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0 Introduction

The moduli space Ag of principally polarised abelian g-folds is a quasi-

projective variety. It has a natural projective compacti�cation, the Satake

compacti�cation, which has bad singularities at in�nity. By the method

of toroidal compacti�cation we can construct other compacti�cations with

milder singularities, at the cost of some loss of uniqueness. Two popular

choices of toroidal compacti�cation are the Igusa and the Voronoi compact-

i�cations: these agree for g � 3 but for g = 4 they are di�erent.

In this paper, we shall be mainly interested in the Voronoi compacti�cation

AVor
4 of A4. This is a natural choice from the point of view of moduli in

view of the results of Alexeev and Nakamura ([Al], [AN]), who show that

AVor
g represents a functor of geometric interest. The case g = 4 is also of

particular interest as it is the �rst case where the Torelli map is not dominant

and where we therefore cannot use results from the moduli space of curves.

In our main result, Theorem I.8, we describe the cones of nef divisors on

A
Igu
4 and AVor

4 . The proofs are inductive in the sense that they involve a

reduction to the cases g = 3 and g = 2, where comparable results already

exist; but some new techniques are also necessary for the proof.

However, the Voronoi compacti�cation for g > 4 is rather complicated and

for this reason we are not at present able to extend our results even to g = 5.

We also show (Theorem I.15) that the canonical bundle on A
Igu
4 (n) is ample

for n � 3.

The paper is structured as follows. Section I covers the facts we need about

the di�erent toroidal compacti�cations that are available. We describe the

Voronoi compacti�cation, in particular, in some detail, and state the main

results. In Section II we explain what is known about the partial compact-

i�cation of Mumford, which we shall need later. In Section III we describe

the �ne structure of the Voronoi boundary in the case g = 4, which is

largely a matter of understanding the behaviour over the lowest stratum of

the Satake compacti�cation ASat
4 . The methods here are toric and much is

deduced from the combinatorics of a single cone in a certain 10-dimensional

real vector space. The main technical result is that each non-exceptional

1



boundary divisor of AVor
4 (n), where n � 3 is a level structure, has a �bra-

tion over AVor
3 (n). This is the inductive step that allows us to deduce facts

about AVor
4 from the cases where g < 4. Finally, in Section IV, we assign to

a curve in AVor
4 an invariant called the depth, which is the stratum of ASat

4

that it comes from, and work through the �ve cases 0 � depth(C) � 4 that

arise. No two of the cases turn out to be exactly alike.
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I Toroidal compacti�cations

The moduli space of principally polarised abelian varieties of dimension g is

given (over the complex numbers C ) as the quotient

Ag = Sp(2g;Z)nH g :

We shall also consider full (symplectic) level-n structures. The correspond-

ing moduli spaces are

Ag(n) = �g(n)nH g

where �g(n) is the principal congruence subgroup of level n, i.e. the set of

all matrices  2 Sp(2g;Z) that are congruent to the unit matrix 12g mod n.

The varieties Ag(n) are quasi-projective, but not projective, varieties with

at most �nite quotient singularities. The Satake compacti�cation ASat
g is

the minimal compacti�cation of Ag. It is Proj of the ring of modular forms

for Sp(2g;Z). Set-theoretically ASat
g is the disjoint union

ASat
g = Ag qAg�1 q : : : qA0

where A0 is a point.

Mumford [Mu] introduced a partial compacti�cation

A0g = Ag qD
0
g

by adding the rank 1 degenerations. This is again a quasi-projective, but not

projective, variety. There are several toroidal compacti�cations A�
g . These

depend on the choice of a fan � in the cone of positive de�nite g�g matrices

(see below, Remark I.2, for a more precise explanation). All of them contain

A0g. The most important choices are:
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� The perfect cone (or �rst Voronoi) decomposition: see [V1] or, for

instance, [Co] for de�nitions and details.

� The central cone decomposition Igu(g). This leads to the Igusa com-

pacti�cation A
Igu
g .

� The second Voronoi decomposition Vor(g), de�ned in [V2b]. This leads

to the Voronoi compacti�cation AVor
g .

For g � 3 all these fans coincide. For g = 4 the perfect cone and central

cone decompositions coincide, but the second Voronoi decomposition is a

re�nement of the �rst two: this means that there is a birational morphism

AVor
4 ! A

Igu
4 . For general g very little is known explicitly about the de-

compositions and their relation to each other. There is always a morphism

A�
g ! ASat

g for any toroidal compacti�cation, and A0g is the inverse image

of Ag qAg�1 under this morphism.

For g � 4 the above decompositions are explicitly known (see e.g. [V2b],

[ER1], [ER2]). Since the fan Vor(4) is basic the space AVor
4 has only �nite

quotient singularities and AVor
4 (n) is smooth for n � 3. The spaces A

Igu
4 (n)

are always singular. We shall denote by DVor
g and D

Igu
g the closures of D0

g

in AVor
g and A

Igu
g respectively. It is well known that A

Igu
g is a blow-up of

the Satake compacti�cation ASat
g and Alexeev [Al] has proved the same for

AVor
g . In particular, DVor

g and D
Igu
g are Q -Cartier divisors. In any case it is

clear that DVor
4 is Q -Cartier, since AVor

4 is an orbifold and thus Q -factorial.

We can see directly that D
Igu
4 is Q -Cartier by exhibiting a suitable support

function: see Remark I.4 below.

We denote by L the Q -line bundle of modular forms of weight 1 on ASat
g ,

and also its pullback to AVor
g or to A

Igu
g .

Proposition I.1 PicA0g 
 Q = QD0
g � QL for g � 2.

Proof. This is proved by Mumford ([Mu, p. 355]) for g � 4. It is also well

known for g = 2 and g = 3: see for instance [vdG]. 2

For what follows we shall need explicit descriptions of the perfect cone (=cen-

tral cone) and the second Voronoi decompositions in the case g = 4.

We �x generators x1; : : : ; x4 for a free abelian group L4 �= Z4, and we denote

Sym2(L4) by M 4 ; so M 4
�= Z10 is the space of 4 � 4 integer symmetric

matrices with respect to the basis xi. We shall use the basis of M 4 given by

the matrices U�ij, 1 � i � j � 4 given by

(U�ij)kl = Æfi;jg;fk;lg:

Thus U�ii is the diagonal matrix with 1 in the ith place, corresponding to

the quadratic form x2i , and U
�
ij has 1 in the ij- and ji-places, corresponding

to the quadratic form 2xixj for 1 � i < j � 4.
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The cone Sym+
2 (L4 
R) is de�ned to be the convex hull (that is, R�0 -span)

of the positive semide�nite forms in M 4 
 Q . The perfect cone decomposi-

tion and the second Voronoi decomposition are decompositions of the cone

Sym+
2 (L4 
R) � M 4 
R into rational polyhedral cones; that is, polyhedral

cones with generators in M 4 . These cones form fans Igu(4) (coming from

the perfect cone decomposition) and Vor(4), which are invariant under the

action of GL(L4 ) �= GL(4;Z).

Remark I.2 Sym+
2 (L4 
R), or more generally Sym+

2 (Lg 
R), is de�ned in

terms of the lattice Lg , and does not depend just on the vector space Lg
R.

The same is true of the torus embeddings TM g
emb (�) (see [Oda]) which are

de�ned by fans � in Sym+
2 (Lg 
 R) and which are used to construct the

compacti�cations A�
g . If there is no danger of confusion about which lat-

tice (and hence which torus) is intended, we sometimes denote TM g
emb (�)

by X�.

In any real vector space V (usually V = M 4 
 R or its dual) we denote the

closed cone R�0q1+� � �+R�0qk generated by fq1; : : : ; qkg � V by hq1; : : : ; qki.

In particular h�qi is the line R q.

The perfect cone decomposition has, up to GL(L4)-equivalence, two max-

imal, i.e. 10-dimensional, cones: the principal cone �1(4) and the second

perfect cone �2(4). The principal cone is given by

�1(4) =


x21; : : : ; x

2
4; (x1 � x2)

2; : : : ; (x3 � x4)
2
�
:

This cone is basic. The second perfect cone is given by

�2(4) =


x21; x

2
2; x

2
3; x

2
4; (x1 � x3)

2; (x1 � x4)
2; (x2 � x3)

2; (x2 � x4)
2;

(x3 � x4)
2; (x1 + x2 � x3)

2; (x1 + x2 � x4)
2; (x1 + x2 � x3 � x4)

2
�
:

�2(4) has 64 9-dimensional faces, which fall into two GL(L4 )-equivalence

classes called BF and RT: see [ER2] and the proof of Proposition III.6,

below. Representatives of the orbits are given by setting the coeÆcients of

x21, x
2
3 and x

2
4, respectively of (x2�x3)

2, (x2�x4)
2 and (x1+x2�x3�x4)

2,

equal to 0. These cones are basic. Hence A
Igu
4 has exactly one singular

point, which we denote Psing.

In order to describe the second Voronoi decomposition we have to introduce

another ray �, generated by the sum of the primitive generators of �2(4).

The primitive generator e of � in M 4 is given by

e =
1

3

h
x21 + x22 + x23 + x24

+ (x1 � x3)
2 + (x1 � x4)

2 + (x2 � x3)
2 + (x2 � x4)

2 + (x3 � x4)
2

+ (x1 + x2 � x3)
2 + (x1 + x2 � x4)

2 + (x1 + x2 � x3 � x4)
2
i

= 2(x21 + x22 + x23 + x24 + x1x2 � x1x3 � x1x4 � x2x3 � x2x4): (1)
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The second Voronoi decomposition of Sym+
2 (L4 
 R) is the re�nement of

the central cone decomposition given by adding all cones which arise as the

span of the central ray � with the 9-dimensional faces of �2(4) and the faces

of these cones, together with their GL(L4 )-translates. Up to GL(L4) this

de�nes two new 10-dimensional cones, both of which are basic. Hence AVor
4

is an orbifold, and there is a map � : AVor
4 ! A

Igu
4 given by blowing up a

certain ideal sheaf V supported at the singular point Psing 2 A
Igu
4 . Let E

be the exceptional divisor of this blow-up, i.e. the divisor corresponding to

the ray �. Actually V is the maximal ideal of O
A
Igu
4 ;Psing

and the singularity

at Psing is the cone on E, but we do not need this fact. It can be deduced,

for instance, from [TE, Theorem I.10].

To simplify some calculations it is also useful to consider the Voronoi trans-

formation 	: L4 ! L4 , de�ned by

	: (x1; x2; x3; x4) 7�! (x1 + x2; x1 � x2; x1 � x3; x1 � x4) (2)

and the induced embedding

	0 = Sym2(	): M 4 = Sym2(L4 ) �! M 4 :

Note that 	 and 	0 are embeddings but not isomorphisms, since det	 = 2.

We have

	0
�
�2(4)

�
=

�
(xi � xj)

2; 1 � i < j � 4
	�
;

so if we put y = 	�1
Q (x) we may express �2(4) in the convenient form

�2(4) =


(yi � yj)

2; 1 � i < j � 4
�

=
n X

1�i<j�4

�
�ij(yi + yj)

2 + �ij(yi � yj)
2
� ����ij ; �ij 2 R�0

o
: (3)

The generator e of � is mapped to

	0(e) = 2(x21 + x22 + x23 + x24):

Now let � : AVor
4 (n) ! A

Igu
4 (n) and let E(n) be the exceptional divisor in

AVor
4 (n). We set D4(n) = ��

�
D

Igu
4 (n)

�
.

Proposition I.3 D4(n) = ��
�
D

Igu
4 (n)

�
= DVor

4 (n) + 4E(n).

Proof. The level structure plays no part here so we suppress it, taking n = 1

without loss of generality and writing E for E(1) and so on. We shall �rst

consider the toric situation. Let

Tr: M 4
�= Sym2(Z

4)! Z

be the linear form given by the trace. Then Tr0 = Tr Æ	0 is an integral linear

form on M 4 which is 2-divisible. The form 1
2 Tr

0 assumes the value 1 on all
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basic generators of the 1-dimensional rays of �2(4) and the value 4 on the

M 4 -primitive generator e of �.

Locally (analytically) near the singular point Psing on A
Igu
4 and near the

exceptional locus E in AVor
4 , the moduli spaces A

Igu
4 and AVor

4 are isomor-

phic to �nite quotients of the toric varieties XIgu(4) and XVor(4) respectively.

The �nite group by which we take the quotient is the stabiliser of Psing,

respectively E. It is a subgroup of GL(L4 ), which acts on Sym+
2 (L4 
 R)

by M 7! tQ�1MQ�1. It is enough to compute the subgroup which �xes

E pointwise. A straightforward calculation shows that this is �14, which

acts trivially. Together with the above toric calculation this shows that

��(D
Igu
4 ) = DVor

4 + 4E. 2

Remark I.4 Considering 1
2 Tr

0 as a support function on the fan Igu(4)

shows that the boundary D
Igu
4 of A

Igu
4 is a Q -Cartier divisor and that the

boundary of A
Igu
4 (n) for n � 3 is a Cartier divisor.

Corollary I.5 Let n � 3. Then A
Igu
4 (n) is a Gorenstein variety with canon-

ical singularities.

Proof. For n � 3 the group �g(n) is neat. Hence we only have to consider

singularities which come from the toric construction. The varieties A
Igu
4 (n),

n � 3 are normal varieties with �nitely many singularities. Outside these

singularities the canonical divisor is given by

K =
�
5L�D

Igu
4 (n)

�
j
AIgu
4;smooth

(n)

where D
Igu
4 (n) is the boundary. Both L and D

Igu
4 (n) are Cartier divisors on

A
Igu
4 (n) and hence

K
AIgu
4 (n)

= i�K = 5L�D
Igu
4 (n) (4)

where i is the inclusion. This shows that these varieties are Gorenstein.

The varieties AVor
4 (n), n � 3 are smooth and the canonical divisor is

KAVor
4 (n) = 5L�DVor

4 (n)�
X
s

Es(n); (5)

where the Es(n) are the irreducible exceptional divisors of the blow-up map

� : AVor
4 (n)! A

Igu
4 (n). Since

��
�
K
AIgu
4 (n)

�
= 5L�DVor

4 (n)�
X
s

4Es(n)

it follows that A
Igu
4 (n) has canonical, in fact terminal, singularities. 2

We de�ne the open set A0
4 = A

Igu
4 n Psing = AVor

4 n E, common to both

toroidal compacti�cations.
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Proposition I.6 The Picard groups satisfy

PicA
Igu
4 
 Q �= PicA0

4 
 Q �= Q L � Q D
Igu
4 ;

PicAVor
4 
 Q = Q L � Q DVor

4 � Q E:

Proof. Restricting line bundles de�nes maps

PicA
Igu
4 �! PicA0

4 �! PicA04:

All the varieties involved are normal and since the codimensions of A0
4 n A

0
4

in A0
4 and of A

Igu
4 nA0

4 in A
Igu
4 are at least 2, these maps are injective. Since

PicA04 = QL � QD0
4 and since both L and D0

4 extend to Q -line bundles on

A
Igu
4 these maps are also surjective.

The exceptional locus E is irreducible, being the image of the closure of

a torus orbit. Hence the claim about PicAVor
4 
 Q follows from the exact

sequence of Chow groups

A9(E) 
 Q ! A9(A
Vor
4 )
 Q ! A9(A

0
4)
 Q ! 0

(see [Ful1, Proposition 1.8]). 2

We are now in a position to state the main results of this paper. The �rst

result is auxiliary and can be stated for general g � 2. Note that although

A0g is not a projective variety we can still speak about nef line bundles.

