dimer

model there are no quiver faces with just two arrows.

Arrow η̃0 = η̃′1 is the zag of another zig-zag flow η̃′ which has i on its left. By

Lemma 5.4.5 we see that the rays γ and γ ′ corresponding to η̃ and η̃′ respectively, span

a convex cone in the local zig-zag fan ξ(f) with γ ′ the clockwise ray. Thus for any ray

in Ξ corresponding to a flow in Y(i), there is a ray of such a flow at an angle less than

π in a clockwise direction. In particular, there is a ray γ corresponding to some zig-zag

flow η̃ ∈ Y(i), whose angle is in the interval (−π, 0), so γ lies in H−. We note that η̃

satisfies properties 2 and 3, and claim that it satisfies 1 as well. If η̃ had j on the right

then by definition, γ would be in C+, however the intersection of C+ with H− is just

the origin, which gives a contradiction.

Finally in this section we define for any face f ∈ Q2

Z(f) := {η̃ | η̃ intersects the boundary of f and has i, j on left}

By Lemma 6.3.1 there exists a face f , which has i as a vertex, and where Z(f) is

non-empty. We fix such a face, which we label f (1) and let v(0) := i.

6.3.3 A sequence of faces

We construct a sequence of black faces {f (n)}∞n=1 and vertices {v(n)}∞n=0 with the prop-

erty that for each n ∈ N+, the vertex v(n) is contained in the boundary of f (n) and

f (n+1). We do this inductively as follows:

Suppose we have a black face f (n) with a known vertex v(n−1), for which Z(f (n)) is

non-empty. Looking at the zig-zag flows in Z(f (n)), let η̃(n) be the one with the max-

imum angle θ(n) in the interval (−π, α+]. This zig-zag flow intersects the boundary

of f (n) in a zig-zag pair (η̃
(n)
2n , η̃

(n)
2n+1). We look at the next zig-zag pair (η̃

(n)
2n+2, η̃

(n)
2n+3)
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which lies in the boundary of a black face which we denote by f (n+1). Note that the

vertex v(n) := hη̃
(n)
2n+1 is contained in the boundaries of both f (n) and f (n+1). Further-

more, η̃(n) has i and j on the left and intersects the boundary of f (n+1), so Z(f (n+1))

is non-empty.

η̃(n−1)

η̃(n)

f (n)

f (n+1)v(n)

v(n−1)

η̃(n)

η̃
(n−1)
2n

η̃
(n−1)
2n+1

η̃
(n)
2n

η̃
(n−1)
2n+1

��

�

�

�

�

�

�

�

	




�
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�

� �
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The maximality condition and Lemma 6.3.1 imply that

−π < θ(n) ≤ θ(n+1) ≤ α+ (6.3.1)

for all n ∈ N+. Since by Lemma 5.4.3 there is at most a unique representative zig-zag

flow of any ray which intersects the boundary of a face, we note that zig-zag flows

η̃(n) = η̃(n+1) if and only if θ(n) = θ(n+1). In particular if θ(n0) = α+ then η̃(n) = η̃(n0)

for all n ≥ n0.

Remark 6.3.2. We observe that if n 6= k then f (n) 6= f (k), otherwise the local zig-zag

fans at f (n) and f (k) are the same so θ(n) = θ(k). This implies that η̃(n) = η̃(k), and so

η̃
(n)
2n and η̃

(n)
2k are both arrows in the boundary of f (n). However this would contradict

geometric consistency (in particular either Proposition 3.3.7 or Lemma 5.2.3).

6.3.4 The paths p and p̂

We now construct two paths by piecing together paths around the boundaries of these

black faces. For each n ∈ N+ define p(n) to be the shortest oriented path around the

boundary of f (n) from v(n) to v(n−1) and let p̂(n) to be the shortest oriented path around

the boundary of f (n) from v(n−1) to v(n).
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Since hp(n) = v(n−1) = tp(n−1) we can piece the paths p(n) together to form an

infinite oriented path p which ends at v0 = i. Similarly we can piece the paths p̂(n)

together to form an infinite oriented path p̂ which starts at v0 = i.

Remark 6.3.3. Using the property (see Remark 5.4.6) that the intersections of zig-zag

flows with the boundary of face f occur in the same cyclic order as the rays of the local

zig-zag fan ξ(f), we note that the arrows in p̂(n) are the arrows in the boundary of

f (n) which are contained in zig-zag flows with angle in the closed interval [θ (n−1), θ(n)].

If θ(n−1) = θ(n), then p̂(n) just contains the zig-zag pair η̃
(n)
2n , η̃

(n)
2n+1 and p(n) is the

intersection of the black boundary flow of η̃(n) with the boundary of f (n).

Now that we have constructed the paths p and p̂ we check that they satisfy some

properties. Most importantly we need to show that the perfect matching P (σ) evaluates

to zero on p. Recalling the definition of P (σ), we are interested in the image of the

cone σ in the local zig-zag fan at each face. We prove the following lemma:

Lemma 6.3.4. There are no rays in the local zig-zag fan ξ(f (n)) with angle in the

interval (θ(n), 0] for any n ∈ N+.

Proof. Suppose to the contrary that this doesn’t hold and let n′ be the least value

where such a ray exists. We label this ray by γ and suppose the intersection of its

representative zig-zag flow with the boundary of f (n′) is the zig-zag pair (η̃0, η̃1). Denote

the angle of ray γ by θ ∈ (θ(n′), 0]. We observe that:

• The maximality condition in the construction ensures that η̃ can not have both

i and j on its left.

• If η̃ had i on its left and j on its right then γ would be in C+. However since

θ ∈ (θ(n′), 0] we see that γ lies in H− which would be a contradiction.
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Therefore η̃ must have i on its right. Consider the path p(n′−1)p(n′−2) . . . p(1) from

v(n′−1) to i. Since n′ is minimal, η̃ does not intersect the boundary of any of the faces

f (1), . . . , f (n′−1). In particular it does not intersect this path. Therefore vn′−1 is also

on the right of η̃. Since f (n′) is a black face, all its vertices are on the left of η̃ except

for hη̃0 = tη̃1, so vn′−1 = tη̃1.

Recalling the construction of the sequence of faces f (n), we see that arrow η̃1 is a

zig of η̃(n′−1). Therefore η̃ crosses η̃n′−1 from left to right and, by Lemma 5.4.5, the

corresponding rays in the local zig-zag fan span a cone where γ is the clockwise ray.

Then

−2π < θ(n′−1) − π < θ < θ(n′−1) ≤ θ(n′)

However, this contradicts the assumption that θ ∈ (θ(n′), 0].

We now use this lemma to prove the first property we required of the path p.

Lemma 6.3.5. The perfect matching P (σ) evaluates to zero on the path p.

Proof. The path p was constructed locally of paths p(n) in the boundary of the faces

f (n). The perfect matching P (σ) was also defined locally at each face. Therefore it is

sufficient to prove the statement locally; we must show that Pf(n)(σ) evaluates to zero

on p(n) for each n ≥ 1.

We recall that Pf(n)(σ) is non-zero on a single arrow, corresponding to the cone in

ξ(f (n)) which contains the image of σ. We split the proof into two cases:

If θ(n) 6= α+, it follows from Lemma 6.3.4 that γ(n) is the clockwise ray of the cone

containing the image of σ. Then using Lemma 5.4.5, the unique arrow on which Pf(n)(σ)

is non-zero is the zag η̃
(n)
2n+1 in the boundary of f (n). By construction hη̃

(n)
2n+1 = v(n)

and thus any oriented path around the boundary of f (n) from v(n), which contains this

arrow, must contain a complete cycle. Each p(n) was defined so that this is not the

case, so Pfn
(σ) evaluates to zero on pn.

If θ(n) = α+ then γ(n) is the image of σ+ and p(n) is part of the boundary flow of

η̃(n), a representative of σ+. By Proposition 5.6.2 we see that P (σ) evaluates to zero

on this.

We now show that p̂ is made up of sections of zig-zag flows that have the vertices i

and j on their left.

