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We study, from the point of view of abelian and Kummer surfaces and their moduli, the special

quintic threefold known as Nieto's quintic. It is in some ways analogous to the Segre cubic and

the Burkhardt quartic and can be interpreted as a moduli space of certain Kummer surfaces.

It contains 30 planes and has 10 singular points: we describe how some of these arise from

bielliptic and product abelian surfaces and their Kummer surfaces.

In this paper we study, from the point of view of abelian surfaces and their moduli, the

special quintic threefold N �rst described in [Ni1] and [BN], known as Nieto's quintic1.

Nieto's quintic is in some ways analogous to the Segre cubic and the Burkhardt quartic

and has a rich but still largely unexplored geometry. It has a double cover ~N which is

birationally equivalent to the moduli space A1;3(2) of (1; 3)-polarised abelian surfaces with

a level-2 structure. N contains 30 planes and has 10 singular points: we aim to understand

how these arise from the abelian surfaces and their Kummer surfaces. It turns out that 15

of the planes are related to degenerate abelian surfaces and this aspect is studied in the

companion paper [HNS]. The other 15 planes come from a certain (reducible) Humbert

surface in A1;3(2). The 10 singular points arise similarly from another such Humbert

surface. These two Humbert surfaces correspond to precisely those abelian surfaces whose

minimally resolved Kummer surface is not embedded by the anti-invariant part of twice

the polarisation.
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1. Background and notation

We need to �x some notation for the projective varieties discussed in [BN] and we also

need to make careful de�nitions concerning moduli of abelian surfaces.

N is most conveniently de�ned as the subvariety of P5 given by

5X
i=0

ui =

5X
i=0

u�1i = 0

where the ui are homogeneous coordinates on P
5. As is shown in [BN], N is singular at the

ten points which are equivalent to (1 : 1 : 1 : �1 : �1 : �1) under the permutation action

of the symmetric group S6, and along the twenty lines Lijk given by ui = uj = uk = 0

which we will call desmic lines or D-lines.

N contains 30 planes forming two S6-orbits of size 15: the planes

u�(0) + u�(1) = u�(2) + u�(3) = u�(4) + u�(5) = 0; � 2 S6

which we call the S-planes, and the planes Fij given by

ui = uj = 0

which we call the V-planes.

The double cover ~P5 ! P5 branched along the coordinate hyperplanes induces by

pullback a double cover � : ~N ! N which is branched only along the V-planes.

We recall the de�nition of the Heisenberg group H2;2. It is a central extension

0 �! �2 �! H2;2 �!Z�42 �! 0;

where �2 is the group of square roots of unity, which acts on V2;2 = Hom(Z2�Z2; C ) via

the usual Schr�odinger representation.

This induces an action of H2;2 on P3. As explained in [BN], N is the closure of the

locus in P4 = f
P
ui = 0g that parametrises smoothH2;2-invariant quartic surfacesX � P3

that contain a line. The S- and V-planes correspond to singular quartic surfaces X. In

this paper we shall be concerned mainly with the V-planes.

We also consider the threefold M � Grass(2; 4) which parametrises lines in P3 con-

tained in some Heisenberg-invariant quartic surface X � P3. In appropriate homogeneous

coordinates xi on P
5 it is given by

5X
i=0

x2i =

5X
i=0

x�2i = 0
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and has an action of H2;2, as well as a map M ! N given by ui = x2i .

Turning to abelian surfaces, it is necessary to be careful with de�nitions. What follows

is all standard but is restated here for clarity. An abelian surface is a projective algebraic

group of dimension 2. It is thus a projective complex torus A with a group structure,

including in particular a distinguished point 0 2 A and an involution � : A! A as well as

a multiplication law. A polarisation of type (d1; d2) on A, where d1, d2 are positive integers

and d1jd2, is an algebraic equivalence class (or cohomology class) H 2 NS(A) � H2(A;Z)

which is the �rst Chern class of an ample line bundle L of type (d1; d2). This makes sense

even if we do not �x an origin 0 2 A. The class 1
d1
H is also an integral class and de�nes

a polarisation of type (1; d2=d1), but L1=d1 is not well de�ned: ifM is a line bundle such

thatMd1 �= L then (t�
x
Md1) �= L also for any d1-torsion point x 2 A.

An abelian torsor is a principal homogeneous space for an abelian variety. By a

symmetric torsor we mean a torsor Y for an abelian variety A on which a faithful action of

AutA is also speci�ed; in particular, there is an involution �1 on Y with 16 �xed points,

which one might refer to as possible origins (in that the choice of one of them as origin

would make Y into an abelian variety) or 2-torsion points. An example of a symmetric

torsor is Y = PicH A, for a general H 2 NS(A): if � 2 AutA then it acts on Y by

pullback.

The following easy fact will be useful to us.

Lemma 1.1. If H is a polarisation of type (2; 2d) then there is a unique symmetric line

bundle LH with c1(LH ) = H such that L is totally symmetric, that is, the square of a

symmetric line bundle of type (1; d).