By this we mean line bundles whose restriction to each complete curve has

non-negative degree.

Proposition I.7 The nef cone of A0g for g � 2 is given by

Nef(A0g) =
�
aL� bD0

g j b � 0; a � 12b
	
:

For the projective varieties A
Igu
4 and AVor

4 we obtain much better results.

Theorem I.8 The nef cone of A
Igu
4 is given by

Nef(A
Igu
4 ) =

n
aL� bD

Igu
4 j b � 0; a � 12b

o
:

The nef cone of AVor
4 is given by

Nef(AVor
4 ) = faL� bD4 � cE j a � 12b; b � 2c � 0g :

Remark I.9 If we work with DVor
4 rather than D4 then, in view of Propo-

sition I.3, the nef cone of the Voronoi compacti�cation has the following

description:

Nef(AVor
4 ) =

�
�L� �DVor

4 � E j � � 0; � � 12�;  � 4� � 8
9

	
:

7



Remark I.10 We have Galois coverings

�n;Igu : A
Igu
4 (n)! A

Igu
4 ; �n;Vor : A

Vor
4 (n)! AVor

4

given by an action of Sp(8;Z=n). These coverings, which extend the obvi-

ous covering A4(n)! A4, exist because the de�nitions of perfect cone and

Voronoi decomposition ([V1], [V2b], [Co], [ER1]) are purely lattice-theoretic

and so the collections of fans that de�ne the Igusa and Voronoi compacti�-

cations are Sp(8;Z)-invariant. Compare [San, Proposition 5.1] for a similar

situation in the g = 2 case.

The inverse images D
Igu
4 (n) and DVor

4 (n) of D
Igu
4 and DVor

4 will have several

components, as will the inverse image E(n) of E. The above Galois covers

are rami�ed of order n along the boundary, i.e. ��n;Igu
�
D

Igu
4

�
= nD

Igu
4 (n)

and ��n;Vor
�
DVor

4

�
= nDVor

4 (n); it then follows from Proposition I.3 that

��n;Vor(E) = nE(n).

The Picard groups of A
Igu
4 (n) and AVor

4 (n) will be much bigger than those

of A
Igu
4 and AVor

4 , but we still obtain a description of part of the nef cone.

Corollary I.11 A divisor aL � bD
Igu
4 (n) on A

Igu
4 (n) is nef if and only if

b � 0 and a � 12b=n.

A divisor aL � bD4(n) � cE(n) on AVor
4 (n) is nef if and only if a � 12b=n

and b � 2c � 0.

This also allows us to draw a conclusion about the nefness of the canonical

divisor.

Lemma I.12 For any n 2 N

K
A
Igu
4 (n)

= 5L�D
Igu
4 (n);

KAVor
4 (n) = 5L�DVor

4 (n)�E(n) = 5L�D4(n) + 3E(n):

Proof. For n � 3 this was shown above (equations (4) and (5)). To show

that these equalities also hold for n = 1 and n = 2, it is enough to check

that there are no elements in Sp(8;Z) whose �xed locus in H 4 is a divisor.

This follows easily from [Tai, Lemma 4.1]: if an element  2 Sp(2g;Z) of

order m �xes � 2 H g then it acts on the tangent space with eigenvalues

e2�i(tj+tk)=m, where tj, tk 2 Z and 1 � j � k � g. If � is a general point

of a �xed divisor then tj + tk � 0 mod m for all but one pair of indices,

say (j0; k0). But this is impossible if g � 3. To see this, we consider �rst

the case j0 = k0. We may assume j0 = 1, so 2t1 6� 0, but then t1 � �t2 so

2t2 6� 0, and (j0; k0) is not unique. On the other hand, if j0 6= k0, we may

assume j0 = 1 and k0 = 2, so t1 + t2 6� 0; but in that case t3 � �t2 � �t1
so 2t3 6� 0 and again (j0; k0) is not unique. 2
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Corollary I.13 If n � 3, then the canonical bundle of A
Igu
4 (n) is nef. On

the other hand, the canonical bundle of AVor
4 (n) is never nef.

Remark I.14 A
Igu
4 (n) is a minimal model as de�ned in ([KM, De�nition

2.13]), because the singularities are terminal; but they are not Q -factorial

because �2(4) is not simplicial, and some authors prefer to reserve the term

\minimal model" for the Mori category, whose objects are projective va-

rieties with Q -factorial terminal singularities. By toric methods, following

the argument of Fujino [Fuj], a small Q -factorialisation may be constructed,

and this will be a Q -factorial minimal model.

Theorem I.15 If n � 3 then the canonical bundle of A
Igu
4 (n) is ample.

Proof. By Lemma I.12 the canonical bundle satis�es the conditions of Corol-

lary I.11, but with strict inequalities, a > 12b=n > 0. HenceK
A
Igu
4 (n)

belongs

to the interior of Nef
�
A

Igu
4 (n)

�
\
�
RL + RD

Igu
4 (n)

�
. Let H0 be an ample

class on A
Igu
4 (n) spanned by L and D

Igu
4 (n): such an H0 exists because

A
Igu
4 (n) is projective and RL+R D

Igu
4 (n) is the Sp(8;Z=n)-invariant part of

Pic
�
A

Igu
4 (n)

�

 R, so if H is some ample line bundle class it is suÆcient to

take H0 =
P

2Sp(8;Z=n)(H). Now we copy the proof of Kleiman's criterion

given in [KM, 1.39]: tK
AIgu
4 (n)

�H0 is nef for t� 0, so for any dimension d

subscheme Z � A
Igu
4 (n) we have (tK

A
Igu
4 (n)

)d � Z � Hd
0 � Z > 0 (this is a

non-trivial step in the proof of [KM, 1.38]). Therefore tK
A
Igu
4 (n)

is ample by

the Nakai-Moishezon criterion, [KM, Theorem 1.37]. 2

Thus A
Igu
4 (n) is the canonical model if n � 3.

II The nef cone of the partial compacti�cation

We shall work with the partial compacti�cation A0g = Ag [D
0
g, sometimes

with an additional level-n structure A0g(n) = Ag(n) [D
0
g(n). If n � 2, then

D0
g(n) =

P
iD

0
g;i(n) consists of several disjoint components, each of which

has a natural �bration D0
g;i(n) ! Ag�1(n). For n � 3 this is the universal

family over Ag�1(n), and for n = 1; 2 it is a family of Kummer varieties.

Indeed

D0
g;i(n) =

�
Z2g�2o �g�1(n)

�
nC g�1 � H g�1 :

To describe this action let m = (m0;m00) with m0;m00 2 Zg�1 and  =�
A B

C D

�
2 �g�1(n). Then

(m; ) : (z; �) 7!
�
(z + nm0 + nm00�)(C� +D)�1; (A� +B)(C� +D)�1

�
:
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If n � 3, then the �bre of the map D0
g;i(n) ! Ag�1(n) over a point [� ] is

the abelian variety An;n� whose period matrix is given by (n1g�1; n�). For

n = 1; 2 we obtain the Kummer variety An;n�=(�1).

Let �00(z; �) : C
g�1 � H g�1 ! C be the standard theta function. The au-

tomorphy factors of �2
00 de�ne a Q -line bundle on D0

g;i(n) which we shall

denote by M 0(n). For n � 3, let N 0 = ND0

g;i
(n)=A0

g(n)
be the normal bundle

of the boundary component D0
g;i(n) in A

0
g(n).

Lemma II.1 If n � 3 then M 0(n) = �nN 0 + L:

Proof. This is proved in [Hu, Proposition 2.3]. The proof consists of com-

paring the cocycles of M 0(n) and N 0. 2

Proposition II.2 The nef cone of A0g for g � 2 is given by

Nef(A0g) =
�
aL� bD0

g j b � 0; a � 12b
	
:

Proof. The condition b � 0 is necessary, since L is trivial on the �bres

of D0
g;i(n) ! Ag�1(n), whereas �D

0
g(n) is ample on the �bres (cf. [Mu,

Proposition 1.8]). In order to prove that a � 12b is a necessary condition we

consider curves C of the form X(1)�fAg in A0g where A is a �xed (g � 1)-

dimensional abelian variety and X(1) is the modular curve of level 1, i.e. we

consider a family of abelian varieties of type E� �A where E� is an elliptic

curve degenerating to a nodal curve. Such a family is indeed contained in A0g
and for general A, and C:D0

g = 1. This is because the corresponding family

with a level-n structure (n � 3 as usual) meets the boundary transversally

in a smooth point. Since the degree of the Q -line bundle L on X(1) is 1=12

we �nd the necessary condition a � 12b.

Next we shall prove that these conditions are suÆcient. Here we shall distin-

guish between curves C which meet Ag and curves C which are contained in

the boundary D0
g. For curves of the �rst type the result was already proved

in [Hu, Proposition 1.4]. Since the argument is very short we shall repeat

it here. Assume that b � 0 and a � 12b. Since L is ample on the Satake

compacti�cation, it follows that L:C > 0, and we can assume that b > 0.

Choose some " > 0 with a=b > 12 + " and some point [� ] 2 Ag on C. By a

result of Weissauer [Wei, p. 220] there exists a modular form F of weight k

and vanishing order m such that F (�) 6= 0 and m=k � 1=(12 + "). In terms

of divisors this gives

kL = mD0
g +DF ; C 6� DF

where DF is the closure in A0g of the divisor fF = 0g � Ag. Hence

�
k
m
L�D0

g

�
:C = 1

m
DF :C � 0

10



and since a=b > 12 + " � k=m and L:C > 0 we conclude that

�
a
b
L�D0

g

�
:C >

�
k
m
L�D0

g

�
:C � 0:

Finally let C be a curve contained in D0
g. Here it is slightly easier to work

with level structures: we choose some n 2 N and assume that C � D0
g;i(n)

for some boundary component D0
g;i(n) of A

0
g(n). By Lemma II.1

�
aL� bD0

g;i(n)
�
jD0

g;i(n)
=
�
a� b

n

�
L+ b

n
M 0(n):

The condition a � 12b for level 1 now becomes a � 12b=n. In any case

a� b=n � 0 and hence it suÆces to prove that M 0(n):C � 0. Fix a prime p,

and choose n so that n � 0 mod 4p2. If m0;m00 2 1
2pZ

g�1 then the functions

�2
m0;m00

(z; �) de�ne sections of M 0(n), by [Hu, Proposition 2.3]: the proof

uses the theta transformation formula and the formulae (�1){(�3) from [Ig]

to show that �2
m0;m00

(z; �) has the appropriate automorphy factor. But this

shows that M 0(n) is generated by global sections and hence M 0(n):C � 0.

2

III Structure of the Voronoi boundary

In this section we revert to the case g = 4 and examine the geometry of

the Voronoi boundary in detail. Our chief purpose is to prove that the

�bration D0
4;i(n) ! A3(n) extends to the closure of D0

4;i(n) in the Voronoi

compacti�cation of A4(n). This results in a �bration of each non-exceptional

boundary divisor in AVor
4 (n) over AVor

3 (n) = A
Igu
3 (n). The proof involves

careful study of the combinatorics of the cone �2(4), and we also assemble

in this section some other results of that nature which we shall need later.

Proposition III.1 Let n � 3, and suppose DVor
4;i (n) � AVor

4 (n) is the clo-

sure of a boundary divisor, not contracted by � : AVor
4 (n) ! A

Igu
4 (n). Then

there is a morphism

pi = pi;n : D
Vor
4;i (n) �! AVor

3 (n)

extending the �bration D0
4;i(n)! A3(n).

Proof. We work, without loss of generality, with DVor
4;1 (n), corresponding

to �11 ! i1: if n � 3 then DVor
4;1 (n) is normal (see Remark III.9, be-

low). Thus we �x a rank 3 sublattice L3 = Zx2 + Zx3 + Zx4 � L4 and set

M 3 = Sym2(L3 ). The projection pr1 : L4 ! L3 with kernel Zx1 induces a

projection Sym2 pr1 : M 4 ! M 3 with kernel spanned by the U�1j , 1 � j � 4.

11



Consider the matrix

~� =

0
BB@

� �12 �13 �14
�12 �22 �23 �24
�13 �23 �33 �34
�14 �24 �34 �44

1
CCA :

Then

z = (�12; �13; �14) 2 C 3 ; � = (�ij)2�i;j�4 2 H 3 :

and the map ~� 7! � is Sp(6;Z)-equivariant and therefore induces a rational

map p1;n : D
Vor
4;1 (n) 9 9 KA

Vor
3 (n). The problem is to extend this map to the

cusps of AVor
3 (n).

We �rst check that p1;n extends over the smallest cusps, i.e. over ��1n (A0),

where �n : A
Vor
4 (n) ! ASat

4 . This is the only case which is nontrivial. Near

a component of ��1n (A0), the boundary divisor DVor
4;1 (n) is given by the

fan Star
�

x21
�
;Vor(4)

�
with respect to the lattice M 4 = M 4=Zx

2
1; see for

example [Ful2, 3.1]. The map we are trying to extend, p1;n, is given on the

torus part of this toric variety by forgetting all coordinates involving x1.

More precisely, DVor
4;1 (n) is locally isomorphic to an analytic open set in

XStarhx21i
= T

M 4
emb

�
Star

�

x21
�
;Vor(4)

��
:

The natural embedding M 3 ! M 4 induces a map on the corresponding tori

TM 4
= Hom(M 4; C

� ) �! TM 3

which is p1;n on the torus part of XStarhx21i
.

Now the result follows from Lemma III.2 below. The extension to the

lower cusps, and the compatibility of the extensions, are immediate con-

sequences of the straightforward fact that if � is an Igusa (i.e. Voronoi) cone

in Sym+
2 (Z

g) for g < 4 then Sym2 pr1(�) is an Igusa cone in Sym+
2 (Z

g�1).

2

Lemma III.2 The map T
M 4
! TM 3 extends to a GL(L3 )-equivariant map

p1;n : XStarhx21i
�! TM 3 emb

�
Vor(3)

�

of the corresponding torus embeddings.

Proof. We need to check that the dual of the embedding, which may be

thought of as a projection M 4 ! M 3 with kernel spanned by the classes of

U�1j , is a map of fans (the GL(L3 )-equivariance is automatic). To do that we

must show that the projection of any cone in Star
�

x21
�
;Vor(4)

�
lies in a cone

of Vor(3). By the de�nition of Star, it is enough to show that if � 2 Vor(4)

and � �


x21
�
, then Sym2 pr1(�) � �0 for some �0 2 Vor(3). Moreover, since

12



Vor(4) and Vor(3) are fans and Sym2 pr1 preserves the relation � among

cones, it is only necessary to check this for top-dimensional cones in Vor(4)

which have


x21
�
as a face. The result therefore follows from Prop III.7 and

Prop III.3, below. 2

In verifying the assertion made in the above proof there are two cases to

be considered separately. If � � � (up to GL(L4 )-equivalence) then �

corresponds to a point of the exceptional locus E � AVor
4 . Otherwise �

corresponds to a point of A
Igu
4 .

Proposition III.3 Suppose that � 2 Vor(4) is of maximal dimension (i.e.

dimension 10), that


x21
�
� � and that no GL(L4)-translate of � is a face

of �. Then Sym2 pr1(�) 2 Vor(3).

Proof. In this case, � is equivalent under GL(L4 ) to the �rst perfect do-

main �1(4). (The level structure plays no role here.) More than that:

the subgroup of GL(L4 ) that preserves �1(4) permutes the generating rays

transitively, so � is even equivalent to �1(4) under the stabiliser of x
2
1. To

see that the rays are permuted transitively, note �rst that the permutation

matrices are in the stabiliser of �1(4) in GL(L4), so all four monomial gener-

ators x2i are equivalent to one another and so are all six binomial generators

(xi � xj)
2. The element of GL(L4) given by xi 7! xi � x2 for i 6= 2 and

x2 7! �x2 preserves �1(4) but does not preserve the distinction between

monomial and binomial generators, so all the generators are in one orbit.