Lemma 6.3.6. Each arrow in p̂(n) is contained in some zig-zag flow which has i and

j on the left.
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Proof. If an arrow of p̂(n) is in η̃(n−1) or η̃(n), then we are done. Otherwise the arrow

is contained in a zig-zag flow η̃ with angle in the open interval (θ(n−1), θ(n)). We note

that η̃ has v(n−1) on its left, otherwise one obtains a contradiction in the same way as

the end of the proof of Lemma 6.3.4. Using Lemma 6.3.4 directly, we see that η̃ does

not intersect the boundary of f (r) for any r ≤ n − 1. Therefore considering a path

along the boundary of these faces, we see that η̃ has i on its left. Because of its angle,

η̃ can not be in X+, and therefore it must have both i and j on the left.

Finally in this section we see that sufficiently far away from its starting point, the

path p̂ looks like a representative zig-zag flow of σ+.

Lemma 6.3.7. There exists n′ ∈ N+ such that for all n ≥ n′ we have η̃(n) = η̃+ which

is a representative zig-zag flow of σ+.

Proof. Since the increasing sequence {θ(n)} is bounded above, and there are a finite

number of rays in Ξ, there exists some n′ ∈ N+ such that θ(n) = θ(n′), and therefore

η̃(n) = η̃(n′), for all n ≥ n′. Thus it is sufficient to prove that η̃(n′) is a representative

zig-zag flow of σ+.

Suppose it is not. Then η̃(n′) intersects every representative zig-zag flows of σ+

from left to right, and an infinite number of these intersections must occur after v (n′)

in η̃(n′) (so v(n′) is on their left). The path p(n′)p(n′−1) . . . p(1) from v(n′) to i has a finite

number of arrows and therefore intersects at most a finite number of these. Therefore

there are an infinite number of representative zig-zag flows of σ+ which intersect η̃(n′)

after v(n′), so intersect the boundary of f (n) for some n ≥ n′, and have i on their left.

Only a finite number of zig-zag flows have i on their left and j on their right; such a

flow must intersect every path from i to j. Thus there exists a representative zig-zag

flows of σ+ which intersects the boundary of f (n) for some n ≥ n′, and has i and j on

its left. This contradicts the maximality assumption.

In an analogous way to the construction of p and p̂, we construct a paths q and q̂ by

piecing together sequences of paths q(k) and q̂(k) respectively, around the boundaries

of a sequence of white faces {g(k)} with a distinguished set of vertices {w(k)}. This is

constructed by considering zig-zag flows β̃(k) which have both i and j on the right and

whose ray in the global zig-zag fan has minimal angle $(k) which lies in the interval

[−α−, π). Certain corresponding properties hold, which can be proved by symmetric

arguments:

1. The path q ends at the vertex i.

2. The perfect matching P (σ) evaluates to zero on q.

3. Each arrow in q̂(n) is contained in some zig-zag flow which has i and j on the

right.

82



4. There exists k′ ∈ N+ such that for all k ≥ k′ we have β̃(k) = β̃− which is a

representative zig-zag flow of σ−.

6.3.5 p and q intersect

We now find a vertex (other than i) which is in both p and q. This will be a vertex of

the zig-zag paths η̃+ and β̃−.

Lemma 6.3.8. Let n′ and k′ be be the least integers such that η̃(n′) = η̃+ and β̃(k′) =

β̃−. Then β̃− does not intersect the boundary of f (n) for any n ≤ n′ and η̃+ does not

intersect the boundary of g(k) for any k ≤ k′.

Proof. First consider the case when n < n′ so θ(n) ≤ α−. If θn = α− then η̃(n) and

β̃− are parallel zig-zag flows which are distinct; i is on the left of η̃(n) but on the right

of β̃−. By definition η̃(n) intersects the boundary of f (n), so by Lemma 5.4.3, β̃− does

not. If θn < α− then by Lemma 6.3.4 there are no rays of ξ(f (n)) with angle in the

interval (θn, 0) and therefore β̃− does not intersect the boundary of f (n).

Now consider the case when n = n′. We have just shown that β̃− does not intersect

the path p(n′−1)p(n′−2) . . . p(1) from vn′−1 to i. Therefore vn′−1 is on the right of β̃−.

As we have noted before, since it is a black face, there is only one zig-zag flow which

intersects the boundary of f (n′) and has v(n′−1) on the right. However, this crosses

η̃(n′−1) from left to right and so can not be β̃− since −π < θn′−1 ≤ α− < 0. Therefore

β̃− does not intersect the boundary of fn′ .

The proof of the other statement follows similarly.

Corollary 6.3.9. Let a = η̃+
2n = β̃−2k+1 be the unique arrow where β̃− and η̃+ intersect.

Then ta occurs after v(n′) in η̃+ and after w(k′) in β̃−.

Proof. Using the lemma we see that β̃− does not intersect the path p(n′)p(n′−1) . . . p(1)

from v(n′−1) to i. Therefore v(n′) is on the right of β̃−. We know that β̃− crosses η̃+

from right to left, so vn′ occurs in η̃+ before the intersection.

Using this result we see that the paths p and q both contain the vertex ta: the

arrow a = η̃+
2n is a zig of η̃+ and by Corollary 6.3.9 we know that ta occurs after vn′

in η̃+. Therefore ta = v(n) for some n > n′, and by construction v(n) is a vertex of p.

Similarly we note that ta = w(k) for some k > k′ and so ta is a vertex of q.

We define paths p(≤n) := p(n)p(n−1) . . . p(1) and q(≤k) := q(k)q(k−1) . . . q(1) from ta

to i. These are finite pieces of the paths p and q respectively. We note that since P (σ)

evaluates to zero on p and q, it must also evaluate to zero on p(≤n) and q(≤k).

Similarly we may define paths p̂(≤n) := p̂(n)p̂(n−1) . . . p̂(1) and q̂(≤k) := q̂(k)q̂(k−1) . . . q̂(1)

from i to ta.

83



6.3.6 The path from j to i

We want to be able to use F-term relations on the path p(≤n) to change it into a path

which passes through the vertex j. We start by showing that the paths p(≤n) and q(≤k)

are F-term equivalent.

Lemma 6.3.10. The elements [p(≤n)]M and [q(≤k)]M are equal, i.e. the paths p(≤n)

and q(≤k) are homologous.

Proof. Recall the short exact sequence (2.3.2):

0 −→ Z −→Mo
H
−→ H1(T ; Z) −→ 0

where the kernel of H is spanned by the class � = ∂[f ]M for any face f ∈ Q2. Since

p(≤n) and q(≤k) start and finish at the same vertices in the universal cover Q̃, the element

[p(≤n)]M − [q(≤k)]M ∈Mo is in the kernel of H. Therefore it is some multiple of class �.

The perfect matching P (σ), by definition, evaluates to 1 on the boundary of every face,

and therefore it evaluates to 1 on �. Since it evaluates to zero on [p(≤n)]M − [q(≤k)]M ,

we conclude that this multiple of � is zero, and so [p(≤n)]M = [q(≤k)]M .

Consider the paths p̂(≤n) and q̂(≤k). These are constructed out of sections of zig-

zag flows which have the vertex j on the left and right respectively. Then the path

p̂(≤n)(q̂(≤k))−1 is constructed of sections of zig-zag flows that have j consistently on

the left. Thus this path either passes through j or has a non-zero winding number

around j. We note that the ‘boundary path’ p(≤n)(q(≤k))−1 has the same property.

If j is a vertex of p̂(≤n)(q̂(≤k))−1 then it is a vertex of one of the faces f (r) or g(s).

Neighbouring zig-zag flows in the boundary of this face which pass through j, have j

on different sides. This forces j to be one of the distinguished vertices on the face, and

so it is a vertex of p(≤n)(q(≤k))−1 as well. Finally, since the boundary of a face either

contains a vertex, or has zero winding number about that vertex, we note that either

p(≤n)(q(≤k))−1 passes through j or the winding number of p(≤n)(q(≤k))−1 around j is

non-zero.

To complete the proof of Proposition 6.2, it is sufficient to show that there exists a

path which is F-term equivalent to p(≤n) and q(≤k), and which passes through vertex

j. F-term equivalence implies that P (σ) evaluates to zero on this path as well, and we

obtain the required path from j to i by looking at the appropriate piece.

Lemma 6.3.11. Suppose p, q are F -term equivalent oriented paths in Q̃ from vertex

v1 to v2, which do not pass through vertex v. If Windv(pq
−1) is non-zero, then there

exists an oriented path p′ which is F -term equivalent to p and q and passes through v.
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Proof. Since p and q are F-term equivalent, there exists a sequence of paths p0 =

p, p1, . . . , ps′ = q such that ps and ps+1 differ by a single F -term relation for s =

0, . . . , s′ − 1.

