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ABSTRACT. We construct a birational model of the generalised Kummer four-
fold of the Jacobian of a genus two curve, based on a geometric interpretation
of the addition law on this Jacobian, obtained by the properties of the linear
system of conics on that curve. We show that our model has mild singularities
and that it admits a finite ramified covering to the four-dimensional projective
space.
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1. INTRODUCTION

An irreducible holomorphic symplectic manifold, abbreviated to THS manifold,
is a simply-connected compact complex manifold X such that H?°(X) is gen-
erated by an everywhere nondegenerate 2-form. If X is an IHS manifold then
H?(X,7Z) naturally carries a nondegenerate integral quadratic form gx of signature
(3,b2(X) —3) (see [9]), the Beauville-Bogomolov-Fujiki quadratic form. We denote
by (—,—)y the associated bilinear form. In all the known deformation types, the
lattice (HQ(X L), qX) is even, but not unimodular, except when X is a K3 surface.

All the THS manifolds that we consider will furthermore be projective. A polar-
isation of X is a primitive ample class L in the Néron—Severi group NS(X) of X.
The degree of the polarisation is the positive integer d := ¢x (L) and its divisibility
is the integer v such that (H?(X,Z), L)y = vZ.

Gritsentko, Hulek and Sankaran [25] constructed coarse moduli spaces of po-
larised pairs (X, L) of a given deformation type: these moduli spaces are quasi-
projective varieties. Our initial motivation in this paper is to search for concrete
geometric descriptions of the generic elements in some of these moduli spaces M.
In practice, in most cases, such a description of a generic object can be used to con-
struct a dominant rational map PV --» M for some integer N, so that M would
be unirational.

In general it is hard to decide whether a given moduli space M is unirational or
not. The general philosophy is that these moduli spaces may be unirational for low
values of the numerical invariants but will be of general type when the numerical
invariants are high. For example this is the case for K3 surfaces (see [24]) and for
any putative class of IHS manifolds whose moduli space is of large dimension (see
[38]), and analogous statements hold for moduli of curves and of abelian varieties.

Instead of unirationality one could ask for related properties such as being ra-
tional (stronger) or uniruled, stably rational or rationally connected (weaker). In
Appendix A we summarise the currently known results about the birational types
of moduli spaces of polarised THS manifolds.

Except for K3 surfaces, each of the known moduli spaces is named after a codi-
mension one family. For instance, the four-dimensional moduli spaces M%Zmz that
feature in this paper parametrise polarised IHS manifolds of Kummer type, i.e.
deformation equivalent to the second generalised Kummer variety of an abelian
surface, of degree d and divisibility ~.

Most of the unirationality results for moduli of polarised THS manifolds concern
the deformation class of Hilbert type. For the other known types, the question is
relatively unexplored, apart from the recent results of Barros, Beri, Flapan and
Williams [3] for the generalised Kummer and OG6 cases. In this paper, we focus
on the deformation type of the second generalised Kummer variety of a polarised
abelian surface. In order to attack the unirationality question in this deformation
class, our first objective, which we achieve in the present paper, is to construct
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and to study a birational model of a generalised Kummer fourfold using only ra-
tional tools. Our second objective, which is still work in progress, will then be
to understand how this construction may deform. Benedetti, Manivel and Tan-
turri [7] worked on a similar question, from a different point of view, using Coble
hypersurfaces to get models of generalised Kummer fourfolds as flag varieties, but
their construction does not deform. Very recently another construction of a similar
nature has been given by Agostini, Beri, F. Giovenzana and Rios Ortiz in [1].

By the general philosophy on the moduli spaces, we guess that to lower the
discrete invariants it is wise to lower the polarisation. We therefore consider princi-
pally polarised abelian surfaces, and study the codimension 1 family of generalised
Kummer fourfolds over Jacobians of a genus two curve. It might also be interesting
to study the other principally polarised case, products of elliptic curves, which will
give a codimension 2 family.

Our original intuition is to fix a genus 2 curve C' and look at projective coordi-
nates on Jac(C) in a model where addition is well described. Such models are used
in cryptography, for instance by Flynn [19] and Leitenberger [37], whose works on
the addition law inspired the present paper. Our main results are:

Theorem 1.1 (Corollary 5.2). Let C be a smooth genus two curve. The linear
system of cubics embeds C in (P*)V and the dual variety C* C P* of C is a degree 14
irreducible hypersurface. The second generalised Kummer variety Kum? (Jac(C)) of
the Jacobian of C is birational to a degree 15 covering of P* branched along C*.

We denote by %c the degree 15 covering of P* branched along C* mentioned in
the above statement, whose definition is given in Definition 2.1 and §4.3, and by:

Yo : Yo --» Kum?(Jac(C))
the birational map in question, whose definition is given in Formula (2).

Proposition 1.2 (Proposition 4.4). The variety Y is normal and Gorenstein, and
with quotient singularities.

In particular, ¢ is Cohen-Macaulay.

Proposition 1.3 (Propositions 2.3 and 2.4). The birational map o contracts
one divisor to the noncurvilinear point of Kum?(Jac(C)) supported at the origin of
Jac(C), and a second divisor to the Kummer surface Kum'(Jac(C)).

Proposition 1.4 (Proposition 4.5). The Galois closure of the covering 9o — P*
is a local complete intersection scheme.

In this paper, the term “variety” denotes an integral separated noetherian scheme
of finite type over the field of complex numbers. The term “curve” means an
irreducible projective variety of dimension 1.

In §2 we construct the variety %- under more general assumptions, starting
from any abelian surface A. We study the contraction to the generalised Kummmer
fourfold Kum? (A) in this general setup. Then in §3 we specialise to the case where A
is the Jacobian of a genus two curve and we study the properties of the linear system
of cubics on the curve. We apply this geometry in §4 to realise ¥ as a finite cover
of P4, Finally in §5 we study the branch locus of this cover. Several Appendices
contain some backgrounds, alternative or complementary views and proofs of some
results used in the main text, as such as some helpful computer algebra scripts.
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2. A RATIONAL CONTRACTION TO THE GENERALISED KUMMER FOURFOLD

We consider a polarised abelian surface (A, cq(H)), with origin O4 € A, where
H € Pic*(A) is an ample divisor of degree H? = 2t with ¢ > 1, whose first Chern
class ¢1(H) is primitive in H2(4, Z).

2.1. The second generalised Kummer variety of an abelian surface. For
any integer m > 0, we denote the Hilbert scheme of 0-dimensional subschemes of A
of length m by Hilb™(A), the Chow quotient by Sym™(A), and the Hilbert—Chow
morphism by:

ha: Hilb™(A) — Sym™(A).

The addition law on A defines the following morphisms:

(1) Am 24 S 4
QA
Sym™ (A)

We restrict to the case m = n + 1 for an n > 0 and denote by Sym{™'(A) =
a3 ({04}) the fibre over the origin of the addition map aa and by Kum”(A) the
n-th generalised Kummer variety of A, defined as the fibre over the origin of ayoh4:

Kum™(A) = (a4 0 ha)~1(04) C Hilb" T (A),

The restriction h9 of the Hilbert-Chow morphism h 4 to the generalised Kummer
variety is still birational. It is a resolution of the singularities of the Chow quotient
Symgt(A). Tt is well known ([5]) that the variety Sym{™'(A) has symplectic
singularities and that Kum"™(A) is an irreducible holomorphic symplectic manifold
of dimension 2n.

The variety Kum'(A) is the classical Kummer surface associated to A, i.e. the
minimal resolution of the quotient A/+1.

In this paper, we are mostly interested in the second generalised Kummer variety
Kum?(A). Its second integral cohomology group decomposes as follows. There
exists a natural injection H?(A,Z) «— H?(Kum?(A),Z) and we have:

H?(Kum?(A),Z) = H%(A,Z) & Z6,

where ¢ is half the class of the exceptional divisor of the Hilbert—Chow morphism in-
tersected with Kum? (A). This decomposition is orthogonal with respect to the lat-
tice structure on H?(Kum?(A),Z) given by the Beauville-Bogomolov-Fujiki (BBF)
form, and the isometry class of the lattice is computed in [47]:

H?(Kum?(A),Z) = U & (—6),

where U is the hyperbolic plane.
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By the decomposition above, we have a splitting of the Néron—Severi lattice:
NS(Kum?(A)) = NS(A) & Z4.

We denote by h € NS(Kum?(A)) the image of ¢;(H), which is a big and nef
divisor. By a result of Debarre and Macri [15, Corollary 4.11] the classes ah — b,
with a, b > 0, are ample when b/a < 1/3. If (A, H) is generic, meaning that
NS(A) = Zcy(H), we have NS(Kum?(A)) = Zh @ Z§. Furthermore, A. Mori [41],
has shown that if H is a principal polarisation, i.e. ¢ = 1, then the ample cone
is precisely the interior of the cone generated by the classes h and 2h — §. The
smallest possible polarisation degree with respect to the Beauville-Bogomolov—
Fujiki quadratic form is thus given by the smallest integer d such that ¢ := ah — b
is an ample class with ggum2(4)(£) = d = 2e.

The smallest integer e such that e = a? — 3b* with a,b € N and b/a < 1/2 is
e = 6, obtained for (a,b) = (3,1), so the minimal polarisation is £ = 3h — ¢, of
degree d = 12. Tt is easy to check that (NS(Kum?(A)),¢) = 6Z. But since the
embedding of NS(Kum?(A)) in H?(Kum?(A),Z) sends the class h to an element
of the unimodular lattice U®3, there exists u € U®? such that (u,h) = 1 and
this implies that (H?(Kum?(A),Z),¢) = 3Z. The divisibility is thus v = 3 and
(Kum?(A),?) € Mﬁfxﬁ' This space does not appear in [3] and nothing is known
about its birational geometry.

2.2. The birational model. Consider the blowup of the origin of A:
Ba: A:=Blp, A — A,

with exceptional divisor F4 = ﬁgl(O ). First, using the summation maps defined
in Diagram (1) we put:

Ag = aZI(OA)v
and we denote by 7 the restriction of the Chow quotient:
AC A3 22 A
|
aa
Symj(A)——— Sym®(A)

We do similarly starting with /T; we define /Ig as the fibre over the origin of the
morphism:
A3 P gs eay y

and we finally define the main object of interest in this paper:
Definition 2.1. We denote by ¢4 the scheme-theoretic fibre over the origin of the
morphism:
3,5 Sym®(Ba) 3 aa
Sym”(A) ——— Sym”(A) —= A,
that is: ¥4 = Symg(g) = (@ o Sym*(84)) "1 (0).

