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Abstract
The global Torelli theorem for projective K3 surfaces was first

proved by Piatetskii-Shapiro and Shafarevich 35 years ago, opening the
way to treating moduli problems for K3 surfaces. The moduli space
of polarised K3 surfaces of degree 2d is a quasi-projective variety of
dimension 19. For general d very little has been known hitherto about
the Kodaira dimension of these varieties. In this paper we present an
almost complete solution to this problem. Our main result says that
this moduli space is of general type for d > 61 and for d = 46, 50, 54,
57, 58, 60.

0 Introduction

Moduli spaces of polarised K3 surfaces can be identified with the quotient of
a classical hermitian domain of type IV and dimension 19 by an arithmetic
group. The general set-up for the problem is the following. Let L be an
integral lattice with a quadratic form of signature (2, n) and let

DL = {[w] ∈ P(L⊗ C) | (w,w) = 0, (w,w) > 0}+ (1)

be the associated n-dimensional Hermitian domain (here + denotes one of
its two connected components). We denote by O+(L) the index 2 subgroup
of the integral orthogonal group O(L) preserving DL. We are, in general,
interested in the birational type of the n-dimensional variety

FL(Γ) = Γ\DL (2)

where Γ is a subgroup of O+(L) of finite index. Clearly, the answer will
depend strongly on the lattice L and the chosen subgroup Γ.

A compact complex surface S is a K3 surface if S is simply connected
and there exists a holomorphic 2-form ωS ∈ H0(S, Ω2) without zeros. For
example, a smooth quartic in P3(C) is a K3 surface and all quartics (modulo
projective equivalence) form a (unirational) space of dimension 19.

The second cohomology group H2(S, Z) with the intersection pairing is
an even unimodular lattice of signature (3, 19), more precisely,

H2(S, Z) ∼= LK3 = 3U ⊕ 2E8(−1) (3)
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where U is the hyperbolic plane and E8(−1) is the negative definite even
lattice associated to the root system E8.

The 2-form ωS , considered as a point of P(LK3⊗C), is the period of S. By
the Torelli theorem the period of a K3 surface determines its isomorphism
class. The moduli space of all K3 surfaces is not Hausdorff. Therefore it
is better to restrict to moduli spaces of polarised K3 surfaces. The moduli
of all algebraic K3 surfaces are parametrised by a countable union of 19-
dimensional irreducible algebraic varieties. To choose a component we have
to fix a polarisation. A polarised K3 surface of degree 2d is a pair (S, H)
consisting of a K3 surface S and a primitive pseudo-ample divisor H on S
of degree H2 = 2d > 0. If h is the corresponding vector in the lattice LK3

then its orthogonal complement

h⊥LK3
∼= L2d = 2U ⊕ 2E8(−1)⊕ 〈−2d〉 (4)

is a lattice of signature (2, 19).
The 2-form ωS determines a point of DL2d

modulo the group

Õ
+
(L2d) = {g ∈ O+(LK3) | g(h) = h}.

By the global Torelli theorem ([P-SS]) and the surjectivity of the period
map

F2d = Õ
+
(L2d) \ DL2d

(5)

is the coarse moduli space of polarised K3 surfaces of degree 2d. By a
result of Baily and Borel [BB], F2d is a quasi-projective variety. One of the
fundamental problems is to determine its birational type.

For d = 2, 3 and 4 the polarised K3 surfaces of degree 2d are complete
intersections in Pd+1(C) and the moduli spaces F2d for such d are classically
known. Mukai has extended these results in his papers [Mu1], [Mu2], [Mu3]
and [Mu4] to 1 ≤ d ≤ 10 and d = 12, 17, 19, showing that these moduli
spaces are also unirational.

In the other direction there are two results of Kondo and one of Gritsenko.
Kondo [Ko1] considered the moduli spaces F2p2 where p is a prime number.
(The reason for this choice is that all these spaces are covers of F2.) He
proved that these spaces are of general type for p sufficiently large, but his
result is not effective. Some of our results from Section 2 and Section 3
below are proved in [Ko1] for the special case of F2p2 . In [Ko2], Kondo
showed that F2d has non-negative Kodaira dimension for n = 42, 43 and
fifteen other values of n between 51 and 133.

Gritsenko [G] showed a result for level structures: let Õ
+
(L2d)(q) be the

principal congruence subgroup of Õ
+
(L2d) of level q. Then Õ

+
(L2d)(q)\DL2d

is of general type for any d if q ≥ 3. In this paper we determine the Kodaira
dimension of F2d without imposing any a priori restriction on d.
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Theorem 1 The moduli space F2d of K3 surfaces with a polarisation of
degree 2d is of general type for any d > 61 and for d = 46, 50, 54, 57, 58
and 60.

If d ≥ 40 and d 6= 41, 44, 45 or 47 then the Kodaira dimension of F2d is
non-negative.

The description of the moduli space F2d as a quotient of the symmetric
space DL2d

by a subgroup of the orthogonal group leads us to study, more
generally, quotients of the form FL(Γ) = Γ\DL. One of the main tools in
our proof of the main theorem is the following general result (for a more
precise formulation see Theorem 2.1).

Theorem 2 Let L be a lattice of signature (2, n) with n ≥ 9, and let
Γ < O+(L) be a subgroup of finite index. Then there exists a toroidal
compactification FL(Γ) of FL(Γ) = Γ\DL such that FL(Γ) has canonical
singularities.

We hope that this result will also be important for other applications.
The plan of the paper is as follows. In Section 1 we give the basic defini-

tions that we shall need and explain what the obstructions are to showing
that FL(Γ) is of general type. These obstructions may be called elliptic,
cusp and reflective. The elliptic obstructions come from singularities of
FL(Γ) and its compactifications. The cusp obstructions come from infin-
ity, i.e. from the fact that FL(Γ) is only quasi-projective. The reflective
obstructions come from divisors fixed by Γ in its action on the symmetric
space DL.

In Section 2 we deal with the elliptic obstructions and we show, by an
analysis of the toroidal compactifications, that they disappear if n ≥ 9, and
also that there are no fixed divisors at infinity.

In Section 3 we examine the reflective obstructions by describing the fixed
divisors. We do this first for arbitrary L and then in greater detail for L2d.

In Section 4 we turn to the cusp obstructions. We describe the structure
of the cusps for a lattice L having only cyclic isotropic subgroups in its
discriminant group.

In Section 5 we study the moduli space SF2d of K3 surfaces with a spin
structure. In this case there are few reflective obstructions, and the cusp
forms constructed by Jacobi lifting already have the properties we need.

In Section 6 we show how to construct forms with the properties needed
for F2d by pulling back the Borcherds form. This requires us to find a
suitable embedding of L2d in L2,26, which in turn requires a vector in E8

with square 2d that is orthogonal to at most 12 and at least 2 roots.
In Section 7 we show directly that such a vector exists for large d and

use a small amount of computer help to show that it exists for smaller d.
For some values of d we can find only a vector of square 2d orthogonal to
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14 roots. In these cases we can deduce that F2d has non-negative Kodaira
dimension.
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1 Orthogonal groups and modular forms

Let L be a lattice of signature (2, n), with n > 1. For any lattice M and
field K we write MK for M ⊗ K. Then DL is one of the two connected
components of

{[w] ∈ P(LC) | (w,w) = 0, (w,w) > 0}.

We denote by O+(L) the subgroup of O(L) that preserves DL. If Γ < O+(L)
is of finite index we denote by FL(Γ) the quotient Γ\DL, which is a quasi-
projective variety by [BB].

For every non-degenerate integral lattice we denote by L∨ = Hom(L, Z)
its dual lattice. The finite group AL = L∨/L carries a discriminant quadratic
form qL (if L is even) and a discriminant bilinear form bL, with values in
Q/2Z and Q/Z respectively (see [Nik2, §1.3]). We define

Õ(L) = {g ∈ O(L) | g|AL
= id}, and

Õ
+
(L) = Õ(L) ∩O+(L).

The K3 lattice is
LK3 = 3U ⊕ 2E8(−1)

where U is the hyperbolic plane and E8 is the (positive definite) E8-lattice.
If h ∈ LK3 is a primitive vector with h2 = 2d > 0 then its orthogonal
complement h⊥LK3

is isometric to

L2d = 〈−2d〉 ⊕ 2U ⊕ 2E8(−1).

By [Nik2, Proposition 1.5.1]

Õ(L2d) ∼= {g ∈ O(LK3) | g(h) = h},
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and the moduli space F2d is given by

F2d = Õ
+
(L2d)\DL2d

.

A modular form of weight k and character χ : Γ → C∗ for a subgroup
Γ < O+(L) of finite index is a holomorphic function F : D•

L → C on the
affine cone D•

L over DL such that

F (tZ) = t−kF (Z) ∀ t ∈ C∗, and F (gZ) = χ(g)F (Z) ∀ g ∈ Γ. (6)

A modular form is a cusp form if it vanishes at every cusp. We denote the
linear spaces of modular and cusp forms of weight k and character χ for Γ
by Mk(Γ, χ) and Sk(Γ, χ) respectively.

Theorem 1.1 Let L be an integral lattice of signature (2, n), n ≥ 9, and
let Γ be a subgroup of finite index of O+(L). The modular variety FL(Γ)
is of general type if there exists a character χ and a non-zero cusp form
Fa ∈ Sa(Γ, χ) of weight a < n that vanishes along the ramification divisor
of the projection π : DL → FL(Γ).

If Sn(Γ,det) 6= 0 then the Kodaira dimension of FL(Γ) is non-negative.

Proof. We let FL(Γ) be a projective toroidal compactification of FL(Γ) with
canonical singularities and no ramification divisors at infinity, which exists
by Theorem 2.1. We take a smooth projective model Y of FL(Γ) by taking
a resolution of singularities of FL(Γ). We want to show the existence of
many pluricanonical forms on Y .

Suppose that Fnk ∈ Mnk(Γ,detk). By choosing a 0-dimensional cusp
we may realise DL as a tube domain and use this to select a holomorphic
volume element dZ: see equations (21) and (22) in Section 4 for details.
Then the differential form Ω(Fnk) = Fnk (dZ)k is Γ-invariant and therefore
determines a section of the pluricanonical bundle kK = kKY away from the
branch locus of π : DL → FL(Γ) and the cusps: see [AMRT, p. 292] (but
note that weight 1 in the sense of [AMRT] corresponds to weight n in our
definition).

In general Ω(Fnk) will not extend to a global section of kK. We distin-
guish three kinds of obstruction to its doing so. There are elliptic obstruc-
tions, arising because of singularities given by elliptic fixed points of the
action of Γ; reflective obstructions, arising from the ramification divisors in
DL; and cusp obstructions, arising from divisors at infinity.

In order to deal with these obstructions we consider a neat normal sub-
group Γ′ of Γ of finite index and set G := Γ/Γ′. Let X := FL(Γ′) and let
X := FL(Γ′) be the toroidal compactification of FL(Γ′) given by the same
choice of fan as for FL(Γ). Then X is a smooth projective manifold with
FL(Γ) = X/G. Let D := X \ X be the boundary divisor of X. For any
element g ∈ G we define its fixed locus X

g := {x ∈ X | g(x) = x} and
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denote its divisorial part by X
g
(1). Then R :=

⋃
g 6=1 X

g
(1) is the ramification

divisor of the map π : X → X/G. The main results of Section 2 can then
be summarised as follows:

(i) R does not contain a component of D;

(ii) the ramification index of π : X → X/G along R is 2;

(iii) X/G has canonical singularities.

We will now apply the low-weight cusp form trick, used for example in
[G], [GH1], [GS]. The main point is to use special cusp forms. For this let
the order of χ be N , which is finite by a theorem of Kazhdan [Ka], and put
k = 2Nl. Then we consider forms F 0

nk ∈ Snk(Γ) = Snk(Γ, 1) of the form

F 0
nk = F k

a F(n−a)k (7)

where F(n−a)k ∈ M(n−a)k(Γ) is a modular form of weight (n− a)k ≥ k. We
claim that the corresponding forms Ω(F 0

nk) give rise to pluricanonical forms
on Y . To see this, we deal with the three kinds of obstruction in turn.

Cusp obstructions: by definition, Ω(F 0
nk) is a G-invariant holomorphic

section of kKX . Since Fa is a cusp form of weight a < n, the form F 0
nk has

zeroes of order k along the boundary D and hence extends to a G-invariant
holomorphic section of kKX by [AMRT, Chap. IV, Th. 1].

Reflective obstructions: since R ⊂ div(Fa) by assumption, Ω(F 0
nk) has

zeroes of order k on R \D. By (i) above, Ω(F 0
nk) has indeed zeroes of order

k along all of R. By (ii) the form Ω(F 0
nk) descends to a holomorphic section

of kK(X/G)reg
where (X/G)reg is the regular part of X/G.

Elliptic obstructions: by (iii) the form Ω(F 0
nk) extends to a holomorphic

section of kKY .
Therefore F k

a M(n−a)k(Γ) is a subspace of H0(Y , kKY ), by equation (7)
and since dim M(n−a)k(Γ) grows like kn, the theorem follows.

Even if we can only find a cusp form of weight n we still get some infor-
mation, because of the well-known result of Freitag [F, Hilfssatz 2.1, Kap.
III] that if Fn ∈ Sn(Γ,det) then Ω(Fn) defines an element of H0(Y ,KY ).
Therefore the plurigenera do not all vanish: indeed pg(Y ) ≥ 1. 2

2 Singularities of locally symmetric varieties

In this section, we consider the singularities of compactified locally sym-
metric varieties associated with the orthogonal group of a lattice of signa-
ture (2, n). Our main theorem is that for all but small n, the compactifica-
tion may be chosen to have canonical singularities.
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Theorem 2.1 Let L be a lattice of signature (2, n) with n ≥ 9, and let
Γ < O+(L) be a subgroup of finite index. Then there exists a projective
toroidal compactification FL(Γ) of FL(Γ) = Γ\DL such that FL(Γ) has
canonical singularities and there are no branch divisors in the boundary.
The branch divisors in FL(Γ) arise from the fixed divisors of reflections.

Proof. Immediate from Corollaries 2.16, 2.21 and 2.31. In order to choose
FL(Γ) to have canonical singularities and no branch divisors in the bound-
ary, it is enough to take all the fans defining the toroidal compactification to
be basic. That one can also choose FL(Γ) to be projective is a consequence
of the results of [AMRT, Chapter 2], but it is not stated explicitly there:
instead, see [FC, p.173, (c)]. The last part is a summary of Theorem 2.12
(an element that fixes a divisor in DL has order 2 on the tangent space) and
Corollary 2.13 (such elements, up to sign, are given by reflections by vectors
in L). 2

In fact we prove more than this: for example, FL(Γ) has canonical sin-
gularities if n ≥ 7 (Corollary 2.16), and our method (which uses ideas
from [Nik1] and [Ko1]) gives some information about what non-canonical
singularities can occur for small n.

2.1 The interior

For [w] ∈ DL we define W = C.w. We put S = (W⊕W)⊥ ∩ L, noting that
S could be {0}, and take T = S⊥ ⊂ L.