Since, for any g,

�1(g) =


x21; : : : ; x

2
g; (xi � xj)

2 (1 � i < j � g)
�
;

the projection of �1(g) to M g�1 is �1(g � 1). Since �1(g) 2 Vor(g) for

all g and Vor(g) is GL(Lg )-invariant, we certainly have Sym2 pr1
�
�1(g)

�
2

Vor(g � 1). 2

This part of the argument is not restricted to g = 4, but it only applies to

�1(g). We want to mention an alternative proof, which uses the information

we have in a slightly di�erent way.

Lemma III.4 Let L be a lattice and li : L ! Z be linear forms such that the

quadratic form
P
l2i is positive de�nite. Then the Delaunay decomposition

for the quadratic form
P
�il

2
i is independent of the choice of positive con-

stants �i if, and only if, the forms li de�ne a dicing; that is, the 0-skeleton

of the cell decomposition de�ned by the hyperplanes fli(x) = ng for n 2 Z

coincides with the original lattice L.

Proof. [ABH, Lemma 3.1]. 2
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Recall that it would be enough for our purposes to prove that Sym2 pr1(�)

is contained in a cone of Vor(3). Every ray in Vor(4) is either a GL(L4)-

translate of � or spanned by the square of a linear form. So if � 2 Vor(4)

satis�es the conditions of Proposition III.3, then � =


fl2i g

�
for some linear

forms li : L
�
4 ! Z. Now we can apply the following proposition.

Proposition III.5 Suppose � 2 Vor(g) is a cone of maximal dimension

which is spanned by squares of linear forms. Then Sym2 pr1(�) is contained

in a cone of Vor(g � 1).

Proof. If � =


fl2i g

�
then, since � is of maximal dimension,

P
l2i is positive

de�nite. Therefore, by Lemma III.4 the li de�ne a dicing of L�g 
 R. If

�0 2 Lg�1 
 R is a point of the 0-skeleton of the decomposition induced by

the pr1(li), then it is the projection of a cell in the dicing of Lg 
R induced

by the li. Any vertex � of this cell is in Lg , so �0 = pr1(�) is in Lg�1 .

Therefore the pr1(li) induce a dicing of Lg�1 
 R.

The projection of any positive de�nite form is again positive de�nite, soP
(pr1(li))

2 = Sym2 pr1(
P
l2i ) is positive de�nite. Therefore, again by

Lemma III.4, the Delaunay decompositions induced by any two forms in

the interior of Sym2 pr1(�) are the same. Hence Sym2 pr1(�) is contained in

a cone of Vor(g � 1). 2

Now suppose that � � �, and that


x21
�
� �, so that � gives rise to a cone in

Star
�

x21
�
;Vor(4)

�
. We need only consider 10-dimensional cones up to the

action of the stabiliser ~G1 in GL(L4 ) of


x21
�
. Such a cone is spanned by �

and a 9-dimensional facet of the second perfect domain �2(4). These facets

are described in [ER2]. The authors of [ER2] have kept the coordinates xi
and work with the cone 	0

�
�2(4)

�
, but we prefer to work directly with �2(4)

and to display the symmetry instead by using the coordinates yi = 	�1(xi)

as in equation (3) above. Facets of �2(4) are then given by setting some of

the �ij and �ij equal to zero.

Proposition III.6 Every 10-dimensional cone � 2 Vor(4) with


x21; e

�
� �

is equivalent under ~G1 to one of the following three cones:

�1
2(4) = f�14 = �34 = �13 = 0g + �;

�2
2(4) = f�13 = �14 = �34 = 0g+ �;

�3
2(4) = f�14 = �34 = �24 = 0g + �:

Proof. Later (Corollary III.8) we shall show that �1
2(4), �

2
2(4) and �

3
2(4) are

inequivalent under ~G1. For now, since we are only interested in subcones of

�2(4), we need not consider ~G1 but only G1 = ~G1 \G, where G � GL(L4)

is the subgroup that preserves �2(4). Note that if � is as above, g 2 ~G1

and g(�) �


x21; e

�
also, then g 2 G1 anyway. This is because g(e) is the
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barycentre of g
�
�2(4)

�
, so if g does not preserve �2(4) then e and g(e) are

in the interiors of di�erent top-dimensional cones of Igu(4) and cannot both

be generators of g(�), since Vor(4) is a re�nement of Igu(4).

The symmetry group of �2(4) is described in [ER2]. It is a reection group

of order 1152, isomorphic to the reection group F4, generated by elements

ki, (1 � i � 4); sij , (1 � i < j � 4); and an extra transformation w. These

are given by

ki(yi) = �yi; ki(yj) = yj (j 6= i);

sij(yi) = yj; sij(yj) = yi; sij(yk) = yk (k 6= i; j);

w(yi) = �yi +
1

2

4X
k=1

yk:

We claim that this group is G; to show this, we must prove that it is a

subgroup of GL(L4 ). Thus we need to check that the matrices 	�1Ki	,

	�1Sij	 and 	�1W	 are all integral, whereKi, Sij andW are the matrices

of the above transformations and 	 is the matrix of the Voronoi transfor-

mation de�ned by equation (2). Then

	 =

0
BB@
1 1 1 1

1 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCA ; so 2	�1 =

0
BB@
1 1 1 1

1 �1 1 1

0 0 �2 0

0 0 0 �2

1
CCA ; and

2W =

0
BB@
�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

1
CCA

so it is suÆcient to check that 2	�1Ki	 and 2	�1Sij	 are congruent to

zero mod 2 and that 2	�12W	 is congruent to zero mod 4. The �rst of

these is trivial since Ki � 14 mod 2. For Sij it is enough to notice that any

two columns of 2	�1 are equivalent mod 2, so 2	�1Sij � 2	�1 mod 2 and

hence 2	�1Sij	 � 214 � 0. The case of W is checked directly.

All these elements of G preserve �: they must do, as it is spanned by the

barycentre of �2(4). There are 12 rays generating �2(4), spanned by (yi �

yj)
2, and G permutes them transitively because kj : (yi + yj)

2 7! (yi � yj)
2

and sii0sjj0 : (yi+yj)
2 7! (yi0+yj0)

2. Hence G1, which is the stabiliser of one

of the rays (generated by x21 = (y1+y2)
2) has order 96. The transformations

k3, k4, k1k2, s12, s34 and w0 = s14s23w all belong to G1; and in fact they

generate a group of order 96, which is therefore the whole of G1. To see

this, note that the elements k3, k4, k1k2, s12 and s34 generate a group of

order 32, and the element k3w
0 has order 3: hence the group generated has

order at least 96.

The G-orbits of 9-dimensional facets of �2(4) are also studied in [ER2].

There are exactly two such orbits, denoted RT and BF. A facet is RT if
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it is G-equivalent to the facet �12 = �23 = �13 = 0, and BF if it is G-

equivalent to �12 = �13 = �14 = 0: there are 16 RT and 48 BF facets.

The names come from the following representation, which will also be useful

to us. We construct a bicoloured graph on four vertices numbered 1 to 4:

conventionally we think of these vertices as the four corners of a square,

numbered clockwise starting from the top left. We join i and j with a red

edge to represent the equation �ij = 0 or with a black edge to represent

�ij = 0. The facets are then given by graphs with three edges that are

forked (there is a vertex of valency 3) or triangular. An RT facet is G-

equivalent to a facet described by a red triangular graph, and a BF facet is

G-equivalent to a facet described by a black forked graph. The e�ect of ki
on the graphs is to change the colour of all edges having i as a vertex. sij is

just the transposition (ij) on the vertices. w0 interchanges a left black edge

with a right black edge (i.e. �14 and �23) and leaves other black edges alone:

to red edges it does the opposite, leaving the left and right edges alone but

interchanging top and bottom and the two diagonals.

We are interested in facets adjoining


x21
�
up to G1-equivalence. The coef-

�cient associated to x21 is �12, so we have �12 6= 0: in other words, we look

only at graphs that do not have a black edge joining vertices 1 and 2.

There are 48 facets adjoining


x21
�
, of which 12 are RT and 36 are BF: this

follows because �2(4) has twelve edges, all equivalent under G, and each

facet adjoins nine of them. G1 preserves the property of being RT or BF,

because G does. �1
2(4) is RT, �

2
2(4) and �3

2(4) are BF.

The rest of the proof consists of checking that every facet of �2(4) that

adjoins


x21
�
occurs in one of these three orbits, which is straightforward,

using the description of the e�ects of the generators above. The details are

shown in Figure 1. Red edges are shown as dotted lines and the vertices are

numbered according to the above convention, clockwise starting from the

top left. Only half the facets are shown, the others being their reections

(left-right) under s12s34. 2

Proposition III.7 Each of the three cones �i
2(4) projects under Sym2 pr1

to a cone contained in a cone of Vor(3).

Proof. We simply check this for each case. (The representatives �i
2(4) have

been chosen so as to keep this part of the calculation fairly simple.) Note

that the projection of e is given by Sym2 pr1(e) = �e, where

�e = (x2 � x3)
2 + (x2 � x4)

2 + x23 + x24: (6)
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w
0
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Figure 1: Orbits of facets of the second perfect domain
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Using this we have

Sym2 pr1
�
�1
2(4)

�
= Sym2 pr1



x21; x

2
2; x

2
4; (x1 � x3)

2; (x1 � x4)
2;

(x2 � x3)
2; (x2 � x4)

2; (x3 � x4)
2; (x1 + x2 � x3)

2; e
�

=


x22; x

2
4; x

2
3; x

2
4; (x2 � x3)

2; (x2 � x4)
2; (x3 � x4)

2;

(x2 � x3)
2; (x2 � x3)

2 + (x2 � x4)
2 + x23 + x24

�
=



x22; x

2
3; x

2
4; (x2 � x3)

2; (x2 � x4)
2; (x3 � x4)

2
�

= �1(3)

and �1(3) 2 Vor(3).

The �rst BF case is given by

Sym2 pr1
�
�2
2(4)

�
= Sym2 pr1



x21; x

2
2; x

2
3; x

2
4; (x1 � x3)

2; (x1 � x4)
2;

(x2 � x3)
2; (x2 � x4)

2; (x3 � x4)
2; e
�

=


x22; x

2
3; x

2
4; x

2
3; x

2
4; (x2 � x3)

2; (x2 � x4)
2; (x3 � x4)

2;

(x2 � x3)
2 + (x2 � x4)

2 + x23 + x24
�

=


x22; x

2
3; x

2
4; (x2 � x3)

2; (x2 � x4)
2; (x3 � x4)

2
�

= �1(3)

For the second BF case, �3
2(4), we have

Sym2 pr1
�
�3
2(4)

�
=


x22; x

2
3; x

2
4; (x2 � x3)

2; (x3 � x4)
2; �e
�

which by (6) is strictly contained in �1(3). 2

Corollary III.8 The ~G1 orbits of �1
2(4), �

2
2(4) and �3

2(4) are distinct.

Proof. Since �1
2(4) is an RT facet it is in a di�erent G-orbit from the

other two, by [ER2]. As we have just seen, �2
2(4) projects onto a maximal-

dimensional cone of Vor(3) and �3
2(4) does not, so they are inequivalent

under ~G1. 2

Now we want to investigate the pullbacks of line bundles on AVor
3 under the

morphisms pi : D
Vor
4;i (n) �! AVor

3 (n). We de�ne

Es(n)ji = DVor
4;i (n) \Es(n): (7)

This intersection is either empty or a divisor on DVor
4;i (n) which is contracted

to a variety of codimension � 2 under the map DVor
4;i (n)! D

Igu
4;i (n).

Remark III.9 The varieties Es(n) do not depend on n for n � 3: more

precisely, all the Es(n) have the same normalisation (up to isomorphism),

independently of s or n; and if n � 3 they are normal. The normalisation

is �O(�) � XVor(4). Since the edges of �2(4) are all equivalent under G any

18



two non-empty varieties Es(n)ji are mutually isomorphic as well. If n � 3

no nontrivial cone of Vor(4) has nontrivial stabiliser, since the principal

congruence subgroup of level n in GL(8;Z) is torsion-free. This also implies

that the boundary divisors DVor
4;i (n) are normal.

We recall here some facts about the structure of toroidal compacti�cations.

Recall from [Nam1] that any toroidal compacti�cation of Ag is a disjoint

union of strata of the form

Zh;��(n) = Pg�h(n)nH h � C h(g�h) �O(��)

where Pg�h(n) is a group which acts properly discontinously, �� is a cone in

some copy of Sym2(R
g�h) containing some positive de�nite form, and O(��)

is the corresponding torus orbit.

Remark III.10 Suppose C is an irreducible curve in AVor
4 . Then let � be

a maximal cone in Vor(4) such that C is contained in the image in AVor
4 of

the closure of the torus orbit O(�) (such a � is unique up to the action of

GL(L4)). If we assume that C is not contained in the exceptional divisor E,

then � must be of the form


l21; : : : ; l

2
k

�
where the li are linear forms on L�4 ,

as in the proof of Proposition III.5.

The connection with the strata Zh;��(n) is the following. Let

U =
\
q2�

Ker q � M �
4 
 R;

and set h = dimR U and V = M �
4 
 R=U �= R4�h . Then every form q 2 �

de�nes a form �q on V and this de�nes an injective map � ! �� � Sym+
2 (V ).

Lemma III.11 �� � Sym+
2 (V ), as de�ned above, contains positive de�nite

forms.

Proof. If C � E then e 2 � and since e is positive de�nite there is nothing to

prove. Otherwise we prove this by induction on the number m of generators

of �. Suppose C 6� E and � = hq1; : : : ; qmi. We have U =
mT
i=1

Ker qi,

since if q =
P
aiqi 2 � and qi(x) = 0 2 M 4 
 R for all i then q(x) = 0.

Thus
T
Ker �qi = 0. Suppose 0 6= x 2 Ker(�q1 + t�q2) for some t > 0. Then,

evaluating at x 2 V , we get �q1(x) + t�q2(x) = 0, and since both forms

are positive semide�nite this implies �q1(x) = �q2(x) = 0 2 R. But since

�qi is semide�nite, �qi(x) = 0 if and only if x 2 Ker �qi, so x 2 Ker �q1 \

Ker �q2. So Ker(�q1 + t�q2) = Ker �q1 \ Ker �q2, and this reduces to the case of

hq1 + tq2; q3; : : : ; qmi. 2

C is then contained in a stratum of the form P4�h(n)nH h � C h(4�h) �O(��).

19



Proposition III.12 Under the morphism pi of Proposition III.1

p�i
�
D3(n)

�
=
X
j 6=i

DVor
4;j (n)jDVor

4;i (n)
+ 4

X
s

Es(n)ji:

Proof. The behaviour away from ��1n (A0) is clear and gives the coeÆcient 1

for the boundary components DVor
4;j . It is necessary to check the coeÆcient

of Es(n). The bundle p
�
i

�
D3(n)

�
is given on XStarhx21i

by the support func-

tion  3 Æ Sym2 pr1, where  3 is the support function on Vor(3) that takes

the value 1 on each primitive generator of a ray. Hence the coeÆcient of E

is  3(�e) = 4, by equation (6). 2

We insert here some further details about the orbits of cones of Vor(4) that

will be useful to us later on.

