Saturated and primitive smooth compactifications of ball
quotients

P. G. Beshkov, A. K. Kasparian, * and G. K. Sankaran'

Let X; = (B/T), 1 < i < 2 be smooth toroidal compactifications of quotients B/T; of
the complex 2-ball

B = {(z1,22) € C?||21|* + | 22> < 1} = PSUy 1 /PS(Us x Uy)

by lattices ' < PU(2,1), D% := X; \ (B/T;) be the toroidal compactifying divisors and
pi + X; = Y; be compositions of blow downs with exceptional divisors F(p;) onto min-
imal surfaces Y;. The present note establishes a bijective correspondence between the
unramified coverings f : Xo — Xj of degree d, which restrict to unramified coverings
f:D® — DM f: E(py) — E(p1) of degree d and the unramified coverings ¢ : Yo — Y3
of degree d of the corresponding minimal models, which restrict to unramified coverings
@ : pa(DP) = p(DW) | ¢ 2 pa(E(p2) — p1(E(p1)) of degree d. The aforementioned
covering relations among X; define an artinian partial order > on the set S of the smooth
toroidal compactifications X = (B/T")’. The maximal elements with respect to = are called
saturated and the minimal elements with respect to = are said to be primitive. Our consid-
erations reduce the study of X € § to the study of the primitive X € S. For an arbitrary
totally ordered subset {Xy}aca C S, all the minimal models Y, of X, have one and a
same universal cover and one and a same Kodaira dimension. We discuss the saturated and
the primitive X € S of non-positive Kodaira dimension. The covering relations among the
smooth toroidal compactifications (B/T")" are studies in Uludag’s [Uludag]|, Stover’s [Stover],
Di Cerbo and Stover’s [DiCerboStoverl| and other articles.

Here is a synopsis of the article. Let p; : X1 — Y7 be a composition of blow downs
of a smooth projective surface X; onto a smooth projective surface Y. The first section
establishes a bijective correspondence between the unramified coverings f : Xo — X; of
degree d and the unramified covering ¢ : Yo — Y7 of degree d through fibered product
commutative diagrams (4) with appropriate compositions of blow downs py : Xo — Y5.
In order to induce ¢ : Yo — Y7 by f : Xo — X, one observes that ¢ps is the Stein
factorization of the proper holomorphic map pif : Xo — Y;. If DO C X; are (possibly
reducible) divisors, which do not contain irreducible components of the exceptional divisors
E(p;) of p; : X; — Y;, then f is shown to restrict to an unramified covering f : D) — D) of
degree d if and only if ¢ restricts to an unramified covering ¢ : po(D®) — p1(DM of degree
d. In particular, if p; : X3 = (B/T1)" — Y7 is a composition of blow downs of a smooth
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toroidal compactification X; = (B/I'1)’ onto a minimal surface Y; then the unramified
coverings f : Xo = (B/T2) — (B/T1)) = X; of degree d, which restrict to unramified
coverings f : B/T'ys — B/T's of degree d are in a bijective correspondence with the unramified
coverings ¢ : Yo — Y7 by appropriate minimal models Y2 of Xs. Under the aforementioned
correspondence, f restricts to an unramified covering f : D?) = X5\ (B/Ty) — X1\(B/I'1) =
DO of degree d of the corresponding compactifying divisors if and only if ¢ restricts to an
unramified covering ¢ : po(D®) — p1(DW) of degree d. In such a way, the presence of a
finite unramified cover Xy = (B/T'y)’ of X7 = (B/T'1)’ can be detected by the means of an
arbitrary minimal model Y7 of X; and its finite unramified covers Y.

Let Xo, Yo be smooth projective surfaces and ps = B1...05, : Xo — Y5 be a commposi-
tion of blow downs with exceptional divisors E(fi) C Sit1...5r(X2). The second section
introduces compatibility conditions on the finite unramified coverings f : Xo — f(X2) or
v : Yy — ¢(Y3) with py in such a way that the existence of f: Xo — f(X2) to be equivalent
to the existence of ¢ : Yo — ¢(Y32). In particular, for a smooth toroidal compactification
X, = (B/I'y)’ with toroidal compactifying divisor D(®) := X, \ (B/T'2) and a composition of
blow downs ps = 81...08, : Xo — Yo onto a minimal surface Ys, there exists an unramified
covering f : Xo — f(X2) =: X1, which is compatible with ps and restricts to an unrami-
fied covering f : B/T's — f(B/I'2) of degree d if and only if there is an unramified covering
¢ : Yo = o(Ya) =: Y] of a minimal model Y; of X, which is compatible with ps and restricts
to an unramified covering ¢ : p2(D®) — ppa(D?) of degree d. Moreover, X; = (B/T1) is
a smooth toroidal compactification and if p; : X1 — Y7 is a composition of blow downs onto
Y1 then ppo(D®@) = p(DM) for the compactifying divisor D) := X \ (B/T'1) of B/T;. A
smooth toroidal compactification X = (B/T") is primitive if there is no unramified covering
f+ X — f(X) of degree d, which restricts to an unramified covering f : B/I' — f(B/I)
of degree d and is compatible with some composition of blow downs p : X — Y onto a
minimal surface Y. Due to the established duality between the finite unramified coverings
f:X = f(X)and ¢ : Y — ¢(Y) of one and a same degree, the primitiveness of X = (B/T")’
can be detected by the properties of Y.

The last, third section studies the finite unramified Galois coverings f : X = (B/T") —
f(X) of smooth toroidal compactifications X = (B/T")’, which admit a blow down 3 :
X — Y of n € N smooth irreducible rational (—1)-curves onto a minimal surface Y. Di
Cerbo and Stover have shown in [DiCerboStover2| that the smooth toroidal compactifications
X = (B/T")’ with abelian or bi-elliptic minimal model Y have the aforementioned property.
We establish that for such X = (B/T") the compatibility of the unramified coverings ¢ :
Y — o(Y) of degree d, restricting to unramified coverings ¢ : S(D) — ¢B(D) of degree
d with 8 : X — Y is automatic, as far as B(F(B)) = B(D)*"8 coincides with the singular
locus of 3(D). The relative automorphism group Aut(Y,3(D)) = Aut(Y,3(D), 3(D)%"8)
admits an isomorphism ® : Aut(Y,3(D)) — Aut(X, D) onto the relative automorphism
group Aut(X, D) = Aut(X, D, E(53)). Let N(m1(Y)) be the normalizer of the fundamental
group 71 (Y) of Y in the biholomorphism group Aut(Y) of the universal cover Y of Y.
It is well known that the biholomorphism group Aut(Y) of Y is the quotient Aut(Y) =
N(m(Y))/m1(Y). If an unramified covering ¢ : Y — ¢(Y) of degree d restricts to an
unramified covering ¢ : (D) — ¢B(D) of degree d then any g, € N(m1(Y)) N7 (p(Y))
is shown to induce a biholomorphism g, = gom(Y) : 5(D) — B(D) and, therefore, a
factorization f = f,{ of the associated unramified covering f : X = (B/T) — X, =



(B/To) of ¢ : Y — ¢(Y) through the unramified Galois covering ¢ : X — X/(®(g,))
and an unramified covering f, : X/(®(g,)) — Xo = (B/T)’. In particular, for a smooth
toroidal compactification X = (B/I')" with abelian minimal model Y, we establish that
any unramified covering f : X = (B/T) — Xy = (B/Ty)’ of degree d, which restricts to
an unramified covering f : B/T" — B/Iy of degree d, factors through a Galois covering
X — X/(g9), g € Aut(X, D), which restricts to a Galois covering B/I' — (B/T")/(g). The
third section discusses also the saturation and the primitiveness of the smooth toroidal
compactifications X = (B/T")" with Kodaira dimension x(X) = —oo, as well as the smooth
toroidal compactifications X = (B/T")’ with K3 or Enriques minimal model.

1 Unramified pull back of a smooth compactification

Lemma 1. Let M be o complex manifold and N be a complex analytic subvariety of M or
an open subset of M.

(i) If f: M — f(M) is an unramified covering of degree d then f : N — f(N) is an
unramified covering of degree d exactly when f: M\ N — f(M)\ f(N) is an unramified
covering of degree d.

(7) Let us suppose that f: M — f(M) is a holomorphic map onto a complex manifold,
FIN)Nf(M\N)=0and f: N — f(N), f: M\ N — f(M\ N) are unramified coverings
of degree d. Then f: M — f(M) is an unramified covering of degree d.