In the case of polarised K3 surfaces, S is the primitive part of the Picard
lattice and T is the transcendental lattice of the surface corresponding to
the period point w.

Lemma 2.2 SC ∩ TC = {0}.

Proof. SC and TC are real (i.e. preserved by complex conjugation) so it
is enough to show that SR ∩ TR = {0}. If x ∈ SR ∩ TR then (x,x) =
0 from the definition of T , so it is enough to prove that SR is negative
definite. The subspace U = W ⊕ W ⊂ LC is also real, so we may write
U = UR ⊗ C, taking UR to be the real vector subspace of U fixed pointwise
by complex conjugation. An R-basis for UR is given by {w + w̄, i(w− w̄)}.
But (w + w̄,w + w̄) > 0 and (i(w− w̄), i(w− w̄)) > 0, so UR has signature
(2, 0). Hence U⊥

R has signature (0, n), but SR ⊂ U⊥
R so SR is negative

definite. 2

We are interested first in the singularities that arise at fixed points of the
action of Γ on DL. Suppose then that w ∈ LC and let G be the stabiliser
of [w] in Γ. Then G acts on W and we let G0 be the kernel of this action:
thus for g ∈ G we have g(w) = α(g)w for some homomorphism α : G → C∗,
and G0 = kerα.
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Lemma 2.3 G acts on S and on T .

Proof. G acts on W and on L, hence also on S = (W ⊕ W)⊥ ∩ L and on
T = S⊥ ∩ L. 2

Lemma 2.4 G0 acts trivially on TQ.

Proof. If x ∈ TQ and g ∈ G0 then

(w,x) = (g(w), g(x)) = (w, g(x)).

Hence TQ 3 x − g(x) ∈ LQ ∩ (W ⊕ W)⊥ = SQ, so by Lemma 2.2 we have
g(x) = x. 2

The quotient G/G0 is a subgroup of Aut W ∼= C∗ and is thus cyclic of
some order, which we call rw. So by the above, µrw

∼= G/G0 acts on TQ.
(By µr we mean the group of rth roots of unity in C.)

For any r ∈ N there is a unique faithful irreducible representation of
µr over Q, which we call Vr. The dimension of Vr is ϕ(r), where ϕ is the
Euler ϕ function and, by convention, ϕ(1) = ϕ(2) = 1. The eigenvalues of a
generator of µr in this representation are precisely the primitive rth roots of
unity: V1 is the 1-dimensional trivial representation. Note that −Vd = Vd if
d is even and −Vd = V2d if d is odd.

Lemma 2.5 As a G/G0-module, TQ splits as a direct sum of irreducible
representations Vrw . In particular, ϕ(rw)|dim TQ.

Proof. We must show that no nontrivial element of G/G0 has 1 as an
eigenvalue on TC. Suppose that g ∈ G \G0 (so α(g) 6= 1) and that g(x) = x
for some x ∈ TC. Then

(w,x) = (g(w), g(x)) = α(g)(w,x),

so (w,x) = 0, so x ∈ SC ∩ TC = 0. 2

Corollary 2.6 If g ∈ G and α(g) is of order r (so r|rw), then TQ splits
as a g-module into a direct sum of irreducible representations Vr of dimen-
sion ϕ(r).

Proof. Identical to the proof of Lemma 2.5. 2

We are interested in the action of G on the tangent space to DL. We
have a natural isomorphism

T[w]DL
∼= Hom(W, W⊥/W) =: V.

We choose g ∈ G of order m and put ζ = e2πi/m for convenience: as g is
arbitrary there is no loss of generality. Let r be the order of α(g), as in
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Corollary 2.6 (this is called m in [Nik1] but we want to keep the notation of
[Ko1]). In particular r|m. The eigenvalues of g on V are powers of ζ, say
ζa1 , . . . , ζan , with 0 ≤ ai < m. We define

Σ(g) :=
n∑

i=1

ai/m. (8)

Recall that an element of finite order in GLn(C) (for any n) is called a
quasi-reflection if all but one of its eigenvalues are equal to 1. It is called
a reflection if the remaining eigenvalue is equal to −1. The ramification
divisors of DL → FL(Γ) are precisely the fixed loci of elements of Γ acting
as quasi-reflections.

Proposition 2.7 Assume that g ∈ G does not act as a quasi-reflection on
V and that ϕ(r) > 4. Then Σ(g) ≥ 1.

Proof. As ξ runs through the mth roots of unity, ξm/r runs through the rth
roots of unity. We denote by k1, . . . , kϕ(r) the integers such that 0 < ki < r
and (ki, r) = 1, in no preferred order. Without loss of generality, we assume
α(g) = ζmk2/r and α(g) = α(g)−1 = ζmk1/r, with k1 ≡ −k2 mod r.

One of the Q-irreducible subrepresentations of g on LC contains the eigen-
vector w: we call this Vw

r (it is the smallest g-invariant complex subspace
of LC that is defined over Q and contains w). It is a copy of Vr ⊗ C: to
distinguish it from other irreducible subrepresentations of the same type we
write Vw

r = Vw
r ⊗ C.

If v is an eigenvector for g with eigenvalue ζmki/r, i 6= 1 (in particular
v 6∈ W), then v ∈ W⊥ since (v,w) = (g(v), g(w)) = ζmki/rα(g)(v,w).
Therefore the eigenvalues of g on Vw

r ∩ W⊥/W include ζmki/r for i ≥ 3,
so the eigenvalues on Hom(W, Vw

r ∩ W⊥/W) ⊂ V include ζmk1/rζmki/r for
i ≥ 3. So, writing {a} for the fractional part of a, we have

Σ(g) ≥
ϕ(r)∑
i=3

{
k1

r
+

ki

r

}
. (9)

Now the proposition follows from the elementary Lemma 2.8 below. 2

Lemma 2.8 Suppose that ϕ(r) ≥ 6 and that k1, . . . , kϕ(r) are the integers
between 0 and r coprime to r, in some order such that k2j = r−k2j−1. Then

ϕ(r)∑
i=3

{k1

r
+

ki

r

}
≥ 1.

Proof. If k1 < k3 < r/2 then
{

k1+k3
r

}
= k1+k3

r and
{

k1+k4
r

}
= k1+r−k3

r .
Thus {

k1 + k3

r

}
+
{

k1 + k4

r

}
=

2k1 + r

r
> 1.
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If r/2 > k1 > r/4 or r > k1 > 3r/4 then (k1 + k3) + (k1 + k4) ≡ 2k1 mod r,
so {

k1 + k3

r

}
+
{

k1 + k4

r

}
≡ 2k1

r
mod 1.

Therefore
{

k1+k3
r

}
+
{

k1+k4
r

}
> 1

2 , and similarly for
{

k1+k5
r

}
+
{

k1+k6
r

}
,

so the sum is at least 1.
If r/2 < k1 < 3r/4 then we may take k3 = 1 and k4 = r − 1, and then{

k1+k3
r

}
+
{

k1+k4
r

}
= 2k1

r > 1.
The remaining possibility is that k1 < r/4 but k1 > kj if kj < r/2. But

then there is no integer coprime to r between r/4 and 3r/4. As long as
2dr/4e < b3r/4c, which is true if r > 9, we may choose a prime q such
that r/4 < q < 3r/4, by Bertrand’s Postulate [HW, Theorem 418], and
gcd(q, r) 6= 1 so r = 2q or r = 3q. (Here dxe and bxc denote as usual
the round-up and round-down of x.) In the first case one of q ± 2 lies in
(r/4, 3r/4) and is prime to r, and in the second case one of q±1 or q±2 does,
unless r < 8; so this possibility does not occur. The cases r = 7 and r = 9,
which are not covered by this argument, are readily checked: 2 ∈ (7/4, 21/4)
and 4 ∈ (9/4, 27/4) are coprime to r. 2

Proposition 2.9 Assume that g ∈ G does not act as a quasi-reflection on
V and that r = 1 or r = 2. Then Σ(g) ≥ 1.

Proof. We note first that we may assume g is not of order 2, because if g2

acts trivially on V but g is not a quasi-reflection then at least two of the
eigenvalues of g on V are −1, and hence

∑n
i=1 ai/m ≥ 1. However, g2 does

act trivially on TC, by Lemma 2.4 Therefore g2 does not act trivially on SC.
The representation of g on SC therefore splits over Q into a direct sum of
irreducible subrepresentations Vd, and at least one such piece has d > 2.
So on the subspace Hom(W,Vd ⊗ C) = Hom(W, (Vd ⊗ C ⊕ W)/W) ⊂ V ,
the representation of g is ±Vd (the sign depending on whether r = 1 or
r = 2), and choosing two conjugate eigenvalues ±ζa and ±ζm−a we have∑

ai/m ≥ 1. 2

Theorem 2.10 Assume that g ∈ G does not act as a quasi-reflection on V
and that n ≥ 6. Then Σ(g) ≥ 1.

Proof. In view of Proposition 2.9 and Proposition 2.7, we need only consider
r = 3, 4, 5, 6, 8, 10 or 12. We suppose, as before, that g has order m, and
we put k = m/r.

Consider first a Q-irreducible subrepresentation Vd ⊂ SC, and the action
of g on Hom(W,Vd⊗C) ⊂ V . This is ζkcVd, where ζ is a primitive mth root
of unity, and c is some integer with 0 < c < r and (c, r) = 1 (the eigenvalue
of g on W is ζ−kc). So the eigenvalues are of the form ζbi for 1 ≤ i ≤ ϕ(d),
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with 0 ≤ bi < m and the bi all different mod m but all equivalent mod l,
where l = m/d. Clearly

ϕ(d)∑
i=1

bi

m
≥ 1

2m
l(ϕ(d)− 1)ϕ(d) =

1
2d

(ϕ(d)− 1)ϕ(d).

But 1
2d(ϕ(d) − 1)ϕ(d) ≥ 1 unless d ∈ {1, . . . , 6, 8, 10, 12, 18, 30}. We may

check this as follows (compare the proof of [HW, Theorem 316]). If n = pm

is a prime power then
√

n/ϕ(n) = (
√

n(1 − 1/p))−1 ≤ 2/
√

n. Moreover√
pm/ϕ(pm) ≤ 1 unless pm = 2. Since

√
d/ϕ(d) is a multiplicative function,

if d = n1 . . . nk with ni prime powers we have
√

d/ϕ(d) ≤
√

2
∏√

ni/ϕ(ni).

But if d > d0 = 5.7.9.11.13.16 = 720720 then some prime power n ≥ 17
divides d, and thus

√
d/ϕ(d) ≤

√
2(
√

n/ϕ(n)) ≤ 2
√

2/
√

17. So

1
d
ϕ(d)(ϕ(d)− 1) =

ϕ(d)√
d

(
ϕ(d)√

d
− 1√

d

)
≥
√

17
2
√

2

(√
17

2
√

2
− 1

d0

)
> 2.

In fact no number in the range 30 < d ≤ 720720 violates this inequality.
By a slightly less crude estimate we can reduce further. For d > 2 we

write cmin(d) for a lower bound for the contribution to the sum Σ(g) from
Vd as a subrepresentation of g on SC, i.e.

cmin(d) = min
0≤a<d

∑
0<b<d, (d,b)=1

{
b + a

d

}
.

Note that this is a lower bound independently of r. For fixed r one has a
contribution to Σ(g) from Vd of at least

min
0<c<r

∑
0<b<d, (d,b)=1

{
bl + kc

m

}
≥ min

0<c<r

∑
0<b<d, (d,b)=1

{
b

d
+
bkc/lc

d

}
≥ cmin(d),

where the first inequality follows because m = ld and hence

0 ≤ kc

m
− 1

d
bkc

l
c =

1
d

(
kc

l
− bkc

l
c
)

<
1
d
.

It is easy to calculate that cmin(30) = 92/30 (attained when a = 19),
cmin(18) = 42/18, cmin(12) = 16/12, cmin(10) = 12/10, cmin(8) = 12/8
and cmin(5) = 6/5. But

cmin(3) = cmin(6) = 1/3, cmin(4) = 1/2. (10)
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Hence we may assume that r ∈ {3, 4, 5, 6, 8, 10, 12} and d ∈ {1, 2, 3, 4, 6} for
every subrepresentation V ⊗ C ⊂ SC. The summands of TC are all Vr ⊗ C.
We let νd be the multiplicity of Vd in SC as a g-module, and let λ be the
multiplicity of Vr in TC. Counting dimensions gives

λϕ(r) + ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 = n + 2. (11)

We split into two cases, depending on whether ϕ(r) = 4 or ϕ(r) = 2.

Case I. Suppose ϕ(r) = 4, so r ∈ {5, 8, 10, 12}.
If λ > 1 then there will be a Vr ⊗ C not containing W and this will

contribute at least cmin(r) to Σ(g), just as if it were contained in SC instead
of TC. For r = 5, 8, 10 or 12 we have cmin(r) ≥ 1, so we may assume that
λ = 1. Moreover in these cases ϕ(r) = 4, so equation (11) becomes

ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 = n− 2. (12)

We may assume that ν4 ≤ 1 and ν3 + ν6 ≤ 2, as otherwise those summands
contribute at least 1 to Σ(g), by equation (10). The contribution cw from Vw

r

was computed in equation (9) above: for ϕ(r) = 4 we have cw = {k1+k3
r }+

{k1+k4
r }. The contribution from a V1 (an invariant) is k1

r and from V2 (an
anti-invariant) it is {k1

r + 1
2}.

The contribution from a copy of Vd is∑
(a,d)=1

{
a

d
+

k1

r

}
(13)

or k1
r if d = 1. For all sixteen choices of the pair (r, k1) we have cw ≥ 1

2 , so we
may also assume that ν4 = 0. In eight cases (when k1 = 1 or k1 = d r+1

2 e) we
already have cw ≥ 1. In six of the other eight cases we get Σ(g) ≥ 1 unless
LC = Vw

r and hence n = 2: all other possible contributions are greater than
1− cw. The exceptions are r = 5, k1 = 4 and r = 10, k1 = 3.

For r = 5, k1 = 4, contributions from Vw
r , V1, V2, V3 and V6 are 3

5 , 4
5 , 3

10 ,
3
5 and 8

5 respectively. So Σ(g) ≥ 1 unless ν1 = ν3 = ν6 = 0 and ν2 ≤ 1, and
in particular n ≤ 3.

For r = 10, k1 = 3, contributions from Vw
r , V1, V2, V3 and V6 are 3

5 , 3
10 ,

8
10 , 6

10 and 6
10 respectively. So Σ(g) ≥ 1 unless ν2 = ν3 = ν6 = 0 and ν1 ≤ 1,

and in particular n ≤ 3.