Suppose we have an abelian variety A and a symmetric line bundle L on A such that

the group K(L) = fx 2 Ajt�
x
L �= Lg contains the group 2A of 2-torsion points of A. As

in [Mu] and [LB], we de�ne a theta structure of level (2; 2) on A to be an isomorphism

between the Heisenberg group H2;2, which is an extension

0 �! C � �! H2;2 �!Z�42 �! 0;

and the group G2;2(L) of theta characteristics for L, given by

0 �! C � �! G2;2 �! 2A �! 0;

which is the identity on C � . Such a choice induces an action ofH2;2 on L via the Schr�odinger
representation of H2;2 and also a choice of symplectic basis for 2A over Z2 with respect

to the symplectic (Weil) form induced by H = c1(L). In particular it depends only on
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c1(L), not on L itself. The choice of symplectic basis is a level-(2; 2) structure in the sense

of [Mu], often called simply a level-2 structure. We shall sometimes abuse notation by

speaking of a level-2 structure for an abelian surface with a polarisation of type (1; 3),

when in fact K(L) does not contain 2A. If we do so we mean a level-2 structure for A with

the polarisation c1(L
2), which makes sense.

We denote by A1;3(2) the (coarse) moduli space of abelian surfaces with a polarisation

of type (1; 3) and a level-2 structure. It makes no di�erence to the moduli space whether

we speak of polarisations of type (1; 3) or (2; 6). We denote by A1;3(2) a toroidal com-

pacti�cation of A1;3(2). In this paper it will not matter which toroidal compacti�cation

we take but in [HNS] we shall be more speci�c.

If (A;H;�) is a general (1; 3)-polarised abelian surface with a level-2 structure � then

(cf [BN], 6.1) the blown-up Kummer surface gKmA has an embedding into P3 whose image

is a Heisenberg-invariant quartic surface.

Theorem 1.2. Suppose (A;H;�) 2 A1;3(2). Let � : ~A ! A be the blow-up of A in the

sixteen 2-torsion points and let f : ~A!gKmA = ~A=~� be the quotient by the involution on

~A induced by � on A. Take L = L2H as in Lemma 1.1 and let ~L = ��L. Then the linear

system jLj� of ~�-anti-invariant sections induces a rational map �j ~Lj� : gKmA � P3: as long

as (A;H) is not a product, �j ~Lj� is a morphism and the image is a quartic surface containing

a line. Moreover, � induces an H2;2-action on gKmA and ~L and �j ~Lj� is equivariant for

these actions.

Proof: This is merely an assemblage of known results, restated here in a form convenient

for us. The existence of the map �j ~Lj� may be found in [Na], [Ni1] and [Ba]. In all these

places it is also shown that the image is a quartic surface. The choice of a symmetric

line bundleM such that M2 �= L determines a symmetric divisor M0 on A given by the

vanishing of an anti-invariant section of M. The image of ��M0 in P3 is a line ([BN],

p.194) and the H2;2-equivariance is also proved in [BN].

Corollary 1.3. There is a dominant rational map  : A1;3(2) � N which is a morphism

on A1;3(2).

Proof: The map  is de�ned by  (A;H;�) = �j ~Lj�(
gKmA), which, by Theorem 1.2 and

[BN], Theorem 8.1, gives a point of N as long as the 16 lines coming from the 16 choices

forM are skew. This is true for general A so  extends to an open subset of A1;3(2) and

also the general point of any of the Humbert surfaces that parametrise product abelian

surfaces. We shall see below (Theorem 3.2) that these Humbert surfaces are contracted

to points so  extends to every point of the Humbert surfaces and hence to the whole of

4



A1;3(2). The closure of the image of  is an irreducible subvariety of N and has dimension

3, so  is dominant.

In [HNS] we describe an extension of  to part of the boundary.

2 Moduli

In this section we shall describe the relationships between the projective varieties such as

N and M on the one hand and moduli spaces for abelian and Kummer surfaces on the

other. We begin by restating a main result from [BN].

Proposition 2.1. There is a double cover ~N =M=H2;2 of N such that ~N is birationally

equivalent to A1;3(2).

If we identify (
P
xi = 0) with the Pl�ucker quadric of lines in P3 then M parametrises

those lines that lie on someH2;2-invariant quartic surfaceX � P3. For a general ` 2M this

X is unique. The action of H2;2 on M is described in [BN]: every element of H2;2 changes

the signs of an even number of the coordinates xi. Of course �1 2 H2;2 acts trivially in

projective space, so H2;2 acts on M via the quotient and the morphism M ! ~N is of

degree 16.