Proof. (i) Let X := N or X := M \ X. Then f: X — f(X) is an unramified covering of
degree deg(f|x) = deg(f|a) = d exactly when f~!(f(X)) = X. If so, then the intersection
FHf(M\ X)) N X = 0 is empty, whereas f~1(f(M \ X)) = M \ X, the union f(M) =
FX)TIf(M\ X) is disjoint and f: M\ X — f(M\ X)= f(M)\ f(X) is an unramified
covering of degree d.
(ii) The union f(M) = f(N)]][f(M \ N) is disjoint, so that f~*(f(M \ N)) = M \ N,
FYf(N))=N and f: M — f(M) is an unramified covering of degree d.
O

Lemma 2. Let f : X — X' be an unramified covering of degree d of smooth projective
surfaces.
k
(i) Suppose that D = [] Dj is a divisor on X with disjoint smooth irreducible components
j=1
D; and f restricts to an unramified covering f : D — f(D) of degree d. Then f(D) =
U?Zlf(Dj) has smooth irreducible components f(Dj), f restricts to unramified coverings
f:Dj— f(Dj) for all1 < j <k and f(D;) N f(D;) =0 for f(D;) # f(D;).
In particular, D; are smooth elliptic curves of and only if f(Dj) are smooth elliptic
curves.

(i) If C'" is a smooth irreducible rational curve on X' then the complete preimage
d
F7HC") = 1] C; consists of d disjoint smooth irreducible rational curves C; and f restricts
i=1
to isomorphisms f : C; — C' for all 1 < i < d.

Proof. (i) The unramified covering f : D — f(D) is a local biholomorphism, so that f(D)
is a smooth divisor on X’. Thus, all the irreducible components f(D;) of f(D) are smooth



curves and f(D;) N f(D;) # 0 requires f(D;) = f(Dj). For any 1 < i < k let J(4) be the set
of those 1 < j <k, for which f(D;) = f(D;). Then there exists a subset I C {1,...,k} with
[1JGE) ={1,...,k} and f(D) = [] f(D;). By the very definition of J(7), there holds the
iel el

inclusion [[ D; C f~1(f(D;)). Since f restricts to an unramified covering f : D — f(D)

JigJ (@)
of degree d, any p € f~1(f(D;)) belongs to Dg for some 1 < s < k. Then f(p) € f(D;)
specified that s € J(i), whereas f~1(f(D;)) € [I Dj;and f~Y(f(D;)) = [I Dj;. Thus,
J€J () J€J ()
for any ¢ € I the morphism f restricts to an unramified covering f : [[ D; — f(D;) of
JEJ ()
degree d. By definition, any f(p) € f(D;) with p € [[ D; has a trivializing neighborhood
JeJ (@)
U on f(D;), whose pull back f~1(U) = [[ V, is a disjoint union of neighborhoods V;, of
q€f~(p)
q€ f~1(p) on ][ D; with biholomorphic restrictions f : V; — U. For a sufficiently small
J€J (@)

U one can assume that V;, C D; for ¢ € D;. That is why f restricts to unramified coverings
f:Dj — f(Dj) = f(D;). In particular, D; are smooth elliptic curves exactly when f(D;)
are smooth elliptic curves.

k
(ii) Let f~1(C") = Y C; be a union of k irreducible corves C;, d; := deg [f|c, : C; — C'

=1
and Br(f|c,) :== {q € C"| |f~*(q) N Ci| < d;} be the branch locus of f|¢, for 1 <i < k. Any
Br(f|c;) is a finite set, as well as the intersection Uj<;<;j<1C; N C; of different irreducible
components, so that

2= [Uf:lBr(f‘Ci)} U [Ui<icj<kf(Ci N Cj)]

is a finite subset of C’. For any ¢ € C'\ X one has f~'(q) = [[ f~'(q) N C;, whereas

=1
k k
d=f"| = _|fMonCi|=> d
i=1 =1

If ¢; € Br(f]c;) then fYg) = U f71(gj) N C; with ‘fﬁl(qj) N Cj‘ < dj, so that

k k
d= )| <Y anc| <Y di=d
i=1 i=1

This is an absurd, justifying Br(f|c;) = 0 for all 1 < j < k. Similarly, for any p € C; N Cj
there holds

k k
d=1" <X e)nGil =) di=d.
=1 =1

The contradiction shows that the irreducible components C; of f~(C’) are disjoint. The
unramified coverings f|c, : C; — C” of the smooth irreducible rational curve C” are of degree

k d
d; = 1, due to m(C") = {1}. Therefore d = >_ d; = k and f~1(C’") = ] C; consists of d
i=1 =1

4



disjoint smooth irreducible rational curves with biholomorphic restrictions f|¢, : C; — C’
for all 1 < <d.
O

A (—=1)-curve L; on a smooth projective surface Y is a smooth irreducible rational curve
with self-intersection L? = —1. Throughout, we say that a smooth projective surface Y is
minimal if it does not contain a (—1)-curve. This is slightly different from the contemporary
viewpoint of the Minimal Model Program, which considers a smooth projective surface Y to
be minimal if its canonical divisor Ky is nef (i.e., Ky.C > 0 for all effective curves C C Y).
The numerical effectiveness of Ky excludes the existence of (—1)-curves on Y. If Y is of
Kodaira dimension x(Y) = —oo then Ky is not nef, regardless of the presence of (—1)-
curves on Y. That is the reason for exploiting the older, out of date notion of minimality
of a smooth projective surface, which requires the non-existence of (—1)-curves on Y. By a
theorem of Castelnuovo (Theorem V.5.7 [Ha]), for any smooth irreducible projective surface
X there is a birational morphism p : X — Y onto a minimal smooth projective surface Y,
which is a composition of blow downs of (—1)-curves. If X is of Kodaira dimension x(X) > 0
then the minimal model Y of X is unique (up to an isomorphism). This is no more true
when X is birational to a rational or a ruled surface.

Lemma 3. (i) Let Bl: X1 — Y7 be a blow down of a (—1)-curve L1 C X7 and ¢ : Yo — Y]
be an unramified covering of degree d. Then the fibered product commutative diagram

B
X2 Z:X1 Xy, Y2 —_— }/2

f ¢ (1)

Bl
X1

Y
consists of an unramified covering f : Xo — X1 of degree d and the blow down B : Xo — Yo
d
of the disjoint union f~'(L1) = [[ L1,; of the (—1)-curves L1 ;.
j=1
(i) Let p1 : Bly...Bl,_1Bl. : T, := X3 — Y7 =: Ty be a composition of blow downs
Bl : T; — Ti—1 of (—1)-curves L; C T; and ¢ : Yo — Y] be an unramified covering of degree
d. Then the fibered product commutative diagrams

Bi
Si =T, X1, Sic1 —— S;1

Pi Pi—1 (2)
Bl;
T; Tia
fit into a commutative diagram

S, o Si=Ti %, S~ 5, .So=Ys

f @i Pi-1 Y=¢0 (3)
Bl;
TT::X Tz T’z—l ..T0::Y1



and induce a fibered product commutative diagram

XQ :Xl Xyl Y2 L Y2

/ ;

X3 Y

with an unramified covering f : Xo — X3 of degree d and a composition ps = 81 ... Br—10r :

d
Xo = Y5 of blow downs of go;l(Li) =[] Lij forall1 <i<r.
j=1

Proof. (i) By the very definition of a blow down Bl : X7 — Y7 of Ly to BI(L1) = ¢1 € Y1,
one has X1\ L1 = Y1\ {¢:}. Then

Xo:=X5 Xy, Yo = [(Xl \ Ll) Xy, YQ] H [Ll Xvy Yg]

decomposes into the disjoint union of
(X1 \ L1) v, Y2 = {(z1,92) |1 = Bl(z1) = p(y2)} = Yo \ ¢~ '(q1) and

Ly xy, Yo = {(z1,92) | @1 = Bl(z1) = 0(y2)} = L1 x ¢ ' (qn).

If o Hq1) = {p1;11 < j < d} then X is the blow up of Y3 at {p1;]|1 < j < d}. Due
to BIf = B, the exceptional divisor of 3 is B~ ({p1,;|1<j<d}) = Bl q) =

(©B)Har) = BL) Hq) = fTBI (@) = ML) = ﬁ Ly j. According to Corollary
j=1

17.7.3 (i) from Grothendieck’s [Groth4], f : Xo — X; is an unramified covering, since
¢ : Yo — Y] is an unramified covering.

(ii) By an increasing induction on 1 < i < r, one applies (i) to the fibered product
commutative diagrams (2) and justifies (ii).

O

Lemma 4. (i) In the notations from Lemma 3 (i) and the fibered product commutative
diagram (1), let D@ be a (possibly reducible) divisor on Xo, which does not contain an
irreducible component of the exceptional divisor of B and DV be a (possibly reducible) divisor
on X1, which does not contain the exceptional divisor L1 of Bl. Then the restriction f :
D® — DWW s an unramified covering of degree d = deglf : Xo — Xi] if and only if
@ : B(DP) = BYDW) is an unramified covering of degree d.