Lemma III.13 The dimension 2 faces of �2(4) fall into two orbits under

the action of G, the symmetry group of �2(4). Representatives for these

orbits are


x21; x

2
2

�
and



x21; x

2
3

�
.

Proof. Any such face is equivalent under G to a face spanned by x21 and one

other generator of �2(4). So we are interested in the G1-orbits of the other

eleven generators. We can represent such a generator by a bicoloured graph

as we did for facets, only it is easier to use the complementary graph, so that

a red (respectively black) edge joining vertices i and j represents �ij 6= 0

(respectively �ij 6= 0). A generator of �2(4) is thus represented by a single

edge. The generators of G1 listed together with their action on the graphs

in the proof of Proposition III.6 all preserve the property of an edge being

horizontal. It is easy to see that the horizontal and non-horizontal edges

each form a G1-orbit: see Figure 2. The representatives given are de�ned

by the non-vanishing of �12 and �13 respectively. 2

Corollary III.14 Any cone of Vor(4) spanned by two rank 1 forms and a

form of maximal rank is GL(L4) equivalent to one of the cones

�3 =


x21; x

2
2; e
�

and �03 =


x21; x

2
2; e

0
�

where

e0 = 2(x21 + x22 + x23 + x24 + x1x3 � x1x2 � x1x4 � x2x3 � x3x4):

Proof. Any such cone is equivalent to a cone spanned by e and a dimension 2

face of �2(4), so we can apply Lemma III.13. However


x21; x

2
2; e
�
= �3, and


x21; x
2
3; e
�
is equivalent under GL(L4 ) to �

0
3; the element of GL(L4) involved

is simply the transposition x2 $ x3. Applying this to e gives the result. 2
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�
k4 s12s34 k3

s34

s12s34 k3 s12s34

�
0

w
0 k3

Figure 2: Orbits of dimension 2 faces of the second perfect domain

Lemma III.15 The dimension 3 faces of �2(4) fall into four orbits under

the action of G, the symmetry group of �2(4). These orbits are to be re-

ferred to as string, BF �, RT � and disconnected: they are represented by the

cones


x21; x

2
2; x

2
3

�
,


x21; x

2
3; x

2
4

�
,


x21; x

2
4; (x1 � x4)

2
�
and



x21; x

2
2; (x3 � x4)

2
�

respectively.

Proof. Such a face � is determined by three generators, i.e. by a bicoloured

graph with three edges. It is always possible to draw a forked or triangu-

lar graph on the complement of such a graph. Therefore any collection of

three generators of �2(4) spans a 3-dimensional face of �2(4), since if we

draw a triangular or forked graph on the complement we specify, according

to [ER2], a facet containing all those generators; and the facets, again ac-

cording to [ER2], are simplicial. (Note that the edges in the graphs in [ER2]

represent a condition �ij = 0 or �ij = 0, whereas for us here they represent

�ij 6= 0 or �ij 6= 0.)

If the graph representing � is itself triangular or forked, then we may appeal

directly to the argument of [ER2]. We conclude that there are two orbits

of these types, which we may call RT� and BF�, represented by the same

graphs as the facets of types RT and BF. Examples are


x21; x

2
4; (x1 � x4)

2
�

for RT� and


x21; x

2
3; x

2
4

�
for BF�. (A forked or triangular graph is RT if is

triangular and has an even number of red sides: otherwise it is BF.)

So suppose that the graph is neither forked nor triangular (this means that

the rays not spanning � do not span a facet of �2(4)). Then the vertices

must have valencies 0, 1 or 2, and at least one of them has valency 1. The

possibilities are that all four vertices have valency 1; one has valency 0, one

has valency 1, and the other two have valency 2; or two have valency 1 and

two have valency 2. These possibilities are illustrated in Figure 3.
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We claim that the �rst two of these cases together form one G-orbit, and

that the third forms another. In the �rst case, of valencies all equal to 1, the

graph is a string. By applying sij we may assume that the string consists

of edges joining 1 to 2, 2 to 3 and 3 to 4. We may change the colour of the

outside edges by applying k1 or k4, and we may change the colour of the

central edge by applying k3k4, in each case without changing anything else.

Any graph of the second type (valencies 0, 1, 2, 2) may be converted to a

string by moving the double edge to join 1 to 2 and then applying w0. So

the �rst two types form a single orbit. In the last type, where the graph is

disconnected, we may always move the double edge to join 1 and 2 and we

may change the colour of the remaining edge (necessarily joining 3 and 4)

by applying k3. It is also easy to see that this type cannot be converted into

a string.

Examples of these two possibilities, which we call \string" and \discon-

nected", are


x21; x

2
2; x

2
3

�
and



x21; x

2
2; (x3 � x4)

2
�
respectively. 2

String

w
0

BF�

k3k4

RT�

k2

Disconnected

Figure 3: Orbits of dimension 3 faces of the second perfect domain

Lemma III.16 Suppose � � �2(4) and that � =


l21; l

2
2; l

2
3; l

2
4; l

2
5; l

2
6

�
, and

suppose that the li span a subspace of dimension 3. Then � is G-equivalent

to


x21; x

2
3; x

2
4; (x1 � x3)

2; (x1 � x4)
2; (x3 � x4)

2
�
.

Proof. Without loss of generality we may assume that l1, l2 and l3 are

linearly independent. Since every face of �2(4) is simplicial,


l21; l

2
2; l

2
3

�
�

�2(4), so according to Lemma III.15 it is equivalent to either


x21; x

2
2; x

2
3

�
or


x21; x

2
3; x

2
4

�
. Type RT� is excluded by the linear independence condition,

and disconnected type is excluded because for any other generator l24 of

�2(4) the linear forms x1, x2, x3 � x4 and l4 span a space of dimension 4.

We prefer to replace


x21; x

2
2; x

2
3

�
by the equivalent face



x21; x

2
3; (x3 � x4)

2
�

(also of string type { apply w0 followed by s12s34).

Now the result follows from the observation that any seven linear forms

whose squares are generators of �2(4) span a linear space of dimension 4.
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Therefore the six li are all the linear forms whose squares are generators of

�2(4) and which lie in the linear span of l1, l2 and l3. In both cases this

gives


x21; x

2
3; x

2
4; (x1 � x3)

2; (x1 � x4)
2; (x3 � x4)

2
�
. 2

w
0

Figure 4: An orbit of faces of the second perfect domain spanned by six

generators

Remark III.17 The graph corresponding to this example is a coloured

complete graph, as shown on the left of Figure 4. Applying w0 gives a graph

which is a bicoloured triangle. Notice that each edge of this graph has a

distinguished opposite edge, which shares an even number of vertices with

it but is of the opposite colour: this will be used below in Proposition IV.29.

IV Proof of the main result

Recall that DVor
g (n) denotes the closure in AVor

g (n) of the boundary D0
g(n).

We refer to the irreducible components of DVor
g (n) as DVor

g;i (n), or simply as

Dg;i(n) if g � 3 (when there is only one toroidal compacti�cation we need

consider). On DVor
g;i we de�ne the line bundle

Mg;i(n) = �nNDVor
g;i

(n)=AVor
g (n) + L: (8)

Clearly, in view of Lemma II.1, Mg;i(n) is an extension of the line bundle

M 0(n) introduced in section II.

In the case g = 4 the boundary of AVor
4 (n) decomposes as

AVor
4 (n) n A4(n) = DVor

4 (n) +E(n) =
X
i

DVor
4;i (n) +

X
s

Es(n):

We de�ne the line bundle on DVor
4;i

J4(n) = J4;i(n) =M4;i(n)�
X
s

nEs(n)ji: (9)

The proof of Proposition II.2 shows that certain theta functions de�ne sec-

tions of M 0
4;i(n). The �rst technical result of this section, Proposition IV.1,

is that these sections extend to sections of J4(n).

The following notation will be used throughout the rest of the paper: if I is

a set of indices then we write DVor
g;I (n) for

T
i2I

DVor
g;i (n), and if F is a bundle
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(or sheaf, etc.) on some variety containing DVor
g;I (n) we denote the restriction

FjDVor
g;I

(n) more simply by FjI . We have already used this convention above

(equation (7)): as we did there, we normally abuse notation by writing

DVor
4;ij(n) and Fjij rather than D

Vor
4;fi;jg(n) and Fjfi;jg, etc.

Proposition IV.1 Let p be a prime and n � 0 mod 4p2. If the character-

istics m0;m00; �m0; �m00 2 1
2p
Zg�1, then the functions �m0;m00(z; �)� �m0; �m00(z; �)

de�ne sections of the line bundle J4(n).

Proof. Since the group Sp(8;Z=n) acts transitively on the boundary com-

ponents DVor
4;i (n) we can again restrict ourselves to the standard boundary

component DVor
4;1 (n), given by the line Q e1 in Q8 = Q e1 � � � � � Q e8 . We

write DVor
4;1 (n) \A

0
4(n) = D0

4;1(n). We have already observed that the func-

tions �m0m00(z; �)� �m0 �m00(z; �) have the correct transformation behaviour.

We shall have to study how the sections de�ned by these functions extend

to the generic point of the intersections DVor
4;1j(n) = DVor

4;1 (n)\D
Vor
4;j (n), j 6= 1

and to the generic point of the divisors Es(n)j1.

A standard calculation shows that Sp(8;Z=n) acts transitively on pairs�
DVor

4;i (n);D
Vor
4;j (n)

�
withDVor

4;ij(n) 6= ;. Hence we can work with the standard

cusp corresponding to the isotropic subspace Q (e1 ^ e2 ^ e3 ^ e4) and we

can, moreover, take j = 2 and assume that DVor
4;1 (n) and D

Vor
4;2 (n) correspond

to the rays


x21
�
and



x22
�
in M 4 
 R. The cone



x21; x

2
2

�
2 Vor(4) has dual

cone given by



x21; x

2
2

�_
= hU11; U22;�U33;�U44;�Uij (i 6= j)i;

where fUijg is the dual basis to fU
�
ijg.

We have the partial quotient

H 4 �! C � C � (C �)8 = TM 4 emb
�

x21; x

2
2

��
(�ij) 7�! (t11 = e2�i�11=n; t22 = e2�i�22=n; tij = e2�i�ij=n):

in which DVor
4;1 (n) corresponds to ft11 = 0g and DVor

4;12(n) corresponds to

ft11 = t22 = 0g.

We now have to study the theta functions �m0m00(z; �) where m0;m00 2

(1=2p)Zg�1. The transformation of these functions with respect to Sp(8;Z)

is given by the theta transformation formula [Ig, pp. 84, 85]. Note that

characteristics of the form (m0;m00) with m0;m00 2 1
2p
Zg�1 are transformed

to characteristics of the same type.

The connection between the variables (z; �) 2 C 3 � H 3 and H 4 is the fol-

lowing. Recall that DVor
4;1 (n) corresponds to �11 ! i1. In terms of the
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coordinates tij = e2�i�ij=n we have

�m0m00(z; �) =0
@X
q2Z3

t
1
2
(q2+m

0

2)
2n

22 t
1
2
(q3+m

0

3)
2n

33 t
1
2
(q4+m

0

4)
2n

44

1
A � (10)

Y
2�i<j�4

t
(qi+m

0

i
)(qj+m

0

j
)n

ij t
(q2+m

0

2)n
12 t

(q3+m
0

3)n
13 t

(q4+m
0

4)n
14 e2�i

t(q+m0)m00

:

The claim that the sections of M 0
4;i(n) de�ned by the products of theta

functions �m0m00(z; �)� �m0 �m00(z; �) can be extended over DVor
4;12(n) now follows

from the observation that the exponent of t22 in �m0m00(z; �) is equal to

(q2 +m0
2)

2n=2 and, in particular, non-negative.

Next we study the extension to the generic point of a divisor Es(n)j1. Again

we claim that Sp(8;Z=n) acts transitively on the pairs (DVor
4;i (n); Es(n)ji). By

the action of the group GL(L4 ) on M 4 we can assume that Es(n) corresponds

to the central ray � in the second perfect cone. The transitivity now follows

from the observation at the start of the proof of Proposition III.6 that G, the

stabiliser of �2(4) in GL(4;Z), permutes the generators of �2(4) transitively

and preserves �.

We can, therefore, restrict our attention to the 2-dimensional cone


x21; e

�
.

But

e = 2U�11 + 2U�22 + 2U�33 + 2U�44 + U�12 � U�13 � U�14 � U�23 � U�24

and, using this, a straightforward calculation shows that the dual cone is

given by



x21; e

�_
= h(U11 � 2U12); U12;�(U22 � U33);�(U22 � U44)

�(U24 + U12);�(U24 � U13);�(U24 � U14);�(U24 � U23)

�(2U12 � U22);�U34i :

Hence TM 4 emb
�

x21; e

��
�= C 2 � (C �)8 and the torus embedding is given by

TM 4 �! TM 4 emb
�

x21; e

��
�= C � C � (C � )8

(tij) 7�! (t11t
�1
12 ; t12; t22t

�1
33 ; t22t

�1
44 ; t24t12; t24t

�1
13 ; t24t

�1
14 ; t24t

�1
23 ; t

2
12t

�1
22 ; t34):

Let T1; : : : ; T10 be the obvious coordinates on C 2 � (C � )8, corresponding to

U11 � 2U12; U12; U22 � U33; : : : ; 2U12 � U22; U34. The hyperplane fT1 = 0g

describes DVor
4;1 (n) and fT1 = T2 = 0g de�nes Es(n)j1. A straightforward

calculation shows

t11 = T1T
2
2 ; t12 = T2; t13 = T�12 T5T

�1
6 ; t14 = T�12 T5T

�1
7 ;

t22 = T 2
2 T

�1
9 ; t23 = T�12 T5T

�1
8 ; t24 = T�12 T5; (11)

t33 = T 2
2 T

�1
3 T�19 ; t34 = T10; t44 = T 2

2 T
�1
4 T�19 :
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Combining this with formula (10), we can write the function �m0;m00(z; �)

in terms of these new coordinates T1; : : : ; T10. We are interested in the

exponent of T2. If

w2 = (q2 +m0
2); w3 = (q3 +m0

3); w4 = (q4 +m0
4)

then this exponent is given by

`(w2; w3; w4) = n(w2 � w2w4 � w3 � w4 � w2w3 + w2
2 + w2

3 + w2
4):

Another straightforward calculation shows that this function assumes its

minimum for w2 = 0, w3 = w4 = 1=2, where we �nd that `(0; 1=2; 1=2) =

�n=2. Altogether for products of the form �m0m00(z; �)� �m0 �m00(z; �) we pick

up poles of order at most n. On the other hand t11 = T1T
2
2 shows that we

have a zero of order 2n and this means that, in total, we have a zero of order

at least n. 2

Before we give the proof of the main theorem we want to introduce the

notion of depth of an irreducible curve C. Recall that we have a morphism

�n : A
Vor
4 (n) �! AVor

4 �! ASat
4 = A4 qA3 qA2 qA1 qA0:

The depth of an irreducible curve C � AVor
4 (n) is de�ned by

depth(C) := minfk j �n(C) \A4�k 6= ;g:

Obviously 0 � depth(C) � 4 and depth(C) = 0 if and only if C is not

contained in the boundary. In the rest of the paper we shall treat each case

in turn, starting with depth 4 (subsection IV.1) and then going on to depth 0

in subsection IV.2, depth 1 in subsection IV.3, depth 2 in subsection IV.4

and �nally depth 3 in subsection IV.5.

IV.1 Curves of depth 4

For a depth 4 curve, the question of whether it meets a given divisor nega-

tively is a purely toric one, depending only on facts about Vor(4).