The squaring mapM ! N of degree 32 may be interpreted as the quotient map under

the action of the group generated by H2;2 and � : (x0 : x1 : x2 : x3 : x4 : x5) 7! (�x0 : x1 :
x2 : x3 : x4 : x5). It factors through M ! ~N , the remaining part being the double cover

� : ~N ! N given by taking the double cover � : ~P5! P5 branched along the hyperplane

sections, so ~N = ��1(N). Thus � is induced by the squaring map: as is pointed out

in [BN], the spaces A1;3(2) and ~N are birationally equivalent but the generically 2-to-1

rational map  : A1;3(2) � N is completely di�erent from �.

We now restate the theorem from [BN] giving moduli descriptions of M and ~N .

Theorem 2.2. ~N is birationally equivalent to a compacti�cation of the moduli space

A1;3(2) of abelian surfaces A with a polarisation H of type (1; 3) and a level-2 structure �.

M is birationally equivalent to a compacti�cation of the moduli space of abelian surfaces

with a symmetric bundle L of type (1; 3) and a level-2 structure.

Remarks. i) The result proved in [BN] is rather more precise, specifying open setsMs and

Ms=H2;2 inM and ~N and open sets in the moduli spaces where the birational equivalences

are isomorphisms.

ii) In view of Lemma 1.1, an alternative birational way of describing ~N is as the

moduli space of abelian surfaces with a totally symmetric line bundleM of type (2; 6) and

a level-2 structure.
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iii) There is no need to speak of the moduli of (2; 6)-polarised abelian surfaces. The

version of this theorem in [Hun] (Theorem 3.4.16 and Corollary 3.4.17) is wrong, because

A1;3(2) and A2;6(2) are the same (and so are �1;3 and �2;6); however, Hunt's discussion of

the situation is scarcely a�ected by this slip.

iv) There is no preferred choice of L: thusM is a principalZ2
�4-bundle over ~N . Over

a point of Ms=H2;2 which is the moduli point of (A;H;�) the �bre may be thought of as

the principal 2A-space of all (sixteen) symmetric line bundles of Chern class H, acted on

by translation.

Strictly speaking the procedure used in [BN] to prove Theorem 2.2 constructs a family

of abelian torsors, not abelian surfaces, over Ms, since Nikulin's construction does not

select a distinguished origin but only picks out the sixteen �xed points of �1. But this is
good enough because one can replace the family by its double dual.

The moduli space A1;3 of (1; 3)-polarised abelian surfaces is H2=�1;3 where

H 2 =

�
Z =

�
�1 �2
�2 �3

�
2M2�2(C ) j Z = tZ; ImZ > 0

�

and �1;3 is the paramodular group in the sense of [GH], that is

�1;3 =

8><
>:
 2 Sp(4;Q) j 
 2

0
B@
Z Z Z 3Z
3Z Z 3Z 3Z
Z Z Z 3Z
Z 1

3
Z Z Z

1
CA
9>=
>; :

�1;3 acts on H2 by fractional linear transformations,

�
A B

C D

�
: Z 7! (AZ+B)(CZ+D)�1.

In the case of polarisation of type (1; 3) (or type (1; t) in fact) it makes sense to speak

of a dual polarised variety: according to [GH] one has a map �(3) : A1;3 ! A1;3 which

sends (A;H) to (Â; Ĥ) where Â = Pic0A and Ĥ is of type (1; 3). It is induced ([GH],

Proposition 1.6) by the element of order 2

V3 =

0
BB@

0
p
3
�1

0 0p
3 0 0 0
0 0 0

p
3

0 0
p
3
�1

0

1
CCA 2 Sp(4;R)

also acting on H2 by a fractional linear transformation.

A1;3(2) is the quotient H 2=�1;3(2), where �1;3(2) < Sp(4;Z) is given by

�1;3(2) =

8><
>:
 2 Sp(4;Q) j 
 � I 2

0
B@
2Z 2Z 2Z 6Z
6Z 2Z 6Z 6Z
2Z 2Z 2Z 6Z
2Z 2

3
Z 2Z 2Z

1
CA
9>=
>; :
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V �1
3 �1;3(2)V3 = �1;3(2) so the involution �(3) induces an involution on A1;3(2) with the

same properties: we shall call this �(3) also.

There is an alternative moduli description of ~N as a space of torsors. Because we

start with an H2;2 orbit of lines, rather than a particular one, this is what the geometry

really produces.

Proposition 2.3. ~N is birationally equivalent to a compacti�cation of the moduli space

of symmetric abelian torsors Y of dimension 2 with a symmetric bundle L of type (1; 3)

and a level-2 structure �.