(7i) In the notations from Lemma 3 (ii) and the fibered product commutative diagram
(4), let D®) be a (possibly reducible) divisor on X, which does not contain an irreducible
component of the exceptional divisor of ps and DY) be a (possibly reducible) divisor on X,
which does not contain an irreducible component of the exceptional divisor of p1. Then the
restriction f : D@ — DW s an unramified covering of degree d if and only if the restriction
@ : pa(DP) = p1(DW) is an unramified covering of degree d.



Proof. (i) If f: D@ — DM is an unramified covering of degree d then f~1(DM N L) =

DY (L) = D@ N f~1(Ly) and the restriction f : DM N f~1 (L) - DM N L is
d

an unramified covering of degree d. After denoting f~*(L1) = [[ L1, 8(L1) = p1,; and

j=1
BI(L1) = q1, one applies Lemma 1 (i), in order to conclude that

p=f: B\ {p|1<j<dh =D\ (L) — DON Ly = BDW)\ {a1}

is an unramified covering of degree d. Now, ¢ restricts to ¢ : {p1; |1 < j < d} = {q1}, so
that

@ BDD) = B\ {pi, |1 <j <} [[{pryl 1< < d} —
— [BIOD)\ {a:}| [ T{ar} = BUDW)

is an unramified covering of degree d by Lemma 1 (ii).
Conversely, assume that ¢ : §(D®) — BI(DW) is an unramified covering of degree
d Choose a sufficiently small neighborhood V' of ¢; = BI(L;) on Y7, such that o= }(V) =

]_[ Uj is a dsijoint union of neighborhoods U; of p1j, 1 < j < d on Y with biholomorphic

j=
restrlctlons ¢ :Uj =V of ¢. Bearing in mind that Bl : X1 — Yj is the blow up of Y7 at

q1, one decomposes

BI(DW) = [Bl(D“)) \ V} I1 [Bl(D“)) AV] and

pW = [BI(D“)) \ V} [IBr ' BUDYV) V).

Similarly, 3 : X5 — Y3 is the blow up of Y5 at o~ !(q1) = {p1,;11 < j < d}, so that there
are decompositions

[5 } [ )N t(v)]  and

= [sp v>} D@) N (V)).
According to o {(BI(DW) N V) = o ' (BIDW)) N~ (V) = B(DP) N (V), the re-
striction ¢ : B(D@) N~ (V) = BI(D WYNV is an unramlﬁed covering of degree d. Now,

Lemma 1 (ii) applies to provide that
£ =6 BOP)\ g7 (V) — BUDWD)\V
is an unramified covering of degree d. According to Lemma 1 (ii), it sufficed to show that
f871 D) ne (V) — BITBIDWY) N V)

is an unramified covering of degree d, in order to conclude that f : D@ — DM jis an
unramified covering of degree d. To this end, note that

d d
SBUDD) N V) = (D) (V) = B(DP) (H ) =11 [ o],
=1 j=1

7



so that ;
1 [ﬁ(D@)) nU;| — BIDW) NV
j=1

is an unramified covering of degree d. Therefore, the biholomorphisms ¢ : U; — V restrict
to biholomorphisms ¢ : S(D®) N U — BI(DM)NV. According to ©(p1,j) = qu, there arise
biholomorphisms

e (BDPD)N U\ {prs} — BUDY) N V)\ {ar}.

By the very definition of a blow up at a point, these induce biholomorphisms

1+ (B )\ Ap1s}| [T L1s — [BUDD) V) {a}] TT 4

for all 1 < j <d. Bearing in mind that

]i[ { [(/B(D@)) N Uj) \ {pl,j}} HLLJ} _ Bfl(ﬁ(D(g)) A (pfl(V)),

one concludes that ¢ induces an unramified covering
f:B87HBDP) N (V) — BIT(BUDY) N V)

of degree d.

(ii) Along the commutative diagram (3), if f : D — DM is an unramified covering of
degree d then by a decreasing induction on r > i > 1 and making use of (i), one observes that
©i + Bit1-- .BT(D(Q)) — Bliyq .. .BIT(D(I)) is an unramified covering of degree d, whereas
@ : p2(DP) = py(DW) is an unramified covering of degree d. Conversely, suppose that
@ : po(D®) = py(DW) is an unramified covering of degree d. Then by an increasing
induction on 1 <4 < r and making use of (i), one concludes that

it Bis1-.. Br(DP) = Bliyq ... BlL(DW)

is an unramified covering of degree d. As a result, f : D® — D) is an unramified covering

of degree d.
O

Corollary 5. Let X; = (B/T'1) be a smooth toroidal compactification, p1 : X1 — Y7 be
a composition of blow downs onto a minimal surface Y1, ¢ : Yo — Y7 be an unramified
covering of degree d and (4) be the defining commutative diagram of the fibered product
X2 = X1 Xy; YQ. Then:

(1) there is a subgroup Ty of Ty of index [y : T's] = d, such that Xy = (B/Ty) is the
toroidal compactification of B/Ty;

(i) f : Xo — X1 restricts to unramified coverings f : B/T'y — B/T'1, respectively,
f:D® = X,\ (B/Ty) = X1\ (B/T'1) =: DU of degree d;

(#4) the composition ps : Xo — Yo of blow downs maps onto a minimal surface Ys;

() @ restricts to an unramified covering ¢ : po(D®)) — p1 (DM of degree d.



Proof. By Lemma 3 (ii), the fibered product diagram (4) consists of an unramified covering
[+ Xo — Xj of degree d and a composition py : Xo — Y5 of blow downs. The surface
Y, is minimal. Otherwise any (—1)-curve L} on Y2 maps isomorphically onto a (—1)-curve
(L)) C Y1, according to Lemma 2 (ii). That contradicts the minimality of ¥; and shows
the minimality of Ya.

The unramified covering f : Xo — X7 = (B/T'1)" of degree d restricts to an unramified
covering f : f~1(B/T1) — B/T; of degree d. The smoothness of B/T'; excludes the existence
of isolated branch points of the I';-Galois covering ¢; : B — B/T";. However, (; can ramify
along divisors and B is not the usual universal cover of the complex manifold B/I';. Nev-
ertheless, B is the orbifold universal cover of B/T"; and the orbifold universal covering map
(1 : B — B/I'; factors through a (possibly ramified) covering ¢ : B — f~1(B/I'1) and the
covering f : f~Y(B/I'1) — B/Ty, i.e., (1 = f¢2. Since 7™ (B) = {1} is a normal subgroup
of Ty := m"™P(f~1(B/T")), the covering (s is Galois and its Galois group I'y is a subgroup of
'y = 79 (B/T1) of index [y : I's] = d. In particular, f~1(B/I'1) = B/T's. By Lemma 1
(i), f restricts to an unramified covering f : D® := X2 \ (]B/FQ) — X1\ (B/T;) =: DD

of degree d of the toroidal compactifying divisor D! ]_[ D ) of B/T;. Note that for

any 1 < j < k the restriction f : f_l(D§1)) — D§ ) is an unramified covering of degree
d, whereas a local biholomorphism. Therefore f_l(D(-l)) = U:; 1D§2i) is smooth and has

J
disjoint smooth irreducible components D](-zi). As a result,

D@ — f1(p) f[ pM ﬁ D

(2)

has disjoint smooth irreducible components D"

curves, so that all D( ) are smooth elliptic curves by Lemma 2 (i). That is why, Xo = (B/T2)’
is the toroidal compactlﬁcatlon of B/I'y. According to Lemma 4 (ii), ¢ : Yo — Y] restricts
to an unramified covering ¢ : po(D®) = py(DW) of degree d.

By assumption, D](l) are smooth elliptic

O

Lemma 6. (i) Let f: Xo — X1 be an unramified covering of degree d of smooth projective
surfaces and Bl : X1 — Y7 be a blow down of a (—1)-curve Ly C X;. Then the Stein

factorization o3 of BIf consists of the blow down 3 : Xo — Y3 of f~1(L1) = H Ly and an

unramified covering ¢ : Yo — Y1 of degree d, so that Xo = X1 Xy, Ya is the ﬁbered product
of X1 and Ys over Y.