Case II. Suppose ϕ(r) = 2, so r ∈ {3, 4, 6}.
In this case one summand of LC as a g-module is the space W ⊕ W,

which is Vw
r , a copy of Vr ⊗ C. We denote by νd the multiplicity of Vd in

LC/(W ⊕ W) as a g-module. Thus νr is the number of copies of Vr ⊗ C in
LC that are different from Vw

r . Equation (11) becomes

ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 = n. (14)

12



There are six cases (three values of r, and k1 = 1 or k1 = r − 1) and we
simply compute all contributions in each case using the expression (13).
For 1-dimensional summands (d = 1 or 2) the lowest contribution is 1

6 (for
r = 3, k1 = 2, d = 2 and for r = 6, k1 = 1 and d = 1). For 2-dimensional
summands the lowest contribution is 1

3 (for r = 3, k1 = 2, d = 3 and for
r = 6, k1 = 1, d = 6). So Σ(g) ≥ 1 unless n ≤ 5. 2

Corollary 2.11 If n ≥ 6, then the space FL(Γ) has canonical singularities
away from the branch divisors of DL → FL(Γ).

Proof. This follows at once from the Reid–Shepherd-Barron–Tai criterion
(RST criterion for short) for canonical singularities: see [Re] or [T]. 2

Remark. It is easy to classify the types of canonical singularities that can
occur for small n, by examining the calculations above.

So far we have not considered quasi-reflections. We need to analyse not
only quasi-relections themselves but also all elements some power of which
acts as a quasi-reflection on V : note, however, that Theorem 2.10 does apply
to such elements.

Theorem 2.12 Suppose n > 2. Let g ∈ G and suppose that h = gk acts as
a quasi-reflection on V . Then, as a g-module, LQ = Vn0⊕

⊕
j Vnj and either

(n0, k) = n0 and 2(nj , k) = nj for j > 0 or 2(n0, k) = n0 and (nj , k) = nj

for j > 0. In particular, h has order 2.

Proof. Suppose that LQ decomposes as a g-module as Vw
r ⊕

⊕
i Vdi

for
some sequence di ∈ N. The eigenvalues of h on V are all equal to 1, with
exactly one exception. On the other hand, if ζr and ζdi

denote primitive
rth and dith roots of unity, the eigenvalues of h are certain powers of ζr (on
Hom(W, Vw

r ∩W⊥/W)) and all numbers of the form α(h)−1ζka
di

for (a, di) = 1.
Consider a Vd = Vdi

and put d′ = d′i = d/(k, d). The eigenvalues of h
on Vd are primitive d′th roots of unity: each one occurs with multiplicity
exactly ϕ(d)/ϕ(d′). However, only two eigenvalues of h may occur in any
Vd, and only one (namely α(h)) may occur with multiplicity greater than 1,
since if ξ is an eigenvalue of h on Vd, the eigenvalue α(h)−1ξ occurs with the
same multiplicity on V . Hence ϕ(d′) ≤ 2, and if ϕ(d′) = 2 then ϕ(d) = 2:
this last can occur at most once.

Let us consider first the case where this does happen: assume that
ϕ(d1) = ϕ(d′1) = 2. We claim that in this case n = 2. There can be no
other Vd summands (i.e. summands not containing W), because such a Vd

would have ϕ(d) = 1 and hence give rise to an eigenvalue ±α(h)−1 6= 1 for h
on V ; but Vd1 already gives rise to an eigenvalue for h on V different from 1.
So LQ = Vw

r ⊕ V6. The eigenvalues of h on Vw
r are α(h) and α(h)−1, each

with multiplicity ϕ(r)/2: so ϕ(r) = 2, otherwise h has the eigenvalue α(h)
with multiplicity > 1 on V . Hence rankL = 4 and n = 2.

13



Since we are assuming that n > 2, we have ϕ(d′) = 1 for all d: that is,
the eigenvalues of h on the Vd part are all ±1. Put r′ = r/(k, r). We claim
that ϕ(r′) = 1.

Suppose instead that ϕ(r′) ≥ 2, so α(h) 6= ±1. Then ϕ(r)/ϕ(r′) ≤ 2,
since the multiplicity of α(h)−2 6= 1 as an eigenvalue of h on V is at least
ϕ(r)/ϕ(r′)− 1. But the eigenvalues of h on Vw

r are the primitive r′th roots
of unity. If ϕ(r′) > 2 then these include α(h), α(h)−1, ξ and ξ−1 for some
ξ, these being distinct. But then the eigenvalues of h on V include α(h)−1ξ
and α(h)−1ξ−1, neither of which is equal to 1. So ϕ(r′) ≤ 2.

Moreover, if ϕ(r)/ϕ(r′) = 2 then h has the eigenvalue α(h)−2 6= 1 on V ,
and any Vd will give rise to the eigenvalue ±α(h)−1 6= 1; so no such compo-
nents occur, and LQ = Vw

r . Moreover, ϕ(r) ≤ 4 so n ≤ 2.
This shows that if h is a quasi-reflection and ϕ(r′) > 1 then ϕ(r′) = 2;

moreover if n > 2 then ϕ(r) = ϕ(r′) = 2. This time W ⊕ W = Vw
r , so the

eigenvalues of h on V all arise from Vd and since ϕ(d′) = 1 they are equal
to ±α(h)−1 6= 1. So there is only one of them, that is, n = 1.

Since we suppose n > 2, it follows that ϕ(r′) = 1 and the theorem is
proved: the final remark is simply the case k = 1. 2

Corollary 2.13 The quasi-reflections on V , and hence the ramification di-
visors of DL → FL(Γ), are induced by elements h ∈ O(L) such that ±h is a
reflection with respect to a vector in L.

Proof. The two cases are distinguished by whether α(h) = ±1. If α(h) = 1
then the eigenvalues of h on LC are +1 with multiplicity 1 and −1 with
multiplicity n + 1, so −h is a reflection; if α(h) = −1, they are the other
way round. 2

Now suppose that g ∈ G and that gk = h is a quasi-reflection: in such
cases we henceforth assume that k > 1 and that it is the smallest k such
that gk is a quasi-reflection. By Theorem 2.12, h has order 2 so g has order
2k. We may suppose that the eigenvalues of g on V are ζa1 , . . . , ζan , where
ζ is a primitive 2kth root of unity, 0 ≤ ai < 2k, an is odd and ai is even for
i < n.

We need to look at the action of the group 〈g〉/〈h〉 on V ′ := V/〈h〉. The
eigenvalues of the differential of gl〈h〉 on V ′ are ζ la1 , . . . , ζ lan−1 , ζ2lan , and
we define

Σ′(gl) :=
{

lan

k

}
+

n−1∑
i=1

{
lai

2k

}
. (15)

Lemma 2.14 FL(Γ) has canonical singularities if Σ(g) ≥ 1 for every g ∈ Γ
no power of which is a quasi-reflection, and Σ′(gl) ≥ 1 if gk = h is a quasi-
reflection and 1 ≤ l < k.

14



Proof. We first claim that if V/〈g〉 has canonical singularities for every
g ∈ G then V/G has canonical singularities (the converse is false). Let η
be a form on (V/G)reg and let π : V → V/G be the quotient map. Then
π∗(η) is a G-invariant regular form on V \π−1(V/G)sing. Since π−1(V/G)sing

has codimension at least 2 the form π∗(η) extends by Hartog’s theorem to
a G-invariant regular form on all of V . Now the claim follows from [T,
Proposition 3.1], which says that a G-invariant form on V extends to a
desingularisation of V/G if and only if it extends to a desingularisation of
V/〈g〉 for every g ∈ G.

We now return to the situation at hand. If no power of g is a quasi-
reflection on V we simply apply the RST criterion. Otherwise, consider g
with gk = h a quasi-reflection as above. Then V ′ is smooth, and V/〈g〉 ∼=
V ′/(〈g〉/〈h〉). So the result follows by applying the RST criterion to the
elements gl〈h〉 acting on V ′. 2

Proposition 2.15 If gk = h is a quasi-reflection and n ≥ 7 then Σ′(gl) ≥ 1
for every 1 ≤ l < k.

Proof. In fact we shall show that
∑n−1

i=1 {
lai
2k } ≥ 1. As in Corollary 2.13

we have α(h) = ±1 and this is a primitive r′th root of unity; so all the
eigenvalues of h on Vw

r are equal to α(h). Here, as usual, W ⊕ W ⊂ Vw
r

(two copies of Vr⊗C if r|2) and we have decomposed LC as a g-module into
Q-irreducible pieces. But exactly one eigenvalue of h on LC is −α(h) = ∓1,
and this must occur on some summand Vd.

The eigenvalues of g on Vd are primitive dth roots of unity, and in par-
ticular they all have the same order. Therefore the eigenvalues of h are
either all equal to 1 (if α(h) = −1 and d|k) or all equal to −1 (if α(h) = 1
and d|2k but d does not divide k). Since the eigenvalue −α(h) on LC has
multiplicity 1, it follows that ϕ(d) = 1, i.e. d = 1 or d = 2.

The eigenvector in V corresponding to ζan comes from Vd, i.e. its span
is the space Hom(W,Vd ⊗ C) ⊂ V . If we choose a primitive generator δ of
Vd ∩ L we have δ2 < 0 since Vd ⊂ U⊥

Q as in Lemma 2.2, so L′ = δ⊥ is of
signature (2, n − 1) and 〈g〉/〈h〉 acts on L′ as a subgroup of O+(L′). But
then Σ′(gl) = { lan

k }+ Σ(gl〈h〉) where gl〈h〉 ∈ O+(L′). It is clear that gl〈h〉
cannot be a quasi-reflection on L′: if it were, then by Corollary 2.13 the
eigenvalues of gl on L′ are all ±1, and so is its eigenvalue on Vd, so it has
order dividing 2; so gl ∈ 〈h〉.

Now we apply Theorem 2.10 to L′, using n− 1 ≥ 6. 2

Corollary 2.16 If n ≥ 7 then FL(Γ) has canonical singularities.

2.2 Dimension 0 cusps

We now consider the boundary FL(Γ) \ FL(Γ). Cusps, or boundary com-
ponents in the Baily-Borel compactification, correspond to orbits of totally
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isotropic subspaces E ⊂ LQ. Since L has signature (2, n), the dimension of
E is 1 or 2, corresponding to dimension 0 and dimension 1 boundary compo-
nents respectively. Toroidal compactifications are made by adding a divisor
at each cusp. Locally in the analytic topology near a cusp, the toroidal
compactification is a quotient of an open part of a toric variety over the
cusp: this variety is determined by a choice of admissible fan in a suitable
cone, and the choices must be made so as to be compatible with inclusions
among the closures of the Baily-Borel boundary components. A summary
may be found in [AMRT, Chapter III, §5].

For a cusp F (of any dimension) we denote by U(F ) the unipotent radical
of the stabiliser subgroup N(F ) ⊂ ΓR and by W (F ) its centre. We let
N(F )C and U(F )C be the complexifications and put N(F )Z = N(F ) ∩ Γ
and U(F )Z = U(F ) ∩ Γ.

A toroidal compactification over a cusp F coming from an isotropic sub-
space E corresponds to an admissible fan Σ in some cone C(F ) ⊂ U(F ).
We have, as in [AMRT]

DL(F ) := U(F )CDL ⊂ ĎL

where ĎL is the compact dual of DL (see [AMRT, Chapter II, §2]).
In this section we consider the case dim E = 1, that is, isotropic vectors

in L. Then
DL(F ) ∼= F × U(F )C = U(F )C.

Put M(F ) = U(F )Z and define the torus T(F ) = U(F )C/M(F ). In general
(DL/M(F ))Σ is by definition the interior of the closure of DL/M(F ) in
DL(F )/M(F ) ×T(F ) XΣ(F ), i.e. in XΣ(F ) in this case, where XΣ(F ) is
the torus embedding corresponding to the torus T(F ) and the fan Σ. We
may choose Σ so that XΣ(F ) is smooth and G(F ) := N(F )Z/U(F )Z acts
on (DL/M(F ))Σ: this is also implicit in [AMRT] and explained in [FC,
p.173]. The toroidal compactification is locally isomorphic to XΣ(F )/G(F ).
Thus the problem of determining the singularities is reduced to a question
about toric varieties. The result we want will follow from Theorem 2.17,
below. We also need to consider possible fixed divisors in the boundary, i.e.
T(F )-invariant divisors in XΣ(F ) fixed pointwise by some element of G(F ).

We take a lattice M of dimension n and denote its dual lattice by N . A
fan Σ in N⊗R determines a toric variety XΣ with torus T = Hom(M, C∗) =
N ⊗ C∗.

Theorem 2.17 Let XΣ be a smooth toric variety and suppose that a finite
group G < Aut(T) = GL(M) of torus automorphisms acts on XΣ. Then
XΣ/G has canonical singularities.

Proof. It is enough to show that for each x ∈ XΣ and for each g ∈ StabG(x),
the quotient XΣ/〈g〉 has canonical singularities at x.
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We consider the subtorus T0 = StabT(x) of T, which is given by T0 =
N0 ⊗ C∗ for some sublattice N0 ⊂ N , and the quotient torus T1 = T/T0.
The orbit orb(x) = T.x of x is isomorphic to T1: it corresponds to a cone
σ ∈ Σ of dimension

s = dim σ = dimT0 = codim orb(x),

and N0 is the lattice generated by σ ∩ N . More explicitly, orb(x) is given
locally near x by the equations ξi = 0, where ξi are coordinates on T0. The
quotient torus T1 is naturally isomorphic to N1 ⊗ C∗, where N1 = N/N0

which is a lattice because XΣ is smooth.
Certainly x determines orb(x) and therefore σ, so g stabilises σ. Let σ̌ be

the dual cone of σ. If Uσ = Hom(M ∩ σ̌, C∗) (semigroup homomorphisms)
is the corresponding T-invariant open set, then Uσ is g-invariant and the
tangent spaces to Uσ and to XΣ at x are the same: we denote this tangent
space by V . Choosing a basis for N0 and extending it to a basis for N gives
an isomorphism of Uσ with Cs × (C∗)n−s (compare [Od, Theorem 1.1.10]).
Since g preserves N0 it acts on both factors, by permuting the coordinates
(they correspond to generators of the cone σ, which g preserves) and by
torus automorphisms respectively. Thus

V = (N0 ⊗ C)⊕ Lie(T1) = (N0 ⊗ C)⊕ (N1 ⊗ C) = V0 ⊕ V1

as a g-module, which is thus defined over Q.
Since V is defined over Q, we may decompose it as a g-module as a direct

sum of submodules Vd, with each d dividing m, the order of g.
Note that if g acts as a quasi-reflection, with eigenvalues (1, . . . , 1, ζ) then

since g ∈ GL(N) = GLn(Z) we have tr(g) = ζ + n − 1 ∈ Z, and therefore
ζ = −1 and g is a reflection.

We define Σ(g) as we did in equation (8) above, and in the event that
some power of g, say h = gk, acts as a quasi-reflection we define V ′ =
V/〈h〉 and Σ′(gl) as we did in equation (15). Now the theorem follows from
Proposition 2.18 and Lemma 2.19, below. 2

Note that we only needed to choose Σ smooth: no further subdivision is
necessary.

A version of Theorem 2.17 is stated in [S-B] and proved in [Sn]. There the
variety XΣ is itself allowed to have canonical singularities, but G is assumed
to act freely in codimension 1.

Proposition 2.18 If g ∈ G is not the identity, then unless g acts as a
reflection, Σ(g) ≥ 1.