Suppose that neither psq
−1 nor ps+1q

−1 pass through v for some s ∈ {0, . . . , s′−1},

i.e. Windv(psq
−1) and Windv(ps+1q

−1) are well defined. Since ps and ps+1 differ by a

single F-term relation we can write ps = α1rsα2 and ps+1 = α1rs+1α2, where rsrs+1
−1

is the boundary of the union D of the two faces which meet along the arrow dual to

the relation. Since Windv(psq
−1) and Windv(ps+1q

−1) are well defined, then

Windv(psq
−1)−Windv(ps+1q

−1) = Windv(psps+1
−1) = Windv(rsrs+1

−1) = 0

as there are no vertices in the interior of D. However

Windv(pq
−1) 6= 0 = Windv(qq

−1)

and so there must exist s ∈ {0, . . . , s′ − 1} such that psq
−1 passes through v. Then

p′ := ps is F-term equivalent to p and q and passes through v.
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Chapter 7

Calabi-Yau Algebras from

Algebraically Consistent dimers

In this chapter we prove one of the main theorems of this thesis:

Theorem 7.1. If a dimer model on a torus is algebraically consistent then the algebra

A obtained from it is CY3.

This gives a whole class of superpotential algebras which are Calabi-Yau and which

can be written down explicitly. We start by recalling Ginzburg’s definition of a Calabi-

Yau algebra [13]. A theorem due to Ginzburg shows that superpotential algebras are

CY3 if a particular sequence of maps gives a bimodule resolution of the algebra. We

formulate this for algebras coming from dimer models and show that, because they are

graded, it is sufficient to prove that a one sided complex of right A modules is exact.

We then prove that this is the case for algebras obtained from algebraically consistent

dimer models.

7.1 Calabi-Yau Algebras

The notion of a Calabi-Yau algebra we use here was introduced by Ginzburg in [13].

Consider the contravariant functor M 7→ M ! := RHomA−Bimod(M,A ⊗ A) on the

‘perfect’ derived category of bounded complexes of finitely generated projective A-

bimodules. We use the outer bimodule structure on A⊗A when taking RHom and the

result M ! is an A-bimodule using the inner structure.

Definition 7.1.1. An algebra A is said to be a Calabi-Yau algebra of dimension d ≥ 1

if it is homologically smooth, and there exists an A-module quasi-isomorphism

f : A
∼=
−→ A![d] such that f = f ![d]
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In [13] Ginzburg gives a way of proving that superpotential algebras are CY3 by

checking that a particular sequence of maps is a resolution of the algebra. He gives an

explicit description of this sequence of maps which we follow here.

Let Q be a finite quiver with path algebra CQ. As in Section 2.1.3, let [CQ,CQ]

be the complex vector space in CQ spanned by commutators and denote by CQcyc :=

CQ/[CQ,CQ] the quotient space. This space has a basis of elements corresponding to

cyclic paths in the quiver. For each arrow a ∈ Q1 there is a linear map

∂

∂xa
: CQcyc → CQ

which is a (formal) cyclic derivative. The image of a cyclic path is obtained by taking

all the representatives of the path in CQ which starts with xa, removing this and then

summing. We can write this map in a different way using a formal left derivative
∂l

∂lxa
: CQ→ CQ defined as follows:

Every monomial is of the form xbx for some b ∈ Q1. Then we define:

∂l
∂lxa

xbx :=




x if a = b,

0 otherwise.

We extend this to the whole of CQ by linearity. The formal right derivative ∂r

∂rxa
is

defined similarly. Then we have

∂

∂xa
(x) =

∑

x′∈CQ

(x′)=(x)

∂l
∂lxa

x′ =
∑

x′∈CQ

(x′)=(x)

∂r
∂rxa

x′ (7.1.1)

where as before (x) denotes the cyclic element in CQcyc corresponding to x ∈ CQ.

For each arrow a ∈ Q1 there is another linear map which we denote by:

∂

∂xa
: CQ→ CQ⊗ CQ x 7→

(
∂x

∂xa

)′

⊗

(
∂x

∂xa

)′′

This is defined on monomials as follows: for each occurrence of xa in a monomial, the

monomial can be written in the form xxay. This defines an element x⊗ y ∈ CQ⊗CQ

and the sum of these elements over each occurrence of xa in the monomial is the

image of the monomial. We extend this linearly for general elements of CQ. Following

Ginzburg we use the same notation for both the cyclic derivative and this map.

The algebra S :=
⊕

i∈Q0
Cei is semi-simple and is the sub-algebra of CQ generated

by paths of length zero. We define T1 :=
⊕

b∈Q1
Cxb with the natural structure of an

S, S-bimodule. For each arrow b ∈ Q1, there is a relation Rb := ∂
∂xb

W which is the
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cyclic derivative of the superpotential W . Let T2 :=
⊕

b∈Q1
CRb be the S, S-bimodule

generated by these. For each vertex v ∈ Q0, we obtain from the super-potential W a

syzygy

Wv :=
∑

b∈Tv

xbRb =
∑

b∈Hv

Rbxb

Finally we define T3 :=
⊕

v∈Q0
CWv which is isomorphic to S and has an S, S-bimodule

structure. We consider the following maps:

µ0 : A⊗S A −→ A x⊗ y 7→ xy

is given by the multiplication in A.

µ1 :A⊗S T1 ⊗S A −→ A⊗S A

x⊗ xa ⊗ y 7→ xxa ⊗ y − x⊗ xay

µ2 :A⊗S T2 ⊗S A −→ A⊗S T1 ⊗S A

x⊗Ra ⊗ y 7→
∑

b∈Q1

x

(
∂Ra
∂xb

)′

⊗ xb ⊗

(
∂Ra
∂xb

)′′

y

µ3 :A⊗S T3 ⊗S A −→ A⊗S T2 ⊗S A

x⊗Wv ⊗ y 7→
∑

b∈Tv

xxb ⊗Rb ⊗ y −
∑

b∈Hv

x⊗Rb ⊗ xby

Piecing these maps together we can write down the following sequence of maps:

0←− A
µ0
←− A⊗SA

µ1
←− A⊗ST1⊗SA

µ2
←− A⊗ST2⊗SA

µ3
←− A⊗ST3⊗SA←− 0 (7.1.2)

which is the complex in Proposition 5.1.9 of [13]. Then Corollary 5.3.3 of [13] includes

the following result:

Theorem 7.1.2. A is a Calabi-Yau algebra of dimension 3 if and only if the complex

(7.1.2) is a resolution of A.

Remark 7.1.3. It is not actually necessary to check that the complex is exact every-

where as the first part of it is always exact. By Theorem 5.3.1 of [13] we see that it is

sufficient to check exactness at A⊗S T2 ⊗S A and A⊗S T3 ⊗S A.
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7.2 The one sided complex

Recall from Section 2.3 that any element in the interior of the perfect matching cone

N+ defines a (positive) Z-grading of A. We define the graded radical of A by RadA :=
⊕

n≥1A
(n) and note that S = A(0) where A(n) denotes the nth graded piece. Algebra

S is also the quotient of A by the graded radical, and we can use the quotient map

A→ A/RadA ∼= S to consider S as an A,A-bimodule. Using this bimodule structure

we consider the functor F = S⊗A− from the category of A,A-bimodules to itself. We

apply this to the complex (7.1.2) and get the following complex:

0←− S
F(µ0)
←− A

F(µ1)
←− T1 ⊗S A

F(µ2)
←− T2 ⊗S A

F(µ3)
←− T3 ⊗S A←− 0 (7.2.1)

We usually forget the left A-module structure, and treat this as a complex of right

A-modules. We call this the one sided complex. The maps are:

F(µ1) :T1 ⊗S A −→ A

xa ⊗ y 7→ −xay

F(µ2) :T2 ⊗S A −→ T1 ⊗S A

Ra ⊗ y 7→
∑

b∈Q1

xb ⊗

(
∂lRa
∂lxb

)
y

F(µ3) :T3 ⊗S A −→ T2 ⊗S A

Wv ⊗ y 7→ −
∑

b∈Hv

Rb ⊗ xby

Something stronger is actually true. There is a natural transformation of functors

from the identity functor on the category of A,A-bimodules to F . In particular we

have the following commutative diagram, where α : t 7→ 1S ⊗A t.

