Library

The following books and papers were available during the Short Course. They are fairly representative of the books that might be useful but were chosen partly because they were readily available. The absence of a book or paper does not mean it is not recommended.

  1. Atiyah, M. & Macdonald, I. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass. 1969
  2. Barth, W., Peters, C. & Van de Ven, A. Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 4. Springer-Verlag, Berlin, 1984.
  3. Beauville, A. Complex algebraic surfaces. London Mathematical Society Student Texts, 34. Cambridge University Press, Cambridge, 1996
  4. Beauville, A. Prym varieties: a survey. Theta functions, Bowdoin 1987, Proc. Sympos. Pure Math., 49, Part 1, 607-620: AMS, Providence, RI, 1989.
  5. Beauville Prym vars a survey
  6. Clemens, H., Kollár, J. & Mori, S. Higher-dimensional complex geometry. Astérisque No. 166 (1988)
  7. Debarre, O. Higher-dimensional algebraic geometry. Springer-Verlag, New York, 2001.
  8. Eisenbud, D. & Harris, J. The geometry of schemes. Graduate Texts in Mathematics, 197. Springer-Verlag, New York, 2000.
  9. Griffiths, P. & Harris, J Principles of algebraic geometry. John Wiley & Sons, New York, 1978
  10. Harris, Joe Algebraic geometry. A first course. Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1992.
  11. Hartshorne, R. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
  12. Hulek, K. & Sankaran, G.K. The geometry of Siegel modular varieties. Higher dimensional birational geometry (Kyoto, 1997), 89-156, Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002.
  13. Kempf, G. Complex abelian varieties and theta functions. Springer-Verlag, Berlin, 1991.
  14. Kirwan, F. Complex algebraic curves. London Mathematical Society Student Texts, 23. Cambridge University Press, Cambridge, 1992.
  15. Kollá, J. & Mori, S. Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998.
  16. Kollár, J. (Editor) Complex algebraic geometry. Lecture notes from the Summer School held in Park City, Utah, 1993. IAS/Park City Mathematics Series, 3. AMS, Providence, RI, 1997.
  17. Lange, H. & Birkenhake, C. Complex abelian varieties. Grundlehren der Mathematischen Wissenschaften, 302. Springer-Verlag, Berlin, 1992.
  18. Le Potier, J. Lectures on vector bundles. Cambridge Studies in Advanced Mathematics, 54. Cambridge University Press, Cambridge, 1997
  19. Matsuki, K. Introduction to the Mori program. Springer-Verlag, New York, 2002.
  20. Matsumura, H. Commutative ring theory. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986.
  21. Mumford, D. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5; Oxford University Press, London 1970
  22. Mumford, D. Curves and their Jacobians. The University of Michigan Press, Ann Arbor, Mich., 1975.
  23. Mumford, D. Tata lectures on theta I. Progress in Mathematics, 28. Birkhäuser, Boston, Mass., 1983.
  24. Mumford, D. The red book of varieties and schemes. Lecture Notes in Mathematics, 1358. Springer-Verlag, Berlin, 1988.
  25. Mumford, D., Fogarty, J. & Kirwan, F. Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34. Springer-Verlag, Berlin, 1994
  26. Newstead, P. Introduction to moduli problems and orbit spaces. TIFR Lectures on Mathematics and Physics, 51; by the Narosa, New Delhi, 1978.
  27. Newstead, P.E. Vector bundles on algebraic curves, Summer School lecture notes, Lukecin, Poland 2002.
  28. Okonek, C., Schneider, M. & Spindler, H. Vector bundles on complex projective spaces. Progress in Mathematics, 3. Birkhäuser, Boston, Mass., 1980.
  29. Polishchuk, A. Abelian varieties, theta functions and the Fourier transform. Cambridge Tracts in Mathematics, 153. Cambridge University Press, Cambridge, 2003.
  30. Reid, M. Undergraduate algebraic geometry. London Mathematical Society Student Texts, 12. Cambridge University Press, Cambridge, 1988.
  31. Sankaran, G.K. Introduction to abelian varieties, Lecture notes Cambridge Part III, 1994.
  32. Shafarevich, I. R. Basic algebraic geometry. Springer-Verlag, Berlin, 1994.
  33. Shimura, G. Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan, 11. Princeton University Press, Princeton, NJ, 1971.
  34. Thaddeus, M. An introduction to the topology of the moduli space of stable bundles on a Riemann surface. Geometry and physics (Aarhus, 1995), 71-99, Lecture Notes in Pure and Appl. Math., 184, Dekker, New York, 1997.

Short Course home page