Proof. If V contains a Vd with ϕ(d) > 1 then g has a conjugate pair of
eigenvalues and they contribute 1 to Σ(g). The same is true if V contains
two copies of V2. If neither of these is true, then V = V2 ⊕ (n− 1)V1 and g
is a reflection. 2
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Lemma 2.19 If gk = h acts as a reflection, and g has order m = 2k > 2,
then Σ′(gl) ≥ 1 for 1 ≤ l < k.

Proof. Since m > 2, certainly V contains a Vd with ϕ(d) ≥ 2. In such a
summand, the eigenvalues of any power of g come in conjugate pairs: in
particular, this is true for the eigenvalues of h. Therefore the eigenvalues of
h on Vd are equal to 1 if ϕ(d) ≥ 2, since the eigenvalue −1 occurs with mul-
tiplicity 1. Therefore a pair of conjugate eigenvalues of gl on Vd contribute 1
to Σ′(gl). 2

Lemma 2.20 Let XΣ and g be as above. Then there is no divisor in the
boundary XΣ \T that is fixed pointwise by a non-trivial element of 〈g〉.

Proof. Suppose D were such a divisor, fixed pointwise by some nontrivial
element h ∈ G. Then D corresponds to a 1-parameter subgroup λ : C∗ → T.
Moreover, D is a toric divisor and is itself a toric variety with dense torus
T/λ(C∗) (see for example [Od, Proposition 1.1.6]).

Thus h ∈ GL(M) ∼= GLn(Z) is of finite order and acts trivially on
T/λ(C∗); but any nontrivial such element maps λ(t) to λ(t−1), and hence
does not preserve D. 2

Corollary 2.21 The toroidal compactification FL(Γ) may be chosen so
that on a boundary component over a dimension 0 cusp, FL(Γ) has canonical
singularities, and there are no fixed divisors in the boundary.

Proof. Since Σ is G(F )-invariant, the result follows immediately from The-
orem 2.17 and Lemma 2.20. 2

Corollary 2.22 There are no divisors at the boundary over a dimension 0
cusp F that are fixed by a nontrivial element of G(F ).

Note that in this subsection we needed no restriction on n.

2.3 Dimension 1 cusps

It remains to consider the dimension 1 cusps. Here we have to be more
explicit: we consider a rank 2 totally isotropic subspace EQ ⊂ LQ, cor-
responding to a dimension 1 boundary component F of DL. We want to
choose standard bases for LQ so as to be able to identify U(F ), U(F )Z and
N(F )Z explicitly, as is done in [Sc] for maximal K3 lattices, where n = 19.
But we shall not be able to choose suitable bases of L itself, as in [Sc].
The first steps, however, can be done over Z. We define E = EQ ∩ L and
E⊥ = E⊥

Q ∩ L, primitive sublattices of L.
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Lemma 2.23 There exists a basis e′1, . . . , e
′
n+2 for L over Z such that e′1, e

′
2

is a basis for E and e′1, . . . , e
′
n is a basis for E⊥. Furthermore we can choose

e′1, . . . , e
′
n+2 so that

A =
(

δ 0
0 δe

)
for some integers δ and e, where A is defined by

Q′ := (e′i, e
′
j) =

 0 0 A
0 B C

tA tC D

 .

Proof. We can find a basis with all the properties except for the special
form of A by choosing any bases for the primitive sublattices E and E⊥

of L. Then the matrix A may be chosen to have the special form given
by choosing e′1, e′2, e′n+1 and e′n+2 suitably: the numbers δ and δe are the
elementary divisors of A ∈ Mat2×2(Z). 2

If we are willing to allow two of the basis vectors to be in LQ we can achieve
much more.

Lemma 2.24 There is a basis e1, . . . , en+2 for LQ such that e1 and e2 form
a Z-basis for E, and e1, . . . , en form a Z-basis for E⊥, for which

Q := (ei, ej) =

0 0 A
0 B 0
A 0 0


with A and B as before.

Proof. We start with the basis e′1, . . . , e
′
n+2 from Lemma 2.23. Note that B ∈

Matn−2×n−2 has non-zero determinant, because it represents the quadratic
form of L on E⊥

Q /EQ. So we put R = −B−1C ∈ Matn−2×2(Q) and we take
ei consisting of the columns of

N :=

I 0 R′

0 I R
0 0 I

 ,

where R′ is chosen to satisfy

D − tCB−1C + tR′A + tAR′ = 0.

Then ei is a Q-basis for LQ including Z-bases for E and E⊥, as we want,
and tNQ′N = Q as required. 2
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Lemma 2.25 The subgroups N(F ), W (F ) and U(F ) are given by

N(F ) =


U V W

0 X Y
0 0 Z

 |
tUAZ = A, tXBX = B, tXBY + tV AZ = 0,

tY BY + tZAW + tWAZ = 0, det U > 0

 ,

W (F ) =


I V W

0 I Y
0 0 I

 | BY + tV A = 0, tY BY + AW + tWA = 0

 ,

and

U(F ) =


I 0

(
0 ex
−x 0

)
0 I 0
0 0 I

 | x ∈ R

 .

Proof. This is a straightforward calculation. 2

As in [Ko1] we realise DL as a Siegel domain and DL(F ) = U(F )CDL is
identified with C×Cn−2×H. The identification is by choosing homogeneous
coordinates (t1 : . . . : tn+2) on P(LC) so that tn+2 = 1 and mapping t1 7→
z ∈ C, tn+1 7→ τ ∈ H and ti 7→ wi−2 ∈ C for 3 ≤ i ≤ n: the value of t2 is
determined by the equation

2δet2 = −2δzτ − twBw (16)

where w ∈ Cn−2 is a column vector.
We are interested in the action of N(F )Z = N(F ) ∩ Γ on DL(F ). We

denote by V i the ith row of the matrix V in Lemma 2.25.

Proposition 2.26 If g ∈ N(F ) is given byU V W
0 X Y
0 0 Z

 , Z =
(

a b
c d

)

then g acts on DL(F ) by

z 7−→ z

det Z
+ (cτ + d)−1

(
c

2δ det Z
twBw + V 1w + W11τ + W12

)
w 7−→ (cτ + d)−1

(
Xw + Y

(
τ
1

))
τ 7−→ (aτ + b)/(cτ + d).

Proof. This is also a straightforward calculation. One need only take into
account that

U =
1

det Z

(
d −ce

−b/e a

)
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We must now describe N(F )Z and U(F )Z.

Proposition 2.27 If g ∈ N(F )Z then Z ∈ SL2(Z), and if g ∈ U(F )Z then
x ∈ Z.

Proof. For Z, it is enough to show that Z ∈ Mat2×2(Z), since it acts on H.
The condition that g ∈ N(F )Z or g ∈ U(F )Z is that N−1gN ∈ Γ and in
particular N−1gN ∈ GLn+2(Z). We calculate this directly:

N−1gN =

U V −V B−1C + W + UR′ −R′Z
0 X Y −XB−1C + B−1CZ
0 0 Z

 ,

so Z is integral. In fact, because of tUAZ = A we even have Z ∈ Γ0(e).
If g ∈ U(F )C we have in addition V = 0, Y = 0, U = Z = I2 and

X = In−2, so −V B−1C +W +UR′−R′Z = W and therefore W is integral.
2

Now we can calculate the action on the tangent space at a point in the
boundary. Suppose g ∈ G(F ) = N(F )Z/U(F )Z has finite order m > 1. We
abuse notation by also using g to denote a corresponding element of N(F )Z.
We choose a coordinate u = expe(z) := e2πiz/e on U(F )C/U(F )Z ∼= C∗,
where e is as in Lemma 2.23, because g ∈ U(F )Z acts by z 7→ z + ex. The
compactification is given by allowing u = 0. We suppose that g fixes the
point (0, w0, τ0). We define Σ(g) as we did before, in equation (8), as

∑
{ai

m}
if the eigenvalues are ζai for ζ = e2πi/m.

Proposition 2.28 If n ≥ 8 and no power of g acts as a quasi-reflection at
(0, w0, τ0) then Σ(g) ≥ 1.

Proof. This closely follows [Ko1, (8.2)]. The action of g on the tangent space
is given by expe(t) 0 0

∗ (cτ0 + d)−1X 0
∗ ∗ (cτ0 + d)−2


where t = (cτ0 +d)−1(ctw0Bw0/2δ +V 1w0 +W11τ0 +W12), by Lemma 2.26.
Observe that cτ0 +d = ξ is a (not necessarily primitive) fourth or sixth root
of unity, because of the well-known fixed points of SL2(Z) on H.

Suppose X is of order mX . We consider the decomposition of the repre-
sentation X, i.e. of E⊥

Q /EQ as a g-module. It decomposes as a direct sum of
Vd. If ξ 6= ±1 the situation is exactly as in the case ϕ(r) = 2 at the end of
the proof of Theorem 2.10, except that the right-hand side of equation (14)
is now equal to n − 2 (that is, rank X) instead of n. Any Vd contributes
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at least cmin(d) to Σ(g), so we may assume that ϕ(d) ≤ 2; but then the
1-dimensional summands contribute at least 1

6 and the 2-dimensional ones
at least 1

3 . Moreover, if mX > 2 then X has a pair of conjugate eigenvalues
and in the case ξ = ±1 they contribute 1 to Σ(g).

So we may assume that mX = 1 or mX = 2, and ξ = ±1. Since −1 ∈ Γ
acts trivially on DL we may replace g by −g if we prefer, and assume that
ξ = 1. Since g fixes (0, w0, τ0) that implies Z = I. If also mX = 1, so X = I,
then by Proposition 2.26 we have

Y

(
τ0

1

)
= 0

and since τ0 ∈ H this implies Y = 0. But then tV A = 0 by Lemma 2.25, so
g ∈ U(F )Z.

So the remaining possibility is that Z = I and mX = 2: thus c = 0 and
since tUAZ = A we also have U = I. But then t is a half-integer, because

w0 = Xw0 + Y

(
τ0

1

)
and the condition g2 ∈ U(F )Z implies that V X = −V , that XY = −Y and
that

2W ≡ −V Y mod
(

0 e
−1 0

)
.

So, modulo eZ, we have

2t = 2V 1w0 + 2W11τ0 + 2W12

≡ 2V 1w0 − V 1Y

(
τ0

1

)
≡ V 1(I + X)w0

≡ 0.

Thus the eigenvalue expe(t) is ±1, so in this case all eigenvalues on the
tangent space are ±1 and either Σ(g) ≥ 1 or g acts as a reflection. In
particular any quasi-reflections have order 2. 2

Corollary 2.29 There are no divisors at the boundary over a dimension 1
cusp F that are fixed by a nontrivial element of G(F ).

Proof. From the proof of Proposition 2.28, any quasi-reflection g has mX =
2, and hence fixes a divisor different from u = 0. 2

Finally we check the analogue of Proposition 2.15. We define Σ′(g) for
g ∈ G(F ) exactly as in equation (15).
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Proposition 2.30 If g ∈ G(F ) is such that gk = h is a reflection and n ≥ 9
then Σ′(gl) ≥ 1 for every 1 ≤ l < k.

Proof. If the unique eigenvalue of h that is different from 1 (hence equal
to −1) is expe(t) then the contribution from X l to Σ′(g) is at least 1. Other-
wise, consider the Vd (in the decomposition as a g-module) in which the
exceptional eigenvector e0 occurs, satisfying h(e0) = −e0. We must have
d = 1 or d = 2, since if ϕ(d) > 1 the eigenvalue −1 for h would occur
more than once. But the rest of X (i.e. the (n − 3)-dimensional g-module
E⊥

Q /(E + Q e0)) contributes at least 1 to Σ(g) and hence to Σ′(g), as long
as n− 3 ≥ 6, as was shown in Theorem 2.10 2

Corollary 2.31 If n ≥ 9, the toroidal compactification FL(Γ) may be cho-
sen so that on a boundary component over a dimension 1 cusp, FL(Γ) has
canonical singularities, and there are no fixed divisors in the boundary.

Proof. This is immediate from Corollary 2.29, Proposition 2.28 and Propo-
sition 2.30. In fact there are no choices to be made in this part of the
boundary. 2

3 Special reflections in Õ(L)

Let L be an arbitrary nondegenerate integral lattice, and write D for the
exponent of the finite group AL = L∨/L. The reflection with respect to the
hyperplane defined by a vector r is given by

σr : l 7−→ l − 2(l, r)
(r, r)

r.

For any l ∈ L its divisor div(l) is the positive generator of the ideal (l, L) ⊂
Z. In other words l∗ = l/ div(l) is a primitive element of the dual lattice
L∨. If r is primitive and the reflection σr fixes L, i.e. σr ∈ O(L), then we
say that r is a reflective vector. In this case

div(r) | r2 | 2 div(r). (17)

Proposition 3.1 Let L be a nondegenerate even integral lattice. Let r ∈ L
be primitive. Then σr ∈ Õ(L) if and only if r2 = ±2.

Proof. For r∗ = r/ div(r) ∈ L∨ and σr ∈ Õ(L) we get

σr(r∗) = −r∗ ≡ r∗ mod L.

Therefore 2r∗ ∈ L, div(r) = 1 or 2 (because r is primitive) and r2 = ±2
or ±4, because L is even. If r2 = ±2 then σr ∈ Õ(L). If r2 = ±4, then
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div(r) = 2 by condition (17). For such r the reflection σr is in Õ(L) if and
only if

l∨ − σr(l∨) = ±(r, l∨)
2

r = ±(r∗, l∨)r ∈ L

for any l∨ ∈ L∨. Therefore r∗ = r/2 ∈ (L∨)∨ = L. We obtain a contradic-
tion because r is primitive. 2

Proposition 3.2 Let L be as in Proposition 3.1 and let r ∈ L be primitive.
If −σr ∈ Õ(L), i.e. σr|AL

= − id, then

(i) r2 = ±2D and div(r) = D ≡ 1 mod 2, or r2 = ±D and div(r) = D or
D/2;

(ii) AL
∼= (Z/2Z)m × (Z/DZ).

If (ii) holds then

(iii) If r2 = ±D and either div(r) = D or div(r) = D/2 ≡ 1 mod 2, then
−σr ∈ Õ(L);

(iv) If r2 = ±2D and div(r) = D ≡ 1 mod 2, then −σr ∈ Õ(L).

Proof. (i), (ii) σr|AL
= − id is equivalent to the following condition:

2l∨ ≡ 2(r, l∨)
r2

r mod L ∀ l∨ ∈ L∨. (18)

It follows that if r2 = 2e, then (2L∨)/L is a subgroup of the cyclic group
〈(r/e) + L〉. Thus D divides 2e. But by definition of the divisor of the
vector e | div(r) | D, therefore

e | div(r) | 2e and e | D | 2e.

From this it follows that (2L∨)/L is a subgroup of the cyclic group generated
by (r/D) + L or (2r/D) + L. This implies (ii).