A
µ0
←−−−− A⊗S A

µ1
←−−−− A⊗S T1 ⊗S A

µ2
←−−−− A⊗S T2 ⊗S A

µ3
←−−−− A⊗S T3 ⊗S A

α

y α

y α

y α

y α

y

S
F(µ0)
←−−−− A

F(µ1)
←−−−− T1 ⊗S A

F(µ2)
←−−−− T2 ⊗S A

F(µ3)
←−−−− T3 ⊗S A

We define a grading on all the objects in this diagram. Since the super-potential

W is a homogeneous element of CQ, it can be seen that the syzygies {Wv | v ∈ Q0}
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are homogeneous elements, and furthermore the relations {Ra | a ∈ Q1} are also

homogeneous. Therefore we can extend the grading to a grading of A ⊗S T• ⊗S A

where the grade of a product of homogeneous elements is given by the sum of the

grades in each of the three positions. We call this the total grading of A⊗S T• ⊗S A.

Similarly we can define a total grading of T• ⊗S A. We note that the maps µ, F(µ)

and α in the commutative diagram above all respect the total grading.

Finally, using the diagram, we show that F(µ) is the ‘leading term’ of µ. For any

u ∈ T• ⊗S A, we note that

µ• : 1⊗ u 7→ 1⊗ v +
∑

x⊗ w

for some v, w ∈ T•−1 ⊗S A and x ∈ RadA. Then

v = α(µ•(1⊗ u)) = F(µ•)(α(1 ⊗ u)) = F(µ•)(u)

Using the fact that µ• is an A,A-bimodule map we see that for y ∈ A:

µ• : y ⊗ u 7→ y ⊗F(µ•)(u) +
∑

yx⊗w (7.2.2)

for some w ∈ T•−1 ⊗S A and x ∈ RadA.

Proposition 7.2.1. The full complex 7.1.2 is exact if and only if the one-sided complex

7.2.1 is exact.

Proof. First we suppose the one-sided complex is exact and prove that the full complex

is exact. Since the total grading is respected by all the maps we need only look at the

dth graded pieces of each space. Let φ0 ∈ (A⊗S Tn ⊗S A)(d) be closed with respect to

µ, where n ∈ {0, 1, 2, 3} and T0 = S. We can write φ0 in the form

∑

y∈Y

y ⊗ uy + {terms with higher grade in the first position}

where Y is a linearly independent set of monomials in the graded piece A(d0) with least

possible grade, and uy ∈ (Tn ⊗S A)(d−d0).

Applying the differential µ and using (7.2.2), we see that closedness translates into

the condition:

0 =
∑

y

y ⊗F(µ)(uy) + {terms with higher grade in the first position}
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Since the monomials y ∈ Y are linearly independent this implies that for all y ∈ Y

F(µ)(uy) = 0

Using the exactness of the one-sided complex, we conclude that there exist elements

vy ∈ (Tn+1 ⊗S A)(d−d0) (where T4 := 0) such that F(µ)(vy) = uy for each y ∈ Y . We

construct an element:

ψ1 :=
∑

y∈Y

y ⊗ vy ∈ (A⊗S Tn+1 ⊗S A)(d)

and apply the differential µ to get

µψ1 =
∑

y∈Y

y ⊗ uy + {terms with higher grade in the first position}

We observe that φ1 := φ0 − µψ1 is in the kernel of µ and has been constructed such

that its terms have strictly higher grade in the first position than φ0. We iterate

the procedure, noting that the grade in the first position is strictly increasing but is

bounded above by the total grade d. Therefore after a finite number of iterations we

must get φr = φ0−
∑r

i=1 µψi = 0. We conclude that φ0 = µ(
∑r

i=1 ψi) and the complex

is exact at A⊗S Tn ⊗S A.

Conversely, we note that full complex 7.1.2 is a projective A,A-bimodule resolution

of A, and that A itself has the structure of a projective left A module. Therefore it is

an exact sequence of projective left modules and so is split exact. As a consequence it

remains exact when we tensor with S on the left, i.e. when we apply the functor F .

7.3 Key Lemma

The following lemma is going to play an important part in the proof of the main

theorem. We recall from Section 3.5 that the lattice M is a quotient of ZQ1 and that

the boundary map we get by considering the quiver as a cellular decomposition of the

torus, descends to a well defined map ∂ : M → ZQ0 . Furthermore, by summing the

arrows, every path p in Q determines a class [p]M ∈M , which lies in Mij = ∂−1(j − i)

where tp = i and hp = j.

Lemma 7.3.1. Let v, j ∈ Q0 be quiver vertices, and consider an element m ∈ Mvj.

Suppose that for all arrows b ∈ Q1 with hb = v, we have m+ [b]M ∈M
+
ij where i = tb.

Then m ∈M+
vj .
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Proof. We consider the vertex v, and label the outgoing arrows a1, . . . , ak and the

incoming arrows b1, . . . , bk around v as below. We also label the paths completing the

boundary of each face pi and qi as below.

•
v

•//
ak

•

•�����������������

��b1

•

•

OOa1

•

•?????????????????

��b2

•• ooa2
•

•
??

??
??

??
??

??
??

??
?

__ bk

__ q1

((
p1

vv
q2

KKp2

uu
pk

(7.3.1)

Let mi := m + [bi]M ∈ M
+
tbij

. We start by noting that pibi = qi+1bi+1 is the F-term

relation dual to ai, so [pi]M + [bi]M = [qi+1]M + [bi+1]M in M . Adding m to both sides

we see that:

mi + [pi]M = mi+1 + [qi+1]M (7.3.2)

Since mi ∈M
+
tbij

, using algebraic consistency, there exist paths yi such that [yi]M = mi

for all i. We lift each path yi to a path in the universal cover Q̃. From equation (7.3.2),

again using algebraic consistency, we observe that the two paths piyi and qi+1yi+1 are

F-term equivalent.

We seek a path σ which is F-term equivalent to pαyα for some α ∈ {1, . . . , k}, and

which passes through the vertex v. Either there exists some α such that yα passes

through v, in which case we define σ := pαyα, or we can consider the closed curves

γi := y−1
i p−1

i qi+1yi+1 which have well defined winding numbers Windv(γi) around v for

all i. In this case

k∑

i=1

|Windv(γi)| ≥ |Windv(γ1 . . . γk)| = |Windv(p
−1
1 q2 . . . p

−1
k q1)| = 1

since the path p−1
1 q2 . . . p

−1
k q1 is the boundary of the union of all faces containing v,

which is homeomorphic to a disc in the plane with v an interior point. Therefore

there exists α ∈ {1, . . . , k} such that Windv(γα) is well defined and nonzero. Thus we

may apply Corollary 6.3.11 to the paths pαyα and qα+1yα+1 and we obtain an F-term

equivalent oriented path σ which passes through v.

To prove the result we need to show that 〈π,m〉 ≥ 0 for every perfect matching π.
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Let π be a perfect matching and suppose that 〈π, [bi]M 〉 = 0 for some i. Then

〈π,m〉 = 〈π,mi − [bi]M 〉 = 〈π,mi〉 ≥ 0

since mi ∈ M
+, and we are done. Otherwise 〈π, [bi]M 〉 = 1 for all i = 1, . . . , k. Since

the path σ passes through v then by construction it must contain an arrow bi for some

i, and

〈π, [σ]M 〉 ≥ 〈π, [bi]M 〉 = 1 (7.3.3)

Since σ and pαyα are F -term equivalent,

[σ]M = [pαyα]M = [pα]M + [bα]M +m (7.3.4)

Now pαbαaα is the boundary of a face in the quiver, so perfect matching π is non-zero

on a single arrow of pαbαaα. We know that 〈π, [bα]M 〉 = 1, so 〈π, [pα]M 〉 = 0. We apply

our perfect matching π to (7.3.4) and use (7.3.3) to see that

1 ≤ 〈π, [σ]M 〉 = 1 + 〈π,m〉

Thus we have shown that 〈π,m〉 ≥ 0 as required.

7.4 The main result

We are now in the position to prove the main theorem of this chapter.

Theorem 7.4.1. If we have an algebraically consistent dimer model on a torus then

the sequence of maps

T1 ⊗S A
F(µ2)
←− T2 ⊗S A

F(µ3)
←− T3 ⊗S A←− 0 (7.4.1)

is exact, and hence A is a CY3 algebra.