Proposition IV.2 A divisor aL� bD4 � cE on AVor
4 has non-negative in-

tersection with all irreducible curves C of depth 4 if and only if b � 2c � 0.

Proof. Since C is mapped to a point in the Satake compacti�cation it follows

that L:C = 0. First we suppose that C = CE is a curve in E. It is known

that AVor
4 is projective: this was proved by Alexeev in [Al] for all AVor

g but

seems to have been known for much longer for g = 4; see for instance [Nam2].

Therefore there is an ample line bundle on E which is the restriction of a line

bundle on AVor
4 . But we saw in Proposition I.6 that Pic(AVor

4 ) is generated

by L, DVor
4 and E; and the �rst two of these are pulled back from A

Igu
4 and
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hence zero on E. So either EjE or �EjE is ample, and it is easy to see that in

fact �EjE is ample. This follows because �2(4) is contained in a half-space.

Hence on the toric variety TM 4
emb

�
Vor(4) \�2(4)

�
got by subdividing the

second perfect domain into Voronoi cones, with torus-invariant divisors E =
�O(�) (this is an abuse of notation as it is the normalisation of E � AVor

4 )

and D1; : : : ;D12 given by the generators, there is a linear relation involving

E and all the Di with positive coeÆcients. So, on the toric variety, �EjE is

e�ective; and this remains true on AVor
4 . So H:C � 0 if and only if c � 0.

Actually we can do better. If we work instead with 	0
�
�2(4)

�
and use the

linear relation induced by the linear form
P
Uii, we see that on the toric

variety �4EjE = KjE , so that E � XVor(4) is a toric Fano variety.

Next we consider the case of a curve C of depth 4 that does not meet E. Then

C is contained in the boundary D
Igu
4 of A

Igu
4 , and the same considerations

as above, applied to A
Igu
4 ! ASat

4 , show that �D
Igu
4 j

D
Igu
4

is ample.

We remark that the morphism AVor
4 ! ASat

4 is a normalised blow-up of some

sheaf of ideals, (see [Ch] and [SC, Section IV]), and this is also suÆcient for

our purposes.

For other curves of depth 4, it is convenient to work on AVor
4 (n) for some

n � 3: pulling back by �n;Vor, we must show that
�
bD4(n) + cE(n)

�
:C � 0

for every irreducible curve C of depth 4 if and only if b � 2c � 0. Notice

that this will also prove that these conditions b � 2c � 0 are necessary for

aL� bD4 � cE to be nef, as claimed in Theorem I.8.

It is enough to consider the curves C corresponding to codimension 1 cones

� 2 Vor(4). This is because we need only consider irreducible curves, and

any such curve in E(n) lifts to a single irreducible component E of the

boundary of XVor(4). But such a component is a toric variety, and the curves

corresponding to codimension 1 cones generate the cone of e�ective curves

in E. Indeed, such curves generate the whole of A1(E), by for instance [Dan,

Proposition 10.3], and rational equivalence implies numerical equivalence.

We have already dealt with such curves in the case where � � hg(e)i for

some g 2 GL(L4), because they are contained in E(n). So it remains to

deal with � � �2(4). Up to GL(L4)-action there are two such cones (RT

and BF facets in the notation of [ER2]). We choose to work with the cones

�0 = f�13 = �14 = �34 = 0g and �1 = f�13 = �14 = �34 = 0g. Each of

these is a 9-dimensional face of the second perfect cone �2(4) and de�nes a

rational curve C �= P1 in XVor(4).

Let �1
2(4)

0 be the 10-dimensional cone h�0; ei. In the language of [ER2],

�1
2(4)

0 is a type III domain: in the classi�cation of Proposition III.6 it is

equivalent to �1
2(4). The facet �0 is an RT facet of �2(4). The transforma-

tion x1 $ x3; x2 $ x4 leaves �0 invariant, but maps � to a ray �0 = he0i and

�1
2(4)

0 to another 10-dimensional cone, a part of a translate of �2(4), which

is again a type III domain.
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The geometric situation is this: the curve C0 � XVor(4) corresponding to

�0 is contained in nine boundary components, which we call DVor
4;2 ; : : : ;D

Vor
4;10

(here 10 means `ten', not f1; 0g: the reason for the indexing will appear

below), out of the twelve boundary components DVor
4;1 ; : : : ;D

Vor
4;12 correspond-

ing to 1-dimensional faces of �2(4). These are the ones belonging to the

1-dimensional faces of �0. It is met (transversely) by two exceptional divi-

sors E, E0 corresponding to the rays � and �0. No other invariant divisors

meet C, and because of the level structure E and E0 give distinct disjoint

components of E(n).

The form 1
2 Tr

0 which we introduced in the proof of Proposition I.3 takes the

value 1 on each primitive generator of �0, while
1
2 Tr

0(e) = 4 and 1
2 Tr

0(e0) =

5. This shows that

DVor
4;2 + : : : +DVor

4;10 + 4E + 5E0 +R � 0

where R is a divisor in XVor(4) which does not meet C0. This implies

D4(n):C0 = (DVor
4;2 + : : :+DVor

4;10 + 4E + 4E0):C0 = �E0:C0 = �1:

We also have L:C0 = 0 and E(n):C0 = (E +E0):C0 = 2. Hence

�
� bD4(n)� cE(n)

�
:C0 = b� 2c � 0;

which is the desired inequality.

Finally we do the same calculation for �1. This cone has h�1; ei = �2
2(4)

which is a type II domain: �1 itself is a BF facet, since w(�1) = f�12 =

�23 = �24 = 0g. It forms the boundary between �2(4) and �1(4) and shares

an 8-dimensional face with �0.

Choosing the numbering suitably, we have the following geometric pic-

ture: the curve C1 lies in the intersection of the nine boundary divisors

DVor
4;1 ;D

Vor
4;2 ; : : : ;D

Vor
4;9 , and is met transversely by E and another boundary

component DVor
4;0 corresponding to



(x1 � x2)

2
�
. (With this choice of index-

ing the 1-dimensional faces of �1(4) correspond to DVor
4;0 ; : : : ;D

Vor
4;9 .) Now

1
2 Tr

0
�
(x1 � x2)

2
�
= 2 so

DVor
4;1 + � � �+DVor

4;9 + 4E + 2DVor
4;0 +R � 0

for some R not meeting C1; and hence

D4(n):C1 = (DVor
4;0 +DVor

4;1 + � � �+DVor
4;9 + 4E):C1 = �DVor

4;0 :C1 = �1:

We also have E(n):C1 = E:C1 = 1 so

�
� bD4(n)� cE(n)

�
:C1 = b� c � b� 2c � 0;

which completes the proof. 2
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IV.2 Curves of depth 0

The method we use in this case, of curves that are not contained in the

boundary of AVor
4 , is analogous to the proof of Proposition II.2, but rather

more complicated. We have to produce a modular form vanishing to suÆ-

ciently high order along each boundary component of AVor
4 . It is relatively

easy to supply the modular form: our proof that it does indeed have the

required vanishing is neither simple nor elegant.

Proposition IV.3 Let C be a depth 0 curve and let H = aL� bD4� cE be

a divisor on AVor
4 with a � 0, a� 12b � 0 and b � 2c � 0. Then H:C � 0.

Proof. It is simpler to work this time with DVor
4 rather than D4, so we

write H = �L � �DVor
4 � E (as in Remark I.9) and assume that � � 0,

�� 12� � 0 and  � 4� � 8
9.

We note that L:C > 0 since C maps to a curve in the Satake compacti�cation

and L is ample on ASat
4 . It is enough to prove that H:C > 0 if a� 12b > 0.

Choose some " > 0 with a=b > 12 + ", and let F be a modular form of

weight k, with F jC 6� 0, vanishing of order m � k=(12 + ") on DVor
4 and

order r � 9m=2 on E: such a form exists by Proposition IV.4, below.

Now we can write

kL = mDVor
4 + rE +DF ; C 6� DF

where DF is the zero divisor of F on AVor
4 (that is, the closure in AVor

4 of

the set fF = 0g � A4). So

�
k
mL�DVor

4 � r
mE

�
:C = 1

mDF :C � 0:

Since a=b > 12 + " � k=m and r=m � 9=2, and E:C � 0 since C is not of

depth 4, it follows that

�
�
�L�DVor

4 �

�E
�
:C >

�
k
mL�DVor

4 � r
mE

�
:C � 0:

2

It remains to establish that the modular form F exists.

Proposition IV.4 Given an irreducible curve C � AVor
4 of depth 0, There

exists a k 2 N and a modular form F for Sp(8;Z) of weight k with F jC 6� 0,

such that F vanishes of order m on DVor
4 and order r on E, and m=k �

1=(12 + ") and r � 9m=2.

Proof. Apart from the inequality r � 9m=2 this is the result of Weissauer

[Wei, p. 220] that we used in the proof of Proposition II.2. We shall prove

that the forms that Weissauer constructs also ful�ll the inequality r � 9m=2.

For this purpose we need to recall his construction.
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Let l = 2p with p prime and consider the set M of all characteristics in

(1lZ=Z)
8 of the form

m = (m(p);m(2)) 2 (1pZ=Z)
8� (12Z=Z)

8; m(p) 6= 0:

For a characteristic m = (m0;m00) with m0;m00 2 R4 the associated theta

constant is de�ned by

�m(�; 0) =
X
q2Zg

e2�i[
1
2
(q+m0)� t(q+m0)+(q+m0)tm00]

For ~M�M, de�ne

�M; ~M(�) =
Y

m2Mn ~M

�m(�; 0)
l

and

Fr(�) =
X

M2�g=�g(l)

�M; ~M(�)rjM

where �M; ~M(�)rjM denotes the usual slash operator and M runs through

a set of representatives of �4=�4(2l). Weissauer then shows that for given

" > 0 and � 2 H 4 there is a subset ~M � M such that �M; ~M(�) 6= 0 and

such that the resulting form Fr has the property that m=k � 1=(12 + ").

We have to compare the vanishing order of such a form Fr on DVor
4 with

its vanishing order on E. In order to do this, we consider the 2-dimensional

cone


x21; e

�
. The dual cone was computed in subsection IV.1 above, equa-

tion (11). We write m0 = (m1;m2;m3;m4) and assume that we have nor-

malised in such a way that �1=2 � mi � 1=2. In order to compute the

vanishing order of Fr(�) we have to compute the Fourier expansions of the

theta constants

�m;0(�; 0) =
X
q2Z4

Y
i;j

t
1
2
(mi+qi)(mj+qj)

ij e2�i(q+m
0)tm00

:

We can rewrite this in terms of the coordinates T1; T2; : : : ; T10. The vanishing

order of �m;0(�; 0) along the divisor corresponding to x
2
1 is then the minimum

of the exponent of T
1
2
(q1+m1)

2

1 for q1 2 Z and equals m2
1=2.

The divisor E is given by T2 = 0, so the vanishing order of Fr(�) along E is

the minimum over all q 2 Z4 of the exponents of T2 in the summand given

by q. For �xed q this order can easily be computed to be 1
2
e(q +m), where

e is the familiar quadratic form given in Section I, equation (1). That is,

1
2e(q +m) =

X
i

(qi +mi)
2 + (q1 +m1)(q2 +m2)

� (q1 +m1)(q3 +m3)� (q1 +m1)(q4 +m4)

� (q2 +m2)(q3 +m3)� (q2 +m2)(q4 +m4):
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For x = (x1; x2; x3; x4) 2 R4 we de�ne

emin(x) = min
q2Z4

e(q + x);

then Fr(�) will have the required vanishing as long as

X
m2Mn ~M

�
emin(m)� 9

2m
2
1

�
� 0:

We claim that this is true for l large enough. Given " > 0 we have # ~M <

"#M for l� 0, so (cf. [Wei, pp. 218{219])

lim
l!1

1

#(Mn ~M)

X
m2Mn ~M

�
emin(m)� 9

2m
2
1

�

=

Z Z Z Z
[� 1

2
; 1
2
]4

�
emin(x)�

9
2x

2
1

�
dx1 dx2 dx3 dx4

= �
3

16
+

Z Z Z Z
[� 1

2
; 1
2
]4
emin(x) dx1 dx2 dx3 dx4:

The integral is not easy to evaluate, even though its value is rational. The

region of R4 for which the minimum is achieved by some particular value of q

is a Delaunay cell for the quadratic form e, but these are complicated: there

is a complete description in [V2a]. Instead of attempting to evaluate the

integral precisely, we chose to estimate it by calculating 1
#M0

P
m2M0

emin(m)

using a computer, for a suitable set of points M0. Taking M0 to be the set

of points with coordinates of the form 2k+1
158 gave us the estimate

1

#M0

X
m2M0

emin(m) � 0:2166667

and by bounding the derivatives of the piecewise di�erentiable continuous

function emin one easily checks that the di�erence between this and the

actual value of the integral is less than 0:025. Therefore
R
emin >

3
16

=
R

9
2
x21,

and this proves the result. 2

Remark IV.5 The numerical evidence is overwhelming that
R
emin = 13

60 ,

so that

lim
l!1

1

#(Mn ~M)

X
m2Mn ~M

�
emin(m)� 9

2m
2
1

�
=

7

240
:

IV.3 Curves of depth 1

In this subsection we want to prove a result (Proposition IV.7) giving con-

ditions for a divisor to have non-negative intersection with every curve of
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depth 1. If C � AVor
4 is a curve of depth 1 we denote the irreducible compo-

nents of ��1n;Vor(C) � A
Vor
4 (n) by Cj(n). Since C is of depth 1 it is contained

in DVor
4 : any component Cj(n) is therefore contained in a boundary compo-

nent DVor
4;i (n).

The crucial point of the proof is the following lemma.

Lemma IV.6 For any curve C as above, given " > 0, there exist integers k

and n and a boundary component DVor
4;i (n), for which we can �nd a section

s 2 H0
�
kJ4(n)

�
and a component Cj(n) � DVor

4;i such that

(i) sjCj(n) 6� 0,

(ii) s vanishes on p�i;n
�
D3(n)

�
to order �, with �=k � n=(12 + ").

Proof. The proof of this lemma is a version of the argument of Weissauer

which we have already used for curves of depth 0. The argument given in

[Hu, Proposition 4.1] for g = 2 is valid verbatim for all g � 2. 2

Proposition IV.7 Let C be a depth 1 curve and let H = aL � bD4 � cE

be a divisor on AVor
4 with a � 0, a� 12b � 0 and b � c � 0. Then H:C � 0.

Proof. It is suÆcient to prove the result with the stronger condition a�12b >

0, since we can then take the limit as a � 12b ! 0. Furthermore, because

the cover �n;Vor is Galois, it is enough to prove that ��n;Vor(H):Cj(n) � 0

for some n and some component Cj(n). We �rst of all choose some " > 0

such that

(a� 12b)� b

�
1�

12

12 + "

�
> 0:

We also choose a point (z; �) 2 C 3 � H 3 whose image

[(z; �)] 2 D0
4 =

�
(Z3� Z3)o Sp(6;Z)

�
nC 3 � H 3

lies on the curve C. Choose a boundary component D0
4;1(n) and consider

the point

[(z; �)]n;1 2 D
0
4;1(n)

�=
�
(nZ3� nZ3)o �3(n)

�
nC 3 � H 3 :

It lies on some component Cj(n) of the preimage of C in DVor
4;1 (n). We shall

prove that ��n;Vor(H):Cj(n) > 0 for this component.