Let us assume that r2 = ±2D and div(r) = D ≡ 0 mod 2. We have
2l∨ ≡ ± (r,l∨)

D r mod L. If the order of l∨ in the discriminant group is odd,
then (r, l∨) is even, since D is even. If the order of l∨ is even, then (r, l∨)
is again even, because the order of 2l∨ is D/2. Therefore (r/2, l∨) ∈ Z for
all l∨ ∈ L∨. This contradicts the assumption that r is primitive. Thus (i) is
proved.

(iii) Let us assume that div(r) = D. In this case r∗ = r/D and 2r∗ + L
is a generator of (2L∨)/L. According to (ii) we have that for any l∨ ∈ L∨,
2l∨ = 2xr∗ + l′, where x ∈ Z, l′ ∈ L. Therefore

(2l∨, r)
r2

r = 2xr∗ ± (l′, r)
D

r ≡ 2xr∗ ≡ 2l∨ mod L (19)
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and −σr ∈ Õ(L) according to condition (18).
Let us assume that div(r) = D/2 ≡ 1 mod 2. We have to check con-

dition (18) for all elements of order 2 or D in AL. If ord(l∨) = 2, then
(2l∨, r) ≡ 0 mod D/2, and also (l∨, r) ≡ 0 mod D/2, because D/2 is odd.
It follows that 2(l∨, r)/r2 ∈ Z. If l∨ is an element of order D, we have
2l∨ = 2xr∗ + l′ as above with r∗ = (2r)/D and l′ ∈ L. Thus (l′, r)
is even. But (l′, r) is also divisible by the odd number D/2. Therefore
(l′, r) ≡ 0 mod D and equation (19) is also true.

(iv) is similar to (iii). D is odd and the group AL is cyclic with generator
r∗ = r/D. Therefore l∨ = xr∗ + l′ for any l∨ ∈ L∨ and

(2l∨, r)
r2

r =
2(xr∗ + l′, r)

r2
r = 2xr∗ ± 2(l′, r)

2D
r ≡ 2l∨ mod L.

2

Corollary 3.3 Let L be an even integral lattice with odd determinant and
let r be a primitive element. Then

(i) σr ∈ Õ(L) if and only if r2 = ±2;

(ii) −σr ∈ Õ(L) if and only if r2 = ±2D, div(r) = D and AL is cyclic.

With K3 surfaces in mind, we consider in more detail the lattice L2d =
2U ⊕ 2E8(−1)⊕ 〈−2d〉.

Corollary 3.4 Let σr be a reflection in O(L2d) defined by a primitive vector
r ∈ L2d. The reflection σr induces ± id on the discriminant group L∨2d/L2d

if and only if r2 = ±2 or r2 = ±2d and div(r) = d or 2d.

Proof. Any r ∈ L2d can be written as r = m + xs, where m ∈ L0 =
2U ⊕ 2E8(−1) and s is a generator of 〈−2d〉.

If r2 = ±2d and div(r) = 2d, then −σr ∈ Õ(L2d) by Proposition 3.2.
If r2 = ±2d and div(r) = d, then r = dm0+xs, where x2 = ∓1+d(m2

0/2).
We see that

σr

( s

2d

)
=

s

2d
(1± 2x2)± xm0 ≡ − s

2d
mod L2d.

2

The types of reflections in the full orthogonal group O+(L) for L =
L

(0)
2d = 2U ⊕ 〈−2d〉 were classified in [GH2] (for square-free d). The result

for L2d = 2U⊕2E8(−1)⊕〈−2d〉 is exactly the same, because the unimodular
part 2E8(−1) plays no role in the classification.

The reflection σr is an element of O+(LR) (where L has signature (2, n))
if and only if r2 < 0: see [GHS1].
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The (−2)-vectors of L2d form one or two (if d ≡ 1 mod 4) orbits with
respect to the group Õ

+
(L2d) (see [GHS2, Proposition 2.4]). We can also

compute the number of Õ
+
(L2d)-orbits of the (−2d)-reflective vectors in

Corollary 3.4. However, in this paper we only need to know the orthogonal
complements of (−2d)-vectors, which we compute in Proposition 3.6. (For
the case of (−2)-vectors see [GHS1, §3.6]).

The following lemma, which we use in the proof of Proposition 3.6, is
well-known (see [Nik2, Corollary I.5.2]). Recall that an integral lattice T is
called 2-elementary if AT = T∨/T ∼= (Z/2Z)m.

Lemma 3.5 Let T be a primitive sublattice of a unimodular even lattice
M , and let S be the orthogonal complement of T in M . Suppose that there
is an involution σ ∈ O(M) such that σ|T = idT and σ|S = − idS . Then T
and S are 2-elementary lattices.

Proposition 3.6 Let r be a primitive vector of L2d with r2 = −2d. If
div(r) = 2d then

r⊥L2d
∼= 2U ⊕ 2E8(−1).

If div(r) = d then either

r⊥L2d
∼= U ⊕ 2E8(−1)⊕ 〈2〉 ⊕ 〈−2〉

or
r⊥L2d

∼= U ⊕ 2E8(−1)⊕ U(2).

Proof. The lattice L2d is the orthogonal complement of a primitive vector
h, with h2 = 2d in the unimodular K3 lattice LK3 = 3U ⊕ 2E8(−1). We put
Lr = r⊥L2d

and Sr = (Lr)⊥LK3
.

We note that Lr and Sr have the same determinant: in fact

det Lr = detSr = 4d2/ div(r)2 =

{
1 if div(r) = 2d,

4 if div(r) = d.

To see this, consider a more general situation. Let N be a primitive even
nondegenerate sublattice of any even integral lattice L and let N⊥ be its
orthogonal complement in L. Then we have

N ⊕N⊥ ⊂ L ⊂ L∨ ⊂ N∨ ⊕ (N⊥)∨,

where L/(N ⊕ N⊥) ∼= (N∨ ⊕ (N⊥)∨)/L∨. As before we have φ : L → N∨,
and ker(φ) = N⊥. Since L/(N ⊕N⊥) ∼= φ(L)/N we obtain

|L/(N ⊕N⊥)| = |φ(L)/N | = |det N |/[N∨ : φ(L)],
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as |det N | = [N∨ : N ]. From the inclusions above

|det N | · |det N⊥| = (|det L|)[φ(L) : N ]2

= |det L| · |det N |2/[N∨ : φ(L)]2. (20)

In our case L = L2d, N = Zr and Lr = N⊥. We have [N∨ : φ(L)] = div(r)
and equation (20) then gives us the formula for the determinant of Lr.

If div(r) = 2d then Lr and Sr are are isomorphic to the unique uni-
modular lattices of signatures (2, 18) and (1, 1) respectively: that is, Lr

∼=
2U ⊕ 2E8(−1) and Sr

∼= U .
If div(r) = d then the reflection σr acts as − id on the discriminant group

(see Corollary 3.4). Therefore we can extend −σr ∈ Õ(L2d) to an element
of O(LK3) by putting (−σr)|Zh = id. This is possible because of the well-
known fact (for a proof see e. g. [GHS2, Lemma 2.2]) that if L is a sublattice
of M , then every element of Õ(L) extends to an element of Õ(M). So σr

has an extension σ̃r ∈ O(LK3) such that σ̃r|Lr = idLr and σ̃r|Sr = − idSr . It
follows from Lemma 3.5 that Lr and Sr are 2-elementary lattices.

The finite discriminant forms of 2-elementary lattices were classified by
Nikulin in [Nik3]. The genus of M (and the class of M if M is indefinite)
is determined by the signature of M , the number of generators m of AM

and the parity δM of the finite quadratic form qM : AM → Q/2Z, which is
given by δM = 0 if l2 ∈ Z for all l ∈ M∨ and δM = 1 otherwise: (see [Nik3,
§3]). In particular, for an indefinite lattice Sr of rank 2 and determinant 4
we have

Sr
∼=

{
U(2) if δSr = 0,

〈2〉 ⊕ 〈−2〉 if δSr = 1.

The class of the indefinite lattice Lr is uniquely defined by its discriminant
form. Proposition 3.6 is proved. 2

Geometrically the three cases in Proposition 3.6 correspond to the Néron-
Severi group being (generically) U , U(2) or 〈2〉 ⊕ 〈−2〉 respectively. The
K3 surfaces (without polarisation) themselves are, respectively, a double
cover of the Hirzebruch surface F4, a double cover of a quadric, and the
desingularisation of a double cover of P2 branched along a nodal sextic.

4 Special cusp forms

Let L = 2U⊕L0 be an even lattice of signature (2, n) (n ≥ 3) containing two
hyperbolic planes. We write FL = FL(Õ

+
(L)) for brevity. A 0-dimensional

cusp of FL is defined by a primitive isotropic vector v. Any two primitive
isotropic vectors of divisor 1 lie in the same Õ

+
(L)-orbit, according to the

well-known criterion of Eichler (see [E, §10]). We call the corresponding
cusp the standard 0-dimensional cusp of the Baily–Borel compactification
F∗

L.
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Each 1-dimensional boundary component F of DL is isomorphic to the
upper half plane H and in the Baily–Borel compactification this corresponds
to adding an (open) curve Λ\H, where Λ ⊂ SL2(Q) is an arithmetic group
which depends on the component F . Details of this can be found in [BB]
and [Sc]. For our purpose we need one general result not contained there.

Lemma 4.1 Suppose that L is even, and that any isotropic subgroup of
the discriminant group (AL, qL) is cyclic. Then the closure of every 1-
dimensional cusp in F∗

L contains the standard 0-dimensional cusp.

Proof. Let E be a primitive totally isotropic rank 2 sublattice of L and
define the lattice Ẽ = E⊥⊥

L∨ (both orthogonal complements are taken in the
dual lattice L∨). We remark that E ⊂ Ẽ and that E = Ẽ ∩ L because E is
isotropic and primitive. Thus the finite group

HE = E⊥⊥
L∨ /E < AL

is an isotropic subgroup of the discriminant group of L. Let us take a basis
of L as in Lemma 2.23. We have

E⊥
L∨ = E⊥

L⊗Q ∩ L∨ = 〈δ−1e′1, (δe)
−1e′2〉Z ⊕ (〈e′3, . . . , e′n〉Q ∩ L∨).

For the second orthogonal complement we get 〈δ−1e′1, (δe)
−1e′2〉Z. Therefore

HE
∼= A−1Z2/Z2.

In the case we are considering, HE is a cyclic subgroup (|HE |2 divides det L).
Therefore A = diag(1, e). Thus E contains primitive isotropic vectors with
divisors 1 and e, and the first vector defines the standard 0-dimensional
cusp. 2

Remark. If the discriminant group of L contains a non-cyclic isotropic sub-
group then there is a totally isotropic sublattice E of L such that the finite
abelian group HE has elementary divisors (δ, δe) with δ > 1. Thus det L is
divisible by δ4e2.

Let L = 2U ⊕L0 be of signature (2, n) and let u be a primitive isotropic
vector of divisor 1. The tube realisation Hu of the homogeneous domain
DL at the standard 0-dimensional cusp is defined by the sublattice L1 =
u⊥/Zu ∼= U ⊕ L0:

Hu = H(L1) = {Z ∈ L1 ⊗ C | (Im Z, Im Z) > 0}+ ⊂ L1 ⊗ C ∼= Cn, (21)

where + denotes a connected component of the domain (see [G, §2] for
details). If z1, . . . , zn are coordinates on L1 ⊗ C ∼= Cn then we consider the
standard holomorphic volume element

dZ = dz1 ∧ · · · ∧ dzn. (22)
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The modular group Õ
+
(L) acting on H(L1) contains all translations by

elements of L1. Therefore the Fourier expansion at the standard cusp of a
modular form F for Õ

+
(L) is

F (Z) =
∑

l∈L∨1 , (l,l)≥0, il∈Hu

a(l) exp(2πi(l, Z)). (23)

Theorem 4.2 Let L be an even lattice with two hyperbolic planes such
that any isotropic subgroup of the discriminant group of L is cyclic. Let F

be a modular form with respect to Õ
+
(L). If its Fourier coefficients a(l) at

the standard cusp satisfy a(l) = 0 if (l, l) = 0, then F is a cusp form.

Proof. We choose an isomorphism L ∼= 2U⊕L0. The standard 0-dimensional
cusp is represented by an isotropic vector u with div(u) = 1, which we can
assume to be in the first summand U . Let v be a similar vector in the
second copy of U and set E1 := 〈u, v〉. Let E be an arbitrary primitive
totally isotropic sublattice of rank 2 of L defining a 1-dimensional cusp of
FL. We can assume that E = 〈u, v′〉Z (see Lemma 4.1 above). According
to the Witt theorem for the rational hyperbolic quadratic space L1 ⊗ Q
there exists σ ∈ O(L1 ⊗ Q) such that σ(v′) = v. We can extend σ to an
element of O+(L ⊗ Q) by putting σ(u) = ±u. The Siegel operator ΦE

for the boundary component given by E is defined so that ΦE(F ) is the
extension of the modular form F to this component. This is a modular form
in one variable (see [BB, (8.3), (8.5)]). The Siegel operator has the property
ΦE(F ◦ σ) = Φσ(E)(F ) ◦ σ (see [BB, p. 511, Formula (1)]). Therefore

ΦE(F ) = Φσ−1E1
(F ) = ΦE1(F ◦ σ−1) ◦ σ.

We can calculate the Fourier expansion of the function under the Siegel
operator ΦE1 :

F ◦ σ−1 = ±
∑

l∈L∨1 , (l,l)>0

a(l) exp(2πi(l, σ−1Z))

= ±
∑

l1∈σL∨1 , (l1,l1)>0

a(σ−1l1) exp(2πi(l1, Z)). (24)

Thus ΦE(F ) = ΦE1(F ◦ σ−1) ◦ σ ≡ 0 and F vanishes on all 1-dimensional
cusps. Every 0-dimensional cusp is in the closure of a 1-dimensional cusp,
since every isotropic vector is contained in an isotropic plane. Hence F is a
cusp form. 2

In [G, Theorem 3.1] modular forms for S̃O
+
(L) are constructed using the

arithmetic lifting of a Jacobi form φ. The modular form Lift(φ) is defined
by its first Fourier-Jacobi coefficient at a fixed standard 1-dimensional cusp.
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In particular, we know the Fourier expansion at the standard 0-dimensional
cusp. Therefore we obtain the following improvement of the result proved
for square-free d in [G, Theorem 3.1].

Corollary 4.3 Let L = L2d = 2U ⊕2E8(−1)⊕〈−2d〉. Then the arithmetic
lifting Lift(φ) of a Jacobi cusp form φ ∈ Jcusp

k,1 (L2d) of weight k and index 1

is a cusp form of weight k for S̃O
+
(L2d) for any d ≥ 1.

5 Application: K3 surfaces with a spin structure

The results of §§1–4 give a general method which we can use to study the
Kodaira dimension of the modular varieties defined in equation (2) in the in-
troduction. In this section we give an immediate application of this method.
We prove that the moduli space of K3 surfaces of degree d with a spin struc-
ture is of general type for d ≥ 3. This case is easier than the main theorem
because the ramification divisor of such moduli spaces is rather small and
we do not use the Borcherds products. The proof of the main theorem does
not use the results of this section.