(1) Let py = Bly...Bl. : T, := X7 — Y1 =: Ty be a composition of blow downs of
(=1)-curves L; C T; and f : Xo — X1 be an unramified covering of degree d. Then the Stein
factorization pps of p1f : Xo — Y1 closes the fibered product commutative diagram (4) with
the composition p2=0B1...0r Sy = Xo — Yo := 5y of the blow downs B; : S; — Si—1 of

-1

o, (L;) = ]_[ L for all 1 <i <1 and an unramified covering ¢ : Yo — Y1 of degree d.
7=1

Proof. (1) If BIf = ¢f : X2 — Y; is the Stein factorization of Blf and ¢; := BI(L;)



d
then (Blf)™'(q1) = f'Bl"Y(q1) = f~'(L1) = [ L1, has irreducible components L1
j=1
by Lemma ??. For any ¢ € Y7 \ {¢:1} one has (Blf)"'(¢) = f'Bl"l(q) = f~!(q) of
cardinality ‘ f_l(q)‘ = d. Therefore, the surjective morphism S : Xy — Y5 with connected
fibres is the blow down of Ly, V1 < j < d. According to Lemma 1 (i), the restriction
f:Xo\ f7Y(L1) = X1\ L1 is an unramified covering of degree d, since f : f~1(L1) — L1
is an unramified covering of degree d. In such a way, there arises a commutative diagram

X\ FH L) 2 v\ BN (L)

f ¢
Bl=Id
X1\ Ly ——— Y1\ {a1}

and ¢ : Y2\ BfH(L1) — Y1\{q1} is an unramified covering of degree d. If p1 j := B(L1 ;) then

d
B~ N ar) = (9B) (@) = (BLf) " Ha) = ]_[1 Ly j reveals that o™ (q1) = {p1;]1 < j < d}
=

consists of d points and ¢ : Yo — Y7 is an unramified covering of degree d. By Lemma 3 (i),
the fibered product X} := X Xy, Y2 is the blow up of Y3 at ¢~ 1(q1) = {p1;11<j<d}, so
that Xé = XQ.

According to Grothendieck’s Corollary 17.7.3 (i) from [Groth4], it suffices to show that
X/} = Xo, in order to conclude that ¢ : Yo — Y7 is an unramified covering of degree d. We
have justified straightforwardly that ¢ : Yo — Y7 is an unramified covering of degree d, in
order to use it towards the coincidence of X with the fibered product X} := X xy, Ya.

(ii) is an immediate consequence of the fact that the composition of morphisms with
connected fibres has connected fibres.

O

Corollary 7. Let f: Xo — X7 = (B/T'1)’ be an unramified covering of degree d of a smooth
toroidal compactification X1 = (B/T1), p1 : X1 = Y1 be a composition of blow downs onto
a minimal surface Yy and DY) := X\ (B/T'1) be the toroidal compactifying divisor of B/T.
Then:

(i) there exist a composition ps : Xo — Yo of blow downs onto a minimal surface Yo and
an unramified covering ¢ : Yo — Y1 of degree d, which exhibits Xo = X1 Xy, Y2 as a fibered
product of X1 and Yo over Y7,

(1) there is a subgroup T'a < Ty of index [['1 : T'a] = d, such that Xo = (B/T2) is the
toroidal compactification of B/T'y and f restricts to unramified coverings f : B/I's — B/I'q,
f:D@ = X5\ (B/Ty) = X1\ (B/T's) =: DU of degree d;

(iii) @ restricts to an unramified covering ¢ : pa(D®) — p1(DWM) of degree d.

Proof. (i) is an immediate consequence of Lemma 6 (ii) and the fact that any inramified
cover Yy of a minimal surface Y7 is minimal.

(ii) The unramified covering f : Xo — X; = (B/T'1)" of degree d restricts to an un-
ramified covering f : f~'(B/T';) — B/Ty of degree d. As in the proof of Corollary 5,
there is a subgroup I's < T'; of index [I'; : T'y] = d, such that Xo = (B/T9) is the

10



toroidal compactification of B/T'y and f restricts to unramified coverings f : B/T's — B/T'1,
f:D® = X,\ (B/Ty) = X1\ (B/T';) =: DU of degree d.
(iii) is an immediate consequence of Lemma 4 (ii).
O

Definition 8. A smooth toroidal compactification X1 = (B/T'1) is saturated if there is no
unramified covering f : Xo = (B/T3) — (B/T1) = X1 of degree d, which restricts to an
unramified covering f : B/T'9 — B/I'1 of degree d.

Bearing in mind that the fundamental group of a smooth projective variety is a birational
invariant, one combines Corollary 5 with Corollary 7 and obtains the following

Corollary 9. A smooth toroidal compactification X1 = (B/T'1) is saturated if and only if
one and, therefore, any minimal model Y1 of X1 is simply connected.

2 Unramified push forward of a smooth compactification

Let X5 be a smooth projective surface, 5 : Xo — Y5 be a blow down with exceptional divisor

d
Ep) = ]_[1 Lis and f: Xy — X be an unramified covering of degree d, which restricts
S=

to an unramified covering f : E(8) — f(E(B)) of degree d. According to Lemma 2 (ii),
Ly == f(E(B)) is a (—1)-curve on X;. Then Lemma 6 (i) implies that there is a fibered
product commutative diagram (1) with the blow down Bl : X; — Y} of L7 and an unramified
covering ¢ : Yo — Y of degree d, which shrinks B(E(8)) = {p1,; := B(L1;)|1 < j < d} to
a point q; € Y7. We say that ¢ is induced by f.

Suppose that po = 1 ... 6, : Sr := Xa = Yo =: Sy is a composition of blow downs

Bi 1S = ﬁi+1 .- /BT(ST) — 51 =06;... BT(ST) (5)

d
with exceptional divisors E(3;) = L, for all 1 < i < r. By a decreasing induction on

s=1
r >4 > 1, let us assume that there is a fibered product commutative diagram

Br Bit1

Sr Sr—l - Si+1 Sz
f=er ©Or—1 Yi+1 ®i
Bl Bl;
f(Sr) Pro1(Sr1) i (Si) — 0i(Si)

with fibered product squares Bljp; = ¢;_13;, such that ¢; restricts to an unramified cov-
ering ¢; : E(B;) = L; := ¢j(E(B;)) of degree d and ¢;_1 shrinks the set 8;(E(5;)) =
{pjs = Bi(Ljs)|1 < s < d} to a point ¢j € ¢;—1(Sj—1) for all r > j > i+ 1. If
wi + Si = ¢i(S;) restricts to an unramified covering ; : E(B;) — L; = p;(E(5;)) of
degree d then there is an unramified covering p;—1 : Si—1 — pi—1(Si—1) of degree d, which
shrinks B;(Eg,) = {pi,s = Bi(Lis)|1 < s < d} to a point ¢; € S;—1 and closes the fibered
product commutative diagram ¢;_18; = Bl;p;. Thus, if an unramified covering f : Xo — X3

11



d
of degree d induces unramified coverings E(8;) = [[ Lis — L; of degree d for all 1 < ¢ <r
s=1

then there is an unramified covering ¢ := ¢ : Yo = So — ¢o(So) =: Y1 of degree d, which
induces unramified coverings 8;(E(8;)) = {pi,s := Bi(Lis) |1 < s < d} = {ai} C pi—1(Si-1)
of degree d for all 1 <1 <r.

Conversely, assume that Ys is a smooth projective surface, 8 : Xo — Y5 is a blow down

d
with exceptional divisor E(8) = [[ L1,s and ¢ : Yo — Y} is an unramified covering of degree

d, which shrinks S(E(8)) = {p1,s = B(L1s)|1 < s < d} to a point ¢; € Yj. According to
Lemma 3 (i), there is a fibered product commutative diagram (1), where Bl : X1 — Y7 is
the blow up of Y¥j at ¢1 € Y7 and f: Xy — X; is an unramified covering of degree d, which

d
restricts to an unramified covering f : E(8) = [[ L1s — L1 := BI"*(q1) of degree d. Let
s=1

p2=P01...0: S := X9 — Yy =: Sy be a composition of blow downs (5) with exceptional

d
divisors E(f;) = ][ Lis. By an increasing induction on 1 <1 < r, suppose that
s=1
S — 5 LS e =1
wi goi_lJ %l P=%o
Bl; Bl
©i(Si) —— wi—1(Si-1) o 1(S1) —— p(Y2)

is a fibered product commutative diagram with fibered product squares ¢;_15; = Bljy;,
such that ¢;_1 restricts to an unramified covering

pi-1: Bi(E(B;)) = {pjs = Bj(Ljs) |1 < s <d} — {g;} C @j—-1(Sj-1)
of degree d and ¢; restricts to an unramified covering
d
i B(B) =[] Lis — @i (EB) = L

s=1

of degree d for all 1 < j <. If ¢; restricts to an unramified covering
@i Bit1(E(Biv1)) = {pit1,s = Bit1(Lit1,s) |1 < s <d} — {gi+1} C 9i(Si)
of degree d then there is an unramified covering
Git1 : Siy1 — Pir1(Sit1)

of degree d, which restricts to an unramified covering

d
wir1: E(Biy1) = H Lit1,s — Lit1 = @ip1(E(Bit1))

s=1
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of degree d and closes the fibered product commutative diagram ;5,11 = Bliy1p;11 with
the blow down Blit1 : @ir1(Sit1) — ¢i(Si) of Lit1. In such a way, if ¢ : Yo — Y] is an
unramified covering of degree d, which induces unramified coverings