The morphism Sym?®(3,4) is clearly birational and its restriction to %, is still

birational since it is an isomorphism above the open subset of triples of nonzero
points on A whose sum is zero. We are interested in the birational map:

(2) Ya=hyto Symg(,@A)Lﬁ 1G4 -—» Kum?(A).
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All the relevant maps are shown in the diagram (3) below:

13 D A3 623"?3 3¢ 3
(3) A A A3 A
TA l W%l A l TA i
~ sym®(8),
Sym?®(A) Y —— Symj(A)———= Sym®(A)
AL
Kum?(A)—— Hilb3(A)

Proposition 2.1. The scheme 94 is reduced. It is a normal projective variety of
dimension 4, Cohen—Macaulay and Q-factorial with quotient singularities, and it is
birational to Kum?(A).

Proof. Let a — A be the natural cover where a is the (abelian) Lie algebra of
A. By choosing linear coordinates (z,y) on a, we get an identification a — C?
and thus a cover C?> — A of groups (in the category of complex manifolds). The
linear coordinates (x,vy) induce local coordinates on A around each point, up to
a choice of an element in the kernel of C> — A. Near O4, we always make this
choice such that the coordinates of O4 become (0,0). Around a point a € A,
with a # O, the coordinates (x,vy) are also local coordinates of A at the point
a = le(a). Around the point a = O 4, local coordinates of A near the exceptional
divisor E4 = 8;(04) are @, z with relation y = zz (or with the roles of  and y
exchanged). The map 34 is then locally given by S4(x, z) = (z, z2).

With this convention, around each point a € A the local coordinates are such
that the addition law is the standard one. That is, around a point (a1, az, a3) € A3,
the local coordinates (x1,y,), (Z2,¥s), (T3,y3) are such that the subvariety AJ is
locally given by the relations &1 + 2 + 3 = 0 and y; + y, + y3 = 0. This
allows us to analyse the singularities of ,ng by computing local equations of ﬁg
using the morphism 523. Again the local equations of 21% are €1 + 2 +x3 =0
and y; + Y, +y;3 =0, but y, is in degree 1 if a; # O4 and in degree 2 if a; = O4.
Therefore, unless a; = as = az = O4 the ideal defining Zg in the local ring is
generated by two elements with independent linear parts, so /ng is smooth. If
a1 = ap = as then ;18 is locally a linear section (by x; + x2 + &3 = 0) through
a rank 3 quadric cone 12z + x222 + 323 = 0, which is again a quadric cone in
A, of rank 2. Indeed, a local equation is &;w; + x2ws = 0, in local coordinates
Ty, T2, W1 = 2 —53, Wy ‘= Z9 — 23, Z3.

It follows that A3 is normal and has hypersurface singularities, so it is Goren-
stein [17, Corollary 21.19], and it is connected and irreducible by Zariski’s Main
Theorem. B

Since ¥4 is the quotient of A3 by the action of the symmetric group &3 acting by
permutation of the factors, we deduce easily that ¢4 is reduced, normal, connected
and irreducible. Moreover, ¥4 is geometrically Cohen-Macaulay by the Hochster—
Roberts theorem [30, Main Theorem and Remark 2.3] and it is Q-Gorenstein (see
the argument in the proof of [35, Lemma 5.16]. We can even be more specific
here: since gg has transversal nodal singularities, it has in particular quotient



ON THE LINEAR SYSTEM OF CUBICS OF A GENUS TWO CURVE 7

singularities, so ¥4 too. It follows that ¥4 is Q-factorial with rational singularities
(see [35, Proposition 5.15]). O

Remark 2.1. The variety A3 is not locally factorial. Consider for instance the
divisor F; = Sym®(E,) and its pre-image Fy := (w%)_l(Fl). In the local chart used
in the proof above, the divisor E4 has equation = 0, so 131 has equations x; =
x2 = 0 inside gf; it is not a Cartier divisor. Computations with Macaulay2 [22]
indicate that SymJ(A) and ¢4 are not local complete intersection schemes. They
indicate also that ¥4 is Gorenstein: we will prove it in Proposition 4.4 under the

assumption that A is the Jacobian of a genus two curve. The script is given in
Remark C.1.

2.3. The divisorial contraction to the Chow quotient. To fully describe the
geometric relation between ¢4 and Symg(A), we exhibit two meaningful divisors
F1, F5 on ¥4 that parametrise special configurations of triples of points on A.

Recall that E4 C A is the exceptional divisor of the blowup 54 : A— A Asin
Remark 2.1 we define the prime divisor

(4) Fy ==Sym*(E4) C %4.

Since E4 =2 P!, the divisor Fy is isomorphic to P3.

Denote by 7: A — A, a — —a the sign involution and by a € A/7 the class of
a € A. There is an embedding of A/ in Sym3(A) given by @ — a + (—a) + O4.
The surface A/7 contains in particular the point 304. The sign involution 7 on
A lifts to A as an involution denoted 7, making the blowup morphism S4: Ao A
equivariant, that is f407 = 7084, and leaving the exceptional divisor £ 4 pointwise
fixed. We then define the second prime divisor F» C ¥4 as the image of the
morphism

AJFx Ex =9y, (d,€)— a+7(a)+e,
that is:

(5) Fy = {a+%(a)+e|(a,e) el/fxEA} C Y.

Proposition 2.2. The birational morphism Sym®(B4): 94 — Symy(A) contracts
the divisor Fy to the point 30 4, and it contracts the divisor Fy to the surface A/T.
It is 1 : 1 outside of these two divisors.

Proof. The divisor F} is contracted to the point 304 since S4(E) = O4. Similarly,
with the same notation as above,

Sym®(84)(a+ 7(a) +e) = a+ (—a) + Oy,

so the divisor Fy is contracted to the surface A/7. Take a point a+b+c € Sym®(A).
If none of these points is the origin of A, it has a unique preimage by Sym® (Ba)-
If ¢ = 0, then b = —a and the fibre over this point belongs to the divisor Fy. If
b=c=0, then a = 0 and the fibre over this point is the divisor F;. So Sym®(3,)
is an isomorphism outside of these two divisors. O

Note that F} and F, intersect along the big diagonal of Sym®(E ) parametrising
0-cycles with at least one double point.
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2.4. The rational contraction. We now study the birational map y4: ¥4 --»
Kum?(A). Since the variety %4 is normal by Proposition 2.1 and since Kum?(A)
is a projective variety, the indeterminacy locus of v, is a subset of codimension at
least two of ¥4 [29, Lemma V.5.1].

We first analyse the behaviour of v4 around the divisor F;. For this we introduce
the 2-dimensional Briancon variety B%A parametrising the locus of nonreduced
subschemes in Kum2(A) supported at O4. As the indeterminacy locus of 7,4 is
of codimension at least 2, and since the morphism Sym®(£4) contracts Fy to the
point 30 4, by restriction we have a rational map

7A|F1 By --» B?)Av
so the divisor F is contracted by 4. Its rational image is the centre of Fy for va:
our goal is to compute this centre.

For this, let us recall the geometry of the variety BgA, following [36, §2]. This
depends only on the local geometry of A near O4, so in the proof of Proposi-
tion 2.1 and Remark 2.1, we take local coordinates «,y at the origin O € A.
This identifies the tangent space T4 0, with C2, compatibly with addition: hence
for the purpose of local computation we may replace A by C2. The curvilinear
subschemes supported at the origin arise as limit points of triples of points that
move along a smooth curve. Their ideals have the form (y + ax + fx2, £3) or sim-
ilarly with « and y exchanged. They form a line bundle over P!, where the base
P! parametrises the tangent direction of the curve at the origin (encoded by the
parameter «) and the fibre depends on the parameter § that encodes the curvature
of the curve. The Briangon variety BgA is obtained by compactifying this affine
bundle by adding as point at infinity the non-curvilinear subscheme Z., that arises
as the limit of triples of points going to the origin from three different directions:
its ideal is I, == (x2, 2y, y?).

Proposition 2.3. The birational map va contracts the divisor Fy to the point Z.

Proof. The behaviour of v4 at the divisor F} is a local property over a neighbour-
hood of the origin O4 of A so we can study it by computing a local model of
the variety ¢4 in the neighbourhood of the divisor Fi, as we did in the proof of
Proposition 2.1. Instead of directly computing 4] F,» it is equivalent, but more
convenient, to study the composite rational map

g: A3 A @, 7 Kum?(A) < Hilb®(A).
We denote by Fl the preimage of F} in gg The rational map ¢ is defined at the
generic point of ﬁl, and we want to compute its image and the indeterminacy locus
of the restriction of g to F.

The local coordinates. As in the proof of Proposition 2.1 and Remark 2.1, we
take local coordinates «,y at the origin Oy € A. This identifies the tangent
space a = T o, with C?, compatibly with addition: hence for the purpose of
local computation near 131 we may replace A by C2, and in particular Hile(A) by
Hilb?(C?).

Again as in Proposition 2.1 and Remark 2.1, with coordinates (1, y,), (2, ys),
(x3,y3) on CO, using the relations y, = ;2; and introducing w; = z; — z3 and
wy = z9 — z3 we get down to five variables @1, o, w1, wo, 23 where ﬁg is defined
by the single relation xiw; + xswo = 0 and ﬁl has local equations 1 = @3 = 0.
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The open covering. In what follows, the notation I € Hilb®(C?) means that
I C C[z,y] is the ideal of the corresponding length three subscheme of Hilb®(A).
Following Haiman [28], the Hilbert scheme Hilb®(C?) is covered by three affine
charts labelled by the partitions of the integer 3, as follows. Let

B(l,l,l) = {1,$7$2}, 8(2,1) = {1713,11}7 B(S) = {1797112},
and for any partition p of the integer 3, define the subset
U, = {I € Hilb*(C?) | B, spans Clz,y]/I}.

By [28, Proposition 2.1], the subsets U, are open affine subvarieties that cover
Hilb?(C?). They cover the Briancon subvariety By of Hilb*(C?) parametrising
length 3 subschemes supported at the origin, as follows: the curvilinear subschemes
of the form (y + ax + fa?,x?) belong to U 1,1), similarly the curvilinear sub-
schemes of the form (y + ax + Bz?,x3) belong to U(z)y, whereas the noncurvi-
linear point Z,, belongs to U 1), and since it is unique, we have Hilb?*(C?) \
(U1, VUE)) = {Zsc}

The Hilbert—Chow morphism in coordinates. Following [28, pp. 210-214], the
coordinate ring of the chart Uy ;1) is Cle1, ez, e3,a0,a1,az], and an ideal I 4) €
U(1,1,1), with coordinates (e, a) = (e1, €1, e3, a0, a1,az) is given by

I = (2 —e12® + e2x — €3,y — (a0 + a1z + axz?)).