Instead of Õ
+
(L2d) and F2d, we may consider the subgroup S̃O

+
(L2d) of

Õ
+
(L2d) of index 2 and the corresponding quotient

SF2d = S̃O
+
(L2d)\DL2d

.

If d > 1 then SF2d is a double covering of F2d. (For d = 1 the two spaces
coincide since S̃O

+
(L2) ∼= Õ

+
(L2)/ ± I.) This double covering has the

following geometric interpretation: the domain DL2d
is the parameter space

of marked K3 surfaces of degree 2d, and dividing out by the group Õ
+
(L2d)

identifies all the different markings on a given K3 surface. Two markings
will be identified under the group S̃O

+
(L2d) if and only if they have the

same orientation. Hence SF2d parametrises polarised K3 surfaces (S, h)
together with an orientation of the lattice Lh = h⊥. We shall refer to these
as oriented K3 surfaces. An orientation on a surface S is also sometimes
called a spin structure on S.

We have seen in Corollary 2.13 and Corollary 3.4 that the ramification
divisor of the map DL2d

→ F2d is given by the divisors associated to re-
flections σr defined by a primitive vector r of length either r2 = −2 or
r2 = −2d. Note that in the first case σr acts trivially on the discriminant
group whereas it acts as − id in the second case. Hence ±σr /∈ S̃O

+
(L2d)

if r2 = −2, but −σr ∈ S̃O
+
(L2d) if r2 = −2d. It follows that the quotient

map DL2d
→ SF2d is branched along the (−2d)-divisors whereas the double

cover SF2d → F2d is branched along the (−2)-divisors. In this way the
group S̃O

+
(L2d) separates the two types of contributions to our reflective
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obstructions. The reflective obstructions coming from the (−2d) divisors are
less problematic, as we shall see in the next theorem. The (−2d)-divisors
have a geometric interpretation. The general point on such a divisor is
associated to a K3 surface S whose transcendental lattice TS has rank 20
and which admits an involution acting as − id on TS . For d = p2 this was
shown in ([Ko1, Prop. 7.4]), and for general d it follows from Corollary 2.13,
Corollary 3.4 and the proof of Proposition 3.6 above.

In [G, Theorem 3.1] it was proved that the variety S̃O
+
(L2d)(q)\DL2d

,

where S̃O
+
(L2d)(q) is the principal congruence subgroup of S̃O

+
(L2d) of

level q ≥ 3, is of general type for any d ≥ 1. Here we obtain a much stronger
result.

Theorem 5.1 The moduli space SF2d = S̃O
+
(L2d)\DL2d

of oriented K3
surfaces of degree 2d is of general type if d ≥ 3.

Proof. For L2d = 2U ⊕ 2E8(−1)⊕ 〈−2d〉 the corresponding space of Jacobi
cusp forms in 18 variables is isomorphic (as a linear space) to the space of
Jacobi cusp forms of Eichler-Zagier type (see [G, Lemma 2.4])

Jcusp
k,1 (L2d) ∼= Jcusp

k−8,d(EZ).

For k = 17, this space is non-trivial for any d ≥ 3 (see the dimension formula
for odd k in [G, (5.2)]). Therefore for any d ≥ 3 there is a cusp form F17 of
weight 17 with respect to S̃O

+
(L2d).

The ramification divisor of the projection πSO : DL2d
→ S̃O

+
(L2d)\DL2d

is defined by (−2d)-reflections of L2d. In Lemma 5.2 below we show that
the cusp form F17 vanishes on the ramification divisors of πSO.

Hence SF2d is of general type for d ≥ 3 by Theorem 1.1. 2

Lemma 5.2 Any modular form F ∈ M2k+1(S̃O
+
(L2d)) of odd weight van-

ishes along the divisors defined by (−2d)-reflective vectors.

Proof. Let σr ∈ O+(L2d) be a reflection with respect to a (−2d)-vector.
Then −σr ∈ S̃O

+
(L2d) (see Corollary 3.4). For any z ∈ DL2d

with (z, r) = 0

and a modular form F ∈ M2k+1(S̃O
+
(L2d)) we have

F (z) = F ((−σr)(z)) = F (−z) = (−1)2k+1F (z),

so F (z) ≡ 0. 2

We note that SF2 = F2 is unirational.
The geometric interpretation of the (−2)-divisors, which form the ramifi-

cation of the covering SF2d → F2d, is that they parametrise those polarised
K3 surfaces whose polarisation is only semi-ample, but not ample. This
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is because of the presence of rational curves on which the polarisation has
degree 0. Thus in the case d = 2 the map SF4 → F4 is a double cover of the
moduli space of quartic surfaces branched along the discriminant divisor of
singular quartics. The variety F4 is unirational but SF4 is not, since there
exists a canonical differential form on it (see [G]). There is also a cusp form
of weight 18 with respect to S̃O

+
(L4) which vanishes on one of the two irre-

ducible components of the ramification divisors for d = 2. We shall return
to this question in a more general context in [GHS2].

6 Pull-back of the Borcherds function Φ12

To construct pluricanonical differential forms on a smooth model of F2d we
shall use the pull-back of the Borcherds automorphic product Φ12.

Let L2,26 = 2U ⊕ 3E8(−1) be the unimodular lattice of signature (2, 26).
For later use, we note the following simple lemma.

Lemma 6.1 Let r be a primitive reflective vector in L2d with r2 = −2d
and let Lr = r⊥L2d

be its orthogonal complement considered as a primitive
sublattice of the unimodular lattice L2,26. Then

(Lr)⊥L2,26
∼= E8(−1), E7(−1)⊕ 〈−2〉 or D8(−1).

Proof. In the proof of Proposition 3.6 we found Lr and its orthogonal com-
plement Sr in the unimodular lattice LK3 = 3U⊕2E8(−1). The discriminant
forms of Sr and Kr = (Lr)⊥L2,26

coincide, but Kr is of signature (0, 8). The
three possible genera of Kr are represented by E8(−1), E7(−1)⊕ 〈−2〉 and
D8(−1). The genera of such lattices contain only one class. For E8 (or,
equivalently, E8(−1)) this is well-known. For the other two lattices on can
check it using MAGMA or prove it by analysing sublattices of index 2 in
E8. The orthogonal group O(E8) = W (E8) has two orbits in E8/2E8 (see
[Bou, Ch. VI, §4, Ex. 1] and [Kn, (28.10), (3.4)]). Therefore E8 contains
only two classes of sublattices of index 2. 2

The Borcherds function Φ12 ∈ M12(O+(L2,26),det) is the unique modular
form of weight 12 and character det with respect to O+(L2,26) (see [B1]). It
is the denominator function of the fake Monster Lie algebra and it has a lot
of remarkable properties. In particular, the zeros of Φ12(Z) lie on rational
quadratic divisors defined by (−2)-vectors in L2,26, i.e., Φ12(Z) = 0 if and
only if there exists r ∈ L2,26 with r2 = −2 such that (r, Z) = 0. Moreover,
the multiplicity of the rational quadratic divisor in the divisor of zeros of
Φ12 is 1.

Pulling back this function gives us many interesting automorphic forms
(see [B1, pp. 200-201], [GN, pp. 257-258]). In the context of the moduli
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of K3 surfaces this function was used in [BKPS] and [Ko2]. We summarise
some of those results in a suitable form.

Let l ∈ E8(−1) satisfy l2 = −2d. The choice of l determines an embedding
of L2d = 2U ⊕ 2E8(−1) ⊕ 〈−2d〉 into L2,26 = 2U ⊕ 3E8(−1) if one takes l
in the third copy of E8(−1) as a generator of 〈−2d〉. This also gives us an
embedding of the domain DL2d

⊂ P(L2d⊗C) into DL2,26 ⊂ P(L2,26⊗C) (see
equation (1), in the introduction).

We put Rl = {r ∈ E8(−1) | r2 = −2, (r, l) = 0}, and Nl = #Rl. (It is
clear that Nl is even.) Then by [BKPS] the function

Fl =
Φ12(Z)∏

{±r}∈Rl
(Z, r)

∣∣∣∣∣
DL2d

∈ M
12+

Nl
2

(Õ
+
(L2d), det) (25)

is a non-trivial modular form of weight 12+ Nl
2 vanishing on all (−2)-divisors

of DL2d
. (As we did in Section 4, we think of a modular form as a function

on DL rather than D•
L, by identifying DL with a tube domain realisation

as in equation (21) above.) Moreover it is shown in [Ko2] that Fl is a cusp
form if d is square-free and the weight is odd.

In fact much more is true.

Theorem 6.2 The function Fl has the following properties:

(i) Fl ∈ M
12+

Nl
2

(Õ
+
(L2d), det) and Fl vanishes on all (−2)-divisors.

(ii) Fl is a cusp form for any d if Nl > 0.

(iii) Fl is zero along the ramification divisor of the projection

π : DL2d
−→ Γ2d\DL2d

= F2d.

Proof. As we have mentioned above (i) was proved in [BKPS]. We give
another interpretation of equation (25) in terms of Taylor expansion, which
will give us (i) together with (ii).

The Fourier expansion of Φ12 at the standard 0-dimensional cusp is de-
fined by the hyperbolic unimodular lattice L1,25 = U ⊕ 3E8(−1) (see equa-
tions (21) and (23)):

Φ12(Z) =
∑

u∈L1,25, (u,u)=0

a(u) exp(2πi(u, Z)).

The weight 12 is singular, therefore the hyperbolic norm of the index of any
non-zero Fourier coefficient is zero. If M is any non-degenerate sublattice
(it need not be primitive nor of finite index) of L then g ∈ Õ(M) can be
extended (by the identity on the orthogonal complement of M in L) to an
element g̃ of Õ(L) (see [GHS2, Lemma 2.2]).
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Let us fix a root r ∈ Rl ⊂ L1,25. We denote by Mr the orthogonal
complement of r in L1,25. We have Z = Zr + zr ∈ H(L1,25), where Zr ∈
H(Mr) and z ∈ C. We note that Φ12(Zr) ≡ 0. Let us consider the Taylor
expansion in z:

Φ12(Zr + z) =
∑
t≥1

Φ(t)
12 (Zr)

zt

t!

where

Φ(t)
12 (Zr) =

∂tΦ12(Zr + zr)
∂zt

∣∣∣∣
z=0

.

For any g ∈ Õ
+
(Mr) one has g̃(r) = r. Therefore g̃ acts linearly on z:

g̃〈Zr + zr〉 = g〈Zr〉+
zr

J(g, Zr)

where J(g, Zr) is the automorphic factor of of the action of the orthogonal
group on the tube domain (see [G, p. 1183]). Therefore the Taylor coefficient
Φ(t)

12 (Zr) is a modular form for Õ
+
(Mr) of weight 12 + t with character det

and
Φ12(Z)
(Z, r)

∣∣∣∣
H(Mr)

= Φ(1)
12 (Zr) =

∂Φ12(Zr + zr)
∂z

∣∣∣∣
z=0

is the first coefficient of the Taylor expansion.
Let us calculate its Fourier expansion at the standard cusp. The summa-

tion in the Fourier expansion of Φ(1)
12 (Zr) is taken over the dual lattice M∨

r .
We note that

Mr ⊕ Zr ⊂ L1,25 ⊂ M∨
r ⊕ Z(r/2).

We have

exp(2πi(u, Z)) = exp(2πi(ur +m(r/2), Zr + zr)) = exp(2πi((ur, Zr)−mz)).

Taking ∂/∂z of the Fourier expansion term by term we get

Φ(1)
12 (Zr) = −2πi

∑
ur+m(r/2)=u∈L1,25, (u,u)=0

ma(u) exp(2πi(ur, Zr))

where u = ur + m(r/2) with ur ∈ M∨
r and 0 6= m ∈ Z. In this case

(ur, ur) = m2/2 > 0. Thus the first derivative Φ(1)
12 (Zr) has non-zero Fourier

coefficient only for indices ur with positive square. We note that the same
is true for Φ(t)

12 (Zr) for any t ≥ 1.
A similar procedure works for the root system Rl. We take a basis

{r1, . . . , rd} (1 ≤ d ≤ 7) formed by simple roots of the lattice T ⊂ E8(−1)
generated by the roots of Rl. (T is the direct sum of some irreducible root
systems.) For the variable Z ∈ H(L1,25) we have Z = ZR + z1r1 + · · ·+ zdrd
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with ZR ∈ H(MT ), where MT is the orthogonal complement of T in L1,25.
Taking the Taylor expansion with respect to z1, . . . , zd we get

Φ12(Z) = PNl
(z1, . . . , zd)

F0(ZR) +
∑

α=(a1,...,ad)∈Nd

Fα(ZR)za1
1 · · · · · zad

d


where PNl

(z1, . . . , zd) is a polynomial of degree Nl/2 corresponding to the
formal product of the positive roots of the root lattice T (one has to replace
the simple roots ri by zi). As in the case of one variable z = z1 we get
that Fα(ZR) is a modular form of weight 12 + (Nl/2) + (a1 + · · · + ad) for
Õ

+
(MT ) having non-zero Fourier coefficients only for indices uT ∈ M∨

T with
(uT , uT ) > 0 (the lattice T is negative definite). In particular

F0(ZR) =
Φ12(Z)∏

{±r}∈Rl
(Z, r)

∣∣∣∣∣
H(MR)

∈ M
12+

Nl
2

(Õ
+
(MR), det).

By definition of T the lattice L2d = 2U ⊕ 2E8(−1) ⊕ Zl is a sublattice
(not necessarily primitive) of MT . The group Õ

+
(L2d) can be considered

as a subgroup of Õ
+
(MT ) and the pull-back of F0(ZR) to the subdomain

H(L2d) ⊂ H(MT ) is a modular form of weight 12 + (Nl/2) for Õ
+
(L2d).

This is the function Fl defined in (25). It has non-zero Fourier coefficients
only for indices with positive squares because the lattice (L2d)⊥MT

is negative
definite. Thus Fl is a cusp form according to Theorem 4.2.

Now we can finish the proof using Lemma 6.1. Let r be a (−2d)-reflective
vector. According to Lemma 6.1, (Lr)⊥L2,26

is a root lattice with N ≥ 112
roots (E8 has 240 roots, E7 has 126 and D8 has 112). The root lattice
T ⊂ R7 generated by Rl is a direct sum of root systems of type Am, Dm

or E6. By going through finitely many possibilities one can check that
Nl ≤ |R(D7)| = 84. Therefore the pull-back of the Borcherds form F0 has a
zero of order N −Nl ≥ 28 along the subdomain DLr . Thus Fl is zero along
DLr . 2

We make two remarks about Theorem 6.2 and its proof.
Remark 1. One can determine the divisor of the modular form Fl from
Theorem 6.2. For this one can use projection arguments (see [BKPS]) or, as a
referee pointed out, one can use [B2, Theorem 13.3] in order to construct Fl.
For this one can consider the Borcherds product defined by the automorphic
form θK(τ)/∆(τ), where θK(τ) is the theta series of the positive definite
lattice K = l⊥E8(−1)(−1) and ∆(τ) is Ramanujan’s cusp form of weight 12.
Remark 2. Using the Taylor expansion we can construct cusp forms starting
from any modular form F of weight k for Õ

+
(L), where L = 2U ⊕ L0. Let

l ∈ L0 with l2 < 0 and let L1 = l⊥L . Consider the Taylor expansion of F
with respect to zl (z ∈ C). The proof of (ii) above shows in fact that any
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non-zero Taylor coefficient Fa (a > 0) of F is a modular form of weight
k + a for Õ

+
(L1). Moreover, at the standard cusp Fa has non-zero Fourier

coefficient only for indices with positive length.