Proof. First we prove exactness at T2 ⊗S A. Consider any element φ ∈ T2 ⊗S A which

is closed. We can write φ in the form

φ =
∑

b∈Q1

Rb ⊗ ub

We need to show that φ is in the image of the differential. We can write any ψ ∈ T3⊗SA
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in the form ψ :=
∑

v∈Q0
Wv ⊗ cv ∈ T3 ⊗S A and we note that

µ(ψ) =
∑

v∈Q0

∑

b∈Hv

Rb ⊗ xbcv

Therefore φ is in the image of the differential if and only if the following statement

holds. For each vertex v ∈ Q0 there is an element cv ∈ A such that ub = xbcv for all

arrows b ∈ Hv.

We now prove this statement. Applying the differential to φ we observe that

0 =
∑

a,b∈Q1

xa ⊗
∂lRb
∂lxa

ub =
∑

a,b∈Q1

xa ⊗
∂rRa
∂rxb

ub

By construction the set {xa | a ∈ Q1} is linearly independent in T1, so

∑

b∈Q1

∂rRa
∂rxb

ub = 0 ∀a ∈ Q1 (7.4.2)

The algebra A =
⊕

j∈Q0
Aej naturally splits into pieces using the idempotents. With-

out loss of generality we assume ub ∈ Aej for some j ∈ Q0, so for each b ∈ Q1 we have

ub ∈ etbAej .

Using algebraic consistency we work on the toric algebra side. For b ∈ Q1, the

element corresponding to ub is of the form

ũb =
∑

m∈M+
tb,j

αmb z
m ∈ C[M+]

where αmb ∈ C. Because M+
tb,j ⊂ M where subtraction is well defined, we can write

each element in the form m = (m− [b]M ) + [b]M . Therefore we can re-write ũb as

ũb = z[b]M
∑

m∈Mvj

α
m+[b]M
b zm

where α
m+[b]M
b is take to be zero where it was not previously defined, i.e. when m +

[b]M /∈ M+
tb,j . We need to show that

∑
m∈Mvj

α
m+[b]M
b zm is the same for all b ∈ Q1

which have the same head, and that it is a well defined element of C[M+].

Let v ∈ Q0 be any vertex and consider the following diagram, for any arrow a with
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ta = v.

•

•�����������������

��b−

•

•

OOa

•

•?????????????????

��b+

((
p

vv
q

•

��u+ ))
u−

(7.4.3)

In the diagram we have drawn u± := ub± as if they were paths, however it should be

remembered that they are elements in the algebra and don’t necessarily correspond

to actual paths in the quiver. The relation dual to a is Ra = xpxb− − xqxb+ , and on

substitution into (7.4.2), we get

xpu− − xqu+ = 0 (7.4.4)

in A. Under the isomorphism to the toric algebra, and using the relation [p]M+[b−]M =

[q]M + [b+]M we obtain:

0 = z[p]M ũ− − z
[q]M ũ+ = z[p]M+[b−]M

∑

m∈Mvj

(α
m+[b−]M
b−

− α
m+[b+]M
b+

)zm

The set {zm+[p]M+[b−]M | m ∈Mvj} is independent, and so we can see that

α
m+[b−]M
b−

= α
m+[b+]M
b+

=: αm for all m ∈Mvj

Then

ũb± = z[b±]M
∑

m∈Mvj

αmzm

We have shown that this formula holds for a pair of arrows b± with head at v. However,

recalling that the arrows around v fit together as in 7.3.1, and considering the arrows

pairwise, we observe that for any arrow b ∈ Hv.

ũb = z[b]M
∑

m∈Mvj

αmzm

Furthermore αm = 0 unlessm+[b]M ∈M
+
tb,j for all b ∈ Hv. It follows from Lemma 7.3.1
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that αm can only be non-zero when m ∈M+
vj . Thus we see that for each b ∈ Hv,

ũb = z[b]M c̃v where c̃v :=
∑

m∈M+
vj

αmzm

which is a well defined element of C[M+]. Using algebraic consistency again, there

exists element cv ∈ A such that ub = xbicv , and we are done.

To show that the complex is exact at T3 ⊗S A, suppose that φ ∈ T3 ⊗S A is closed.

We may write φ in the form φ =
∑

v∈Q0
Wv ⊗ uv. Applying the differential we observe

that
∑

v∈Q0

∑
b∈Hv

Rb ⊗ xbuv = 0 and since the relations Rb are linearly independent

over C in T2, this implies that xbuv = 0 for all v ∈ Q0 and b ∈ Hv. Because of algebraic

consistency we can use the given isomorphism and work in the toric algebra C[M+].

Let
∑

m∈M+
vj
βmzm be the image of uvej , where βm ∈ C. Then since xbuvej = 0, for

each j ∈ Q0 we see that

z[b]M
∑

m∈M+
vj

βmzm = 0

The set {zm+[b]M | m ∈ Mvj} is independent, therefore βm = 0 for all m ∈ Mvj .

Mapping back to the quiver algebra, this implies uvej = 0, for each j ∈ Q0 and v ∈ Q0,

so uv = 0 for any v ∈ Q0. We conclude that φ = 0.
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Appendix A

Cohomology of line bundles on a

toric variety and constructible

sheaves on its polytope

This is a pre-print written earlier in my PhD. We include it here for completeness.

A.1 Introduction

Let X be a toric variety (not necessarily smooth) over an algebraically closed field

of characteristic zero, with T the embedded torus and let D be a torus-invariant

Cartier divisor on X. It is a well known result (see [8, 12]) that the cohomology

Hp(X,O(D)) splits into a direct sum of weight spaces indexed by the character lattice

M = Hom(T,C∗),

Hp(X,O(D)) ∼=
⊕

m∈M

Hp(X,O(D))m (A.1.1)

There is a theorem of Demazure (see [8]) which says that each weight space can be

written as a local cohomology group, calculated on the fan of X,

Hp(X,O(D))m ∼= Hp
Z(ψ,m)(|∆|,C)

where Z(ψ,m) := {v ∈ |∆| | 〈m, v〉 ≥ ψ(v)} and ψ = ψD as defined in section A.2.

In this article we show that when X is projective, each weight space can also be

written in terms of the cohomology of certain constructible sheaves on the polytope

PX corresponding to X.
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Theorem A.1.1. For all p ≥ 0 there are canonical isomorphisms:

Hp(X,O(D))m ∼= Hp(PX , j!CW ) (A.1.2)

where W = W (m,D) is the complement of Z(m,D), a union of closed maximal dimen-

sional faces of PX , j is the open inclusion of W (m,D) into PX and CW is the constant

sheaf on W .

Furthermore there is a short exact sequence of constructible sheaves (see [18, 20]),

0 −→ j!j
∗CPX

−→ CPX
−→ i∗i

∗CPX
−→ 0 (A.1.3)

where i is the inclusion of Z(m,D) into PX , which induces a long exact sequence of

cohomology. Since j∗CPX
= CW and i∗CPX

= CZ , we can see that the long exact

sequence is:

. . . −→ Hp−1(Z(m,D),C) −→ Hp(PX , j!CW ) −→ Hp(PX ,C) −→ . . .

from which we can calculate Hp(PX , j!CW ) in terms of the complex cohomology on

Z(m,D).

Finally we remark that although the above has been stated in the projective case, if

Y is a quasi-projective toric variety with a given embedding as an open subset of some

projective toric variety X, then there is a corresponding open subset PY of the polytope

PX and, restricting to Y and PY respectively, the proof works as in the projective case.

A.2 Definitions and notation

In this section we define the objects and notation used in the proof. Let X = X(∆)

be an n-dimensional projective toric variety corresponding to some complete fan ∆ in

a lattice N ∼= Zn. We write ∆(r) for the set of r-dimensional cones in ∆, and label

the set of generators in N of the 1-dimensional cones by {ei | i ∈ I}. It is well known

(see [12]) that there is a 1-1 correspondence between prime torus invariant divisors and

the elements of ∆(1), whence we shall denote these divisors {Ei | i ∈ I} respectively.

Let M := Hom(N,Z) ∼= Zn be the dual lattice to N , with dual pairing 〈·, ·〉, and let

MR := M ⊗Z R ∼= Rn. Choose a divisor A =
∑

i∈I aiEi which is Cartier and ample.