Whenever e = (e1,e2,e3) = 0 and a = (0,a1,az), we get an element [ ,) € B<3)A
of the Briangon variety. The meaning of these affine coordinates is that if the zero
locus V(I(. q)) consists of three points of C* of coordinates (x1,¥;), (€2,y,) and
(x3,y3), repeated with multiplicity, then in this chart we use the Viete formula

3

(6) x® —e1x? + e — €3 = H(:B—:Bi),

i=1
so that the coordinates e; are the elementary symmetric functions in the variables
x1, s, x3, whereas the coordinates a; are the coefficients of the Lagrange interpo-
lation polynomial ¢, (x) = ag+a1x +asx? such that y, = ¢, (x;) fori = 1,2,3. We
see that the coordinates ag, a1, as are well defined only when the three coordinates
x1, T2, x3 are different, that is when [(, ,) is a reduced subscheme.

The Chow quotient Sym?®(C?) is A% /&3, where any element ¢ of the symmetric
group &3 acts by o(x;,y;) = (To(i), Yo(;)) for any i = 1,2,3. The Hilbert-Chow
morphism

h|u(1,111) : U(1,1,1) — SymS(CQ)
is defined by
h(e, a’) = ((mlv y1)7 (w27 y2)’ (:Bg, y3>)’
where x; are the roots (not necessarily distinct) of the polynomial x® — e;z? +
es — e3, and y; = ¢q(x;) as above.
In this chart we can describe the birational inverse map

h~1: Sym®(C?) --» Hilb3(C?) :

the coordinates (eq, €2, e3) are always defined by formula (6), even when the points
(z;,vy;) are not distinct, but the coordinates (ag, a1, az) are not well defined when
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1, xa, x3 are not distinct. More precisely, the interpolation y;, = ¢, (x;) means
that these coordinates are defined by Cramer’s rule:

2
Y, T a:% 1 vy, m% 1 = vy

Yy T2 T3 Ly, x3 1z y,

2 2

. _|ys w3 w3 1y x3 1 s ys
( ) ag = 1 = PINR a; = ’1 PIR ag = 1 D)
1 X7 ry Ty r Ty

1 x =3 1 x 3 1 xy =2

1 =3 x3 1 z3 =z} 1 z3 x2

We get a very similar picture on the chart U3y, simply by exchanging the roles
of the variables @ and y. The coordinate ring of the third chart U, ) is slightly
different. Its coordinate ring is Clay, as, b1, ba, 1, ca], and an ideal Tap,e) € Uz
with coordinates (a,b,c) = (a1, as,b1,ba, c1,c2) is given by

Tiape) = (2> —ag — a1x — agy, @y — by — b1 — boy, y* — co — 1T — C2y).
with the following formulae, patiently deduced from [28, (2.16) and (2.17)]:
ap = az(br — c2) + ba(b2 —a1), by =azer —biba, o =ci(b2 —a1) + bi(b1 — c2).

Restriction to the fibre over the origin. Let us restrict the computation to the
variety Kumz(A). On the chart U ;) the condition x; + x> + 3 = 0 gives
e; = 0, and the condition y; + yy + y3 = 0 gives 3ag + az(x? + 3 + x3) = 0, so

3ag — 2aseo = 0: the local equations of Kumz(A) are thus e; = 0 and ag = Fazes.

V)

On the variety ﬁg, we have the relations

() T3 = —T1 — Ta, Yy = (w1 + z3)x1, Yy = (w2 + z3)x2,
ToWo = —T1W1, Y3 = 233 = — (1 + T2)23,

and we interpret the coordinates a; as rational maps a;: /T% --+ C. An elementary
computation, starting from Formula (7) gives:

w? + w3 — 4w w,
(wl — 2w2)(2w1 — wg)(wl + wg)’

9) ay (T, wi, T2, wa, 23) = 23 + WiwWs

—3wiwi(w; — ws)

10)  as(®1,wi, T2, w2, 23) = .
( ) ( ! ) .’131(’[1]1 — 2'11)2)(211]1 — wg)(wl + 'LUQ)

We see that @; defines a r~ationa1 function on ﬁl, but as does not, because of its pole
along 7 = 0. Let G C F; be the support of the 1-cycle defined by the numerator
of this function: that is,

(11) G::V(wlwg(wl —’LUg))er c F.

The fact that the coordinate function as cannot be extended to ﬁl \ G means that
the rational image of F; by v4 does not land in the open subset Uy 1 1) NKum? (4).
By exchanging the roles of the variables  and y, we get that it does not land in
the open subset U(3) N Kum?(A) either. Since Hilb®(A) \ (U1,1,1) UUz)) = {Zac}
the conclusion is that v4 contracts the generic point of F} to Z., so the restriction
val r, extends to the whole of Fy and contracts it to the noncurvilinear point
(however, -4 itself is not defined on the whole F;). This concludes the proof. [

In Appendix B we give three alternative arguments, the first one using saturation
of ideals, the second one using the computation on the chart U, ;) to see more
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explicitly the contraction of the divisor F; and the third one using explicit projective
coordinates.

We now analyse the behaviour of 4 around the divisor F3. The fixed locus of
the natural involution Kum?(7) induced by 7 on Kum?(A) consists of the Kummer
surface Kum'(A), embedded in Kum?(A) as the locus of subschemes supported on
0-cycles of the form a + (—a) + O4 € Sym3(A), plus 36 isolated points (see for
instance [9, §4.3.1]). This embedding of the Kummer surface yields the following
diagram:

Kum' (A4)“— Kum?(A)

AT Sym;(4)

Proposition 2.4. The birational map ya contracts the divisor Fy to the Kummer
surface Kum'(A) embedded in Kum?(A).

Proof. Under the embedding of Kum'(4) in Kum?(A4), if a € A is a nonzero 2-
torsion point with image a € Kum'(A), the exceptional fibre e~1(a) is sent to the
curve h;'(2a + O4) parametrising the nonreduced length two subschemes of A
supported at a (the third support point being the origin). This is a rational curve
as it is isomorphic to the Briancon variety B2 = P'. The embedding of the fibre
e 1(04) in Bg , is similar, and can be computed as follows, using the same method
as in the proof of Proposition 2.3. We compute, locally over the origin, the image
of the composite map on the first row:

A 2L Kum!'(4)c—> Kum?(A)

Ak

A—2L 5 A/rC Sym3(A)

Let @,y be local coordinates around the origin of A and («, z) be local coor-
dinates around B,'(04), with y = xz. Using notation as above, we put a =
(r1,y,) = (z,y), then —a = (x2,y,5) = (—x, —y) and (x3,y5) = (0,0). Thus, on
the chart U(; 1,1y, the coordinate functions are

e1=0, ex=a’ e3=0, ay=0, a1=2, ay=0.

Putting « = 0, we see that the image of e ~1(0O4) in Kum?(A) consists of the rational
curve in B%A parametrising the subschemes with zero curvature, i.e. where g8 =0
in the description given above.

The minimal resolution morphism ¢ is the blowup of the classes of the sixteen
2-torsion points of A. Since the morphism 84 blows up the class of the origin, it
factorises through the blowup &’ of the classes of the fifteen nonzero ones:

(12) Kum'(A)

N
A — s Ay

To show that the map v contracts the divisor F5 to the Kummer surface, we first
observe that this map is dominated by the embedding of Kum'(A4) in Kum?(A),
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as shown in the following diagram, where pr; denotes the projection to the first
factor:

Kum'(A) x E4 P Kum'(A)———— Kum?(A)

~ - l ’YA|F2 /7 \L

Exid _ e ha

A7 x E Bz Sym?(A
/ A 2 sym (g o(4)

But this is not enough to show that the map 4 contracts the divisor Fb, so we use
a similar computation as in the proof of Proposition 2.3. That is, we compute the
rational map ¢ in a neighbourhood of the premiage ﬁg of Fy in g(?j, which is given
as the image of the morphism:

Ax By — A}, (a,e) = (a,7(a),e).

Taking local coordinates (z1,y;), (%2, Ys), (€3,y;) of A® and y, = x;2;, the
divisor Fj is given by the relations 1 + 2 = 0 and y; + y, = 0, so in the
local coordinates @1, xo, w1, wo, 23 of g%, it has local equations x; + 3 = 0 and
w; — wz = 0. In the chart U ; 1), we observed that the local coordinates of the
variety Kum?(A) in Hilb*(A) are (eg,es,a1,az). The coordinate ez = 0 is zero
along F, and we see with Equation (9) that the function as extends generically to
zero along ﬁg. This shows that y4 contracts Fb to the surface of local equations
e1 = ag = 0: these are the local equations of Kum'(A) that we computed above. [

3. THE GENUS TWO CURVES

Let C' be a smooth projective curve of genus g. For any n > 0, we denote by
Sym"(C') the symmetric product of C, by ®,,: C™ — Sym"(C') the Chow quotient,
by Pic™(C) the moduli space of isomorphism classes of degree n line bundles on
C and by Hilb"(C) the Hilbert scheme parametrising length n zero-dimensional
subschemes of C'.

For n > 1 and for any (p1,...,p,) € C™, we denote by p; + -+ + p,, € Sym"(C)
the formal sum, which we interpret, depending on the context, as an element of
the Chow quotient, as a divisor on C or as a length n subscheme of C, since the
Hilbert—Chow morphism Hilb"(C') — Sym™(C) is an isomorphism. We denote by
A, C Sym"(C) the locus of nonreduced subschemes.

For any p1 + - - - +p, € Sym™(C), we denote by O¢(p1 +-- -+ pn) € Pic"(C) the
corresponding isomorphism class of line bundles, or equivalently linear equivalence
class of divisors on C. We denote by ~ the linear equivalence relation between divi-
sors on C'. We define the Jacobian Jac(C) of C' as the group Pic’(C) of isomorphism
classes of degree zero line bundles on C.

From now on, we assume that C' is a genus two curve and we put A = Jac(C).
All notation introduced above and indexed by an abelian surface A will be indexed
by C for more readibility. That is:

Yo = Yacc)s  hc = hjac(c)s Yo = Viac(c)s Fo = Ejac(c), G = QJac(c)-

3.1. The Jacobian of a genus two curve. Let C be a genus two curve. It is
hyperelliptic: we denote the hyperelliptic involution by ¢ and the associate ramified
canonical double covering by m: C — P!. The ramification locus consists of six
distinct points, the Weierstrass points of C'. The curve C' thus admits an equation
of the form 22 = f(x,y), where f is a degree six homogeneous polynomial vanishing
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at the six branch points, so we may consider C as a curve in the weighted projective
plane P15 with homogeneous coordinates [z : y : z]. We denote this embedding
of C by t: C — Pllg.