Recall from (8) and (9) that

�DVor
4;1 (n)jDVor

4;1 (n)
= �DVor

4;1 (n)j1 = 1
n
M4;1(n)�

1
n
L

= 1
n
J4(n) +E(n)j1 �

1
n
L;
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where E(n)j1 =
P

sEs(n)j1. It follows (see Remark I.10 and Proposi-

tion III.12) that

��n;Vor(H)j1 = aL� bnDVor
4;1 (n)j1 � bn

X
i6=1

DVor
4;i (n)j1

� bnE(n)j1 � cnE(n)j1

= (a� b)L+ bJ4(n)� bnp�1;n
�
bD3(n)

�
+ n(b� c)E(n)j1:

In terms of divisors, Lemma IV.6 means that for some divisor B 6� C

J4(n) �
1
kB + �

kp
�
i;n

�
D3(n)

�
:

Taking also into account that the divisor L on DVor
4;1 (n) is a pullback from

AVor
3 (n) we �nd that

��n;Vor(H)j1 = p�1;n

�
(a� b)L� b

�
n� �

k

�
D3(n)

�
+ b

k
B + n(b� c)E(n)j1:

By construction B:Cj(n) � 0 and since C is a curve of depth 1 and b �

c we also have n(b � c)E(n)j1:C � 0. The result now follows from the

corresponding result, [Hu, Theorem 0.2], on AVor
3 (n), provided

a� b > 12
b

n

�
n�

�

k

�
:

Since �k=n � 1=(12 + ") this follows from our choice of ". 2

IV.4 Curves of depth 2

Let C � AVor
4 be a curve of depth � 2 which is not contained in the excep-

tional divisor E. Then (see Remark III.10) there are at least two di�erent

linear forms l 6= l0 such that C is contained in the divisors corresponding

to the rays


l2
�
and



l0
2�
. This leads us to study the intersection of two

boundary divisors in AVor
4 (n). Assume that n � 3 and that DVor

4;ij(n) 6= ;.

We have seen that each of the boundary components admits a �bration

pi : D
Vor
4;i (n) �! AVor

3 (n):

Recall also (see e.g. [Hu]) that each boundary component D3;k(n) of A
Vor
3 (n)

admits a �bration

qk : D3;k(n)! AVor
2 (n):

Indeed, this is the universal family over AVor
2 (n). Since DVor

4;ij(n) is mapped

to the boundary of AVor
3 (n) this gives rise to the following situation, for
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some k = k(i; j) determined by the ordered pair (i; j):

DVor
4;ij(n) � DVor

4;i (n)??ypijj
??ypi

D3;k(n) � AVor
3 (n)??yqk

AVor
2 (n):

Let rij = qk Æ pijj. By Proposition III.12 we have that

�D4(n)jij = �DVor
4;i (n)jij � pij

�
j

�
D3(n)

�
= �DVor

4;i (n)jij � pij
�
j

�
D3;k(n)jk

�
� r�ij

�
D2(n)

�

where D2(n) is the boundary of AVor
2 (n), since

D3(n) = D3;k(n) + q�k
�
D2(n)

�
: (12)

Lemma IV.8 For H = aL� bD4(n)� cE(n) we have

Hjij =
�
a� 2 bn

�
L+ b

npij
�
jM3;k(n) +

b
npjj

�
iM3;k(n)� br�ij

�
D2(n)

�
� br�ji

�
D2(n)

�
+ b

X
m6=i;j

DVor
4;mjij + (4b� c)E(n)jij :

Proof. It follows from Proposition III.12 that

pij
�
j

�
D3(n)jk

�
=
X
l 6=i

DVor
4;l (n)jij + 4E(n)jij

and hence

�DVor
4;j (n)jij = �pij

�
j

�
D3(n)jk

�
+
X
l 6=i;j

DVor
4;l (n)jij + 4E(n)jij :

Again using equation (12), this implies

�DVor
4;j (n)jij = �pij

�
j

�
D3;k(n)jk

�
� r�ij(D2(n)) +

X
l 6=i;j

DVor
4;l (n)jij + 4E(n)jij :

Using

�D3;k(n)jk =
1
n
M3;k(n)�

1
n
L

we �nd that

�DVor
4;j (n)jij = 1

n
pij

�
j

�
M3;k(n)

�
� 1

n
L� r�ij

�
D2(n)

�
+
X
l 6=i;j

DVor
4;l (n)jij + 4E(n)jij (13)
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Applying this formula also with i and j interchanged, and using the fact

that �D4(n) = �
P
l

DVor
4;l (n)� 4E(n), we obtain

�D4(n)jij = 1
n
pij

�
j

�
M3;k(n)

�
+ 1

n
pjj

�
i

�
M3;k(n)

�
� 2

n
L� r�ij

�
D2(n)

�
� r�ji

�
D2(n)

�
+
X
m6=i;j

DVor
4;m(n)jij + 4E(n)jij :

(There is a minor abuse of notation here, since the ks are not the same; but

this does not matter.) The result follows from this immediately. 2

We need to understand the last term in the expression in Lemma IV.8. A

component Es(n)jij of the restriction of E(n) to DVor
4;ij(n) corresponds to a

3-dimensional Voronoi cell


l2i ; l

2
j ; es

�
2 Vor(4) where li and lj are linear

forms and es is GL(L4)-equivalent to e. These were classi�ed up to GL(L4)-

equivalence in Corollary III.14.

Let E and E0 be the components of the exceptional divisor corresponding

to the elements e and e0 of M 4 of Corollary III.14. As usual we assume that

DVor
4;1 (n) and D

Vor
4;2 (n) correspond to x21 and x22 respectively. Note that the

divisor D3;k(n) � A
Vor
3 (n), the image of p1j2, corresponds to x

2
2 2 M 3 .

Proposition IV.9 Let Es(n)ji be a component of the restriction of E(n) to

some divisor DVor
4;i (n). Then pi

�
Es(n)ji

�
is contained in exactly four bound-

ary components of AVor
3 (n).

Proof. Since we now have only one non-exceptional boundary component

to consider, it is enough to do this for the standard exceptional divisor E,

corresponding to �. This is because the stabiliser of �2(4) �xes � and per-

mutes the generators. But �e = Sym2 pr1(e) is a sum of four forms of rank 1

in M 3 , by equation (6) in the proof of Proposition III.7. These rank 1 forms

together span a cone of Vor(3) and pi(E) is contained in the intersection of

the four corresponding boundary components. 2

Remark IV.10 In the two cases E and E0 above we �nd two di�erent kinds

of behaviour after projecting twice. The image p1(Ej1) is not contained in

D3;k(n), but p1(E
0j1) is. This is because

�e = (x2 � x3)
2 + (x2 � x4)

2 + x23 + x24

does not have x22 as a summand. In this case r12(Ej12) is contained in two

boundary components of AVor
2 (n).

On the other hand

�e0 = (x2 � x3)
2 + (x3 � x4)

2 + x22 + x24

does have x22 as a summand, so p1(E
0j1) � D3;k(n). So r12(E

0j12) is contained

in three di�erent boundary components of AVor
2 (n). In other words, E0j12 is
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mapped under r12 to a deepest point in AVor
2 (n), whereas Ej12 is mapped

to the intersection of two boundary components, i.e. to a P1 in AVor
2 (n)

if n � 3.

Corollary IV.11 Let Es(n)jij be a component of E(n)jij. Then the coeÆ-

cient of Es(n)jij in r
�
ij

�
D2(n)

�
is equal to 3 if Es(n) is mapped under rij to

a deepest point in AVor
2 (n) and equal to 4 otherwise.

Proof. D2(n) is given by the support function  2 on Vor(2) that takes the

value 1 on the primitive generator of every ray. In toric terms, qk is given

by the projection Sym2 pr2 : M 3 ! M 2 , which maps �e to 2(x23 + x24) and �e0

to x23 + x24 + (x3 � x4)
2. So  2(�e) = 2

�
 2(x

2
3) +  2(x

2
4)
�
= 4 and similarly

 2(�e
0) = 3. 2

We are now in a position to begin checking nefness for depth 2 curves. Let

C be such a curve. We choose a maximal cone � such that C is contained

in the closure of (the image in the moduli space) of O(�). Since C is a

depth 2 curve, it is not contained in the exceptional divisor and hence �

must be of the form


l21; : : : ; l

2
k

�
, where the li are linear forms on L4 and

where fl1 = � � � = lk = 0g is a plane in L4
R. In particular, we may assume

that l1 and l2 are linearly independent and that the other linear forms lk,

k � 3 are linear combinations of l1 and l2. Up to GL(L4 )-equivalence we may

assume that DVor
4;i (n) and D

Vor
4;j (n) are D

Vor
4;1 (n) and D

Vor
4;2 (n), corresponding

to


l21
�
=


x21
�
and



l22
�
=


x22
�
respectively. We may regard � as a cone

in Vor(2) and from the known description of Vor(2) it follows that we need

only consider the cases � =


x21; x

2
2

�
or � =



x21; x

2
2; (x1 � x2)

2
�
.

In particular C is in either two or three (necessarily non-exceptional, since

depth(C) 6= 4) irreducible components of the boundary of AVor
4 (n). For

any curve C with 0 < depth(C) < 4 we de�ne the boundary multiplicity of

C to be the number �(C) of irreducible components of the boundary that

contain C: it is the multiplicity of the generic point of C as a point of D4(n).

First suppose that depth(C) = 2 and �(C) = 2: that is, there are just two

such components, which with the assumptions above are DVor
4;1 and DVor

4;2 .

We shall use the expression for Hjij which we derived in Lemma IV.8.

Notice (see Remark IV.10) that if a component of E(n)j12 is contracted

to a (deepest) point by r12 then it is also contracted to a point by r21.

Correspondingly we decompose E(n)j12 as

E(n)j12 = E+(n) +E�(n);

whereE+(n) consists of all the components that are not contracted to points.

Lemma IV.12 Suppose n � 3 and C � DVor
4;12(n) is a depth 2 curve of

boundary multiplicity 2. Then, given " > 0, we can write

1

n
p1j

�
2

�
M3;k(n)

�
� R1 + �1r

�
12

�
D2(n)

�
+E+(n)
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where R1 is an e�ective Q -divisor with C 6� SuppR1 and �1 � 1=(12 + ").

A similar statement holds for 1
np2j

�
1

�
M3;k(n)

�
.

Proof. We have already explained that one can construct suitable sections

of some power of M3;k(n) by taking products of theta functions of the form

�m0m00(z; �), where

� =

�
�33 �34
�34 �44

�
2 H 2 and z = (z1; z2) = (�23; �24):

The claim about the vanishing along r�12
�
D2(n)

�
follows by Weissauer's ar-

gument as in [Hu, Proposition 4.1]. To check the contribution along the

exceptional divisors it is suÆcient to check the divisors given by the rays �:

the terms corresponding to �0 = he0i (see Lemma III.14) can be absorbed

into R1. This works as in the proof of Proposition IV.1. The Fourier expan-

sion, for q = (q3; q4) 2 Z2, reads

�m0m00(z; �) =X
q2Z2

t
1
2
(q3+m

0

3)
2n

33 t
1
2
(q4+m

0

4)
2n

44 t
(q3+m

0

3)(q4+m
0

4)n
34 t

(q3+m
0

3)n
23 t

(q4+m
0

4)n
24 e2�i(q+m

0)tm00

:

Let w3 = (q3 +m0
3) and w4 = (q4 +m0

4). A computation analogous to that

in the proof of Proposition IV.1 shows that the vanishing order along E+(n)

is equal to the minimum value of 2 + 2(w2
3 +w2

4 �w3 �w4) for these values

of w3 and w4. The real function w
2
3 + w2

4 � w3 � w4 assumes its minimum

at w3 = w4 = 1=2 where its value is �1=2 and this gives the result. 2

Proposition IV.13 Let C be a depth 2 curve of boundary multiplicity 2,

and let H = aL�bD4(n)�cE(n) be a divisor on A
Vor
4 (n) with a�12b=n � 0,

b � c � 0. Then H:C � 0:

Proof. Using Proposition IV.8 and Lemma IV.12 we �nd that

Hj12 = (a� 2 b
n
)L+ b(R1 +R2) + b�1r

�
12

�
D2(n)

�
+ b�2r

�
21

�
D2(n)

�
+ 2bE+(n)� br�12

�
D2(n)

�
� br�21

�
D2(n)

�
+ b

X
i6=1;2

DVor
4;i j12 + (4b� c)E(n)j12:

We can rewrite this in the form

Hj12 =
X
i=1;2

r�ii0
� �

a
2 �

b
n

�
L� b

�
1
2 � �i

�
D2(n)

�
+ b(R1 +R2)

�
X
i=1;2

b
2
r�ii0
�
D2(n)

�
+ b

X
i6=1;2

DVor
4;i (n)j12

+ 2bE+(n) + (4b� c)E(n)j12;
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where i0 = 3� i. As before (Proposition IV.7), we may assume that in fact

a�12b=n > 0. The �rst two summands then have non-negative intersection

with C. This follows by induction from our knowledge of the nef cone of

AVor
2 (n) ([Hu, Theorem 0.2]) and the inequality �i � 1=(12 + "), where we

can assume " > 0 arbitrarily small.

By construction also (R1 +R2):C � 0. By Corollary IV.11 we have

r�12
�
D2(n)

�
=
X
i

DVor
4;i (n)j12 + 4E+(n) + 3E�(n)

where DVor
4;i (n) runs through all components such that r12ji is not dominant,

and a similar formula for r�21. Altogether we see that the coeÆcients of

DVor
4;i (n)j12 for i 6= 1, 2 and those of E+(n) and E�(n) are all non-negative.

Since C is not contained in any of these divisors we have proved the assertion.

2

We now move on to the case where the curve C has depth 2 and boundary

multiplicity 3. Such a curve is contained in the closure of the image in

AVor
4 (n) of O(�) where � has dimension 3, and thus in DVor

4;I (n) for some set

I of three indices. For convenience we take I = f1; 2; 3g, and we denote by

S3 the symmetric group on three elements acting as the symmetry group

of I.

For each � 2 S3 we de�ne the bundles

M� =
�
p�(1)j

�
�(2)

�
M3;k(�(1);�(2))

��
j�(3)

and

D� =
�
r��(1)�(2)

�
D2(n)

��
j�(3)

on DVor
4;I (n).

Lemma IV.14 With the above notation

�4D4(n)jI =
1
n

X
�

M� �
6
nL�

X
�

D� + 2
X
i62I

DVor
4;i (n)jI + 8E(n)jI :

Proof. Apply equation (13) in the proof of Lemma IV.8 with i = �(1) and

j = �(2) and restrict to DVor
4;�(3)

(n). Rearranging this gives

�DVor
4;�(2)(n)jI �DVor

4;�(3)(n)jI =
1
n
M� �

1
n
L�D� +

X
i62I

DVor
4;i (n)jI + 4E(n)jI ;

taking the sum over � 2 S3 gives

�4
X
i2I

DVor
4;i (n)jI =

1
n

X
�

M� �
6
n
L�

X
�

D� + 6
X
i62I

DVor
4;i (n)jI + 24E(n)jI :
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Since D4(n)jI =
P
i

DVor
4;i (n)jI + 4E(n)jI we have the formula stated. 2

In this case we again decompose E(n)jI as E+(n) + E�(n) by assigning a

component to E� if it is contracted to a deepest point by the rij . Again a

component is either contracted by all of the rij or by none of them. This is

easy to see, since � is GL(L4)-equivalent to


x21; x

2
2; (x1 � x2)

2
�
and hence

rij corresponds to the linear map L4 ! L2 with kernel spanned by x1 and

x2, independently of i and j.