There is a polytope in MR associated to A, given by:

PA : = {u ∈MR | 〈u, ei〉 ≥ −ai ∀i}

= {u ∈MR | u ≥ ψA on |∆| = NR}
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where the ∆-linear support function ψA : |∆| → R is determined by the property

ψA(ei) = −ai for all i ∈ I. For any cone σ ∈ ∆ we define:

Tσ : = {u ∈MR | 〈u, ei〉 = −ai ∀ei ∈ |σ|, and 〈u, ei〉 > −ai otherwise}

= {u ∈MR | u = ψA on |σ|, u > ψA on |∆|\|σ|}

This is open in its closure Tσ = {u ∈ MR | u = ψA on |σ|, u ≥ ψA on |∆|\|σ|} and is

thus locally closed. It can be seen that this defines a stratification {Tσ}σ∈∆ of PA by

locally closed sets indexed by the cones σ ∈ ∆. Since A is ample, each of these Tσ is

non-empty. There is a natural partial order on the strata given by:

Tτ ≤ Tσ ⇐⇒ Tσ ⊆ Tτ

Lemma A.2.1.

Tτ ≤ Tσ ⇐⇒ τ ⊆ σ

Proof. By definition τ ⊆ σ trivially implies Tσ ⊆ Tτ . Conversely suppose u ∈ Tσ ⊆ Tτ .

Then u > ψA on |∆|\|σ| and also u = ψA on |τ | whence |τ | ⊆ |σ|.

A very similar argument shows that Tσ can be written as a union of the strata:

Tσ =
⋃

τ⊇σ

Tτ (A.2.1)

Note: As a topological object with a stratification by locally closed subsets, PA is

actually independent of the choice of ample divisor A on X and depends only on ∆(X)

(ie. on X). Thus in general we write PX for this object when we don’t want to specify

a particular ample divisor and we treat the strata {Tσ}σ∈∆ as well defined subsets of

this. From equation (A.2.1) we see that any closed maximal dimensional face T〈e〉 is a

union of strata depending only on the fan and is therefore also well defined in PX . We

denote it by Fe ⊂ PX .

Lemma A.2.2. There exists a cover of PX by open sets of the form Vσ :=
⋃
τ⊆σ Tτ

The proof of this is straightforward and left to the reader.

Lemma A.2.3. For any σ ∈ ∆, Vσ is a contractible space.

Proof. Vσ is convex: Let a, b ∈ Vσ so a ∈ Tτ and b ∈ Tγ for some τ, γ ⊆ σ. Let e ∈ |∆|,

then

〈ta+ (1− t)b, e〉 = t〈a, e〉 + (1− t)〈b, e〉 ≥ ψA(e)
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for t ∈ (0, 1), since 〈a, e〉 ≥ ψA(e), and 〈b, e〉 ≥ ψA(e), with equality if and only if

e ∈ |τ ∩ γ|. Thus ta+ (1− t)b ∈ Tτ∩γ ⊆ Vσ.

Let D =
∑

i∈I diEi be a torus invariant divisor which is Cartier and fix some

m ∈M . We define a (closed) subset of PX by:

Z(m,D) :=
⋃

{i∈I|〈m,ei〉<−di}

Fei

a union of closed maximal dimensional faces of PX and we define

W (m,D) := PX\Z(m,D)

the complementary open subset of PX . Let

j : W (m,D) ↪→ PX

be the open inclusion of W (m,D) into PX .

Lemma A.2.4. For any σ ∈ ∆, Vσ ∩ Z(m,D) is either empty or it is contractible.

Proof. : Suppose Vσ ∩ Z(m,D) =
⋃

{e∈I|〈m,e〉<−de}
(Fe ∩ Vσ) is non-empty. Then each

non-empty set Fe ∩ Vσ in the union contains Tσ, since

Fe ∩ Vσ =
⋃

τ3e

Tτ ∩
⋃

δ⊆σ

Tδ

and the {Tα}α∈∆ partition PX . They are also convex as Fe and Vσ are both convex

subsets. If s ∈ Tσ, then the constant map f : Vσ ∩ Z(m,D) → {s} is a homotopy

equivalence since f ◦ ι = id{s} where ι : {s} ↪→ Vσ ∩ Z(m,D) is the inclusion and

F : (Vσ ∩ Z(m,D))×[0, 1] → (Vσ ∩ Z(m,D))

(a, t) 7→ tm+ (1− t)a

is a well defined continuous map such that F (−, 0) = idVσ∩Z(m,D) and F (−, 1) = ι ◦ f

so ι ◦ f ' idVσ∩Z(m,D). Thus Vσ ∩ Z(m,D) ' {s}.

A.3 Proof of Theorem A.1.1

We begin with a lemma.
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Lemma A.3.1. Let σ ∈ ∆ and jσ : Vσ ↪→ PX be the inclusion. Then:

Hi(Vσ, j
∗
σj!CW ) = 0 ∀ i > 0

Proof. First note that jσ
−1(W ) = W ∩ Vσ and we have the commutative diagram

W ∩ Vσ
jσ

−−−−→ Vσ

jσ

y
yjσ

W
j

−−−−→ PX

where jσ : W ∩ Vσ ↪→ Vσ is the inclusion. Then using equation 6.13 on page 111 of

Iversen [20]

(jσ)
∗j!CW = jσ !(jσ)

∗
CW

We note that (jσ)
∗
CW = CW∩Vσ

= (jσ)∗CVσ
so we have (jσ)

∗j!CW = jσ !(j
σ)∗CVσ

.

Since jσ is the inclusion of an open set in Vσ and letting iσ : Vσ ∩ Z ↪→ Vσ denote

the inclusion of its complement, there is a well known short exact sequence of sheaves

(see [18, 20]):

0 −→ jσ !(j
σ)∗CVσ

−→ CVσ
−→ iσ∗(i

σ)∗CVσ
−→ 0 (A.3.1)

This induces a long exact sequence of cohomology:

. . . −→ H i(Vσ ∩ Z,C) −→ H i+1(Vσ, j
σ

!(j
σ)∗CVσ

) −→ H i+1(Vσ,C) −→ . . .

Using this and applying Lemmas A.2.3 and A.2.4 the result follows.

The rest of the proof follows the same strategy as the proof of Demazure’s Theorem

given in [8]. We start by considering the left hand side of equation (A.1.2). There is

a natural covering of X(∆) by affine open sets Uσ with σ ∈ ∆ and intersections of

such sets are of the same form. By Serre’s Theorem this covering is acyclic, and thus

the cohomology H i(X,O(D)) is the same as the i-dimensional cohomology of the Čech

complex with this covering:

C∗({Uσ}σ∈∆,O(D)) = (· · ·
d
−→

⊕

σ

H0(Uσ,O(D))
d
−→ · · · ) (A.3.2)

There is a natural M -grading on each term of the complex and this grading is

preserved by the differentials. Them-th piece of the cohomology, H i(X,O(D))m equals

the i-dimensional cohomology of the complex of m-th pieces.

Now we look at the right hand side of (A.1.2). From Lemma A.2.2 there is an open
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covering of PX by the sets {Vσ}σ∈∆, and by Lemma A.3.1 this cover is acyclic. Therefore

by Leray’s theorem, the cohomology H i(PX , j!CW ) is the i-dimensional cohomology of

the Čech complex

C∗({Vσ}σ∈∆, j!CW ) = (· · ·
d
−→

⊕

σ

H0(Vσ, j!CW )
d
−→ · · · ) (A.3.3)

Finally we show that the two spaces H0(Uσ,O(D))m and H0(Vσ, j!CW ) are both iso-

morphic to either C or 0 for given σ and m. Then since the open covers for the two

Čech complexes are indexed by the same set and the differentials are defined in terms

of restriction maps which in both cases correspond to the identity map on C or zero,

it can be seen that the cohomology of the complexes is the same.