With respect to these coordinates, for [z :y: 2] € C we have n([z:y: 2]) = [z :
yland o([x 1y : 2]) = [z : y : —2]. We may choose coordinates on P! such that the
branch points of 7 are [1: 0],[0 : 1],[1 : 1] and three other distinct points [A; : 1].
Then the equation of C' in Py;3 is

(13) 2> =zy(z —y)(z — \y)(z — Aay)(z — Asy) = f(z,y).

We denote by co :=[1:0:0] € C the ramification point over [1 : 0].
Every element of Jac(C) has a unique representative, called a reduced divisor
(see [43, Chapter 3, §2]), which is one of

(1) Oc(p1 + p2 — 200) with p; € C'\ {0}, p1 # p2 and p; # o(p2);

(2) Oc(2p — 200) with p € C'\ {oo} and p # o(p);

(3) Oc(p — o0) with p € C'\ {oo};

(4) Oc.
In particular, p+o(p) ~ 200 for all p € C. Tt is a classical result, see for instance [12,
Lecture 3], that the Abel-Jacobi map

(14) AJy: Sym?(C) — Jac(C), p1+p2 = Oc(pr + pa — 200)
is the blowup B¢ of the origin of Jac(C), that is A = J;:\(E) >~ Sym?(C). The
exceptional divisor of the blowup is thus

(15) Ec = {p+a(p)|pe C} CSym*(C).

The sign involution on Jac(C) is given by 7(L) = L™1. For any p1,ps € C we have
p1+p2+o(p1) + o(p2) ~ oo,

so Oc(p1 + p2 — 200)~t = Oc(o(p1) + o(p2) — 200) € Jac(C). It follows that

—_—

7 = ¢* and that the involution 7 on Sym?(C) = Jac(C) introduced in 2.3 is given
by 7(p1 +p2) = o(p1) + o(p2).

By the Poincaré formula [8, 11.2.1], the theta divisor giving the principal po-
larisation of Jac(C') is the image of the Abel-Jacobi map C — Jac(C), that is
© = {p—o00 | pe€ C} and ©2 = 2. If C is generic in its moduli space,
then NS(Jac(C)) = ZO. Following §2.1, we denote by h the image of © in
Kum?(Jac(C)) and we observed above that the minimal possible polarisation degree
of Kum?(Jac(C)) i qrum?(yac(c)) (3h — 6) = 12.

Remark 3.1. In this setup, Diagram (12) has rich and famous geometric proper-
ties. Recall the situation:

Kum' (Iae(C’))\L
Sym2(C) /7 -2+ Jac(C) /7

The double covering 7: C' — P! induces a 4 : 1 covering

Sym?(7): Sym?(C) — Sym?(P') = P?,
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which factors through 7 to a double covering Sym?(C')/7 — P? whose branch locus
is the union of the six lines

{w+z |z € P} € Sym?(P'),

where w is one the six branch points of . Each of these curves defines a line in P?
and the branch locus is thus a sextic curve in P? that consists of six lines tangent
to a conic, meeting in 15 points that are blown up by € (see for instance [20, §10.2],
with a complementary point of view).

3.2. The linear system of cubics. The linear system of cubics in P13 is 5-
dimensional:
HO(PUSv O]P’113 (3)) = Span(:r3, :L'an $y27 yS, Z)
We put £ :=1*Op,,,(3), so | L] is the complete linear system of cubics on the curve
C. We have h°(C, £) = 5 by Riemann—Roch (see also the simple part of Mattuck’s
argument in the proof below) and so H’(C, £) = H(Py13, Op,,, (3)) with |£| = P*.
Any divisor D € |£| has an equation of the form:

(16) apx® + aq 2y + cozy® + asy® + auz = 0,

with a; € C, so a generic D cuts the curve C' in six distinct points (see Figure 1). Tt
follows that deg(L£) = 6, so the line bundle £ is very ample [29, Corollary IV.3.2].

FIGURE 1. A genus 2 curve (in blue) and a cubic interpolation (in
red) intersecting in 6 points on the affine chart y = 1 of coordinates
x (abscissa) and z (ordinate).

Lemma 3.1. We have |L| = |600| and 7L = Op1 @ Op1(3).

Proof. The equality |£| = |6c0] is an application to our situation of classical results
of Mattuck and Mumford. If C' is a smooth curve of genus g, and if n > 2¢g — 2,
then Mattuck [39] shows that the divisor class map

0: Symn(C)%Plcn(C), p1+"'+pn’_>OC(p1+"'+pn)

is a P*~9 bundle. For completeness we give the part of Mattuck’s argument that we
need: we do not need the local triviality, which is harder. Writing & := p1+---+p, €
Sym"(C), the fibre of § over O¢(&) is by definition the complete linear system
|€]. Since deg(Kc — &) = 29 — 2 —n < 0, we have h%(X, K¢ — &) = 0, hence
h(C,€¢) = n — g + 1 by the Riemann-Roch theorem. Thus |£| 2 P"~9 and this
dimension does not depend on &.
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We apply this result with g = 2, for the genus two curve C introduced above,
and we keep the same notation as above.

Secondly, by a result of Mumford [43, Chapter 3,§2], if D is a degree d irreducible
curve D in P113 and by pq, ..., pr are the not necessarily distinct intersection points
of D with the genus two curve C, then the divisor p; +- - - +py is linearly equivalent
to (2d)oo. In particular, we have k = 2d. Again we recall the proof for completeness.
The curve D has equation g(x,y, z) = 0, with g a weighted homogeneous polynomial
of degree d, and the curve C' is given by the equation (13). The quotient %
thus defines a rational function on C' whose divisor is:

p1+ -+ pr — (2d)oo.
Since this divisor has degree zero, we have k = 2d. We apply this result with g = 2
and d = 3 and k = 6, this gives |£]| = |6c0].

The computation of the direct image 7, L is a straightforward application of the
cyclic covering methods [4, §1.17]. Since the canonical sheaf of C' is we =2 O¢(200),
by the first assertion we get that £ = w%?’. The double covering 7 is branched at the
six Weierstrass points, so it is determined by the line bundle L = Op:(3) such that
L®% 22 Op1 (6) and m,0¢ = Op1 @ L™, We have we =2 7% (wp1 ® L) =2 7 Op1 (1), s0
by the projection formula

TwS? 2 1, Op1(3) 2 Op1 (3) @ mOp1 = Op1 @ Opa(3). O
The Abel-Jacobi map is the map
(17)  AJ,: Sym™(C) — Jac(C),  p1+ - +pn+ Oc(pr+ -+ py — noo),

By Lemma 3.1 we have |£] = AJ;'({Oc}). Let us rephrase this: all length 6
zero-dimensional subschemes of C' that admit a cubic interpolation belong to the
fibre over O¢ of the Abel-Jacobi map AJg. But since the linear system on C' cut
out by the cubics has the correct dimension, this is a characterisation of this fibre.

3.3. Interpretation of the linear system of cubics as a degeneracy locus.
Let us describe the linear system |£| differently. Consider a length 6 subscheme
£ C O, that is € € Sym®(C). Start with the exact sequence

0—Z¢ — Oc — O — 0,
and tensor by L:
0 —=L®Z —L—=>LR0: — 0.

Since deg(L) > deg(K¢), we have by Serre duality h'(C, L) = 0, so we get a four
terms exact sequence in cohomology:

I‘ES&

(18) 0—HYC,L®Z) - H(C,L) — HY(C,L® O) — HY(C,L®TL¢) — 0.

Since I = Oc(—£), the sheaf £(—&) == L ® Z¢ is a degree zero line bundle. We
are interested in the restriction morphism res¢, whose rank is at most 5:

resg: C° = H(C, £) — HO(¢, L|¢) = CO.

Proposition 3.2. We have |£] = {¢€ € Sym®(C) | rk(res¢) = 4}, and there is no
IS SymG(C) such that rkresg < 4.
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Proof. For any ¢ € Sym®(C), the exact sequence (18) says that
rk(res¢) = 5 — h%(C, L(=¢)),

so rk(res¢) = 4 means that h?(C,L£(—¢€)) = 1. Since £(—¢) has degree zero, this is
equivalent to £(—¢) = O¢, or equivalently to £ € |£|. Moreover, if rkrese < 4 then
hO(C, L(—=£)) > 2: this is not possible since £(—¢) has degree zero. O

Proposition 3.2 means that for every length 6 subscheme of C', there exists at
most one cubic interpolation. In what follows, we will frequently interpret the
identification AJ5'({O¢}) = |£] as the isomorphism

(19) AJ;  ({O¢}) — |£]| 2 PHO(C, £)
& ———— ker(rese)

that sends a length 6 subscheme admitting a cubic interpolation to the equation of
this uniquely defined cubic.

Remark 3.2. By Proposition 3.2, there exists at most one cubic interpolation
for every given length 6 subscheme of C. Although this is expected for general
subschemes, it is remarkable that it holds for all of them. The basic general obser-
vation is that a cubic interpolation can never factor as conic and a “nonvertical”
line (this expression makes sense in the affine chart y = 1 with coordinates (z, z),
see Figure 2), because of shape of the equation and the fact that the variable z has
degree 3. If the cubic contains a “vertical line” z = «, then its equation does not
contain the variable z and it thus factors as a product of three vertical lines.

3.4. The linear system of conics. Similarly as in §3.2, the linear system of conics
in P113 is 3-dimensional:

HO (IP)UB; OP113 (2)) = Span(x2, xy, y2)'

We put C == 1*Op,,,(2). Let & € Sym*(C). Similarly as in §3.3, to study the
cubic interpolations that pass through four points we make use of the restriction
morphism
resg: C° = H°(C, L) — HO(¢, £[,) = C*.

This time, ker(res¢) is never zero so there exists at least one cubic interpolation at
¢, and it is unique if and only if h°(C, L(—¢)) = 1.

We now characterise those length four subschemes of C' that admit a conic inter-
polation, and we relate this to the extent to which the cubic interpolations passing
through these points fail to be unique.

Lemma 3.3. Let € == py + pa + p3 + ps € Sym?(C). The following assertions are
equivalent:

(1) & ~ 4doo.

(2) There exists K € |C| such that KNC =p; + -+ + pq.

(8) Up to permutation of the points, po = o(p1) and py = o(p3).

(4) h°(C,L(=€)) = 2.

Proof. Since the equation of a conic K € |C| does not contain the variable z,
within the affine chart y = 1 it consists of two vertical lines (or one double line).
Therefore it cuts C' in four points, which form two orbits under the action of the
involution o, so up to reordering the points, we conclude that ps = o(p;) and
pa = o(p3). Since the converse is clear, this proves (2)<(3). Moreover, any line of
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equation ax + by = 0, with (a : b) € P!, completes this conic to cubic interpolation
that consisting of three vertical lines. This means that there is a pencil of cubics
intersecting C at £, so h?(C, L(—¢£)) = 2. This proves (2)=>(4). Since p+oc(p) ~ 200
for any p € C (see [13, Chapter 3, §2]), we get

p1+...+p4w4oo.