Proof: Given a triple (A;H;�) 2 A1;3(2), where A is an abelian variety we associate

to it (Â;L; �̂), where Â is the torus obtained by forgetting the origin of A, and L is a

symmetric line bundle representing H. If we choose another symmetric line bundle L0

with c1(L0) = H, then there is a 2-torsion point x with t�
x
L = L0. This translation de�nes

an automorphism of the torsor and hence this map is well de�ned up to isomorphism. The

level-2 structure �̂ is simply a level-2 structure on the underlying abelian surface. Inversely,

starting with (Y;L; �̂) with Y a symmetric torsor, we make Y into an abelian surface A by

choosing one of the sixteen �xed points of the involution �1, say x, as the origin. We take

H = c1(L) and � = �̂. We must check that this de�nition does not depend on the choice

of x. If we choose a di�erent 2-torsion point x0 instead of x we get an abelian surface A0,

and the translation tx0�x de�nes an isomorphism from A to A0. It maps L to a di�erent

line bundle L0, but c1(L) = c1(L0) so again at the level of isomorphism classes the map is

well de�ned and the two maps are obviously inverse to each other.

The above argument works for any polarisation (and indeed any dimension). In our

case it is also possible to use �(3) and the totally symmetric bundle of class 2H to induce

an isomorphism.

A symmetric bundle of type (1; 3) even determines a unique divisor on Y , because the

space of anti-invariant sections under the action of �1 is 1-dimensional. So Y is very like

a Jacobian but the \theta divisor" gives a non-principal polarisation.

The relevance of �(3) is that it gives rise to  .

Proposition 2.4. There exists g 2 �1;3=�1;3(2) such that if x1, x2 2 A1;3(2) and  (x1) =

 (x2) then �(3)(gx1) = x2.

Proof: Suppose xi = (Ai;Hi; �i) are such that  (x1) =  (x2). For general xi we know

that KmA1
�= KmA2, since �j ~Lj� is an isomorphism onto its image. By Theorem 1.5

of [GH], we also know that, for general Ai, if KmA1
�= KmA2 then (A2;H2) = (Â1; Ĥ1).
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So the map A1;3(2)! A1;3(2) induced by  agrees with V3 up to a possible change of the

level structure, that is, up to the action of �1;3=�1;3(2).

The element gV3 is an involution modulo �1;3(2). There are, in principle, two possi-

bilities. One is that gV3 itself is an involution. (This happens if g = 1, but also for some

other g.) By [GH], Corollary 3.9, there is exactly one involution in �1;3V3 up to conjugation

with �1;3. The �xed locus of such an involution is a Humbert surface of discriminant 12

in A1;3(2). For a general element of this Humbert surface the linear system �j ~Lj� is an

embeddding. But then this would contradict the statement 8.4 of [BN], which says that

 is unbranched on Ms=H2;2. In particular we see that g 6= 1. The other possibility is

that (gV3)
2 2 �1;3(2), but (gV3)

2 6= 1. It follows, again by [GH], Corollary 3.9 that the

map  is not branched along a Humbert surfaces of discriminant 4. On the other hand

the branch locus of the map � is the image of the locus of bielliptic abelian surfaces (see

below). These surfaces are parametrized by a Humbert surface of discriminant 4. Hence

we can see directly from moduli that the two maps  and � do not agree.

3 Branching and special abelian surfaces

In this section we study the branch locus of � below A1;3(2) and the corresponding abelian

surfaces. Recall that we de�ne  : A1;3(2)! jOP3 (4)j by  (A;H;�) = X = Im�j ~Lj� � P3.
By continuity  (A;H;�) 2 N , even if X is singular.

The image of the map �j ~Lj� was studied by Bauer [Ba]. There is a classical study of

quartic surfaces in P3 with singularities by Jessop [J]. We begin, though, with the double

points of N . These are in the S-planes but, unlike other points in the S-planes, they

can arise from smooth abelian surfaces. According to the main theorem of [Ba] the map

�j ~Lj� : gKmA ! P3 is usually an isomorphism onto its image (this is also shown in [BN]

and [Na]) but there are exceptional cases, numbered (III), (IV) and (V) in x5 of [Ba].
III. The (1; 3)-polarisation H is given by OA(G+E) with E elliptic and G an irreducible

genus 2 curve with G:E = 2. In this case �j ~Lj� is birational and the image X has four

nodes.

IV. H is given by OA(E1 + E2 + E3), Ei elliptic, Ei:Ej = 1 � �ij . This is a degenerate

case of (III) and the image X has twelve nodes. �j ~Lj� is still birational.

V. A = E1 � E2 and H = c1(OA(E1 + 3E2)), Ei elliptic. The image X is smooth but

�j ~Lj� is 2-to-1.
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Lemma 3.1. If a group G acts transitively on a set X 3 x0 and G0 is a normal subgroup

of G of �nite index, and if S and S0 are the stabilisers of x0 in G and G0 respectively, then

the number of G0-orbits in X is equal to [G : G0]=[S : S0].

Proof: This is an elementary calculation (cf. Lemma 2.2 of [HW]).

Theorem 3.2. The nodes in N correspond to points of A1;3(2) where A = E1 � E2 and

H = c1(OA(E1 +3E2)). These points form a surface with twenty irreducible components,

which are contracted by A1;3(2)! N to the 10 nodes of N .