We know (from [8, 12]) that H0(Uσ,O(D))m = C when m belongs to the set

{u ∈ MR | u ≥ ψD on |σ|} and is 0 otherwise. On the other hand consider again the

first part of the long exact sequence induced by equation (A.3.1):

0 −→ H0(Vσ , j
∗
σj!CW ) −→ H0(Vσ ,C) −→ H0(Z(m,D) ∩ Vσ,C) −→

Obviously H0(Vσ, j!CW ) is isomorphic to C when Z(m,D) ∩ Vσ is empty and is 0

otherwise. However

Z(m,D) ∩ Vσ = ∅

⇐⇒ Fe ∩ Vσ =
⋃

τ3e

Tτ ∩
⋃

δ⊆σ

Tδ = ∅ ∀e ∈ {ei | 〈m, ei〉 < −di}

⇐⇒ 〈m, ei〉 ≥ −di ∀ei ∈ |σ|

⇐⇒ m ∈ {u ∈MR | u ≥ ψD on |σ|}

Remark A.3.1. We can extend the result to cases where the toric variety is quasi-

projective. Suppose Y = Y (Σ) is a quasi-projective toric variety embedded via a toric

morphism as an open subset of a projective toric variety X. There is a natural cover

of Y by affine open pieces {Uσ | σ ∈ Σ}. On the polytope PX there is a corresponding

open cover {Vσ | σ ∈ Σ} of an open subset PY of PX . Restricting to Y and PY , the

rest of the proof follows through; these covers are both acyclic as before, there are

two corresponding Čech complexes (which are sub-complexes of the graded version of

(A.3.2), and (A.3.3)) and by the computation above it can be seen that they are the

same.
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A.4 Example

As a proof of concept we do a calculation. Any toric quiver variety comes with a

natural collection of line bundles, the universal bundles. It was shown by Altmann

and Hille (Theorem 3.6 of [1]) that for any smooth Fano toric quiver variety the uni-

versal bundles form a strongly exceptional collection. The example here is not Fano

and was constructed so that neither the Kawamata-Viehweg vanishing theorem nor

Theorem 2.4(ii) from [27] is sufficient to prove the vanishing of the Ext’s between all

the universal bundles. Thus these vanishing theorems can not be used to show that

the collection of universal bundles is strongly exceptional. We show here by direct

calculation that it is, and furthermore extend the collection to produce a full strongly

exceptional collection.

A.4.1 Calculation of Cohomology

Consider the following quiver Q with weights at the vertices as labelled.

•
−2

•

OO5

•

•OOOOOOOOOOOO

OOOOOOOOOOOO
''

7

•

•oooooooooooo

oooooooooooo

776
•

•

OO3

•

•OOOOOOOOOOOO

OOOOOOOOOOOO
''

1

•

•oooooooooooo

oooooooooooo

772

OO 4•7

•−9

•−4

•
8

Let Q0 be the set of vertices and Q1 the set of arrows. There are two maps h, t :

Q1 → Q0 taking an arrow to its head and tail respectively. The corresponding toric

quiver variety X (see [19]), is smooth and complete and has rays generated by {e1 =

(e3 + e4), e2 = −(e3 + e4), e3, e4, e5, e6 = −(e4 + e5), e7 = (e4 + e5)}. There is a

correspondence between the prime torus invariant divisors on X and elements of Q1.

The universal bundles {Lv | v ∈ Q0} satisfy the property that Lha ⊗ L
∗
ta
∼= O(Ea) for

all a ∈ Q1 and are unique up to a twist. Let {e∨3 , e
∨
4 , e

∨
5 } be the dual basis of {e3, e4, e5}

and then M is the integer lattice generated by {e∨3 , e
∨
4 , e

∨
5 }. The polytope PX is three

dimensional, the stereographic projection of which is shown below.
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Consider again the long exact sequence of cohomology induced by the short exact

sequence (A.1.3):

. . . −→ H i(Z(m,D),C) −→ H i+1(PX , j!CW ) −→ H i+1(PX ,C) −→ . . .

where Z(m,D) is some collection of closed faces of the polytope PX . Looking at

all possible unions of closed faces we see that up to homotopy equivalence, there are

five possibilities. From the long exact sequence above it can be seen which of these

contributes to each non-zero cohomology, and the table below lists all of these. Thus

Hi(PX , j!CW ) ∼= C for all Z in the row H i ∼= C and H i(PX , j!CW ) = 0 for all other Z.

We use the notation

FJ :=
⋃

j∈J

Fj

and let

J :=
{
{1, 2}, {3, 4}, {3, 7}, {4, 5}, {5, 6}, {6, 7},

{3, 4, 7}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}, {3, 6, 7}
}

contain those sets J such that FJ has two connected components. We denote the

complement of J in I := {1, 2, 3, 4, 5, 6, 7} by J c and observe that FI is the boundary

of PX .

H0 ∼= C Z(m,D) ' ∅ Z = ∅

H1 ∼= C Z(m,D) ' {pt} t {pt} Z = FJ for J ∈ J

H2 ∼= C Z(m,D) ' S1 Z = FJ for J c ∈ J

H3 ∼= C Z(m,D) ' S2 Z = FI

Let O(D) be any invertible line bundle on X. We can choose D to be of the form

D := d1E1 + d2E2 + d6E6 + d7E7, a torus-invariant Weil divisor which is Cartier, since

Pic(X) is rank 4 and generated by {E1, E2, E6, E7}. Then from the table above, using

the decomposition in equation (A.1.1) and applying Theorem A.1.1, it can be seen that

H0(X,O(D)) 6= 0 if and only if there exists m ∈ M such that Z(m,D) = ∅. This
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holds if and only if

∃m := m3e3
∨ +m4e4

∨ +m5e5
∨ ∈M such that 〈m, ei〉 ≥ −di ∀i

⇐⇒ ∃m1,m2,m3 ∈ Z where mi ≥ 0,−d1 ≤ m3 +m4 ≤ d2,−d7 ≤ m4 +m5 ≤ d6

⇐⇒ 0 ≤ (d1 + d2), 0 ≤ (d6 + d7), d2 ≥ 0, d6 ≥ 0

Similarly H1(X,O(D)) 6= 0 if and only if there exists m ∈M such that Z(m,D) = FJ

for some J c ∈ J. Treating each case separately, we obtain a list of all the regions in

Pic(X) where H1(X,O(D)) is nonzero. We can then produce a complete list of regions

in Pic(X) where each cohomology group is nonzero either by continuing the process or

applying Serre Duality. The list of these 24 regions is given in tabular form below.

H0 6= 0 1 0 ≤ (d1 + d2), 0 ≤ (d6 + d7), 0 ≤ d2, 0 ≤ d6

H1 6= 0 2 −2 ≥ (d1 + d2), 0 ≤ (d6 + d7), −1 ≥ d1, 0 ≤ d6

3 0 ≤ (d1 + d2), 0 ≤ (d6 + d7), 2 ≤ d1, 1 ≤ (d1 + d6)

4 0 ≤ (d1 + d2), 0 ≤ d6, −1 ≥ d7, 1 ≤ (d1 + d6), 2 ≤ (d1 − d7)

5 0 ≤ (d1 + d2), 0 ≤ (d6 + d7), 2 ≤ d7, 1 ≤ (d2 + d7)

6 0 ≤ (d1 + d2), 1 ≤ (d2 + d7), 0 ≤ d2, 2 ≤ (d2 − d6)

7 0 ≤ (d1 + d2), −2 ≥ (d6 + d7), 0 ≤ d2, −1 ≥ d7

8 0 ≤ (d1 + d2), 1 ≤ (d1 + d6), 2 ≤ d1, 2 ≤ (d1 − d7)

9 0 ≤ (d1 + d2), 0 ≤ (d6 + d7), 2 ≤ d1, 2 ≤ d7

10 0 ≤ (d1 + d2), 1 ≤ (d2 + d7), −3 ≥ d6, 2 ≤ d7, 2 ≤ (d2 − d6)

11 0 ≤ (d1 + d2), −2 ≥ (d6 + d7), 0 ≤ d2, 2 ≤ (d2 − d6)

12 0 ≤ (d1 + d2), −2 ≥ (d6 + d7), −1 ≥ d7, 2 ≤ (d1 − d7)

H2 6= 0 13 0 ≤ (d1 + d2), −2 ≥ (d6 + d7), 2 ≤ d1, −3 ≥ d6

14 −2 ≥ (d1 + d2), −2 ≥ (d6 + d7), −1 ≥ d1, −3 ≥ (d1 + d6)

15 −2 ≥ (d1 + d2), −3 ≥ d6, 2 ≤ d7, −3 ≥ (d1 + d6), −2 ≥ (d1 − d7)

16 −2 ≥ (d1 + d2), −2 ≥ (d6 + d7), −1 ≥ d7, −3 ≥ (d2 + d7)

17 −2 ≥ (d1 + d2), −3 ≥ (d2 + d7), −3 ≥ d2, −2 ≥ (d2 − d6)