Conversely, if four points py, . .., ps satisfy the relation p; + - - - + py ~ 400, arguing
similarly as in the proof of Lemma 3.1, we see that |C| = |4o0| and we deduce that
these four points admit a unique conic interpolation. This proves (1)<(2).

It remains to show that (4)=(2). Suppose that (2) does not hold, so at least
three of the z-coordinates of the points p; are distinct.

First assume that the z-coordinates of the four points are all different from one
another and from oo, so that we may write them as p; = (z; : 1 : 2;). There exists
a unique cubic interpolation g(z, z) at these points, defined by the four conditions
g(z;) = 2, so h°(C, L(=€)) = 1. If instead one of the points is oo, there is still
a cubic interpolation, but it has no z3-term and it is uniquely determined by the
interpolation at the three remaining points.

If only three of the z-coordinates are distinct, we may assume that ps = o(p1)
and that the coordinates x1, x3, x4 are distinct. To construct a cubic interpolation
at these four points, we first need to take the line joining p; and ps. Then the
only way to interpolate C' at p3 and ps with a conic is to take the lines joining
p3 to o(p3) and p4 to o(ps4), so these points admit a unique cubic interpolation and
WO(C, £(~€)) = 1. O

4. A DEGREE 15 COVERING OF THE LINEAR SYSTEM OF CUBICS

4.1. Covering maps and (Galois closure. Inequivalent notions of covering map
coexist in the literature. We follow [23, §3] and make the definition below. Note
that we do not require a covering map to be étale.

Definition 4.1. A covering map is a finite surjective morphism f: X — X’ be-
tween normal projective varieties. A covering map f is called Galois if there exits a
finite group G C Aut(X) such that f is isomorphic to the quotient map X — X/G.

Let f: X — X’ be a morphism between normal projective varieties. The sup-
port R of the sheaf of relative Kéhler differentials

Qx/xr = coker (f*Qx — Qx),
endowed with its structure of a closed subscheme of X, is the ramification scheme
of f. Tts image B = f(R), defined as a closed subscheme of X', is the branch
scheme of f. When X is normal and X' is nonsingular, by the Zariski-Nagata pu-
rity theorem [14, 53], R and B are divisors on X and X’ respectively (see also [54,
Theorem 2.4]). The terms ramification locus and branch locus refer to the under-
lying sets of closed points.

Theorem 4.1. [23, Theorem 3.7] Let f: X — X’ be a covering map between quasi-
projective varieties. There exists a normal, quasi-projective variety X and a finite
surjective morphism f: X - X, called the Galois closure of f, such that
(1) there exist finite groups H C G such that the morphisms F = f of andf
are Galois coverings with respective groups G and H.

(2) The branch loci of F' and f are equal.
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4.2. Organising six points on the curve into three pairs.

Definition 4.2. We denote by H the subgroup of the symmetric group &g gener-
ated by the permutations (1,2), (1,3)(2,4) and (1, 5)(2, 6).

The group H has order 48 and hence index 15 in Gg, but it is not normal.

Lemma 4.2. The Chow quotient ®g: C% — SymG(C) factorises through a finite
morphism ¢: Sym®(Sym?(C)) — Sym®(C) of degree 15, as follows:

g : C* Sym?(Sym?(C)) ———2— Sym®(C)

(p17"'7p6) IS [pl +p2] + [p3 +p4] + [p5 +p6] ——p1+ -+ ps-

The morphism @ is the Galois closure of .

I have to admit that I do not really like the notation with the parentheses. The
deeper problem is that we overload the “+”. In some instances it is associative,
in others, it isn’t. Do we want to use something else such as [p1 + -+ + pi] for
elements of Sym”(C) throughout, then? If so, we must do it carefully and fully. It
may be the best thing. I changed [p1 + p2] in the definition, but not the notation
for 0-cycle everywhere. Later we use p; ; = p; + p;, maybe this could be better?

Proof. The morphism ¢ is quasi-finite, hence finite by Stein factorisation since
1

all varieties involved are projective. Its degree is 15 = y(g) (;1) and it is clearly
surjective. Tt is also flat since Sym®(C) is nonsingular and Sym?®(Sym?(C)) is
Cohen-Macaulay (see [17, 18.17]). The Chow quotient ®s: C® — Sym®(C) is a
Galois covering with group the symmetric group Gg. It is easy to check that ¢ is the
quotient of C® by the group H introduced in Definition 4.2. This group permutes
the three pairs and the position of the points in each pair. Since Sym®(Sym?(C))
is normal, the morphism ¢ is a covering map in the sense of Definition 4.1 but it is
not a Galois covering since H is a nonnormal subgroup of &¢. The morphism ¢ is

the Galois closure of ¢ in the sense of Theorem 4.1. O

The ramification scheme of ®g is the big diagonal Dg C CF, i.e. the union of the
closed subschemes defined by the equalities p; = p; for p = (p1,...,ps) € CC. It is
a reduced and reducible divisor. The branch scheme ®4(Dg) = Ag C Sym®(C) is
the locus of nonreduced subschemes: it is a reduced and irreducible divisor, and it
is clearly the branch scheme of ¢. We study now the ramification scheme of .

Remark 4.1. Let us describe the fibres of ¢ explicitly. For any point (p1,...,ps) €
C®, we write for short p; ; = p; + p; € Sme(C). The fibre of ¢ over a generic
point py + - - - + pg € Sym®(C) is the following set of 15 points in Sym®(Sym?(C)):

P12+ P34+Ds56
P13+ P24+ D56
P14+ D23+ D56
D15+ P23+ Pas
D16 T P2,3 + P45

P12+ P35+ DPags
P1,3 + P25 + Das
P14+ D25+ D36
P15+ P24+ D36
P16 + D24+ D35

P12+ P36+ Pas
P1,3 + D26 + D45
P14+ D26 + D35
P15+ P26+ D34
D16 + P25 + D34
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Over a generic point of Ag, say for instance when p; = ps, this fibre contains only
nine closed points:

P11+ P34+Ps6 P11+ P35+ Pae D11 +DP36+DPas
(20) P1,3 +P1,a+Ps6 P13+ D15 TPa6 P13+ P16+ Das
P1a+pP15+P3se Prat+Piet+P3s Pis+DPiet+ P34

In the scheme-theoretic fibres, the first three points, on the top line of the list (20),
are nonreduced subschemes with a length two subscheme supported at p;. The
remaining six points are (generically) reduced subschemes obtained when the point
p1 is in the support of two different summands p; ; and p; ; at the same time.

From Remark 4.1 we deduce that a generic fibre of ¢ consists of nine distinct
points that belong to two distinct divisors R; and Rg, defined below. We will
see shortly that only Ry is indeed a ramification divisor. Consider first the Chow
quotient:

q: Sym?(C) x Sym?(C) x Sym?(C) — Sym?*(Sym?(C))
and define
(21) Ry = q (A X Sym?(C) x Sym*(C)).

It is an irreducible divisor parametrising unordered triples of effective degree 2
divisors on C such that at least one of them is nonreduced. Over a generic point of
Ag, three points of the fibre of ¢ belong to R; (for instance those on the top line
of (20)).

Let us now introduce the double incidence subvariety:

2= {(2,&,&) € C x Sym*(C) x Sym*(C) | = € Supp(&1) N Supp(&2)},

where Supp(€) is the set-theoretic support of the subscheme £. The locus = is a
codimension 2 irreducible subvariety of the product variety. Denote the projection
by

7: C x Sym?(C) x Sym?(C) — Sym?*(C) x Sym*(C), (x,&1,&) = (£1,&)
and define
(22) Ry = q (7(E) x Symz(C)) .

Over a generic point of Ag, six points of the fibre of ¢ belong to Ry (for instance
those not on the top line of (20)).

Lemma 4.3. We have ¢*Ag = Ry + 2R2. The ramification scheme of ¢ is the
reduced and irreducible divisor Rs.

Proof. The ramification divisor of ¢ decomposes as a sum of irreducible components
with multiplicity as r1 Ry + roRs. Denote by e;, i = 1,2 the local degrees (or
branching orders) of ¢ at generic points of R;, so that ¢*Ag = e1 Ry + eaRe. By
symmetry, these degrees do not depend on the choice of one of the three (for i = 1),
respectively six (for ¢ = 2) preimage points in R;. Since ¢ is generically 15 : 1,
we have 3e; 4+ 6e; = 15, and this gives two possibilities: either (e1,e2) = (1,2) or
(61, 62) = (3, 1)

Let us exclude the second possibility. We use the notation of Remark 4.1. It is
enough to consider one point in Ry, say for instance p; 3 4 p1.4 + ps,6. This point
is obtained as the limit point of the two reduced subschemes p; 3 4+ P24 + ps6 oOr
D23 + P14 + D56 when py goes to pi, so the local degree is two. In comparison,
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a point p11 + p3a + pse in Ry is the limit of p1 2 + ps3a + ps,¢ when psy goes to
p1, but there is only one limit direction since C is a smooth curve, so there is
no ramification there. It follows that e; = 1 and es = 2. We conclude using [4,
Lemma 1.16.1] that the ramification divisor is Rs. (]

Let us rephrase the upshot of the above proof: the preimage by ¢ of the branch
divisor Ag is the union of the divisors R; and Rs, but the preimage points in R; are
not ramification points, whereas the premiage points in Ry are ramification points
with branching order 2. The ramification divisor is thus the reduced divisor Ra.

4.3. The degree 15 covering. Recall that we denote by Y = %y.c(c) the variety

Symg(Sym?(C)) introduced in Definition 2.1, using the identification J;;:\(_a) =
Sym?(C) explained in (14).

Proposition 4.4. The morphism o: Sym®(Sym?(C)) — Sym®(C) restricts to a
degree 15 finite morphism 1: 9o — |L] = P*. The variety Yo is normal, geometri-
cally Cohen—Macaulay, Q-factorial and Gorenstein, with quotient singularities.

Proof. The isomorphism (19) can be formulated equivalently as a closed embedding
|£] < Sym®(C) sending a cubic D to the subscheme D N C considered as a formal
sum of points, where the multiplicity of D N C' at a point p is the length of the
artinian ring O, pnc. It is easy to check that the morphism AJg oy factorises by
Sym®(6¢), that is:

Sym®(Sym2(C)) —2> Sym®(C) 22~ Jac(C)
Sym‘”'wc)i -
Sym?(Jac(C))

Since |£| = |600| = AJg*(O¢), this shows that % is the fibre of ¢ over |£]. We
denote by 1 the restriction of ¢ to 4. Since a generic cubic interpolation cuts C'
in 6 points, the generic fibre of 1 is reduced, so the morphism ¢: Yo — |£| = P* is
finite of degree 15.