Bi(E(Bi) = {pi,s == Bi(Lis) |1 < s < d} — {gi} C pi-1(Si-1)
of degree d for all 1 <1i < r then f:= ¢, : Xo — f(X2) is an unramified covering of degree

d
d, which induces unramified coverings E(5;) = [[ Lis — L; of degree d for all 1 < i < r.
s=1

The above considerations justify the following

Lemma-Definition 10. Let Xo, Y5 be smooth projective surfaces and
,02:[31...5,,:& Z:X2—>Y2 =: So

be a composition of blow downs (5) with exceptional divisors E(B;) for all 1 < i <r. Then
the following are equivalent:
(i) there is an unramified covering f : Xo — f(X2) of degree d, which induces unramified
d
coverings E(B;) = [ Lis — L; of degree d for all 1 <1 <r;

s=1
(i) there is an unramified covering ¢ : Yo — ¢(Y2) of degree d, which induces unramified
coverings Bi(E(B,)) = {pis = BiLis) |1 < 5 < d} — {a:} C @ic1(Si1) of degree d for all
1< <r.
If there holds one and, therefore, any one of the aforementioned conditions then there is
a fibered product commutative diagram (4), where

p1 =Bl ...Bl : Xj :=p(X2) = o(Y2) = Y]

is the composition of blow downs Bl; of L; for all 1 < i < r and we say that f : Xo — f(X2)
and ¢ : Yo — ¢©(Y2) are compatible with p.

Corollary 11. Let Xo = (B/T'2) be a smooth toroidal compactification and ps : Xo — Yo be
a composition of blow downs onto a minimal surface Yo. If there is an unramified covering
f:Xo=(B/T2) — f(X2) = X1 of degree d, which is compatible with py and restricts to
an unramified covering f :B/T9 — f(B/T'2) of degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified covering ¢ :
Yo = ¢(Y2) =: Y1 of degree d and a composition of blow downs p1 : X1 — Y1 onto a minimal
surface Y7;

(i) there is a lattice Ty of Aut(B) = PU(2,1), containing T's as a subgroup of index
[y : T9] =d and such that X1 = (B/T'1)" is the toroidal compactification of B/T';

(iii) @ restricts to an unramified covering ¢ : po(DP) — p1(DW) of degree d, where
DY) .= X; \ (B/T;) are the compactifying divisors of B/T;, 1 < j < 2.

Proof. (1) is an immediate consequence of Lemma 10.

Towards (ii), let us note that the composition f(s : B — f(B/I'2) of the orbifold universal
covering (3 : B — B/I'y with the unramified covering f : B/T's — f(B/I'2) is Galois, since
79" (B) = {1} is a normal subgroup of I'y := 7$*°(f(B/T'2)). Moreover, n¢">(B/I'y) = I'y is
a subgroup of I'y of index [’y : T'g] = d and f(B/T2) = B/T';. By Lemma 1 (i), f: X9 — X3
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restricts to an unramified covering f : D®) = X, \ (B/T) — DM := X \ (B/T'1) of degree
d. The toroidal compactifying divisor D@ of B /Ty has disjoint smooth elliptic irreducible
components, so that Lemma 2 (i) applies to provide that DWW consists of disjoint smooth
elliptic irreducible components and X; = (B/I'1)’ is the toroidal compactification of B/T';.
According to Lemma 4 (ii), that suffices for ¢ : Yo — Y7 to restrict to an unramified covering
¢ p2(DP) = p1(DW).

O

Corollary 12. Let Xo = (B/I'5)’ be a smooth toroidal compactification, D) := X, \ (B/Ty)
be the compactifying divisor of B/T'y and ps : Xo — Y be a composition of blow downs onto
a minimal surface Yo. If ¢ : Yo — @(Y2) is an unramified covering of degree d, which is
compatible with py and restricts to an unramified covering ¢ : pa(D®) = @pa(DP) of
degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified covering f :
X9 — f(X2) =: X1 of degree d and a composition of blow downs p; : X1 — Y1 onto a
minimal surface Yq;

(i) there is a lattice T'1 of Aut(B) = PU(2,1), containing T's as a subgroup of index
[y : Ty] = d and such that X1 = (B/T'1)’ is the toroidal compactification of B/T';

(115) f restricts to an unramified covering f:B/T'y — B/T'1 of degree d.

Proof. Lemma 10 justifies (i). According to Lemma 4 (ii), f restricts to an unramified
covering f : D®) — f(D®) of degree d. Then Lemma 1 (i) applies to provide that f :
X, \ D® = B/Ty — X1\ f(D®) is an unramified covering of degree d. The proof of
Corollary 11 (ii) has established that this is sufficient for the existence of a lattice I'; of
Aut(B) = PU(2,1), containing I's as a subgroup of index [I'; : I's] = d and such that
X, \ f(D®) = B/I';. That justifies (iii). By assumption, D®) consists of smooth elliptic
irreducible components. Therefore f (D(Q) has smooth elliptic irreducible components and
X1 = (B/T1) ] £(D®) is the toroidal compactification of B/T'.

O

Definition 13. Let X = (B/T") be a smooth toroidal compactification. If there is no un-
ramified covering f : X — f(X) of degree d, which restricts to an unramified covering
f:B/I' — f(B/T') of degree d and is compatible with some composition of blow downs
p: X =Y onto a minimal surface Y, we say that X = (B/T) is primitive.

The Euler characteristic of a smooth toroidal compactification X = (B/T")’ is a natural
number e(X) = e(B/I"). That is why, there exists a primitive smooth toroidal compactifi-

cation Xo = B/T'y and a finite sequence

Xo

of unramified coverings f; : X; = (B/I';)) — (B/T;—1)" = X;_1 of degree d; of smooth toroidal
compactifications X; = (B/I';)’, which restrict to unramified coverings f; : B/T'; — B/I';_1
of degree d; and are compatible with some compositions of blow downs p; : X; — Y; onto
minimal surfaces Y;. Combining Corollary 11 with Corollary 12, one obtains the following
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Corollary 14. Let X = (B/T) be a smooth toroidal compactification with toroidal com-
pactifying diwvisor D := X \ (B/T"). Then X is primitive if and only if no one minimal
model Y of X with a composition of blow downs p : X — Y admits an unramified covering
©:Y = oY) of degree d > 1, which restricts to an unramified covering ¢ : p(D) — @p(D)
of degree d and is compatible with p.

Let us suppose that a smooth toroidal compactification X = (B/T")" with toroidal com-
pactifying divisor D := X \ (B/T") admits a blow down 5 : X — Y of n € N smooth irre-
ducible rational (—1)-curves onto a minimal surface Y and there is an unramified covering
v :Y — oY) of degree d, which restricts to unramified coverings ¢ : (D) — ¢B(D) and
v : B(E(B)) = ¢B(E(B)) of degree d. Then the Euler number of the smooth surface ¢(Y)
is e(p(Y)) = Y ¢ Z and the cardinality of pB(E(8)) if |pB(E(3))| = LEBN — » ¢ N,
so that d € N divides e(Y') and n = |5(E(f5))|. As a result, d divides the greatest common
divisor GCD(|B(E(B))],e(Y)).

Note that the compatibility of an unramified covering ¢ : Y — @(Y) with §: X — Y
reduces to ¢ 1 (pB(E(B)) = B(E(B)) and is detected on Y. When p = 1...5,: X = Y
is a composition of r > 2 blow downs, the compatibility of an unramified covering ¢ :
Y — o(Y) of degree d with p cannot be traced out on the minimal model Y of X alone.
Namely, if Sy : =Y, Ty := ¢(Y) then in the notations from the commutative diagram (3),
the unramified covering ¢ : S1 — 11 of degree d may restrict to an unramified covering
w1 1 Po(E(B2)) — ¢1P2(E(B2)) of degree d, but ¢ := ¢ is not supposed to restrict to
an unramified covering ¢ : B162(E(B2)) — ¢B152(E(P2)) of degree d. More precisely, if
an irreducible component L;; of E(f1) intersects fo(E(f2)) in at least two points then

|B182(E(B2))| < d and ¢ : 5152(E(S2)) = ¢P1P2(E(B2)) is of degree < d.