18 −2 ≥ (d1 + d2), 0 ≤ (d6 + d7), −3 ≥ d2, 2 ≤ d7

19 −2 ≥ (d1 + d2), −3 ≥ (d1 + d6), −1 ≥ d1, −2 ≥ (d1 − d7)

20 −2 ≥ (d1 + d2), −2 ≥ (d6 + d7), −1 ≥ d1, −1 ≥ d7

21 −2 ≥ (d1 + d2), −3 ≥ (d2 + d7), 0 ≤ d6, −1 ≥ d7, −2 ≥ (d2 − d6)

22 −2 ≥ (d1 + d2), 0 ≤ (d6 + d7), −3 ≥ d2, −2 ≥ (d2 − d6)

23 −2 ≥ (d1 + d2), 0 ≤ (d6 + d7), 2 ≤ d7, −2 ≥ (d1 − d7)

H3 6= 0 24 −2 ≥ (d1 + d2), −2 ≥ (d6 + d7), −3 ≥ d2, −3 ≥ d6
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Using this table it can easily be confirmed that the universal bundles form an excep-

tional collection. For each pair of line bundles Lp and Lq in the collection we wish to cal-

culate the cohomology of Lq⊗L
∗
p
∼= O(D), whereD is chosen so that it is a linear combi-

nation of the generators {E1, E2, E6, E7} of Pic(X). For example, if p is the vertex with

weight 8 and q is the vertex with weight -2, then Lq⊗L
∗
p
∼= O(−E1+E2+E6−E7). Look-

ing at the table, the only region which contains the point (d1, d2, d6, d7) = (−1, 1, 1,−1)

is region 1 and so there is no higher cohomology. Similarly there is no higher coho-

mology for all other pairs of line bundles in the universal collection. Thus the Ext’s

between all pairs of line bundles in the collection are zero and the universal bundles

form a strongly exceptional collection.

A.4.2 An Extended Collection

We describe a generalised Koszul complex called the Buchsbaum-Rim complex, see [28]

Appendix C. We then use this in our example to construct a collection of line bundles

which extends the collection of universal bundles {Lv | v ∈ Q0} on X and which by con-

struction spans the derived category Db(X). Finally, using the cohomology calculation

above once more, we show that this collection is actually strongly exceptional.

Let V ,W be vector bundles of ranks m,n over an arbitrary base, and let f : W → V

be a bundle map. Then the Buchsbaum-Rim complex (K∗, d∗) is as follows: K0 = V ,

K1 = W with d1 = f and then for r ≥ 1

Kr+1 = Λm+r+1(W )⊗ Sr(V ∗)⊗ detV ∗

For n > 2, the maps dn are defined to be interior product with f : W → V regarded

as a section of W ∗ ⊗ V and d2 : Λm+1(W ) ⊗ detV ∗ → W is interior product with

Λm(f) : Λm(W ) → Λm(V ) regarded as a section of Λm(W ∗) ⊗ Λm(V ). The complex

(K∗, d∗) is exact away from the support of cokerf , and in particular since it has length

n−m+ 1, if the support of cokerf is in codimension n−m+ 1, then the complex is a

resolution of cokerf ([6]).

Any toric quiver variety X comes with a presentation of the diagonal in X ×X:

⊕

a∈Q1

Lta � L∗ha −→
⊕

v∈Q0

Lv � L∗v

where the components of this map are φa � 1− 1 �φ∗a. The ranks of these bundles are

n = |Q1| and m = |Q0| respectively, and the support of the cokernel of this map (i.e.

the diagonal in X×X) has codimension equal to the dimension of X, namely n−m+1.

Therefore from above we can see that Buchsbaum-Rim complex for this presentation
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is a resolution of the diagonal O∆ in X ×X. Each term of the complex consists of a

product of line bundles on each side of the �. Taking all the line bundles that appear

on either one side or the other gives a collection which spans Db(X) ([25]). We have:

Sr(V ∗)⊗ det(V ∗) =
⊕

P :Q0→{1,2,... }
|P |=m+r


⊗

v∈Q0

L−P (v)
v


�


⊗

v∈Q0

LP (v)
v




Λm+r+1(W ) =
⊕

R:Q1→{0,1}
|R|=m+r+1


⊗

a∈Q1

L
R(a)
ta


�


⊗

a∈Q1

L
−R(a)
ha




where |P | :=
∑

v∈Q0
P (v) and |R| :=

∑
a∈Q1

R(a). Thus by considering the duals of

the line bundles on the right hand side of the � we have shown:

Proposition A.4.1. Let X be a smooth toric quiver variety with associated quiver

Q. The following line bundles on X extend the universal bundles {Lv | v ∈ Q0}, to a

collection which spans the derived category Db(X):

⊗

a∈Q1

L
R(a)
ha ⊗

⊗

v∈Q0

L−P (v)
v (A.4.1)

for every P : Q0 → {1, 2, . . . } and R : Q1 → {0, 1} such that |Q0|+1 ≤ |P |+1 = |R| ≤

|Q1|.

Note that if we replace ha by ta in (A.4.1) this gives another collection extending the

universal bundles and spanning the derived category, which is the collection obtained

by taking all the line bundles on the left hand side of the �.

Calculating the first of these collections in the example above, we obtain ten line

bundles corresponding to the vertices in the quiver below. The arrows which correspond

to Hom’s between the bundles are decorated with the labels of the corresponding divi-

sors, i.e. an arrow from Lp to Lq is labelled 1+5+7 when Lq ⊗L
∗
p
∼= O(E1 +E5 +E7).
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77
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Again for each pair of line bundles Lp and Lq in the collection we wish to calculate

the cohomology of Lq ⊗L
∗
p
∼= O(D). By looking at the table above it can be seen that

for each such pair, the divisor D does not lie in any of the regions of Pic(X) where

Hi(O(D)) 6= 0 for i > 0. Hence there is no higher cohomology, so the Ext’s between all

pairs of line bundles in the collection are zero. Thus we have a full strongly exceptional

collection of line bundles on our toric variety.

A.4.3 Bondal’s Collection

Given any smooth toric variety X, Bondal has described a method to produce a can-

didate collection of line bundles on X, which for a certain class of Fano varieties is

expected to be strongly exceptional. In this section we determine this collection in

the case of our non-Fano example from section A.4, and show that it is not strongly

exceptional. This is not unexpected but gives another illustration of the method.

For any toric variety X and l ∈ N, there is a well-defined toric morphism

πl : X → X

which restricts, on the torus T , to the map

πl : T → T, t 7→ tl

In the case when X is smooth then the direct image,

(πl)∗OX =
⊕

χ

Lχ
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is a direct sum of line bundles indexed by the characters of the l-torsion subgroup of

T . This is because the map πl is the quotient of X by this group. The set B of line

bundles which occur as summands of this direct sum for all sufficiently large l exists

and is given by

B ={O(D) | D := −

d∑

i=1

{〈ei,m〉}Ei, m ∈MQ}

={O(D̄) | D̄ :=

d∑

i=1

b〈ei,m〉cEi, m =

n∑

i=1

mie
∨
1 ∈MQ, 0 ≤ mi < 1}

where MQ = M ⊗Z Q and {α} = α − bαc ≥ 0 is the fractional part of α, for α ∈ Q.

(For a more general construction one can instead consider (πl)∗OX(D) for some divisor

D.) In the example this produces a collection of 12 line bundles corresponding to the

vertices of the quiver below, where the top vertex corresponds to OX :
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Note that the quiver:
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__ 6

is a subquiver. This subquiver is also contained in the quiver corresponding to the

full strongly exceptional collection on X which we produced above. It can be seen

that, up to a twist, the duals of the universal bundles are contained in B. There are

however Ext1’s between some of the line bundles in the collection. Consider Lp and Lq

where p and q are labelled on the quiver above. It can be seen from the quiver that

Lq ⊗ L
∗
p
∼= O(−E1 + 2E2), so d1 = −1, d2 = 2, d6 = d7 = 0. Then looking back at

the table from the cohomology calculation, we see that these satisfy the sixth set of

inequalities, so

Ext1(Lp,Lq) ∼= H1(Lq ⊗L
∗
p) 6= 0.

We find that there are no Ext2’s between any of the line bundles. All the Ext1’s are

shown below:
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One may check that no subcollection containing any ten of these line bundles is strongly

exceptional and thus there is no full strongly exceptional subcollection of B.
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