The surface Sym?(C) is nonsingular, so the symmetric quotient Sym?®(Sym?(C'))
has rational singularities. Since the group &3 acts on it without quasi-reflections,
the quotient is Gorenstein (see for instance [33] and references therein). We know
by Proposition 2.1 that ¢ is normal, Cohen—Macaulay, Q-factorial with quotient
singularities. Since Sym®(C) is nonsingular, the finite morphism ¢ is Gorenstein,
meaning that its relative dualising sheaf is locally free. Since its formation com-

mutes with base change, the fibre %c over |£| is Gorenstein (see for instance [11,
§1]). O

Definition 4.3. We denote by .#¢ the scheme-theoretic fibre over the origin of
the morphism:

ct 2oy Sym®(C) Als, Jac(C),

that is, Ao == (AJgo®s) "' ({Oc}).
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Let us summarise the situation in the following diagram, where, as we proved
above, we have 9o = (AJgop) " ({0c}):

(23) M O
0 @
v Yo Sym’(Sym*(C)) e
(] ¥
Pt = | £|——— Sym°(C)

Alg

{O0c}———— Jac(C)

Proposition 4.5.

(1) The scheme Mc is a local complete intersection. It is a normal variety of
dimension 4, Cohen—Macaulay and Gorenstein.

(2) The morphism 15: Mc — Yo is the Galois closure of ¥ and&; is the quotient
map by the group H, that is Yo = Mc/H.

(8) The morphism V: Mc — |L] is syntomic.

We recall that syntomic means a flat local complete intersection morphism of
locally finite presentation, see [50, Definition 29.30.1].

Proof. For any p == (p1,...,ps) € C®, we consider the restriction morphism TeSqg (p)
introduced above:

resg () 0 C* = H(C, L) — HO(®g(p), Llgem) = .

By definition, the closed points of .#Zc are those sextuples of points on C that
are interpolated (with multiplicity if necessary) by a cubic. The finite surjective
morphism ¥: .#Zc — |£| maps any p € .#c(C) to ker(resg,(p)), using the isomor-
phism (19). It follows that .#¢ is equidimensional of dimension 4. By Proposi-
tion 3.2, the cubic interpolation is always unique whenever it exists since the locus
of points p € C® such that rk(resg,(,)) < 4 is empty, so we have:

%C = {p € 06 | ds € HO(O7£)7 Z(S) = (I)G(p)}
={peC’| rk(resg,(p)) < 4},

where Z(s) means the zero scheme of s (we refer to [2] for the definition of this
scheme structure).

The local equations of .#Z¢ at a point p are thus the six 5 x 5 minors of any 6 x 5
matrix R associated to resg(p). At least one 4 x 4 minor, say the determinant |R’|
of the 4 x 4 submatrix R’, is nonzero at p since the matrix has rank 4.

The determinants of the two 5 x 5 submatrices containing R’ vanish at p and by
basic linear algebra, this forces the vanishing at p of all the 5 x 5 minors. So .Z¢
is locally given by two equations in the nonsingular variety C®, hence it is a local
complete intersection. It thus satisfies Serre’s condition Sy for any k£ > 1.

Using these local equations, we show that .#¢ is regular in codimension zero
(Serre’s condition Rg). Since a generic cubic cuts C' in six points whose images
under the double covering w: C' — P! are distinct, each irreducible component of
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M contains a dense open subset of points p = (p1,...,ps) € ¢ such that the
z-coordinates of all p; are distinct. Let us show that .#¢c is nonsingular at these
points. Without loss of generality, we may assume that none of these points is oo,
so we denote their coordinates by p; = [z; : 1 : 2] with z; distinct. The matrix of
resg,(p) 18 the 6 x 5 matrix

3 i 1 1 =z

x% x% zg 1 26

We may take R’ to be the top left 4 x 4 submatrix, so that |R’| is the Vandermonde
determinant V (z1, z2, x3,x4), which is nonzero because the z; are distinct. Hence,
as discussed above, the two local equations of .Z¢ at p are

J::{’ x% 1 1 =z 1‘:1” xf 1 1 =z

M; = :3 N - ‘| =0and Mg = 33 32 s =0
Ty x5 Ta 1 oz Ty xy x4 1 24
vy 2% weg 1 2 x3 22 w5 1 oz

These satisfy

OMs5 _ OMsg _o, OMs _ OMsg _ IR £0,

(925 826 826 (3'2'5
so the Jacobian matrix of (Ms, Mg) at p has rank 2. This shows that Z¢ is
nonsingular at p. Since .Z¢ is Ry and Sy, it is reduced.

The same argument as in Lemma 4.3 (the computation of the local degrees) shows
that the ramification scheme Ry N .#Z¢ of 1) is reduced, so the branch scheme B :=
Y(Ry N M) is reduced (see [50, Lemma 29.6.7]). Locally over P4, the variety .#¢
is given by a polynomial equation of the form

14

P(‘r7y17"'7y4) = .’L'15 +Zai(y1,...7y4)$i =0,
=0

where a; are regular functions on affine charts of P* with coordinates (y1, ..., y4).
The branch scheme B is the vanishing locus of the discriminant D(yi,...,y4) of
the polynomial P. Since B is reduced, its singularities are given by the equations

oD

D(y1,...,y4) =0, 8—%@1,...,%):0, Vi=1,...,4.

A point with local coordinates (z,y1,...,ys) is a singular point of .Z¢ if

oP
P(I,y17...7y4):0, E(I7y13-~-ay4):0

opP
and —(z,y1,...,94) =0, Vi=1,...,4.
5%‘( )
An explicit computation shows that these conditions imply that (y1,...,y4) is a
singular point of B, see [19, Theorem 4.2]. This means that .#c is regular in
codimension one (condition Rq). Since it is Sg, it is normal by Serre’s criterion |
Proposition 11.8.23].

)
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Since .#¢ is a local intersection scheme, it admits a Koszul complex providing a
locally free finite resolution Ko — O, 4 of its structure sheaf considered as a O¢s-
module. A standard argument (see for instance [2]) produces a spectral sequence

Equ — Hq(C'6,Kp) = Hp+q(%c7 O//lc)a

from which we deduce that H(.#c, O 4.) is a quotient of H(C® Ogs), which
is 1-dimensional since C is connected. It follows that .#- is connected. Since
AM¢ is normal and connected, using Zariski’s Main Theorem we deduce that it
is irreducible. Finally, .#Zc/6¢ = P*. As .#c is a local complete intersection
scheme, it is Cohen—Macaulay and Gorenstein [17, Corollary 21.19]. This proves
assertion (1).

The variety % is normal by Proposition 4.4 and it follows from Lemma 4.2
and Diagram (23) that the morphism 1&: Mc — Yo is the Galois closure of 1,
that is, 9o = .#c/H; this proves assertion (2). The morphism V: .Zc — P* is
a finite, hence flat, morphism from a normal local complete intersection variety to

a regular variety, by “magic flatness” (see [17, 18.17]). It follows that ¥ is also a
local complete intersection morphism, hence syntomic (see [50, Lemma 37.62.8 and
Lemma 37.62.12]); this proves assertion (3). O

4.4. The rational contraction, revisited. We know from Propositions 2.3 and
2.4 that the birational map ¢ : 9o --» Kum?(Jac(C)) contracts the divisor F de-
fined in Equation (4) to the noncurvilinear point 3O¢, and contracts the divisor Fy
defined in Equation (5) to the Kummer surface Kum'(Jac(C')) naturally embedded
in Kum?(Jac(C)). In this setup, these two divisors have very nice and concrete
descriptions since they parametrise the possible configurations of triples of pairs
of points that are interpolated by cubics consisting of three “vertical” lines (see
Figure 2).

(1) The comb. Recall that the exceptional divisor Ec C Sym?(C) consists of

the 0-cycles of the form p + o(p) for p € C, so

Fiy = {[p1 +o(p1)) + [p2 + o(p2)] + [p3 + o(p3)] | p1,p2,p3 € C}.
(2) The cross. Similarly

Fy ={[p1 + o(p2)] + [p2 + o(p1)] + [p3 + 0(p3))] | p1,p2,p3 € C}.

Given p1,ps € C, consider the curve:

lpy o = {1 + 0(p2)] + [p2 + o(p1)] + [p3 + o(p3)] | p3 € C}.

Clearly ¢p, », = E¢ is a rational curve and the divisor F5 is ruled by these
rational curves.

Consider the birational inverse v5': Kum?(Jac(C)) --+ %c. A general point
of the exceptional divisor Z of the Hilbert-Chow morphism hg is a nonreduced
subscheme ¢ of length 3, consisting of a length 2 subscheme supported at L; €
Jac(C) and a reduced point Ly € Jac(C). Taking them general enough, these
points are represented in reduced forms as L; = O¢(p1 + p2 — 200) and Ly =
Oc(ps + ps — 200). The condition of defining a point in the generalised Kummer
fourfold of Jac(C) is that LY? @ Ly 2 O¢: that is, 2p; + 2py + ps + pa ~ 600. This
means that the cubic interpolation at these four points is bitangent to C.

This shows that the rational map 751 sends the general element of = to the big

diagonal A of Symg(Symz(C)), consisting of nonreduced 0-cycles: in the case above


https://stacks.math.columbia.edu/tag/068E
https://stacks.math.columbia.edu/tag/068E

24 SAMUEL BOISSIERE7 MARC NIEPER-WISSKIRCHEN, AND GREGORY SANKARAN

~
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FIGURE 2. A genus 2 curve (in blue) and a cubic interpolation (in
red) intersecting consisting in three vertical lines intersecting in 6
points on the affine chart y = 1 of coordinates = (abscissa) and z
(ordinate).

¢ is mapped to 2[p; + p2] + [p3 + p4], and so this is the limit point when a general
nonreduced subcheme, defining a cubic interpolation whose image under 7 consists
six different points, goes to & (the point £ is not sent, say to [p1+ps]+[p1+pa]+2p2).

The conclusion of this analysis is that 751 contracts the exceptional divisor =
to the codimension two locus A in ¥¢.

4.5. The Galois closure, revisited. Consider the projection to the first four
factors pry: C% = C*xC? — C* and its restriction to .#c, still denoted pr, : .#c —
C*. The quotient C* x C? — C* x Sym?(C), restricted to .#¢, induces a double
covering .#¢c — M ¢, which is the Stein factorisation of the projection map

pri: Mo 21, Mc — C*.