3 Saturated and primitive smooth compactifications of non-
positive Kodaira dimension

Definition 15. Let X = (B/T") and Xo = (B/T)’ be smooth toroidal compactification. We
say that X dominates Xy and write X = Xo or Xo = X if there exist a finite sequence of
ball lattices

I, =I'<I', 1 <...<Ihi<o1 <. < Iy <Dy,

with smooth toroidal compactifications X; = (B/T;)" of the corresponding ball quotients B/T;
and a finite sequence of unramified coverings

X, =X i» Xn_1 X L Xi1... X1 4

Xo

of degree deg [f; : X; — X;—1] = [['i—1 : Iy] = d; € N, which restrict to unramified coverings
fi :B/T; — B/I';_1 of degree d; and are compatible with some compositions p; = Bi1 ... Bir,
X; = Y, of blow downs (3; ; onto minimal surfacesY;.

It is clear that a smooth toroidal compactification X = B/T is saturated if and only if it
is maximal with respect to the partial order >. Similarly, X is primitive exactly when it is
minimal with respect to >. Note that the partial order > on the set S of the smooth toroidal
compactifications X = (B/T")’ is artinian, i.e., any subset S, C S has a minimal element

15



X, = (B/T,) € S,. The minimal X € S are exactly the primitive ones, but the minimal
X, € S, are not necessarily primitive, since such X, is not supposed to be a minimal element
of S.

The present section discusses the saturated and the primitive smooth toroidal compact-
ifications X = (B/T")" of Kodaira dimension x(X) < 0.

Proposition 16. If X = (B/T") is a smooth toroidal compactification of Kodaira dimension
k(X) = —oo then X is a rational surface or X has a ruled minimal model 7 :Y — E with
an elliptic base E.

Any smooth rational X = (B/T) is both saturated and primitive.

There is no smooth saturated X = (B/T), whose minimal model is a ruled surface
m:Y — E with an elliptic base E.

Proof. (i) Let p: X = (B/T") — Y be a composition of blow downs onto a minimal surface
Y of k(Y) = —oo, Then Y = P?(C) is the complex projective plane or 7 : ¥ — E is a
ruled surface with a base E of genus g € Z=°. The toroidal compactifying divisor D :=

k
X\ (B/T) = [[ Dy has disjoint smooth irreducible elliptic components D;. If g > 2 then
j=1
the morphisms mp : D; — E map to points p; := mp(D;) € E, so that p(D;) C 7 1(p;) for
all 1 < j < k. The exceptional divisor L of p: X — Y has finite image p(L) = {q1,...,G¢m}

on Y and p(L) C [[ 7 (m(g:)). Therefore
1=1

m

7" (x(a))

i=1

Y =Y\ CY\p(L)=X\L

and p acts identically on Y’. Moreover,

k

m k
Y=Y\ |[]=" )| =Y\ (Hw‘%(%)))ﬂ [T~"'@) ]| cB/r.
i=1 j=1

j=1

However, Y contains (infinitely many) fibres 7=!(e) ~ P!(C), e € E of 7 : Y — E and
that contradicts the Kobayashi hyperbolicity of B/T". In such a way, we have shown that

any minimal model Y of a smooth toroidal compactification X = (B/T")" of k(X) = —oo is
birational to P2(C) or to a minimal ruled surface 7 : Y — E with an elliptic base E.
Any rational X = (B/T") is simply connected and does not admit finite unramified

coverings X7 — X of degree d > 1. That is why X is saturated. Let us suppose that f :
X = (B/T) - Xo = (B/Ty) is an unramified covering of degree d > 1, which is compatible
with some composition of blow downs p : X — Y onto a minimal rational surface Y and
restricts to an unramified covering f : B/T" — B/Ty of degree d. The Kodaira dimension is
preserved under finite unramified coverings, so that x(Xy) = k(X ) = —oo. The surface X is
not simply connected, whereas non-rational. Therefore, there is a composition pg : Xo — Yo
of blow downs onto a ruled surface my : Yy — Ep with base Ej of genus gg € N. The surjective
morphism pof : X = (B/T) — Yj induces an embedding (pof)* : H%'(Yy) — H*'(X). On
one hand, the irregularity of Yy is h%!(Yp) := dim¢ H>'(Y)) = go € N. On the other hand,
the rational surface X has vanishing irregularity h%!(X) = 0. That contradicts the presence
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of a finite unramified covering f : X — Xo of degree d > 1 and shows that any smooth
rational toroidal compactification X = (B/T")’ is primite.

Let X = (B/T")’ be a smooth toroidal compactification, whose minimal model Y is a
ruled surface 7 : Y — F with an elliptic base E. Since Y is birational to P!(C) x E and the
fundamental group is a birational invariant, one has 71(X) ~ m1(Y) ~ m(E) ~ (Z?,+). In
particular, Y is not simply connected. According to Corollary 9, X cannot be saturated.

O

According to the Enriques-Kodaira classification, there are four types of minimal smooth
projective surfaces Y of Kodaira dimension x(Y) = 0. These are the abelian and the bi-
elliptic surfaces with universal cover C?, as well as the K3 and the Enriques surfaces with K3
universal cover. If ¢ : Y5 — Y] is a finite unramified covering of smooth projective surfaces
then the Kodaira dimension k(Y1) = x(Y2) and the universal covers Y7 = Y5 coincide. Let
Y> be a smooth projective surface with a fixed point free involution g, : Yo — Y5 and
B : X9 — Y5 be the blow up of Y at a (g,)-orbit {p1,1,p12 = go(p1,1)} C Ya. Then by the
very definition of a blow up, g, iniduces a fixed point free involution g; : Xo — Xo, which
leaves invariant the exceptional divisor E(8) = L11 [ L12, L1 := B~ (p1,;) of B and there
is a fibered product commutative diagram (4) with a (g,)-Galois covering ¢ : Yo — Y1, a (g1)-
Galois covering f : Xo — X7 and the blow up Bl: X7 — Y7 of Y1 at {1} = o({p1.1,p12})-
Now, suppose that po = B1... 5, : Sy := Xo — Yo =: Sy is a composition of blow downs with
exceptional divisors E(f;) = L; 1 [[ Li2 and g, : So — So is a fixed point free involution. By
an increasing induction on 1 < ¢ <, if g;—1 : S;—1 — S;—1 is a fixed point free involution,
which leaves invariant 5;(E(8;)) = {pi1,pi2} then there is a fixed point free involution
gi = Si — S;, which leaves invariant E(f5;) = L; 1 [[ Li2. In such a way, if a fixed point free
involution gg : So — Sp induces isomorphisms L; 1 — L; o for all 1 < ¢ < r then there is a
fixed point free involution g, : S, — S, and a fibered product commutative diagram (4) with
a (go)-Galois covering ¢ : Yo — Y7, a (g,)-Galois covering f : Xy — X; and the composition
p1 = Bly...BlL. : X1 — Y of the blow downs of E(8;)/(g;) = L; ~ P}(C). If g, : So — So
induces isomorphisms L; 1 — L;2 of the irreducible components of E(f5;) = L;1 [[ Ls2 for
all 1 <17 <r, wesay that g, is compatible with ps = (1 ... 5.

Proposition 17. Let X = (B/T") be a smooth toroidal compactification, D := X \ (B/T)
be the toroidal compactifying divisor of B/T and p = B1...5, : X = Y be a composition of
blow downs onto o K3 surface Y. Then:

(i) X is a saturated compactification;

(i) X is non-primitive ezactly when there is a fized point free involution g, : Y — Y,
which is compatible with p and leaves invariant p(D);

(#ii) if X is non-primitive then there is a fibered product commutative diagram

Xgp,y

|

Xo 2+ v,

with a primitive smooth toroidal compactification Xo = (B/Ty)’, a composition of blow downs
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po : Xo — Yy onto a minimal Enriques surface Yy and unramified double covers f: X — X,
p:Y =Y.

Proof. (i) is an immediate consequence of 71 (Y) = {1}, according to Corollary 9.

(i) and (iii) follow from Corollary 14 and the fact that a minimal projective surface Yp
admits an unramified covering ¢ : Y — Yy by a K3 surface Y if and only if Yy is the quotient
of Y by a fixed point free involution g, : ¥ — Y. Such Yy = Y/(g,) are called minimal
Enriques surfaces and do not admit unramified coverings g : Yy — ¢o(Yp) of degree > 1.

O

Proposition 18. Let X = (B/T") be a smooth toroidal compactification and p : By ... [, :
X =Y be a composition of blow downs onto a minimal Enriques surface Y. Then:

(i) X is a primitive compactification;

(i) X is not saturated;

(1) there is an unramified double cover f : Xy = W — M = X by a saturated
smooth toroidal compactification X1 = (B/T'1)" with K3 minimal model Y.