7 Combinatorics of root systems in E8

According to Theorem 6.2 and Theorem 1.1 the main point for us is the
following. We want to know for which 2d > 0 there exists a vector

l ∈ E8, l2 = 2d, l is orthogonal to at least 2 and at most 12 roots. (26)

Theorem 7.1 Such a vector l in E8 does exist if one of two inequalities

4NE7(2d) > 28NE6(2d) + 63ND6(2d) (27)

or
5NE7(2d) > 28NE6(2d) + 63ND6(2d) + 378ND5(2d) (28)

is valid, where NL(2d) denotes the number of representations of 2d by the
lattice L.

Proof. Let us fix a root a ∈ E8. This choice gives us a realisation of the
lattice E7 as a sublattice of E8:

E7
∼= E

(a)
7 = a⊥E8

.

We have the following decomposition of the set of roots R(E8):

R(E8) = R(E7) tX114 where X114 = {c ∈ R(E8) | c · a 6= 0}

and |X114| = |R(E8)| − |R(E7)| = 240− 126 = 114.

Lemma 7.2 The roots have the following properties:

(i) X114 is the union of 28 root systems of type A2 such that R(A(i)
2 ) ∩

R(A(j)
2 ) = {±a} for any i 6= j.

(ii) Let A2(a, c) 6= A2(a, d) be two A2-lattices generated by roots a, c and
a, d. Then

A3(a, c, d) = A2(a, c) + A2(a, d)

is a lattice of type A3 containing exactly one copy of A1 from E
(a)
7 .

(iii) Let us take three different A2(a, ci) (i = 1, 2, 3). Then their sum

S =
3∑

i=1

A2(a, ci)

is a lattice of type A4, which has 20 roots, or D4, which has 24 roots.

In both cases exactly six roots of S are in E
(a)
7 .
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Proof. (i) Recall that |b · c| ≤ 2 for any roots b, c ∈ R(E8). If b · c = ±2 then
b = ±c. We can assume that a · c = −1 (if not we replace c by −c). The
lattice A2(a, c) = Za + Zc is a lattice of A2-type. Any A2-lattice contains
six roots

R(A2(a, c)) = {±a, ±c, ±(a + c) }.

A2(a, c) is generated by any pair of linearly independent roots. Therefore

A2(a, c1) ∩A2(a, c2) = {±a}

if the root lattices are distinct.
(ii) c 6= ±d implies that c · d = 0 or ±1. Suppose that c · d = 0. Then

the sum of the lattices is of type A3 (a · c = a · d = −1 and c · d = 0). This
lattice contains 12 roots

R(A3(a, c, d)) = ±(a, c, d, a + c, a + d, a + c + d).

The first five roots are elements of X114 and a + c + d ∈ E
(a)
7 .

If c · d = 1 then (a + d) · c = 0 and we come back to the first case. If
c · d = −1 then (a + d) · c = −2, c = −(a + d) and A2(a, c) = A2(a, d).

(iii) As in the proof of (ii) we can suppose that c1 · c2 = c2 · c3 = 0 and
c1 · c3 = 0 or 1.

If c1 · c3 = 1, then we see that S has a root basis of type A4:

t
c3

-t
−c1

-t
a + c1

-t
c2

A4 has 20 roots. They are

±(a, ci, a + ci, a + c1 + c2, a + c2 + c3, c1 − c3) where i = 1, 2, 3.

Only the last three pairs of roots belong to E
(a)
7 .

If c1 · c3 = 0 then the roots c1, a, c2, c3 form a basis of S. In this case
S has type D4 (a · ci = −1 for all i and the other scalar products are zero).
This root system contains all roots of A4 except ±(c1 − c3), and the roots

±(a + c1 + c3, a + c1 + c2 + c3, 2a + c1 + c2 + c3).

The six roots from E
(a)
7 are ±(a + ci + cj). 2

Now we can finish the proof of Theorem 7.1. Let us assume that every
l ∈ E

(a)
7 with l2 = 2d > 0 is orthogonal to at least 14 roots in E8 including

±a. The others are some roots in E
(a)
7 (126 roots), or in X114 \ {±a} (112
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roots). If l is orthogonal to b ∈ X114 \ {±a} then l is orthogonal to the
lattice A2(a, b). Therefore using Lemma 7.2 we have

l ∈
28⋃
i=1

(A(i)
2 )⊥E8

∪
63⋃

j=1

(A(j)
1 )⊥E7

. (29)

It is easy to prove that

(A2)⊥E8
∼= E6, (A1)⊥E7

∼= D6, (A1 ⊕A1)⊥E8
∼= D6, (A3)⊥E8

∼= D5. (30)

To see this we note that W (E8) acts transitively on the sublattices of E8

of types A1 ⊕ A1 and A2 ([Kn, (28.10)]). The same is true for A3 ⊂ E8.
If (r1, r2, r3) is a Coxeter basis of simple roots in A3 then some element
of W (E8) transforms it into (e1 − e2, r

′
2, e1 + e2). We have (e1 − e2, r

′
2) =

(e1 + e2, r
′
2) = −1. Therefore r′2 is an integral root ±ek − e1. If k > 3 then

σ±ek−e3(r
′
2) = e3 − e1. To find the orthogonal complement of Am in E8 or

E7 one can remove a node from the extended Dynkin diagram.
Denote by n(l) the number of components in (29) containing the vector

l. We have calculated this vector exactly n(l) times in the sum

28NE6(2d) + 63ND6(2d).

We shall consider several cases.
(a) Suppose that l · c 6= 0 for any c ∈ X114 \ {±a}. Then l is orthogonal

to at least 6 copies of A1 in E
(a)
7 and n(l) ≥ 6.

Now we suppose that there exist c ∈ X114\{±a} such that l ·c = 0. Then
l is orthogonal to A2(a, c) which is one of the 28 subsystems of the bouquet
X114.

(b) If l is orthogonal to only one A
(i)
2 (6 roots) then l is orthogonal to at

least 4 copies of A1 (8 roots) in E
(a)
7 . Thus n(l) ≥ 5.

(c) If l is orthogonal to exactly two A
(i)
2 and A

(j)
2 in X114 then l is or-

thogonal to A3 = A
(i)
2 + A

(j)
2 having 12 roots and containing only one A1

from E
(a)
7 . Thus l is orthogonal to another A1 in E

(a)
7 . Therefore n(l) ≥ 4.

(d) If l is orthogonal to three or more A
(i)
2 then their sum contains three

A1 ⊂ E
(a)
7 and n(l) ≥ 6.

We see that under our assumption n(l) ≥ 4 for any l ∈ E
(a)
7 . Therefore

we have proved that if every l ∈ E
(a)
7 with l2 = 2d is orthogonal to at least

14 roots then any such l is contained in at least 4 sets of the union (29), i.e.,

28NE6(2d) + 63ND6(2d) ≥ 4NE7(2d).

Moreover n(l) can be equal to 4 only in case (c). In this case l ∈ (A3)⊥E8
∼= D5

(see (30)) and there are
(
28
2

)
= 378 pairs of A2-subsystems in X114. In other
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words fewer than 378ND5(2d) vectors in the union (29) are calculated only
4 times. This gives us the second inequality

28NE6(2d) + 63ND6(2d) + 378ND5(2d) ≥ 5NE7(2d).

2

The inequalities (27) and (28) fail only for a finite number of d because
their left- and right-hand sides have the asymptotics O(d5/2) and O(d2) (see
[Iw, Corollary 11.3 ]).

Proposition 7.3 A vector l ∈ E8 satisfying the condition (26) does exist if
d 6∈ Pex, where

Pex = { 1 ≤ m ≤ 100 (m 6= 96); 101 ≤ m ≤ 127 (m is odd);
m = 110, 131, 137, 143 }.

Proof. The Jacobi theta series of the lattice E8 coincides with the Jacobi-
Eisenstein series E4,1(τ, z) of weight 4 and index 1. Let us fix a root a ∈ E8.
We have

E4,1(τ, z) =
∑
l∈E8

exp(πi l2τ +2πi l ·az) = 1+
∑
m≥1

e4,1(m,n) exp(2πmτ +nz).

NE7(2m) = e4,1(m, 0), since the orthogonal complement of a in E8 is E7.
The Fourier coefficients e4,1(m,n) were calculated in [EZ, §2] (see Theo-

rem 2.1 there and the calculations before). In particular

NE7(2m) =
26π3

15
LZ

4m(3)
ζ(3)

m5/2

where

LZ
D(s) =

∑
t≥1

#{x mod 2t | x2 ≡ D mod 4t }
ts

.

It is evident that LZ
4m(3) > 9/8 (one has to take only two terms for t = 1

and t = 2). Thus

NE7(2m) >
24π3

5ζ(3)
m5/2 > c(E7)m5/2, (31)

where c(E7) = 123.8 is a numerical estimate for the last constant. In fact this
estimate is quite good: a computation with PARI shows that NE7(314) ≈
124.73× (157)5/2.

We can find simple exact formulae for NE6(2m) and ND6(2m). Let χ3 and
χ4 be the unique non-trivial Dirichlet characters modulo 3 and 4 respectively.
For a Dirichlet character χ we put

σk(m,χ) =
∑
d|m

χ(d)dk, σ̃k(m,χ) =
∑
d|m

χ
(m

d

)
dk.
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Lemma 7.4 The number of representations of 2m by the quadratic forms
E6 and D6 are

NE6(2m) = 81σ̃2(m,χ3)− 9σ2(m,χ3),
ND6(2m) = 64σ̃2(m,χ4)− 4σ2(m,χ4).

Proof. ND6(2m) is equal to the number of representations of 2m by six
squares. This number is classically known (see [Iw, p. 187]). To prove the
first identity we consider the theta series of E6:

θE6(τ) =
∑
l∈E6

eπi(l·l)τ ∈ M3(Γ0(3), χ3) = M3(Γ1(3)).

For the congruence subgroups and for the corresponding spaces of modular
forms we use the notation of [Kob, Ch. III] (see (1.4)–(1.5), (3.7)–(3.8),
(3.29) there). We recall that the level of the quadratic lattice E6 is equal to
3, i.e., E∨

6 (3) is even integral (see [Bou, VI-4-12-(VIII)]). Therefore θE6(τ)
is a Γ0(3)-modular form with character χ3 (see [Iw, Theorem 10.9]). The
last space coincides with M3(Γ1(3)) because χ3 is the only odd character
modulo 3. The dimension of M3(Γ1(3)) is equal to 2. (In order to calcu-
late the dimension one can use the site MODI created by N.-P. Skoruppa:
http://wotan.algebra.math.uni-siegen.de/˜modi/).

We can construct a basis with the help of Eisenstein series Gα
k , where

α ∈ (Z/NZ)2,
Gα

k (τ) =
∑

(n,m)≡α mod N

(nτ + m)−k.

Using the relation (see [Kob, (3.13)])

Gα
k |kγ = (cτ + d)−kGα

k

(
aτ + b

cτ + d

)
= Gαγ

k , where γ =
(

a b
c d

)
∈ SL2(Z),

for k = 3 and N = 3 we obtain two modular forms in M3(Γ1(3)), namely
G

(0,1)
3 and G

(1,0)
3 + G

(1,1)
3 + G

(1,2)
3 . The Fourier expansion of Gα

k was found
by Hecke (see [Kob, Proposition 22, Ch. III]). Normalising both series in
order to have the first Fourier coefficient equal to 1 we obtain a basis of
M3(Γ0(3), χ3) consisting of

E
(∞)
3 (τ, χ3) = 1− 9

∑
m≥1

σ2(m,χ3)qm,

E
(0)
3 (τ, χ3) =

∑
m≥1

σ̃2(m,χ3)qm (q = e2πiτ ).

We note that the first series is proportional to (η3(τ)/η(3τ))3 and vanishes
at the cusp 0 (see [Kob, Propositions 26, 25, Ch. III]). The second series
vanishes at i∞. The lattice E6 has 72 roots. Therefore

θE6(τ) = 81E
(0)
3 (τ, χ3) + E

(∞)
3 (τ, χ3). (32)
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This gives us the formula for NE6(2m).
We can also recover the formula for ND6(2m) by applying the same

method to the theta series θD6 ∈ M3(Γ0(4), χ4). 2

Using these representations we can get upper bounds for NE6(2m) and
ND6(2m). It is clear that

σ2(m,χ3) = χ3(m)σ̃2(m,χ3) if m 6≡ 0 mod 3.

For any C ≡ 1 mod 3 we have the following bound

σ̃2(m,χ3)
m2

=
∑
d|m

χ3(d)
d2

<
∑

1≤l≤C, l≡1 mod 3

l−2 +
(

ζ(2)−
∑

1≤n≤C+2,

n−2

)
.

Taking C = 19 we get that for any m not divisible by 3

NE6(2m) = σ̃2(m,χ3)(81− 9χ3(m)) < c(E6)m2, (33)

where c(E6) = 103.69.
If m = 3km1 then σ2(m,χ3) = σ2(m1, χ3), so the last inequality is valid

for any m. For D6 one can take C = 21 in a similar sum. As a result we get

ND6(2m) < c(D6)m2, (34)

where c(D6) = 75.13.
Using the estimates (31), (33) and (34) for NL(2m), where L = E7, E6

and D6, we obtain that the main inequality (27) of Theorem 7.1 is valid if

m ≥ 238 >

(
28c(E6) + 63c(D6)

4c(E7)

)2

.

For smaller m we can use another formula for the theta series of E7 (see
[CS, Ch. 4, (112)])

θE7(τ) = θ3(2τ)7 + 7θ3(2τ)3θ2(2τ)4, (35)

where

θ3(2τ) =
∞∑

n=−∞
qn2

, θ2(2τ) =
∞∑

n=−∞
q(n+ 1

2
)2 .

Moreover (see [CS, Ch. 4, (87), (10)])

θDn(τ) =
1
2
(θ3(τ)n + θ3(τ + 1)n). (36)

Using (35) and (36) together with (32) we can compute (using PARI) the
first 240 Fourier coefficients of the function

5θE7 − 28θE6 − 63θD6 − 378θD5 .
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The indices of the non-positive coefficients form the set Pex of d for which
the inequality (28) of Theorem 7.1 fails. 2

Now we are going to analyse the main condition (26) for some d ∈ Pex

from Proposition 7.3. Moreover we are also looking for vectors with d ≤ 61
orthogonal to exactly 14 roots. Such vectors produce cusp forms Fl of weight
19 due to Theorem 6.2.