To see this, observe that any four points (p1,...,ps) € C* admit a cubic interpola-
tion, as we observed in Section 3.4, so there exist ps, pg such that p; +- - -+pg ~ 600.
The projection pry: .#c — C* is thus surjective. If py + - - + ps % 400, then by
Lemma 3.3 these four points are interpolated by a unique cubic so the remain-
ing intersection points ps,pg with C' are uniquely determined. This shows that
(p1,...,ps) € C* has a unique preimage in .#c. If p1+- - -4py ~ 400, by Lemma 3.3
these four points admit a conic interpolation and there is a pencil of cubic interpo-
lations obtained by adding a line joining a point p € C' to the point o(p). The fibre
of (p1,...,ps) € C*in A ¢ is thus C/{o) = PL.
Consider the composition of the Chow quotient with the Abel-Jacobi map:

AJgod,: C* — Sym*(C) — Jac(C)

and define the closed subscheme W C C* parametrising quatruples of points that
admit a conic interpolation:

W = (AJ4 O(I)4)71 ({Oc}) = {p € ct | (1)4(]9) ~ 400}
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The locus W is exactly where the fibre of the morphism .#Zc — C* is P'. In fact,
it is is simply the blowup of W.
Proposition 4.6. There is an isomorphism # ¢ = Blyy C*.

Proof. A similar argument as in §3.3 and Proposition 3.2 shows that
W ={peC*|rkresg,¢) < 2}.

As in the proof of Proposition 4.5, it follows that W is locally given by two equations
in C*. Consider the two projections from . ¢:

Mc
iQ:l
pry %C pro
c* Sym?(C)

Recall from (15) that Sym?(C) contains the exceptional divisor Ec = {p + o(p) |
p € C}. The inverse ideal sheaf ﬂl_lIW . O]C defines the locus of those points
(p1,-..,pa,p5+p6) € C*xSym?(C) such that {py,...,ps} admits a conic interpola-
tion and {p1,...,ps} admits a cubic one. As observed above, the only possibility is
that ps = o(ps): that is, p5 + pe € E¢. This means that ﬂ'l_llw O, 2 m31p, =
75 Osym2(c)(—Ec) is an invertible sheaf. By the universal property of blowup, there

exists a morphism h: .# ¢ — Bly C* factoring 7, through the blowup morphism:

Bly C*

>

™1 04

Mc

Concretely, every point p = (p1, ..., P4, P5+ps) € A ¢ such that 7 (p) € W encodes
the equation of a vertical line ux—vy = 0 intersecting C' at p5 and pg. The morphism
h locally maps p to (m2(p), (u : v)) € C* x P, The inverse morphism is clear. The
morphism A is thus birational and bijective, and .# ¢ is normal since .#( is normal
by Proposition 4.5, so by Zariski’s Main Theorem, h is an isomorphism. O

Remark 4.2. The quotient .#c — .# ¢ is the quotient by the involution (56) € H,
so the quotient morphism ¢ : #c — Y- factorises as:

Mo~ Mo/ (56) = M
e
Yo = Mc/H
The morphism .#Z ¢ — %¢ is not a Galois covering since ((56)) is not normal in H.

Remark 4.3. The morphism W — P2 = |C| that sends four points admitting a
conic interpolation to the equation of this conic is 24 : 1 and it is ramified when the
conic is tangent to C' at one of its Weierstrass points. At each such point w, the
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conic interpolation is given by the tangent line to C' at w and a second vertical line
intersecting C' at some points ¢ and o(q). The branch locus in P? is thus a sextic
defined by six rational curves, each of them corresponding to the tangent line to C'
at a Weierstrass point.

5. THE BRANCH LOCUS OF THE COVERING OF THE LINEAR SYSTEM OF CUBICS

5.1. Computation of the branch locus. We focus on the 15 : 1 covering map
V: 9o — |L|. By the Zariski-Nagata purity theorem, the branch scheme B :=
Ag N |L] is a divisor in |£] = P4, It parametrises those cubics that intersect the
curve C' with at least one multiple point. Said differently, identifying |£| with
PHO(C, L) we have

B = {[s] € |£| | Z(s) is nonreduced},
where Z(s) C C' is the zero scheme of the section s of L.

Proposition 5.1. The linear system of cubics embeds C in (P*)V and the branch
locus B C P* of ¢ is the dual variety of C, which is a reduced and irreducible
hypersurface of degree 14.

Proof. Since the line bundle £ on C' is very ample, it defines an embedding C' —
|L|Y = (P*)Y in the dual projective space. The conormal variety [31] of C for this
embedding is

Vo = {(0.D) | T,C C D} C |£]" x |£|.

The hyperplanes D in the projective space |£| are the cubics in P15 and it is easy
to check that the condition 7,,C C D means that the cubic defined by D is tangent
to the curve C' at the point p, so in the definition of the branch locus B, the cubics
that intersect the curve C' with at least one multiple point correspond here to the
hyperplane sections of |£]V that are tangent to the embedding of C in |£|Y. By
definition, the dual variety C* of C' is the projection of Vi to |£], so with respect
to this embedding the branch locus B is the dual variety C* C P* of C. It is thus
reduced (we already observed this in the proof of Proposition 4.5). Its irreducibility
is proved in [51, p.7]. Its degree can be computed using the general formula [51,
Theorem 6.2(i)], which reduces in our case to

degB:/cl(Tg)+2/£.
c c

Here T = K¢ is a divisor of degree 2, and fc L =6, so deg B = 14 (see also [51,
Example 10.3]). O

Remark 5.1. It may be instructive to compute the degree of the branch divisor B
with elementary tools. To do so, we compute the number of intersection points of B
with the pencil of cubics D, with equation ax® — bz = 0, which is the number of
points [a : b] € P! such that Di4.p) intersects the curve C' with at least one multiple
point. Clearly [a : b] = [1,0] is a solution that counts with multiplicity 4 since the
cubic 2% = 0 cuts C at two points of multiplicity 3 (so each point counts twice).
For the other solutions we may put b = 1. We may also restrict to the chart y =1,
avoiding the point oo = [1: 0: 0] € C, because oo € Djo.;) and Djo.;) N C' consists
of the six Weierstrass points, which are distinct.
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Substituting ¥y = 1 and z = az?® into the equation (13) of C, we find that the
points [z : 1: az?] of C'N Dq.1) satisfy an equation of the form P(z) = 0, where
PZ:a2$67$5+€1Z4+~~~+€4$+€5.

We need the number of values of a such that this polynomial has repeated roots.
This is given by the degree of the discriminant of P as a polynomial in a. The
resultant of P and P’ is the following 11 x 11 determinant:

€5 €4 €3 €9 & -1 a?

€5 €4 €3 & & —1 a?

€4 265 3e9 4e1 =5 6a?

g4 2e3 3eg 4deq —5 6a>
This determinant has degree 12 in a, so the discriminant of P has degree 10. In
total we have 14 intersection points, so the hypersurface B has degree 14.

Corollary 5.2. Let C be a smooth genus two curve. The linear system of cubics
embeds C' in (P*)V and the dual variety C* C P* of C is a degree 14 irreducible hy-
persurface. The second generalised Kummer variety Kum?(Jac(C)) of the Jacobian
of C is birational to a degree 15 covering of P* branched along C*.

This corollary is simply a summary of Propositions 2.1, 4.4 and 5.1.

Proposition 5.3. Let 22 = f(x) be the equation of the curve C in the chart y = 1
of P113, as in Equation (13). The branch locus B in P* of coordinates (ag : -+ : ay)
has equation:

1 . ; 2
i Discr, (aif(x) — (a2 + a1 2? + axx + a3) ) .
4

Proof. We compute on the affine chart y = 1 of P113. The curve C has equation

2? = f(z) and we consider a cubic D with equation as in (16):

g(x,z) = apx® + a12? + asx + as + auz.

Let p = [a : 1 : b] € Py13. The intersection multiplicity of C' and D at p is by
definition the dimension as a complex vector space of the localisation of the quotient
Clz,2]/{z*> — f(z), g(x, z)) at the maximal ideal of the point p. It is well known that
if ag # 0, this number is the order of vanishing at = a of the resultant R(z) :=
Res. (22 — f(z),g(z,2)). In fact R(z) = aff(z) — (a0z® + a12® + aox + a3)2. We
deduce that D is tangent to C' when R has a multiple root, so the branch locus B
is an irreducible component of the locus of vanishing of the discriminant Discr, (R).
Computation shows that Discr,(R) has a factor of a. When ay = 0, the cubic
D consists of three vertical lines, and R has three double roots that correspond to
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tangencies between C' and D only when the lines pass through one of the Weierstrass
points. So the factor af is irrelevant for the branch locus B, hence the result. [

Remark 5.2. An explicit computation of the equation of B is given in Remark C.3.
We proved that the branch locus B is an irreducible component of the locus in P*
where the polynomial R(z) = o f(z) — (az® + ana? + azz + a3)2 has a multiple
root in the variable z. Here R is not monic but we may simply consider R(z) =
alf(zx) — (:v3 + 12?4 agz + a3)2, compute the discriminant of R, divide by af
and homogeneise with respect to the variable ag to recovering the branch locus B.
Following Arnold (see [15] and references therein), the branch locus is stratified in
closed subschemes B*, where )\ is a partition of the integer 6. The main strata are
the caustic stratum B> and the Maxwell stratum B2,

Recalling the divisors R1, R defined in Equations (21) and (22), that describe
the ramification of the morphism ¢, let us introduce the following divisors on ¥¢:

(24) R =RiN%Yz, i=12.

We denote by H the pullback H := ¢*L, where L C P* is a hyperplane. Since 1
is finite and L is (very) ample, the divisor H is ample. From the properties of the
covering 9: 9o — P*, we deduce some useful geometric information on %¢:

Corollary 5.4.

(1) The divisor RS is very ample.
(2) 14H = RS + 2RS.
(3) The canonical divisor is Kg, = —5H + RS.

Proof. By Proposition 4.4, the morphism 1 is Gorenstein so we can apply the
general theory of [11, Theorem 2.1(ii)]: the Tschirnhausen bundle £ of ¢ gives an
embedding j: Yo — P(£) such that the ramification divisor RS of v satisfies

Oy (R3) = wye bt = Oy (1) = 57 Op(ey (1)

It follows that RS is very ample. By Lemma 4.3, we have ¢Y*B = R} + 2R3 and
by Proposition 5.1 we have B = 14L, so 14H = R} + 2R5. By Lemma 4.3 again,
¥ has simple ramification along R5, so Kg, = ¥*Kps + R5 = —5H + RS. O

Remark 5.3. The covering 1: 9 — P* satisfies some of the assumptions defining
a general multiple space in [18, Definition 2.2]. It would thus be interesting to
know whether Rj is nonsingular and whether the restriction ¢|rg: RS — B is the
normalisation map. This covering is not Galois and has relatively high degree,
making it hard to understand its possible deformations. Moreover, we noted in
Remark 2.1 that ¥ is not a local complete intersection, so the relative cotangent
complex of 1 is not perfect, making it harder to compute the deformations of
the covering . Our interest in proving Proposition 4.5 is that the Galois closure
U: . # — P* of the covering has perfect cotangent complex, so the study of its
deformations should behave more nicely: this is work in progress.