Proof: The 10 nodes of N are the S6-translates of (1 : 1 : 1 : �1 : �1 : �1) 2 P4 and
they correspond to nonreduced quartic surfaces, namely the squares of the fundamental

quadrics. This is checked for the point (�1 : 1 : 1 : 1 : �1 : �1) (which is enough) in [BN],

p.190. As there are no other Heisenberg-invariant quadrics, any nonreducedH2;2-invariant

quartic in P4 is the square of a fundamental quadric and corresponds to a node of N .

Suppose A = E1�E2 and H = c1
�
OE1

(3)�OE2
(1)
�
is a product polarisation of type

(1; 3) on A. Then we are in case (V) of [Ba] and therefore by the main theorem of [Ba]

the rational map �j ~Lj� : ~A � P3 is not de�ned on certain base curves of j ~Lj�, namely the
symmetric translates of E2. However, away from these base curves �j ~Lj� coincides with

the morphism ~A ! P3 coming from the polarisation c1
�
OE1

(2) �OE2
(2)
�
of type (2; 2),

which is of degree 2. So the closure of the image of �j ~Lj� in P3 is a (double) quadric: if

we make a choice of level-2 structure so as to �x an H2;2-action the image will then be

H2;2-invariant so it must be one of the ten fundamental quadrics. So the image of the

locus �
(A;H;�) 2 A1;3(2) j (A;H) �= (E1 �E2; c1(OE1

(3) �OE2
(1)))

	
;

of product surfaces with product polarisation, in N is contained in the 10 nodes. Since

the nodes are permuted transitively by the action of S6, the image must be all the nodes.

Conversely, if  (A;H;�) is one of the nodes then (A;H;�) must be a product since

(by [Ba]) in other cases the map �j ~Lj� : gKm(A) ! P3 is birational onto its image, which

is therefore irreducible and birationally a K3 surface.

To prove the rest of the theorem we need to count the number of irreducible compo-

nents of the space

�
(A;H;�) j (A;H) a product, H of type (1; 3); � a level-2 structure

	
in A1;3(2). We use the same method as [HW], making use of the description of A1;3(2) as

a Siegel modular variety.
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Consider the surface Ĥ1 = fZ 2 H 2 j �2 = 0g and its image H1 in A1;3. It is shown in

[HW] that H1 parametrises abelian surfaces of type (1; 3) which split as polarised abelian

surfaces, that is, product surfaces with the product polarisation. H1 is irreducible, because

Ĥ1 is. We want to know the number of components of ��(H1), where � : A1;3(2)! A1;3

is the quotient map by the action of �1;3=�1;3(2) �= Sp(4;Z2) (which is S6 as an abstract

group).

We look at the stabilisers S1 = f
 2 �1;3 j 
( bH1) = bH1g and S1(2) = f
 2 �1;3(2) j

( bH1) = bH1g. As in [HW] one has

S1 =

8><
>:
0
B@
a 0 b 0
0 a0 0 b0

c 0 d 0
0 c0 0 d0

1
CA j

�
a b

c d

�
;

�
a0 b0

c0 d0

�
2 SL(2;Z)

9>=
>;

so S1 �= SL(2;Z) � SL(2;Z), and an element of S1 is in �1;3(2), and hence in S1(2),

if and only if

�
a b

c d

�
and

�
a0 b0

c0 d0

�
are both congruent to the identity mod 2. So

S1=S1(2) �= SL(2;Z2)� SL(2;Z2).

Now we can conclude the proof of Theorem 3.2 by applying Lemma 3.1. We take

G = �1;3, G
0 = �1;3(2), and X = f
 bH1 j 
 2 �1;3g, the set of �1;3-translates of bH1 or of

preimages of H1 in H 2 . The set X=G
0 is precisely the set of preimages of H1 in A1;3(2),

and by Lemma 3.1 it has

[�1;3 : �1;3(2)]=[S1 : S1(2)] = jSp(4;Z2)j=jSL(2;Z2)� SL(2;Z)j = 720=36 = 20

elements. This is therefore the number of irreducible surfaces in A1;3(2) corresponding to

product surfaces.

The nodes lie in the S-planes in N . We have said that in general points in the S-planes

will correspond to degenerate abelian surfaces, but here the closure of an Humbert surface

in A1;3(2) is contracted by  to a point which we may also think of as coming from the

boundary A1;3(2) n A1;3(2). Of course other components in the boundary may also be

contracted to the nodes (this will depend on our choice of toroidal compacti�cation), but

only the nodes come from both degenerate and nondegenerate abelian surfaces.

Theorem 3.3. If u 2 N is a point in some S-plane and there is an abelian surface

(A;H;�) 2 A1;3(2) such that  (A;H;�) = u, then u is a node and (A;H;�) is a product.

Proof: If (A;H;�) is not a product then �j ~Lj� : gKm(A) � X is birational onto its image,

which is therefore an irreducible variety which is birationally a K3 surface. But for any

u on a S-plane the corresponding quartic surface contains a double line (actually a pair

10



of double lines). Following [J], Chapter VI, x77, we observe that a plane containing this

line cuts out a conic on X. So X is covered by a family of rational curves and is therefore

ruled.