Let ei (1 ≤ i ≤ 8) be a euclidean basis of the lattice Z8 ((ei, ej) = δij).
We consider the Coxeter basis of simple roots in E8 (see [Bou])

tα1
-tα3

-tα4

?t
α2

-tα5
-tα6

-tα7
-tα8

where

α1 =
1
2
(e1 + e8)−

1
2
(e2 + e3 + e4 + e5 + e6 + e7),

α2 = e1 + e2, αk = ek−1 − ek−2 (3 ≤ k ≤ 8)

and E8 = 〈α1, . . . , α8〉Z.
Let LS = 〈αi | i ∈ S〉Z ⊂ E8 be a sublattice of E8 generated by some

simple roots (S ⊂ {1, . . . , 8}). We assume that #R(LS) ≤ 12, where R(LS)
is the set of roots of LS . We can find the orthogonal complement of LS

in E8 using fundamental weights ωj , i.e. the basis of E8 dual to the basis
{αi}8

i=1. We have
L⊥S = (LS)⊥E8

= 〈ωj | j 6∈ S〉Z.

Any vector of L⊥S is orthogonal to all roots of LS . If l ∈ L⊥S is orthogonal
to an additional root r of E8 (r 6∈ R(LS)) then we obtain a linear relation
on the coordinates of l in the basis ωj (j 6∈ S). Considering all roots of E8

we can formulate a condition on the coordinates of l ∈ L⊥S to be orthogonal
to at most 12 roots (or to exactly 14 roots). We shall analyse four different
lattices LS .

I. L1 = 4A1, #R(4A1) = 8 and L⊥1 = 4A1.
We put

L1 = 〈α2, α3, α5, α7〉Z = 〈e2 + e1, e2 − e1, e4 − e3, e6 − e5〉Z ∼= 4A1.

This root lattice L1 gives us vectors of norm 2d for most d ∈ Pex. L1

is a primitive sublattice of E8. Therefore L⊥1 is a lattice with the same
discriminant form and L⊥1

∼= 4A1. More exactly,

L⊥1 = 〈ω1, ω4, ω6, ω8〉Z = 〈 e3 + e4, e5 + e6, e7 + e8, e7 − e8〉Z.
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This representation follows easily from the formulae for the fundamental
weights of E8 (see [Bou, Plat VII]):

ω2 =
1
2
(e1 + · · ·+ e7 + 5e8), ω3 =

1
2
(−e1 + e2 + · · ·+ e7 + 7e8),

ωk = ek−1 + · · ·+ e7 + (9− k)e8 (4 ≤ k ≤ 8), ω1 = 2e8.

Any vector

l = m3(e3 + e4) + m5(e5 + e6) + m7(e7 + e8) + m8(e7 − e8) ∈ L⊥1 (37)

is orthogonal to 8 roots of L1. The root system of E8 contains 112 integral
and 128 half-integral roots:

±ei ± ej (i < j),
1
2

8∑
i=1

(−1)νiei with
8∑

i=1

νi even.

If l is orthogonal to a half-integral root r then

2(l · r) = m7((−1)ν7 + (−1)ν8) + m8((−1)ν7 − (−1)ν8)+
m3((−1)ν3 + (−1)ν4) + m5((−1)ν5 + (−1)ν6) = 0. (38)

We note that only one of m7 or m8 appears.
If m7,8 = 0 (by mi,j we mean mi or mj), then the number of half-integral

roots orthogonal to l is at least 16. If m3 = 0, then l is orthogonal to 16
roots ±(e3,4 ± e1,2) (similar for m5 = 0). Thus any mi in (37) is non zero.

Let us assume that (38) contains three non-zero terms: m7,8±m3±m5 =
0. Then l is orthogonal to exactly 4 additional half-integral roots. For a
given choice of (ν3, . . . , ν8) we have two possibilities for the pair (ν1, ν2) and
in addition we can change the sign of the root. A similar result, namely a
relation m7 ±m8 ±m3,5 = 0 and 4 additional integral roots, is obtained if l
is orthogonal to the integral roots e7,8 ± e3,4 or e7,8 ± e5,6.

If (38) contains only two non-zero terms then we have a relation of type
m7,8 ± m3,5 = 0. In this case l is orthogonal to 8 additional half-integral
roots: there are two choices for (ν3, ν4) (or (ν5, ν6)), two for (ν1, ν2), and the
change of sign.

If l is orthogonal to an integral root r 6∈ L1, which has not been considered
above, then we get a relation m3 = ±m5 or m7 = ±m8 with 8 additional
roots. For example, if m7 = m8 then l is orthogonal to ±(e8 ± e1,2). There-
fore we have proved the following

Proposition 7.5 l ∈ L⊥1 (see (37)) is orthogonal to at least 8 and at most
12 roots of E8 if and only if

(i) mj 6= 0 for any j and mi 6= ±mj for any i 6= j;
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(ii) There is at most one relation of type mk = ±mi ±mj for i < j < k.

This proposition gives us a set of vectors l ∈ L⊥1 with

l2 = 2(m2
3 + m2

5 + m2
7 + m2

8) = 2d ∈ Pex

such that l is orthogonal to 8 or to 12 roots of E8. We list these vectors in
table I-8,12.

I-8,12. L1 = 4A1, l = (m3,m5,m7,m8) ∈ L⊥1
d l d l d l

46 (1, 2, 4, 5) 84 (1, 3, 5, 7) 110 (1, 3, 6, 8)
50 (1, 2, 3, 6) 85 (1, 2, 4, 8) 111 (1, 2, 5, 9)
54 (2, 3, 4, 5) 86 (3, 4, 5, 6) 113 (2, 3, 6, 8)
57 (1, 2, 4, 6) 90 (1, 2, 6, 7) 117 (1, 4, 6, 8)
62 (1, 3, 4, 6) 91 (1, 4, 5, 7) 119 (2, 3, 5, 9)
63 (1, 2, 3, 7) 93 (2, 3, 4, 8) 121 (1, 2, 4, 10)
65 (2, 3, 4, 6) 94 (1, 2, 5, 8) 123 (1, 3, 7, 8)
66 (1, 2, 5, 6) 95 (1, 3, 6, 7) 125 (3, 4, 6, 8)
70 (1, 2, 4, 7) 98 (2, 3, 6, 7) 127 (1, 3, 6, 9)
71 (1, 3, 5, 6) 99 (3, 4, 5, 7) 131 (3, 4, 5, 9)
74 (2, 3, 5, 6) 102 (1, 2, 4, 9) 137 (2, 4, 6, 9)
78 (1, 2, 3, 8) 105 (1, 2, 6, 8) 143 (1, 5, 6, 9)
79 (1, 2, 5, 7) 107 (1, 3, 4, 9)
81 (2, 4, 5, 6) 109 (2, 4, 5, 8)

II. L2 = 2A1 ⊕A2, #R(2A1 ⊕A2) = 10.
Our second example is the sublattice

L2 = 〈α2, α3, α5, α6〉Z = 〈e2 + e1, e2 − e1, e4 − e3, e5 − e4〉Z ∼= 2A1 ⊕A2.

Then using the dual basis ωj we obtain that

L⊥2 = 〈ω1, ω4, ω7, ω8〉 = 〈e3 + e4 + e5 + e6, e6 + e7, e7 − e8, e7 + e8〉

= {l = m5(e3 + e4 + e5) +
8∑

i=6

miei | m5 + m6 + m7 + m8 is even}. (39)

We note that L⊥2 is not a root lattice.
The vector l is orthogonal to a half-integral root r if

2(l·r) = m5((−1)ν3+(−1)ν4+(−1)ν5)+m6(−1)ν6+m7(−1)ν7+m8(−1)ν8 = 0.

There are two different cases:

— if 3m5 = ±m6±m7±m8 then there are 4 half-integral roots orthogonal
to l, since there are two choices for (ν1, ν2) and for the sign of r;
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— if m5 = ±m6±m7±m8 then there are 12 half-integral roots orthogonal
to l, since there are three choices for (ν3, ν4, ν5).

Let us find integral roots of E8 (not in L2) orthogonal to l:

— if mi = 0 (i = 6, 7 or 8) then there are 8 roots ±(e1,2 ± ei);

— if m5 = 0 then there are 24 roots ±(e1,2 ± e3,4,5);

— if mi = ±m5 (i = 6, 7 or 8) then there are 6 roots ±(ei ∓ e3,4,5);

— if mi = ±mj (6 ≤ i < j ≤ 8) then there are 2 roots ±(ei ∓ ej).

Therefore we obtain

Proposition 7.6 l ∈ L⊥2 (see (39)) is orthogonal to exactly 10 roots of E8

if and only if

(i) mj 6= 0 for any j and mi 6= ±mj for any i < j;

(ii) km5 6= ±m6 ±m7 ±m8, where k = 1 or 3.

Moreover l ∈ L⊥2 is orthogonal to exactly 14 roots of E8 if (i) and (ii) for k =
1 are valid and there is exactly one relation of type 3m5 = ±m6±m7±m8.

In Proposition 7.6 one can also consider l ∈ L⊥2 orthogonal to exactly 12
roots, but such l will not give new values of d in Pex. Some l ∈ L⊥2 orthogonal
to 10 roots in E8 and having norm l2 = 3m2

5 + m2
6 + m2

7 + m2
8 = 2d ∈ Pex

are given in table II-10.

II-10. L2 = 2A1 ⊕A2, l = (m5; m6,m7,m8) ∈ L⊥2
d l d l d l

58 (1; 2, 3, 10) 76 (5; 2, 3, 8) 97 (4; 1, 8, 9)
60 (3; 2, 5, 8) 80 (3; 4, 6, 9) 100 (7; 1, 4, 6)
64 (5; 1, 4, 6) 82 (5; 3, 4, 8) 101 (4; 1, 3, 12)
67 (2; 4, 5, 9) 83 (2; 1, 3, 12) 103 (8; 1, 2, 3)
72 (3; 1, 4, 10) 87 (6; 1, 4, 7) 115 (4; 1, 9, 10)
73 (4; 3, 5, 8) 88 (1; 2, 5, 12)
75 (6; 1, 4, 5) 89 (2; 6, 7, 9)

The vectors from the tables I-8,12 and II-10 produce cusp forms Fl(Z)
of weights 16, 18 (table I-8,12) or 17 (table II-10) for all d > 61 in the set
Pex except d = 68, 69, 77, 92.

The vectors from L⊥2 with l2 = 2d and d ≤ 61 that are orthogonal to
exactly 14 roots of E8 are given in table II-14.

II-14. L2 = 2A1 ⊕A2, l = (m5; m6,m7,m8) ∈ L⊥2
d l d l d l

40 (1; 2, 3, 8) 48 (3; 1, 2, 8) 55 (4; 1, 5, 6)
43 (2; 1, 3, 8) 52 (1; 2, 4, 9) 61 (2; 1, 3, 10)
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III. L3 = A3, #R(A3) = 12.
The root lattice A3 is maximal. Therefore any sublattice of type A3 in E8

is primitive. Analysing the discriminant form of the orthogonal complement
of A3 we obtain that it is isomorphic to D5. We put

L3 = 〈α2, α4, α3〉Z = 〈 e2 + e1, e3 − e2, e2 − e1〉Z ∼= A3.

Then

L⊥3 =
{
l =

8∑
i=4

miei |
8∑

i=4

mi is even
} ∼= D5.

As above we obtain

Proposition 7.7 l ∈ L⊥3 is orthogonal to exactly 12 roots of E8 if and only
if

(i) mj 6= 0 for any j;

(ii) mi 6= ±mj for any i < j;

(iii)
∑8

i=4±mi 6= 0 for any choice of the signs.

Moreover l ∈ L⊥3 is orthogonal to exactly 14 roots of E8 if (i) and (iii) are
valid and there is only one relation of type mi = ±mj for 4 ≤ i < j ≤ 8.

See table III for several vectors l ∈ L⊥3 orthogonal to Nl roots (Nl = 12
or 14) in E8 and having norm l2 =

∑8
i=4 m2

i = 2d.

III. L3 = A3, l = (m4,m5,m6,m7,m8) ∈ L⊥3
d l Nl d l Nl

69 (2, 3, 5, 6, 8) 12 53 (1, 4, 4, 3, 8) 14
42 (1, 3, 3, 4, 7) 14 54 (1, 3, 3, 5, 8) 14
48 (1, 1, 2, 3, 9) 14 56 (1, 1, 5, 6, 7) 14
49 (2, 2, 4, 5, 7) 14 59 (1, 2, 2, 3, 10) 14
51 (1, 6, 6, 2, 5) 14 63 (3, 4, 4, 6, 7) 14

IV. L4 = A1 ⊕A2, #R(A1 ⊕A2) = 8.
For any sublattice A1 ⊕A2 in E8 we see that its orthogonal complement

is isomorphic to A5, since (A2)⊥E8
= E6 and (A1)⊥E6

= A5. We put L4 =
〈α1, α2, α3〉Z ∼= A1 ⊕A2. Then

L⊥4 =
{
l =

8∑
i=3

miei | m8 =
7∑

i=3

mi

}
.

If l is orthogonal to a half-integral root distinct from α1, α1 + α3 ∈ L4 then
we get a relation of the form

mi1 + · · ·+ mik = 0, where 3 ≤ i1 < · · · < ik ≤ 7, 1 ≤ k ≤ 5.
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If any relation of this type is valid then l is orthogonal to 4 additional half-
integral roots. Considering the scalar products with integral roots we see
that

— if mi = 0 (3 ≤ i ≤ 8) then l is orthogonal to 8 roots ±(e1,2 ± ei);

— if mi = ±mj (3 ≤ i < j ≤ 8) then l is orthogonal to 2 roots ±(ei∓ej).

We list some cases of these results in table IV.

IV. L4 = A1 ⊕A2, l = (m3,m4,m5,m6,m7; m8) ∈ L⊥4
d l Nl d l Nl

68 (1, 3, 4, 5,−7; 6) 12 92 (1, 1, 2, 3, 5; 12) 10
77 (2, 3, 4, 5,−8; 6) 12 40 (1, 1, 2, 3,−8; −1) 14

It is possible to formulate a result for this case analogous to Proposi-
tions 7.5, 7.6 and 7.7, but we do not need it.

An extensive computer search for vectors l orthogonal to at least 2 and
at most 14 roots for other d ∈ Pex has not found any.

Now we have everything we need to prove our main theorem, Theorem 1.
For d > 61 and for d = 46, 50, 54, 57, 58, 60 there exists a vector l satisfying
condition (26), either by Proposition 7.3 or listed in one of the tables. Hence
Theorem 6.2 provides us with a suitable cusp form of low weight. Since the
dimension of F2d is 19, Theorem 2.1 guarantees the existence of a compact-
ification with only canonical singularities and hence Theorem 1 follows by
using the low weight cusp form trick, according to Theorem 1.1.

If d is not as above but d ≥ 40 and d 6= 41, 44, 45, 47 then we have
a cusp form of weight 19 arising from a vector l orthogonal to 14 roots,
listed in one of the tables. This gives rise to a canonical form and hence, by
Freitag’s result, the Kodaira dimension of F2d is non-negative, as stated in
Theorem 1.1.
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