Proof. (i) is due to the lack of an unramified covering ¢ : Y — (YY) of degree d > 1.
(ii) follows from 71 (Y) = (Za, +) # {1}.
(iii) is an immediate consequence of the Enriques-Kodaira classification of the smooth
projective surfaces.
O

Let X = (B/T")’ be a smooth toroidal compactification with abelian or bi-elliptic minimal
model Y. According to Theorem 1.3 from Di Cerbo and Stover’s article [DiCerboStover2],
X can be obtained from Y by blow up 5: X — Y of n € N points p1,...,pn, € Y.

Proposition 19. Let X = (B/T") be a smooth toroidal compactification with a blow down
n
B : X — Y onto a minimal surface Y with exceptional divisor E(S8) = [[ Li and D :=

i=1
X\ (B/T) be the toroidal compactifying divisor of B/T". Then:
(i) B transforms E(3) onto the singular locus B(E(B)) = B(D)¥& of B(D) C Y;
(1) X is non-primitive if and only if there is an unramified covering p : Y — p(Y) of
degree d > 1, which restricts to an unramified covering ¢ : B(D) — pB(D) of degree d;
(iii) the relative automorphism group Aut(Y, 3(D)) = Aut(Y, 3(D), B(D)*"8) admits an
isomorphism

O Aut(Y, 5(D)) — Aut(X, D)

with the relative automorphism group Aut(X, D) = Aut(X, D, E(pB));
(1v) go € Aut(Y, B(D) is fized point free if and only if it corresponds to a fized point free
9= ®(g0) € Aut(X, D).

k
Proof. (i) If D = ][ Dj; has irreducible components D; then the singular locus of 8(D) is

Jj=1

B(D)*"e = [Ué?:lﬁ(Dj)smg U [Ur<i<j<kB(Di) N B(D;)] .-
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Since D; are smooth irreducible elliptic curves, B(D)%"& C 3(E(B)). Conversely, any (—1)-

k
curve L; on X = (B/T') intersects D = [] D; in at least three points, due to the Kobayashi
j=1
hyperbolicity of B/I'. In fact, |L; N F'| > 4, according to Theorem 1.1 (2) from Di Cerbo and
Stover’s article [DiCerboStover2|. Therefore, the multiplicity of 3(L;) = p; with respect to
B(D) is > 4 and p; € B(D)%"8. That justifies S(E(B3)) C B(D)"8 and B(E(B)) = B(D)%"e.
(ii) By Corollary 14 and (i), X = (B/T")’ is non-primitive if and only if there is an
unramified covering ¢ : Y — (YY) of degree d > 1, which restricts to unramified coverings
¢ : B(D) = pB(D) and ¢ : (D)8 — B(D)*"& of degree d. Let us observe that any
unramified covering ¢ : S(D) — @B(D) of degree d restricts to an unramified covering
@ : B(D)%"& — B(D)%"& of degree d, as far as the local biholomorphism ¢ : 8(D) — ¢B(D)
preserves the multiplicities of the points with respect to 3(D) and B(D)*"8 consists of the
points of 5(D) of multiplicity > 2.
(iii) If a holomorphic automorphism g, : Y — Y restricts to a holomorphic automorphism
go : B(D) — B(D) then g, preserves the multiplicities of the points with respect to (D)
and B(D)%"8 is (g,)-invariant. That justifies Aut(Y, 3(D)) < Aut(Y, (D), 5(D)*™8) and
Aut(Y, (D)) = Aut(Y, 8(D), B(D)").

In order to show the existence of a group isomorphism
® : Aut(Y, (D), B(D)*"¢) — Aut(X, D, E(f)),

let us pick up g, € Aut(Y, 3(D), B(D)*"8). Then X \ E(3) = Y \ B(E(B)) = Y \ B(D)*"&
is acted by ®(go)|x\£(8) = goly\g(p)sme. By the very definition of a blow up at a point,
the bijection g, : B(D)*"& — B(D)*m& with g,(8(L1;)) = B(L1;) induces isomorphisms
®(go) : L1; — L1 and provides an element ®(g,) € Aut(X, E(3)). After observing that
B(g,)(D\ E(8)) = go(8(D) \ B(D)") = B(D) \ A(D)™ = D\ E(8), one concludes that
®(g,) transforms the Zariski closure D of D\ E(f) onto itself and ®(g,) € Aut(D).

The correspondence ® is a group homomorphism since g, and ®(g,) coincide on Zariski
open subsets of Y, respectively, X. Towards the bijectiveness of @, let g € Aut(X, D, E(B))
and note that Y\ B(D)*"& = X \ E(B). That allows to define qﬁ*l(g)ly\ﬁ(D)sing = glx\B(8)-
The isomorphism g : E(3) — E(B) of the exceptional divisor E(f) of 8 induces a permuta-
tion ®~1(g) : B(D)*"8 — B(D)*"8 of the finite set ﬂ(D)Sing and provides an automorphism
@1(g) € Aut(Y, B(D)"). Bearing in mind that @ (9)(8(D) \ B(D)"&) = g(D\ E(8)) =
D\ E(B) = (D) \ B(D)¥&, one concludes that ®~'(g) € Aut(B(D)) is an automorphism
of the Zariski closure 8(D) of B(D)\ B(D)*"& = p(D)smooth,

Note that any automorphism g € Aut(X, D) acts on the set of the smooth irreducible
rational curves on X. Moreover g preserves the self-intersection number of such a curve

and (g) acts on the set E () = ]_[ L; of the (—1)-curves on X. Thus, g € Aut(X, D, E(B))

and Aut(X, D) C Aut(X, D E(B)) whereas Aut(X, D, E(8)) = Aut(X, D).

(iv) If g € Aut(X, D) has no fixed points on X then g, := ®1(g) € Aut(Y,B(D))
restricts to goly\ s ®) = = glx\p(g) without fixed points. The assumption g,(p;) = p; =
BI(L;) for some 1 < ¢ < n implies that g restricts to an automorphism ¢ : L; — L;.
Any biholomorphism g € Aut(L;) = Aut(P!(C)) = PGL(2,C) of the projective line L; =
P!(C) is a fractional linear transformation and has two fixed points, counted with their
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multiplicities. That contradicts the lack of fixed points of g on X and implies that the
associated automorphism g, = ®~1(g) € Aut(Y, 3(D)) has no fixed points on Y.
Conversely, if g, € Aut(Y, (D)) has no fixed points on Y and g := ®(g,) then the
n

restriction g|x\g(g) = goly\s(3) has no fixed points. If g(z) = x for some z € E(B) = [] L;
=1

1=
then x € L; for some 1 <i <n and g(L;) = L;. As a result, g, fixes p; = f(L;) € Y, which
is an absurd. In such a way, any fixed point free g, € Aut(Y, (D)) corresponds to a fixed
point free g = ®(g,) € Aut(X, D).

O

Proposition 20. Let X = (B/T")" be a smooth toroidal compactification with toroidal com-
pactifying divisor D := X \ (B/T') and a blow down B: X =Y of n € N smooth irreducible
rational (—1)-curves. Then Aut(X, D) is a finite group.

Proof. By Proposition 19 (iii), Aut(X, D) = Aut(X, D, E(8)). Any g € Aut(X, D) acts on
k

D = [] Dj; and induces a permutation of the smooth elliptic irreducible components Dy,

7=1
..., D of D. In such a way, there arises a representation

Y1t Aut(X, D) — Sym(Dy, ..., Dy) = Sym(k).
The image of ¥ in the finite group Sym(k) is a finite group, so that it suffices to show
the finiteness of ker(3;), in order to conclude that Aut(X, D) is a finite group. Similarly,
Aut(X, D) = Aut(X, D, E(f8)) acts on the exceptional divisor E(8) = [[ Liof f: X =Y
i=1

and defines a representation
Yo Aut(X, D) — Sym(Ly, ..., Ly) = Sym(n).

Since Yo (ker(X1)) is a finite group, it suffices to show that G := ker(32) Nker(X;) is a finite
group. For any 1 <i<n,1<j <kandg € G, the finite set L; N D; is transformed into
itself, according to g(L;ND;) C g(L;)Ng(D;) = L;ND;. Therefore, there is a representation

21'7]' G — Sym(LZ N D])

The image ¥;;(G) is a finite group, while the kernel K;; := ker(¥;;) fixes any point
p € LiND; and acts on D;. It is well known that the holomorphic automorphisms Aut, (D)
of an elliptic curves D;, which fix a point p € D; form a cyclic group of order 2, 4 or 6.
Therefore, K; j < Aut,(D), G, ker(X1) and Aut(X, D) are finite groups.