Lemma IV.15 For any � 2 S3, given " > 0 we can write

1
nM� � R� + ��D� +E+(n)

where R� is an e�ective Q -divisor on DVor
4;I (n) such that C 6� SuppR�, and

�� > 1=(12 + ").

Proof. Immediately from Lemma IV.12. 2

Note that, by Corollary IV.11, the coeÆcient of E+(n) in D� is equal to 4

and the coeÆcient of E�(n) is equal to 3.

Proposition IV.16 Let C be a curve of depth 2 and boundary multiplic-

ity 3, and let H � aL � bD4(n) � cE(n) be a divisor on AVor
4 (n) such that

a� 12b=n � 0 and b � 2c � 0. Then H:C � 0.

Proof. As usual we may assume a � 12b=n > 0. By Lemma IV.14 and

Lemma IV.15 we have

HjI =
�
a� 3b

2n

�
L+ b

4

X
�

R� �
b
4

X
�

(1� ��)D� +
b
2

X
i62I

DVor
4;i (n)jI

+ 2bE(n)jI +
3b
2
E+(n)� cE(n)jI

=
X
�

r��(1)�(2)

��
a
6 �

b
4n

�
L� b

2

�
1
3 �

��
2

�
D2(n)

�
j�(3) �

b
12

X
�

D�

+ b
4

X
�

R� +
b
2

X
i62I

DVor
4;i (n)jI + (2b� c)E�(n) + (7

2
b� c)E+(n):

Furthermore

D� =
X
l2J(�)

DVor
4;l (n)jI + 4E+(n) + 3E�(n);

where l 2 J(�) runs through all boundary components such that the image

r�(1)�(2)
�
DVor

4;l (n)jI
�
is contained in the boundary of AVor

2 (n). Note that

I \ J(�) = ;.
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Using this we get

HjI =
X
�

r��(1)�(2)

��
a
6 �

b
4n

�
L� b

2

�
1
3 �

��
2

�
D2(n)

�
j�(3) +

b
4

X
�

R�

+
X
i62I

diD
Vor
4;i (n)jI + ( b2 � c)E�(n) + (3b2 � c)E+(n):

Moreover the coeÆcients di are non-negative. By induction, i.e. by our

knowledge of the nef cone of AVor
2 (n) from [Hu], we can assume that the

divisor
�
a
6 �

b
4n

�
L� b

�
1
6 �

��
4

�
D2(n) is nef and therefore that its pullback

has non-negative intersection with C. Also
P

�2S3
R�:C � 0. Since C is not

contained in any of the divisors DVor
4;i (n) for i 62 I, nor in any component of

E(n)jI , and since di � 0 and the coeÆcients of the components of E�(n)

and E+(n) are all non-negative, the result follows. 2

IV.5 Curves of depth 3

Supppose C is an irreducible depth 3 curve of boundary multiplicity � =

�(C). Then 3 � � � 6 and C is contained in DVor
4;i (n) if and only if i 2 I

for some index set I of size �(C). We assume without loss of generality

that I = f1; 2; : : : ; �g, and denote by S� the symmetric group on � symbols

acting as the symmetry group of I. For any � 2 S� we have the following

diagram:
DVor

4;I (n) � DVor
4;�(1)�(2)(n) � DVor

4;�(1)(n)??yp�(1)jI
??yp�(1)j�(2)

??yp�(1)
D3;K(�)(n) � D3;k(�)(n) � AVor

3 (n)??yqk(�)jK(�)

??yqk(�)
D2;m(k(�))(n) � AVor

2 (n)??ysm(k(�))

AVor
1 (n):

Here the index k(�) and the set of indices K(�) are all determined by the

choice of � 2 S�: we de�ne K(�) to be the set of indices k such that

p�(1)jI
�
DVor

4;I (n)
�
� D3;k(n). In fact k(�) depends only on �(1) and �(2), and

K(�) only on �(1). For any k 2 K(�), we de�ne m(k) so that qkjK(�) maps

D3;K(�)(n) to D2;m(k)(n). It is not quite immediate thatm(k) is well de�ned:

in principle the image of qkjK(�) could be in the intersection of two boundary

components of AVor
2 (n). However, this does not happen: see Corollary IV.19

below.

To reduce the amount of notation we write p� = p�(1)j�(2), r� = r�(1)�(2) =

qk(�) Æ p�(1)j�(2), and r�jI = qk(�)jK(�) Æ p�(1)jI . Note that p� and r� depend
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only on �(1) and �(2). As in the case of depth 2 and boundary multiplicity 3

we de�ne bundles

D� =
�
r��
�
D2(n)

��
jI

on DVor
4;I (n). We also write

S� =
�
p��
�
D3;k(�)(n)

��
jI

Lemma IV.17 If H = aL�bD4(n)�cE(n) and a � 12b=n � 0, then there

is a nef Q -divisor A1 such that

HjI = A1 �
b

(��1)�!

X
�2S�

D�

� b
(��1)(��1)!

X
�2S�

S� +
b

(��1)

X
i62I

DVor
4;i (n)jI +

�
4b
��1 � c

�
E(n)jI :

Proof. Replacing S3 by S� in the proof of Lemma IV.14, we see that

�(�� 1)(�� 1)!D4(n)jI =

�
X
�2S�

S� �
X
�2S�

D� + (�� 1)!
X
i62I

DVor
4;i (n)jI + 4(�� 1)!E(n)jI :

From this it follows that

HjI = aL� b
(��1)(��1)!

X
�2S�

S� �
b

(��1)(��1)!

X
�2S�

D�

+ b
(��1)

X
i62I

DVor
4;i (n)jI +

�
4b
��1 � c

�
E(n)jI

=
X
�2S�

r��

�
a
�!L�

b
�!D2(n)

�
jI �

b
(��1)�!

X
�2S�

D�

� b
(��1)(��1)!

X
�2S�

S� +
b

(��1)

X
i62I

DVor
4;i (n)jI +

�
4b
��1 � c

�
E(n)jI ;

which gives the formula required. The �rst term is nef because it is the

pullback of a nef bundle from AVor
2 . 2

For any boundary component D3;k(n) of A
Vor
3 (n) we have as before (equa-

tion (12))

q�k
�
D2(n)

�
jk =

X
j 6=k

D3;j(n)jk; (14)

so

r��
�
D2(n)

�
jI =

X
j 6=k(�)

p��(1)
�
D3;j(n)

�
jI :
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Lemma IV.18 For any � 2 S� (with 3 � � � 6) we have #K(�) = 2 or

#K(�) = 3. If � = 3 then #K(�) = 2; if � = 6 then #K(�) = 3. If � = 4

or � = 5 then both cases can occur, depending on � and �.

Proof. The cone � is of the form


l21; : : : ; l

2
�

�
and has three special properties:

it is a Voronoi cone, � 2 Vor(4); it contains no rank 4 forms (otherwise

depth(C) = 1); and the linear span of the li is of dimension 3. Then

K(�) = fSym2 pr�(1)(li) j � = hl1; : : : ; l�i; i 6= �(1)g:

By using the GL(L4)-action we may assume that � � �1(4), that is, that

the generators of � are x2i or (xi � xj)
2; and we may assume that x4 does

not occur at all, so that � � �1(3).

If � = 3 then the li are linearly independent, so the projections of l�(2) and

l�(3) are also linearly independent. So #K(�) = 2.

If � = 4, there are two possibilities. If three of the li are linearly dependent

then #K(�) = 2 if �(1) is one of those three, since the projection identi�es

the other two; but #K(�) = 3 if �(1) is the fourth generator. On the other

hand, if no three of the li are linearly dependent, then any two projections

are distinct, so #K(�) = 3.

We remark that both these cases occur: examples are


x21; x

2
2; (x1 � x2)

2; x23
�

and


x21; (x1 � x2)

2; x23; (x2 � x3)
2
�
.

If � = 5 then � is a codimension 1 face of �1(3) and thus equivalent to

x21; x

2
2; x

2
3; (x1 � x2)

2; (x1 � x3)
2
�
. There are two linear relations involving

three of the li and one generator (namely l21 = x21) occurs in both of them.

Each linear relation involving l�(1) reduces #K(�) by 1, starting from �� 1

(i.e. if there were no relations all the other generators would give di�erent

elements of K(�), so we should have #K(�) = � � 1); so #K(�) = 2 if

�(1) = 1 and #K(�) = 3 otherwise.

If � = 6 then � = �1(3) and because GL(L3 ) permutes the generators we

have #K(�) = #K(id) = 3 for all �. 2

Corollary IV.19 If k 2 K(�) then m(k) is unique: that is, the image of

qkjK(�) is contained in exactly one boundary component D2;m(k) of A
Vor
2 (n).

Proof. The linear span of K(�) has dimension 2, since it is the projection of

the linear span of the li. Projecting again from an element of K(�) therefore

gives a space of dimension 1. 2

We can characterise m(k) by saying that it gives the unique boundary com-

ponent that contains the image of C. We denote the elements of K(�) by

k(�), k0(�) and (if #K(�) = 3) k00(�).

We also know from the case g = 2 that �D2;m(k)(n)jm(k) is nef. We write

D2(n) = D2;m(k)(n) +D2;m̂(k)(n);
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so D2;m̂(k)(n) is the union of all the boundary components except for the

unique one that contains the image of C.

Lemma IV.20 Let D3;1(n) and D3;2(n) be two boundary components of

DVor
3 (n). Suppose q1 : D3;1(n) ! AVor

2 (n) and q2 : D3;2(n) ! AVor
2 (n) are

the associated projection maps, and write D2;m(1) for the image q1
�
D3;12(n)

�
and similarly D2;m(2) = q2

�
D3;12(n)

�
. Then

(i) q�2D2;m̂(2)(n) = q�1D2;m̂(1)(n),

(ii) D3;1(n)j12 = D3;2(n)j12 + q�2D2;m(2)(n)j12 � q�1D2;m(1)(n)j12.

Proof. (i) We may assume that D3;1(n) and D3;2(n) correspond to


x21
�
and


x22
�
in Vor(3). Then q1 is given by Sym2 pr1 so boundary components of the

image of q1 (which is abstractly AVor
2 (n)) may be thought of as cones in the

Voronoi decomposition of quadratic forms in the variables x2 and x3, while

for q2 one should consider quadratic forms in x1 and x3. In particular m̂(1) is

x22
�
and m̂(2) is



x21
�
. Conside an arbitrary boundary component given by


(a1x1 + a2x2 + a3x3)
2
�
2 Vor(3). Under q1 it maps to



(a2x2 + a3x3)

2
�
,

which is di�erent from m(1) =


x22
�
if and only if a3 6= 0. Similarly the

image under q2 is di�erent from m(2) if and only if a3 6= 0.

(ii) Applying (i) and using the equation (compare equation (12))

�D3;2(n) =
X
i6=1;2

D3;i(n)j12 � q�1D2(n)j12

=
X
i6=1;2

D3;i(n)j12 � q�1D2;m(1)(n)j12 � q�1Dm̂(1)(n)j12

and the same equation with the indices interchanged, we obtain

�
�D3;2(n) + q�1D2;m(1)

�
j12 =

X
i6=1;2

D3;i(n)j12 � q�1D2;m̂(1)j12

=
X
i6=1;2

D3;i(n)j12 � q�2D2;m̂(2)j12

=
�
�D3;1(n) + q�2D2;m(2)

�
j12

as required. 2

Proposition IV.21 There is a nef Q -divisor A2 such that the following
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expression for HjI holds:

HjI = A2 �
b

(��1)�!

X
�2S�

r��D2;m̂(k)(n)jI

�
X
�2S�

b
(#K(�)�1)(��1)(��1)!

r��D2;m̂(k)(n)jI

+
X
�2S�

b
(#K(�)�1)(��1)(��1)!

p��

� X
l 62K(�)

D3;l(n)

�

+ b
��1

X
i62I

DVor
4;i (n)jI +

�
4b
��1 � c

�
E(n)jI :

Proof. From equation (14) we have

�D3;k0 jK(�) =
X

l 62K(�)

D3;ljK(�) � q�kD2(n)jK(�) (15)

if #K = 2 and

�D3;k0 jK(�) �D3;k00 jK(�) =
X

l 62K(�)

D3;ljK(�) � q�kD2(n)jK(�) (16)

if #K = 3. We also have, by Lemma IV.20

D3;kjK(�) = D3;k0 jK(�) + q�k0D2;m(k0)(n)jK(�) � q�kD2;m(k)(n)jK(�) (17)

and similarly for k00 in place of k0 if #K = 3. In the latter case we add the

two equations to obtain

D3;kjK(�) = 1
2D3;k0 jK(�) +

1
2D3;k00 jK(�) +

1
2q
�
k0D2;m(k0)(n)jK(�)

+ 1
2q
�
k00D2;m(k00)(n)jK(�) � q�kD2;m(k)(n)jK(�): (18)

We use these equations to eliminate S� from the formula in Lemma IV.17.

From (15) and (17) we have

S� = �
X

l 62K(�)

p��D3;l(n)jK(�) +D� + p��q
�
k0D2;m(k0) � p��q

�
kD2;m(k)

if #K = 2, and from (16) and (18) we have

S� = �1
2

X
l 62K(�)

p��D3;l(n)jK(�) +
1
2D�

+ p��
�
1
2q
�
k0D2;m(k0) +

1
2q
�
k00D2;m(k00) � q�kD2;m(k)

�
:
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The term b
��1

P
i62I D

Vor
4;i (n)jI +

�
4b
��1

� c
�
E(n)jI plays no role at this point

and we temporarily denote it by �. So for #K = 2 we have

HjI = A1 + � �
b

(��1)�!

X
�2S�

D� �
b

(��1)(��1)!

X
�2S�

D�

+ b
(��1)(��1)!

X
�2S�

X
l 62K(�)

p��D3;l(n)jK(�) (19)

+
X
�2S�

p��
�
q�k0D2;m(k0) � q�kD2;m(k)

�

and for #K = 3

HjI = A1 + � �
b

(��1)�!

X
�2S�

D� �
b

(��1)(��1)!

X
�2S�

1
2D�

+ b
(��1)(��1)!

X
�2S�

X
l 62K(�)

1
2p
�
�D3;l(n)jK(�) (20)

� b
(��1)(��1)!

X
�2S�

p��
�
1
2q
�
k0D2;m(k0) +

1
2q
�
k00D2;m(k00) � q�kD2;m(k)

�
:

Since �D2;m(k)(n)jm(k) is nef we may add those terms to A1, obtaining a

nef Q -divisor A2 where

A2 = A1 �
b

(��1)(��1)!

X
�2S�

r��D2;m(k(�))(n)jm(k(�)):

In view of Lemma IV.20 this allows us to replace D� by r
�
�D2;m̂(k)(n)jI . This

gives the desired coeÆcients for the D2;m̂(k)(n) and D3;l(n) terms. Finally,

the terms X
�2S�

�
p��q

�
k0D2;m(k0) � p��q

�
kD2;m(k)

�

and X
�2S�

�
1
2
p��q

�
k0D2;m(k0) +

1
2
p��q

�
k00D2;m(k00) � p��q

�
kD2;m(k)

�

vanish. Indeed, if we �x �(1) = a say, and take S��1 = f� 2 S� j �(1) = ag

then X
�2S��1

�
paj

�
�(2)q

�
k0D2;m(k0) � paj

�
�(2)q

�
kD2;m(k)

�
= 0

and similarly for #K = 3. 2

In fact only the part of HjI supported on the exceptional divisors could have

negative intersection with C. We have

p��

� X
l 62K(�)

D3;l(n)

�
jI =

X
j2L(�)

DVor
4;j (n)jI +

X
s

s(�)Es(n) (21)
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and

r��D2;m̂(k)(n)jI =
X

j2M(�)

DVor
4;j (n)jI +

X
s

Æs(�)Es(n); (22)

where L(�) � M(�), L(�) \ I = ; and s and Æs depend on the cone �, the

permutation � and the component Es(n) of the exceptional divisor.