Now we turn to the V-planes Fij , de�ned by ui = uj = 0, which form the branch

locus of � : ~N ! N . There are �fteen of these planes, equivalent under the S6-action on

P5: we may choose one of them to work with and we use F45. F45 determines the family

FAE = fB(z20z21 + z22z
2
3) + C(z20z

2
2 + z21z

2
3) +D(z20z

2
3 + z21z

2
2) = 0g

which is studied in [Ni2].

Theorem 3.4. Let u 2 N be a point of a V-plane, not lying on an S-plane nor on one of

the D-lines fui = uj = uk = 0g. Then there exists an abelian variety A with a polarisation

H of type (1; 3) and a level-2 structure �, such that  (A;H;�) = u and (A;H) is a bielliptic

abelian surface in the sense of [HW]. In particular A is isomorphic to E1�E2=Z2�Z2 for

some elliptic curves E1, E2 and some action of Z2�Z2.

Proof: The conditions on u imply that the corresponding quartic surface Xu = X (given

by B = 1
2
(�u0 � u1 + u2 + u3), etc; see [BN], [Ni2]) has four simple nodes and no other

singularities. As in [Ni2] we can use the theorem of Nikulin [N] to construct a diagram

A
� � ~A

f�! ~X
��!X

where � is the blow-up of the four nodes of X and f : ~A! ~X is the double cover branched

along a set L0 of sixteen disjoint smooth rational curves. L0 is the pullback to ~X of one of

the two H2;2-orbits of lines in X, which become disjoint after the blow-up �. We consider

the curve E0 = ��f
�
�
��1(p0)

�
, where p0 is one of the nodes, and � = ��f

���L0, where

L0 is another line on X. Then ([Ni2], Lemma 6-3) g(E0) = 1 and g(�) = 2.

For reasons explained below we now diverge from the line of argument given in [Ni2].

We have E0:� = 2 and there is an exact sequence

0 �! E0 �! A �! E0
0 �! 0

for some elliptic curve E0
0. So the map � : A ! E0

0 induces a double cover � ! E0
0. By

Torelli, (A;OA(�)) = (Jac�;�) so A is the Jacobian of a bielliptic genus 2 curve, i.e., a

principally polarised bielliptic abelian surface. By [HW], Proposition 4.1, it follows that

A = E1 �E2=Z2�Z2 for suitable elliptic curves E1, E2.

The polarisation which we are really interested in, however, is H = E0 + �, which

is of type (1; 3). The bielliptic involution j : � ! � induces jA : (A;�) ! (A;�) and

11



� : A ! E0
0 factors through jA. Therefore jA preserves E0, which is a �bre of �, so jA

induces an involution of (A;H) as well. Hence (cf. [HW]) (A;H) either splits as a polarised

abelian surface or else is a bielliptic (1; 3)-polarised abelian surface. The �rst case can be

excluded, because we already know that the linear system j2Hj� induces a map of gKmA

which is birational onto its image. (Looking carefully at the proof of Proposition 4.4 of

[HW] one can show that every bielliptic (1; 3)-polarised abelian surface contains a bielliptic

genus 2 curve, and conversely.) The level-2 structure on (A;H) is simply induced by the

H2;2-action on X.

Remark. In [Ni2] the second elliptic curve and the Z2 �Z2-action are constructed more

directly, but under the additional assumption that � = rkNS(A) = 2. Also, there is a gap

in the proof of Lemma 6-3(2) of [Ni2]. Nevertheless, we could have used this method. The

restriction � = 2 is harmless to us because it is true for almost all bielliptic surfaces, and

the gap can easily be �lled. We take the opportunity to do this.

In NS(A) we have ([Ni2], p.333) inequivalent elliptic curves E, E0 and a genus 2

curve �0 with E:�0 = 2. So in NS(A) 
 Q we have E0 = n0E + n1�
0 and therefore

n1 = �2n0 6= 0. It does not follow at once, as asserted in [Ni2], that n0 = �1, because
we do not know that n0 2 Z. The elliptic curves, however, are not divisible in NS(A),

because topologically A = E � T for some real subtorus T � A. So the denominator of n0
is at most 2, otherwise E0 is divisible, and if n0 2Zthen n0 = �1. So suppose n0 = k+ 1

2
.

Then 2E0 = (2k + 1)E � (4k + 2)�0 so E = 2
�
E0 + (2k + 1)�0 � kE

�
is divisible. So n0

and n1 are in fact integers and the argument in [Ni2] can be used.

Corollary 3.5. The closures of the following three loci in A1;3(2) coincide:

(i) the locus of (A;H;�) such that (A;H) is a (1; 3)-polarised bielliptic abelian surface;

(ii) the locus of (A;H;�) such that �j ~Lj�(
gKmA) = Xu for some u in a V-plane, not in a

S-plane or on a D-line;

(iii) the locus of (A;H;�) such that H = c1(OA(E + �)) with E:� = 2 and � � A a

symmetric irreducible curve of genus 2.