O

Definition 21. A smooth toroidal compactification X = (B/T") with a blow down 8: X —Y
of n € N smooth irreducible rational (—1)-curves onto a minimal surface Y is Galois non-
primitive if there is a fized point free automorphism g € Aut(X, D)\ {Idx}.

Any Galois non-primitive X = (B/T")" is non-primitive, because the (g)-Galois covering
¢: X — ((X) = X/(g) is unramified and restricts to unramified coverings ¢ : B/T" — ((B/T")
n

and ¢+ B(8) = [T L = C(B(8) of degree |{g)] = ord(g).
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Note that the presence of an unramified covering ¢ : Y — ¢(Y") 1mphes the coincidence

Y = oY ) of the universal cover Y of Y with the universal cover <p( ) of p(Y). The
fundamental group m1(¢(Y)) of ¢(Y) acts on Y by biholomorphic automorphisms with-
out fixed points and contains the fundamental group 71(Y) of Y as a subgroup of index

[mi(p(Y)) : m(Y)] = d.

Proposition 22. Let X = (B/T")’ be a smooth toroidal compactification with toroidal com-
pactifying divisor D := X \ (B/T), 8: X =Y be a blow down of n € N smooth irreducible
rational (—1)-curves to a minimal surface Y and N(m1(Y')) be the normalizer of the fun-
damental group m (Y) of Y in the biholomorphism group Aut(f/) of the universal cover Y
of Y. Then X is Galois non-primitive if and only if there exist o natural divisor d > 1 of
GCD(}B(D)Sing| ,e(Y)) € N and an unramified covering ¢ : Y — ¢(Y) of degree d, such
that m(e(Y)) N N(m(Y)) > m(Y) and ¢ : B(D) — ¢B(D) is an unramified covering of
degree d.

Proof. If X = (B/T")’ is Galois non-primitive then there exists a fixed point free biholo-
morphism g € Aut(X, D) \ {Idx} of X. By Proposition 19(iv), g induces a fixed point free
biholomorphism g, = ®~1(g) € Aut(Y, 3(D))\{Idy } of Y. The element g, of the finite group
Aut(Y, B(D)) is of finite order d € N\ {1} and the (g,)-Galois coverings ¢ : Y — Y/(go),
¢ : B(D) — ¢B(D) are unramified and of degree d. The automorphism g, of Y lifts to
an automorphism o € Aut(Y) of the universal cover Y of Y, which normalizes 7 (Y) and
belongs to

m(C(V) = m(Y/{go)) = m1 ((V/m(Y)om(¥V)) =71 (V/(o,m(Y))) = (o, m (V).

Conversely, suppose that ¢ : Y — ¢(Y) is an unramified covering of degree d > 1,
which restricts to an unramified covering ¢ : B(D) — ¢B(D) of degree d and there exists
o€ [m(e(Y))NN(m(Y))]\71(Y). Then g, := omi(Y) € Aut(Y) = N(m1(Y))/m(Y) is a
non-identical biholomorphism g, : Y — Y. Since (o, 71(Y)) is a subgroup of m1(p(Y)), the
unramified covering ¢ : Y — ¢(Y) factors through the (g,)-Galois covering ¢ : Y — Y/(g,)
and a covering ¢, : Y/(go) — ¢(Y) along the commutative diagram

Y — Y/{go)
h v (6)
oY)

The finite coverings ¢ : Y — Y/{go) and ¢, : Y/(g,) — ¢(Y') are unramified, because their
composition ¢ = @, : Y — ¢(Y) is unramified. That is why, g, has no fixed points on Y.
If B(D) CY is not (g,)-invariant then there is an orbit Orb, \(y,) C Y of some y, € (D)
which intersects, both, S(D) and Y \ B(D). Therefore, ¢ : (D) — (B(D) has a fibre
¢ (C(y0)) of cardimality |¢~1(C(yo))] < deg(€) = [{go)| = ord(go) and ¢ : B(D) — CA(D)
is ramified. As a result, the composition ¢ = ¢, : (D) — ¢B(D) is ramified. The
contradiction shows the (g,)-invariance of f(D). According to Proposition 19 (iv), the
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fixed point free g, € Aut(Y,5(D)) \ {Idy} corresponds to a fixed point free g = ®(g,) €
Aut(X, D) \ {Idx} and X is Galois non-primitive.
O

Definition 23. A covering ¢ :' Y — o(Y) by a smooth projective surface Y has Galois
factorization if there exist go € Aut(Y) \ {Idy} and a covering ¢, : Y/(90) — ©(Y), such
that ¢ = @,C gactors through the (g,)-Galois covering ¢ :' Y — Y/{go) and a covering ¢,
along the commutative diagram (6).

Now, Proposition 22 can be reformulated in the form of the following

Corollary 24. Let X = (B/T")’ be a non-primitive smooth toroidal compactification with
toroidal compactifying divisor D := X \ (B/T"), 8 : X — Y be a blow down of n € N
smooth irreducible rational (—1)-curves onto a minimal surface Y and ¢ : Y — o(Y) be an
unramified covering of degree d, which restricts to an unramified covering ¢ : f(D) — pB(D)
of degree d. Then X is Galois non-primitive if and only if p admits a Galois factorization.

Corollary 25. (i) Let X = (B/T") be a smooth toroidal compactification with abelian min-
imal model Y. Then X is not saturated and X is non-primitive if and only if it is Galois
non-primitive.

(1) If X = (B/T) is a smooth toroidal compactification with bi-elliptic minimal model
Y then X is not saturated.

Proof. (i) Any abelian surface Y has non-trivial fundamental group 71(Y) ~ (Z*, +). Ac-
cording to Corollary 9, that suffices for a smooth toroidal compactification X = (B/I")" with
abelian minimal model Y to be non-saturated.

By Theorem 1.3 from Di Cerbo and Stover’s article [DiCerboStover2], if a smooth toroidal
compactification X = (B/I')’ has abelian minimal model Y then there is a blow down
B : X — Y of n € N smooth irreducible rational (—1)-curves on X onto Y. Such X is
non-primitive exactly when there exists an unramified covering ¢ : Y — ¢(Y) of degree
d > 1, which restricts to an unramified covering ¢ : 5(D) — ¢B(D) of degree d. Since Y

and ¢(Y) have one and a same universal cover ¢(Y) =Y = C? and one and a same Kodaira
dimension x(p(Y)) = x(Y') = 0, the minimal smooth irreducible projective surface p(Y) is
abelian or bi-elliptic.

If o(Y) is an abelian surface then its fundamental group 71(¢(Y)) ~ (Z*,+) is abelian
and 71(Y) ~ (Z* +) is a normal subgroup of m1(¢(Y)). As a result, p : Y — ¢(Y) is a
m1(p(Y))/m(Y)-Galois covering and Y is Galois non-primitive.

Let us suppose that ¢(Y) is a bi-elliptic surface. According to Bagnera-de Franchis
classification of the bi-elliptic surfaces from |BagneraDeFranchis|, there is an abelian surface
A and a cyclic subgroup (g) < Aut(A) of order d € {2,3,4,6} with a non-translation
generator g € Aut(A), such that ¢(Y) = A/(g). Let AffLin(C) := T(C?) x GL(2,C) be the

—~—

group of the affine linear transformations of C2 =Y = (Y) = A and
L : AffLin(C?) — GL(2,C)

be the group homomorphism, associating to o € AffLin(C?) its linear part £(co) € GL(2,C).
Then the fundamental group of A is the maximal translation subgroup

mi(A) = mi(p(Y)) Nker(L)

22



of m1(p(Y)). The translation subgroup 71(Y) < m1(¢(Y)) Nker(L) of m1(¢(Y)) is contained
in m(A) and the unramified covering ¢ : Y — ¢(Y) factors through unramified coverings
p1:Y = Aand g2 : A — ¢(Y), along the commutative diagram

y —2 4

The covering ¢1 : Y — A is m1(A) /71 (Y)-Galois, so that ¢ = w21 is a Galois factorization
of ¢ for m(Y) < m(A). In the case of m(Y) = m1(A), there is an isomorphism Y ~
C?/m(Y) ~ C?/m1(A) = A and the covering ¢ : Y ~ A — o(Y) = A/(g) is (g)-Galois.
Thus, X is Galois non-primitive and a co-abelian smooth toroidal compactification X =
(B/T")’ is non-primitive if and only if it is Galois non-primitive.

(i) The fundamental group 71 (Y") of a bi-elliptic surface Y is subject to an exact sequence

1 (V) Nker(£) —— m(Y) - (g) -1
with a non-translation cyclic subgroup (g) of Aut (C?/m(Y) Nker(£)) = Aut(A,) of order
2,3, 4 or 6. In particular, Y is not simply connected and a smooth toroidal compactification
X = (B/T") with bi-elliptic minimal model Y is not saturated.

O
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