Corollary IV.22 H:C � 0 provided that

0 �
X
�2S�

�
� b

(��1)�!
Æs(�)�

b
(#K(�)�1)(��1)(��1)!

Æs(�)

+ b
(#K(�)�1)(��1)(��1)!

s(�)
�
+ 4b

��1
� c

for every component Es(n) such that Es(n) \ C 6= ;.

Proof. Away from the exceptional divisors Es(n), by Proposition IV.21 and

equations (21) and (22) we can write

� b
(��1)�!

X
�2S�

r��D2;m̂(k)(n)jI +
b

��1

X
i62I

DVor
4;i (n)jI =

X
i62I

�iD
Vor
4;i (n)jI

and

�
X
�2S�

b
(#K(�)�1)(��1)(��1)!

r��D2;m̂(k)(n)jI

+
X
�2S�

b
(#K(�)�1)(��1)(��1)!p

�
�

� X
l 62K(�)

D3;l(n)

�
=
X
i62I

�iD
Vor
4;i (n)jI

with �i � 0 and �i � 0. Hence

HjI = A2 +
X
i62I

(�i + �i)D
Vor
4;i (n)jI

+
X
s

� X
�2S�

�
� b

(��1)�!
Æs(�)�

b
(#K(�)�1)(��1)(��1)!

Æs(�)

+ b
(#K(�)�1)(��1)(��1)!s(�)

�
+ 4b

��1 � c

�
Es(n):

Since A2 is nef and D
Vor
4;i :C � 0 for i 62 I we have the result claimed. 2

We shall �x s so that Es = E, the component corresponding to the ray �,

and drop the suÆx s from the notation s(�), Æs(�). Since we may assume

that C \ E 6= ;, we can take � to be a face of �2(4). Obviously we need

only consider the faces up to G-equivalence.

Unfortunately the inequality of Corollary IV.22 does not always hold. We

shall need an extra argument, applied in Proposition IV.26 and Proposi-

tion IV.29, to handle the cases where it fails.
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We begin by calculating the values of (�) and Æ(�) for three of the four

cases of Lemma III.15. We shall work with the representatives given in

Proposition III.15, and with the generators in the order given there. Note

that the values of (�) and Æ(�) do depend on �, not just �.

Proposition IV.23 If � is a 3-dimensional face of �2(4), not of type RT
�,

and � 2 S3 then the values of (�) and Æ(�) are:

(�) = 3; Æ(�) = 2 if � is of type string and �(1) 6= 3;

(�) = 2; Æ(�) = 2 if � is of type string and �(1) = 3;

(�) = 2; Æ(�) = 2 if � is of type BF �;

(�) = 4; Æ(�) = 4 if � is of type disconnected.

Proof. We consider the support functions   and  Æ on (suitable copies of)

Vor(3) and Vor(2) respectively that determine the divisors
P

l 62K(�)D3;l(n)

and D2;m̂(k)(n): namely,   (respectively  Æ) takes the value 0 on a gen-

erator v of a ray in Vor(3) (respectively Vor(2)) if v 2 K(�) (respectively

v = m(�)) and 1 otherwise. Observe in particular that (�) depends only on

�(1), since that determines K(�), but Æ(�) depends on the unordered pair

f�(1); �(2)g.

String type:


x21; x

2
2; x

2
3

�
. Since x21 and x22 are interchanged by k3 2 G,

which preserves �, we need only consider the cases �(1) = 1 and �(1) = 3.

If �(1) = 1 then the projection gives, as in (6)

�e = (x2 � x3)
2 + (x2 � x4)

2 + x23 + x24: (23)

In this case K(�) = fx22; x
2
3g so (�) = 3. Taking the further projection from

�(2) we get either ��e = 2x23 + 2x24, if �(2) = 2, or ��e = x22 + (x2 � x4)
2 + x24, if

�(2) = 3. In the �rst case m(�) = x23 and in the second case m(�) = x22: in

either case Æ(�) =  Æ(��e) = 2.

On the other hand, if �(1) = 3 then the projection Sym2 pr3 gives

�e = x21 + x22 + x24 + (x1 + x2 � x4)
2:

K(�) = fx21; x
2
2g so (�) =  (�e) = 2. Applying k1 if necessary we may take

�(2) = 1, so ��e = x22 + x24 + (x2 � x4)
2 and m(�) = x22 so Æ(�) = 2

BF� type:


x21; x

2
3; x

2
4

�
. In this case the subgroup of G that preserves �

acts transitively on the generators (s23k2k3 interchanges x
2
1 and x

2
3; s24k2k4

interchanges x21 and x
2
4 { more simply, consider the symmetries of a genuinely

black forked graph), so we need only consider � = id. Then �e is as in (23)

and and K(�) = fx23; x
2
4g, and ��e = x22 + (x2 � x4)

2 + x24: m(�) = x24 so

(�) = Æ(�) = 2.

Disconnected type:


x21; x

2
2; (x3 � x4)

2
�
. In this case x21 and x22 are in-

terchanged by k1 and x21 and (x3 � x4)
2 are interchanged by w0, both of

which preserve �, so it is enough to consider � = id. Then �e is as in (23)

47



and K(�) = fx22; (x3 � x4)
2g, and ��e = 2x23 + 2x24: m(�) = (x3 � x4)

2 so

(�) = Æ(�) = 4. 2

Corollary IV.24 If C is a depth 3 curve with � = 3 contained in the closure

of the image of the orbit of �, and � is not of type disconnected, suppose

H = aL � bD4(n) � cE(n) is a divisor on AVor
4 (n) with a � 12b=n � 0,

b � 2c � 0. Then H:C � 0.

Proof. Note �rst that � is not of type RT�, since the linear forms whose

squares span � then span a space of dimension 2, not 3. Since � = 3 we

have #K(�) = 2 always, by Lemma IV.18. According to Corollary IV.22 we

need to show that if b � 2c then

X
�2S3

�
� b

12Æ(�) �
b
4Æ(�) +

b
4(�)

�
+ 2b� c � 0:

If � is of string type then
P

�2S3
Æ(�) = 12 and

P
�2S3

(�) = 16, so we get

2b � c � 0; if � is of type BF� then
P

�2S3
Æ(�) =

P
�2S3

(�) = 12, so we

get b� c � 0. 2

If � is of disconnected type then
P

�2S3
Æ(�) =

P
�2S3

(�) = 24 and we get

�c which will not be positive. We need to deal with this case separately.

We do this by examining the contribution from D2;m(k)(n). If n � 3 then

the boundary component D2;m(k)(n) of A
Vor
2 (n) is isomorphic to the Shioda

modular surface (or universal elliptic curve) of level n, which we call S(n):

the projection to the modular curve is sm(k) : D2;m(k)(n)! AVor
1 (n) = X(n).

Lemma IV.25 Let N2 = �D2;m(k)(n)jD2;m(k)
(n) be the normal bundle of

D2;m(k)(n) in A
Vor
2 (n). Then

N2 =
2
ns

�
m(k)LX(n) +

2
n

X
Lij

where the Lij are the sections of S(n).

Proof. This was proved in [Hu, p. 271]. 2

Proposition IV.26 Assume C is a depth 3 curve with � = 3 contained

in the closure of the image of the orbit of �, and � is of disconnected type.

Suppose H = aL�bD4(n)�cE(n) is a divisor on A
Vor
4 (n) with a�12b=n � 0,

b � 2c � 0. Then H:C � 0.

Proof. We may take � =


x21; x

2
2; (x3 � x4)

2
�
and as in the proof of Propo-

sition IV.23 we may assume that � = id. Then the exceptional divisor is

mapped by r� to the line
��E given by



x23; x

2
4

�
and D2;m(k)(n) intersects this

line transversally. If r�(C) � D2;m(k)(n) is a curve that intersects ��E then
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it does so at a singular point of a �bre of sm(k), since the two components

containing the image of E also meet there. In particular, r�(C) cannot be a

section of sm(k).

We now have to remember that the term A2 in Proposition IV.21 contains

copies of the nef line bundle �D2;m(k)(n)jD2;m(k)
(n). In fact in view of the

explicit description of this line bundle given in Lemma IV.25 we know that it

is represented by an e�ective Q -divisor, namely 2
n
(
P
Lij) +

2
n
s�
m(k)

LX(n) =
2
n
(
P
Lij)+s

�
m(k)

�
1
6
X1(n)

�
, where X1(n) is the set of cusps on the modular

curve X(n) = AVor
1 (n). In particular, it follows that this line bundle has

positive degree on all curves that are not sections. In view of equation (19)

and the subsequent reasoning, it will be enough to prove that

�
� b

12

X
�2S�

r��D2;m(�)(n)�
b
4

X
�2S�

r��D2;m(�)(n)� cE(n)�(1)�(2)

�
:C � 0;

where E(n)�(1)�(2) denotes the union of those components of E(n) that map

to ��E. This simpli�es to

�
� b

3

X
�2S�

r��D2;m(�)(n)� cE(n)�(1)�(2)

�
:C � 0:

A priori the curve C can meet several components of E(n)�(1)�(2) and each

of these in several points. Let P be some such point of intersection and let

CP be the curve germ de�ned by C at P .

Since r�(C) is not a section it follows that 2
n(
P
Lij):r�(C) � 0. Now

as we have said before the curve r�(C) must intersect a singular �bre of

D2;m(�)(n)
�= S(n) in a singular point over some cusp. Denote the �bre of

D2;m(�)(n) over this cusp by F0. Note that D2;m̂(�)(n) intersects D2;m(�)(n)

in two lines which are contained in F0 and which meet ��E. Pulling back

�D2;m̂(�)(n) and using Æ = 4, we obtain

r�� (
1
6F0):CP = 1

6r
�
� (D2;m̂(�)):CP �

2
3E:CP :

But now the claim follows since

� b
3

X
�2S�

r��D2;m(�)(n):CP �
X
�2S�

b
18
r��F0:CP �

4b
3
E:CP :

So here b � 3
4c is enough. 2

Lemma IV.27 If 3 � � � 6 and � is a cone such that the image of the

closure of its orbit contains a depth 3 curve, then (�) � Æ(�) = 2 for all

� 2 S�.
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Proof. Sym2 pr�(2) maps K(�) to m(�). If �e = Sympr�(1) e =
�l 21 +

�l 22 +
�l 23 +

�l 24
then (�) =  (�e) is equal to the number of the �l 2i that are not in K(�).

But if �l 2i 2 K(�), so  (�l
2
i ) = 0, then ��l 2i = (pr�(2)

�li)
2 = m(�) so  Æ(

��l 2i ) = 0,

so  Æ(��e) �  (�e). Hence (�) � Æ(�).

But Æ(�) is determined by �(1) and �(2) only, since these determine m(�)

and hence  Æ as well as ��e. Choose a non-RT� face � of � spanned by

�(1) = l21, �(2) = l22 and some other generator of �. These exist, since

the third generator of an RT� face is in the linear span of l1 and l2, but

the generators of � span a rank 3 space. Moreover, such a non-RT� face

cannot be of disconnected type, because any cone having a proper face of

disconnected type contains forms of rank 4. The choice of �(1), �(2) and �

determines an element m(�� ) 2 M 2 , namely m(�� ) = Sym2 pr�(1)�(2)(�); and

since � is not RT� it is non-zero. Therefore m(�� ) = m(�), since both of

them are the square of a generator of the same 1-dimensional space (namely,

the projection of the linear space spanned by the generators of �).

Now Æ(�) is calculated exactly as one calculates Æ for the cone h�(1); �(2); � i

with the generators in that order. This is a non-RT� cone with � = 3 so by

Lemma IV.23 that value of Æ is equal to 2. 2

Proposition IV.28 Suppose C is a depth 3 curve with � = 4 or � = 5

and H = aL� bD4(n)� cE(n) is a divisor on AVor
4 (n) with a� 12b=n � 0,

b � 2c � 0. Then H:C � 0.

Proof. Since (�) � Æ(�) we need only check that

X
�2S�

� b
(��1)�!Æs(�) +

4b
��1 � c � 0:

But Æ(�) = 2 so

X
�2S�

� b
(��1)�!Æs(�) +

4b
��1 � c = 2b

��1 � c � 0:

This is always ful�lled for � = 4 or � = 5 and b � 2c. 2

Proposition IV.29 Let C be a depth 3 curve with � = 6 and let H =

aL� bD4� cE be a divisor on AVor
4 with a � 0, a� 12b � 0 and b � 2c � 0.

Then H:C � 0.

Proof. In this case, by Lemma III.16, we can always work with the cone � =

x21; x

2
3; x

2
4; (x1 � x3)

2; (x1 � x4)
2; (x3 � x4)

2
�
. However, we cannot restrict

ourselves to � = id.

There are two essentially di�erent cases, depending on whether the edges

�(1) and �(2) in the bicoloured graphs given in the proof of Lemma III.16

(Figure 4) are opposites (3 cases) or not (12 cases): see Remark III.17. A
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representative of the non-opposite case is (�(1); �(2)) = (x21; x
2
3), of the other

(�(1); �(2)) = (x21; (x3 � x4)
2). The geometry of these cases is as follows. In

the non-opposite case we obtain

�e = (x2 � x3)
2 + (x2 � x4)

2 + x23 + x24;

��e = x22 + (x2 � x4)
2 + x24;

m(�) = x24:

In this case the exceptional divisor is mapped to a point ��E which is a singular

point of a singular �bre of D2;m(�)(n) and if C meets this divisor then r�(C)

cannot be a section. In the opposite case we have

�e = (x2 � x3)
2 + (x2 � x4)

2 + x23 + x24;

��e = 2(x2 � x4)
2 + 2x24;

m(�) = x24:

In this case ��E is a line which is contained in D2;m(�)(n) and we cannot a

priori exclude that r�(C) is a section.

It is straightforward to check by hand that this distinction coincides with

the distinction in terms of opposite and non-opposite edges above, and to

verify directly that there are 12 non-opposite cases.

We shall now argue as in the case � = 3 of disconnected type (Proposi-

tion IV.26), but taking into account only the contribution from the non-

opposite cases. The other contributions are non-negative. Using the same

notation as in the proof of Proposition IV.26 and using that Æ = 2 gives us

�r��D2;m(�)(n):CP � r�� (
1
6
F0):CP �

1
3
E:CP . In view of formula (20) it will

be enough to prove that�
� b

5�6!

X
�2S0

�

r��D2;m(�)(n)�
b

10�5!

X
�2S0

�

r��D2;m(�)(n) + (2b5 � c)E(n)

�
:CP � 0;

where S0� is the set of � giving rise to the non-opposite case, so #S0� =
4
5
6!.

This simpli�es to

� 4b
5�6!

X
�2S0

�

r��D2;m(�)(n):CP + (2
5
b� c)E:CP � 0:

This leads to b � 75
46c, and

75
46 < 2 so we are done. 2

Proposition IV.30 Let C be a depth 3 curve and let H = aL� bD4 � cE

be a divisor on AVor
4 with a � 0, a�12b � 0 and b � 2c � 0. Then H:C � 0.

Proof. This follows from the cases dealt with above, in Propositions IV.24,

IV.26, IV.28 and IV.29. 2

Theorem I.8 now follows from Propositions IV.2, IV.3, IV.7, IV.13, IV.16

and IV.30.
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