Moreover, the loci in (ii) and (iii) coincide precisely.

Proof: We have shown that (ii) implies (i) in Theorem 3.4. By the main theorem of [Ba],

the hypotheses of (iii) imply that j ~Lj� contracts the images in gKmA of the four symmetric

translates of E and no more, so that �j ~Lj�(
gKmA) is an H2;2-invariant quartic surface with

4 nodes. These are precisely those parametrised by the points of the V-planes with the

exceptions given in (ii), so (ii) and (iii) are the same. Finally, the locus of bielliptic surfaces

without level structure in A1;3 and the locus of Jacobians of bielliptic genus 2 curves in the

moduli space of principally polarised abelian surfaces are both irreducible surfaces, as is

12



shown in [HW]. The locus of such Jacobians can also be thought of as a subvariety of A1;3,

by replacing the principal polarisation � by E0+� as above: there is a unique way to do

this. The two irreducible surfaces in A1;3 must therefore coincide, so the closures of the

loci in (i) and (iii) are the same. In fact the loci in (i) and (iii) coincide precisely of we drop

the irreducibility condition from (iii), as one can deduce from the proof of Proposition 1.4

of [HW].

Now we know that the V-planes in N are precisely the image under  of the surface

in A1;3(2) parametrising bielliptic surfaces of type (1; 3); that is, of �
�1(H2), where � :

A1;3(2) ! A1;3 is the quotient map by Sp(4;Z2) as before and H2 � A1;3 parametrises

bielliptic abelian surfaces. We can count the irreducible components of ��1(H2) just as

we did for ��1(H1).

Theorem 3.6. The surface in A1;3(2) parametrising triples (A;H;�) for which (A;H) is

bielliptic has 15 irreducible components.

Proof: We put Ĥ2 = fZ 2 H 2 j 3�1 = 2�2g as in [HW]. We know, also from [HW], that

the image of Ĥ2 in A1;3 is H2, so according to Lemma 3.1 and the same reasoning as in

Theorem 3.2 the number of components of ��1(H2) is

[�1;3 : �1;3(2)]=[S2 : S
0
2] = 720=[S2 : S2(2)]

where S2 and S
0
2 are the stabilisers of Ĥ2 in �1;3 and �1;3(2) respectively. From [HW] we

have

S2 =

(0B@
a 0 2b 3b

3(a � a0)=2 a0 3b 3(3b + b0)=2
(3c0 + c)=2 �c0 d 3(d� d0)=2
�c0 2c0=3 0 d0

1
CA

�����M =

�
a b

c d

�
;M 0 =

�
a0 b0

c0 d0

�
2 SL(2;Z);M �M 0 mod 2

)

�=
�
(M;M 0) 2 SL(2;Z)� SL(2;Z) jM �M 0 mod 2

	
:

Such a matrix will be in �1;3(2) if and only if M � M 0 � I mod 2 and M � M 0 mod 4,

because we need a, a0, d, d0 odd, b, c0 even (so b0 and c also even) and 3(a � a0)=2,

3(3b + b0)=2, (3c0 + c)=2 and 3(d � d0)=2 all even.

13



Now consider the tower of groups

~S2 = f(M;M 0) jM �M 0 mod 2g[
~S002 = f(M;M 0) jM �M 0 � I mod 2g[
~S02 = f(M;M 0) jM �M 0 � I mod 2, M �M 0 mod 4g:

Then the map

(M;M 0) 7�!

0
B@

a 0 2b 3b
3(a � a0)=2 a0 3b 3(3b + b0)=2
(3c0 + c)=2 �c0 d 3(d� d0)=2
�c0 2c0=3 0 d0

1
CA

induces isomorphisms between S2 and ~S2 and S
0
2 and

~S02, so [S2 : S
0
2] = [ ~S2 : ~S

0
2]. Now

~S002

is a normal subgroup of ~S2 and the quotient is isomorphic to SL(2;Z2), of order 6, and

the cosets of ~S02 in ~S002 are determined by the residue class of M mod 4. There are eight

of these: the o�-diagonal elements may be 0 or 2 mod 4, and the diagonal ones are either

both 1 or both �1. So [ ~S002 : ~S02] = 8, so [ ~S2 : ~S
0
2] = [ ~S2 : ~S

00
2 ][

~S002 : ~S02] = 48. So the number

of irreducible components is 720=48 = 15.

Finally, we consider the D-lines Lijk = fui = uj = uk = 0g � N and examine the

abelian surfaces that live over them. We work with the line L045. On this line the quintic

surface X has the equation

C(z20 � z23)(z21 � z22) +D(z20 � z22)(z23 � z21) = 0:

These are the surfaces known as desmic2 surfaces in [Hud] and [J].

The surface �(C:D) given by the equation above is singular at twelve points and

contains 32 lines. Sixteen of these lines are common to all the surfaces in the pencil. More

precisely we have the following result.

2 Greek �����o&, a band or tie, from ���!, to bind.
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Theorem 3.7. ([Hud], [J]) If CD 6= 0 then �(C:D) has ordinary double points at the

four poles P0; : : : ; P3 (= (1 : 0 : 0 : 0), etc) and at the eight points (�1 : �1 : �1 : �1)
forming the vertices of a cube, and no other singularities. A vertex is said to be even

or odd according to whether the number of coordinates equal to �1 is even or odd. The

sixteen lines L1; : : : ; L16 which are the edges and main diagonals of the cube lie in �(C:D):

each passes through exactly one pole, one even point and one odd point.

The con�guration of lines and points is the well-known Reye con�guration: see also

in this context [Ni2], xx6{7.
We can resolve the singularities of �(C:D) by blowing up the nodes. Let � : ~�(C:D)!

�(C:D) be this blow up and let ~Lj be the proper transform of Lj in ~�(C:D). Denote by

C0
i , C

+
i and C�

i the exceptional curve in ~�(C:D) coming from the ith pole, even and odd

vertex respectively.

Lemma 3.8. ~�(C:D) is a smooth K3 surface.

Proof: K�(C:D)
= 0 by adjunction, and blowing up nodes does not change this.

The sixteen rational curves ~Lj are smooth and disjoint, so we can apply Nikulin's

construction from [N] as before, obtaining

A(C:D)
� � ~A(C:D)

f�!~�(C:D)

��!�(C:D)

where f is a double cover branched along ~Lj only, � is the blow-down of the sixteen rational

curves f�1(~Lj ) and A(C:D) is (after choosing an origin) an abelian surface. Furthermore,

~�(C:D) = gKmA(C:D) and f is the Kummer map.

Theorem 3.9. A(C:D)
�= E � E, where E is the elliptic curve whose j-invariant is

j(C=D) = 28(C2 � CD +D2)3=C2D2(C �D)2.

Proof: Consider the curves ~E0
i = f�1( ~C0

i ), etc. Each of these is an elliptic curve since

f : ~E0
i ! ~C0

i is a double cover branched at the four points corresponding to the four lines

Lj passing through Pi, and similarly for the odd and even vertices. These twelve elliptic

curves are disjoint in ~A(C:D) but their images E
0
i , E

�
i in A(C:D) have intersection numbers

E0
iE

0
j = 0, E0

iE
+
j = E+

j E
�
k = E�

k E
0
i = 1. Indeed E0

i , E
+
j and E�

k are concurrent.

There is an exact sequence of abelian varieties

0 �! E0
0 �! A(C:D) �! E0�

0 �! 0

where E0�
0 is an elliptic curve. Since E0

0E
+
j = 1 it follows that E+

j
�= E0�

0 and similarly

E�
k
�= E0�

0 for all j, k. Similarly E0
i
�= E+�

0
�= E�

0 for all i, so all the elliptic curves
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E0
i ; E

+
j ; E

�
k ; E

0�
i ; E+�

j ; E��
k are isomorphic to one another. Moreover, E+

0 de�nes a section

of A(C:D) ! E0�
0 so A(C:D)

�= E0
0 �E+

0
�= E �E.

To calculate the j-invariant of E we need to know the cross-ratio of the four branch

points of f : ~E0
0 ! ~C0

0 . We use z1, z2 and z3 as a�ne coordinates in the a�ne piece z0 = 1

of P3, so that P0 is the origin of A 3 and �(C:D) has the a�ne equation

C(1� z23)(z21 � z22) +D(1 � z22)(z23 � z21) = 0:

The tangent cone to �(C:D) at (0; 0; 0) has the equation

C(z21 � z22) +D(z23 � z21) = 0

and this can also be thought of as the equation of ~C0
0 in the P2 which is the set of lines

in A 3 through the origin. The branch points are given by the lines joining P0 to the even

points, which are (1 : �1 : �1) (the vertices of a square). In the a�ne piece of P2 given

by z1 = 1 these points are simply (�1;�1) and ~C0
0 has the a�ne equation

C(1� z22) +D(z23 � 1) = 0:

If we take the isomorphism ~C0
0 ! P1 given by projection from (�1; 1) we �nd that the

four points are mapped to 0, 1, 1 and C=D.

In fact the elliptic curves E0
i , E

+
j and E�

k are isomorphic for reasons of projective

geometry, because there is an action of S6 that preserves �(C:D) and permutes the three

tetrahedra parametrised by poles, odd vertices and even vertices.

This is case (IV) (the diagonal case) of [Ba], x5. The (1; 3)-polarisation is given by

O(E�f0g+f0g�E+�), where � is the diagonal. The result has a long history: compare

[Hun], p. 313, where another proof of part of this appears, or indeed [J].
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