APPENDIX A. MODULI SPACES OF POLARISED IHS MANIFOLDS

For a more detailed survey, see [14].
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A.1. The moduli spaces M.: they parametrise degree d polarised K3 surfaces,
and their dimension is 19. One easy example is the projective family of smooth
quartic surfaces in P2, which is also 19-dimensional. Since the moduli space is
irreducible, this shows that M, is unirational. The known results can be sum-
marised as follows: the moduli spaces ./\/l%f3 are unirational for 1 < e < 12 and
e =15,16,17,19 (see [27, §4] and references therein). Unirationality properties can
be also obtained for moduli of lattice-polarised K3 surfaces, see for instance [48,
Proposition 3.9]. In the other direction, it was shown in [24]] don’t find it. Sure
that it is e > 40, not 2e > 207 that /\/l has non-negative Kodaira dimension if
e > 40, with four possible exceptions, and is of general type for e > 62 and a few
smaller numbers.

A.2. The moduli spaces /\/l;ll’i'{bn: they parametrise polarised THS manifolds of
Hilbert type, i.e. deformation equivalent to the Hilbert scheme of n points on a K3
surface, with n > 2, of degree d and divisibility . Their dimension is 20, whereas
the families of Hilbert schemes of n points on polarised K3 surfaces have dimension
19. Gritsenko, Hulek and Sankaran [25, Theorem 4.1] proved that ./\/l26 ]102 is of
general type if e > 12. Otherwise:

° /\/lil’?lbz is unirational since it contains a 20-dimensional family using double
coverings of EPW-sextics (see O’Grady [10] and [27, Example 4.3]).

o« M%! Hip2 18 unirational since it contains a 20- dlmensmnal family using Fano
varieties of lines on cubic fourfolds (see Beauville and Donagi [6] and [27,
Example 4.2)).

. /\/l38 .12 is unirational: Iliev and Ranestad [32] constructed a 20-dimensional
famlly (see [27, Example 4.4] and [10, Proposition 1.4.16]).
o Mifiiiz is unirational: Debarre and Voisin [16] constructed a 20-dimensional

family (see [27, Example 4.5]).
. M;’ﬁbg is unirational: Iliev, G. Kapustka, M. Kapustka and Ranestad [31]
constructed a 20-dimensional family called EPW cubes.

A.3. The moduli spaces ./\/lKurrl they parametrise polarised IHS manifolds of
Kummer type, i.e. deformation equivalent to the n-th generalised Kummer variety
of an abelian surface, with n > 2, of degree d and divisibility . Their dimension is 4,
whereas the families of polarised abelian surfaces have dimension 3. By Dawes [13,
Theorem 3.6] we know that /\/lgd ! 2 is of general type if d > 0. See also [12].
Otherwise:

o M3l . is uniruled if n > 15 or n = 17,20 (see [3, Theorem 7.5]).

o M3 . is uniruled if n = 4t — 2 with ¢ < 11 or ¢t = 13,15,17,19 (see [3,

Theorem 7.5]).
. /\/l _» is rational (see [52, Theorem 5.4] and [3, Theorem 7.6]).

A.4. The moduli spaces MOGG these 6-dimensional spaces parametrise po-
larised THS manifolds of type OG6, i.e. deformation equivalent to an O’Grady
THS sixfold, of degree d and divisibility ~. Following [3, Theorem 7.2] we have:

. M(Q)dGIG is uniruled if d < 12;
MétGGI 2 is uniruled if ¢ < 10 or ¢ = 12;
. MgGGQ’ is uniruled if t <9 or t = 11, 13.
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e The moduli space Mg, and Mg, are rational (see [52, Theorem 5.4]
and [3, Theorem 7.6]).

A.5. The moduli spaces ./\/l%’g;lo: these 21-dimensional spaces parametrise po-
larised IHS manifolds of type OG10, i.e. deformation equivalent to an O’Grady IHS
tenfold, of degree d and divisibility . As far as the authors know, no unirationality
result is known for these spaces. It is conjectured in [26] that Mf';lédlo, MGOOégw and
M%G(’;?’lo are uniruled, and it is shown that M%élo is of general type unless d is a

power of 2.

APPENDIX B. ALTERNATIVE VIEWS ON THE PROOF OF PROPOSITION 2.3

B.1. Saturation. In this proof, we are interested in the locus inside Fy where
the rational function as can be extended, keeping the Cramer relation true. In
the polynomial ring Clxy, @2, w1, wa, 23, d2|, we consider the ideal I defining the
Cramer relation satisfied by the rational function as and the ideal J defining the
divisor Fy. The locus inside F; where a9 extends is the intersection with the Zariski
closure V(I) \ V(J) N V(J).

It is a classical result that this is the zero locus of the saturation (I: J*°) + J
of the ideal I with respect to J. A Grobner basis computation (see Remark C.4)
gives

(I:J®) +J = (wiwi(w; —ws)).

We recover the locus G defined in (11).

B.2. Computations in the chart U/, ). Following the notation of the proof,
in the chart U, ;) the coordinate functions are ag, a1, az, bo, b1,ba, co, c1,ca with
the relations given in the proof. To compute them in terms of a triple of points
(x1,91), (T2,Y2), (T3,y3) we use the generators of the ideal I(, 5 ). The generator
2 — ag — a1 — asy means that:

1 =z y ag T
1 x y, ar | =[x ],
1 x3 y; ag T3

i T Y 1 =z y 1z xf
T3 T2 Y, 1 x5y, 1 =z x3
T3 x3 Y, 1 z% y, 1 z3 %
g = ———+, a1 = , Qg = )
1 =y I 1y 1 x oy
1 =z y, 1 =z y, 1 =z y,
1 z3 y; 1 =3 y; 1 z3 y;
and similarly
1Y, T1 Y; 1 =y, vy 1 = =y
L2Yy T2 Yy 1 xoy, vy, 1 2 oy,
by = L3Ys T3 Y3 by = 1 w3y; y; by = 1 x3 x3y;3
1oz oy 1 oz yy| 1 oz yy|
1 z y, 1 @ vy, 1 @ vy,

1 x3 y; 1 x3 y; 1 x5 y;
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and
yi T oy 1 yi oy 1z 3
Y5 @2 Yy 1 y5 v 1 @ y3
Y3 T3 Y3 1 Y3 y, 1 @3 y3
Co= 7> c1 = 5 Co = .
1z oy, 1z y, 1z oy
1z y, 1z y, 1 @ vy,
1 =35 1y, 1 z3 1y, 1 x5 y;

The relations three between these nine coordinates, given in the proof, are easy to
check. Substituting as in the proof, we get the following formulas:

i w1 Ay (w1, wa, 23) G w1 Az (w1, we, 23)
1= ——%——— 2= ——%5——

wias(wy —ws) wixd(wy —ws)
= 1By (w1, we, 23) = w1 By(wi,we, 23)
by = —————~ by = ————=,

wiz3(wy — ws) w3 (wy — wo)

2101 (wi,we, 23) ~ 210s(wy,wo, 23)
0= —F———, Gy = — 5 ———=,

wyzs(w; — wa) wyzs(w; — wa)
where A;, B;, C; are polynomial expressions. This shows that all the coordinate
functions vanish at z; = 0 when w;23(w; — we) # 0, so the generic point of the
divisor Fy is sent to the ideal I, = (x? xy,y?). This gives a different proof that
~v4 contracts the divisor F} to the point Z.

B.3. The projective embedding. We use an explicit projective embedding of
Hilb?(A) following the presentation given by Haiman [25] of the original and general
construction due to Grothendieck. We first recall this construction. Let M be
the set of monomials in the variables @,y of degree at most 3. For any ideal
I € Hilb*(A), by Gordan [21] the quotient C[x,y]/I is generated by M (at this
point, monomials of degree at most two would suffice, but we need degree three
monomials for the projective embedding). Denote by V := Span(M) C C[x, y] the
vector subspace generated by M. For any I € Hilb?’(A), the linear map

mr:V = Cle,y]/I

is surjective, and its kernel ker(m) has codimension three in V. Instead of work-
ing with a basis of this kernel, it is more convenient to work with its equations,
so we consider its annihilator ker(m;)* C V*, which has dimension three. By a
result of Grothendieck, we get an embedding in the Grassmannian of 3-dimensional
subspaces of V*:

Hilb?(A) < Grass(3,V*), I+ ker(m)*t.

The projective embedding of Hilb? (A) inside which we will study the behaviour of
the map g is the Pliicker embedding (where we use here the projective space of lines
in \3V*):

p: Hilb*(4) = P(A*V*), I+ A? (ker(nr)b).

Let £ C Hile(A) be the exceptional divisor, parametrising non-reduced sub-
schemes, and A C Sym3(A) the big diagonal. The Hilbert-Chow morphism h 4 re-
stricts to an isomorphism between the open subsets Hilb?(A4) \ £ and Sym®(4) \ A.
The rational map from A3 to P (/\3V*) is regular on the following open subsets:

~, ™5 ~ m? At
A3\ A TAy gy () \ A Sym™(Ba), Sym?(A) \ A D, Hilb*(A4)\ & 5 P (A*V7)
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where A’ = (SymB(ﬁA))_1 (A) and A" == (w5)"H(A’). After restricting to the
fibres over the origin, we recover the restriction of the rational map p o g, and we
see that it is regular on an open subset containing (A% \ A”) N A3, but this subset
is not optimal since it contains divisors. To compute the image of the divisor F}y
contracted by 4, we compute for each partition A of the integer 3, the morphism

pog: gt (Kum*(A) Ny N (Hilb*(A) \ €)) — P (A*V*).
Let us compute on the chart (; 1 1). The vector space V' has basis

(1,2, y, 2%, @y, y*, 2°, °y, 2y*, y°).
For any ideal I := I, ) € U(1,1,1) generated by:

3

Le.a) = (2° — e10® + exw — €3,y — (ap + a1z + axx?)),

the quotient space C|z, y]/I has basis (1, 2, 2?) modulo I. The morphism 7; defines
a 3 x 10 matrix A whose coefficients depend on e and a. The kernel of this matrix is
organised as a (7 x 10)-matrix B whose rows are the coordinates of the generators
of ker(ny). Interpreting duality as a canonical scalar product, the kernel of B is
organised as a (3 x 10)-matrix whose rows are the coefficients of the equations of
ker(7)° in the dual basis of V*. We restrict to Kum?(A) by inserting the equations
of Kum?(A) in Hilb?(A) in our chart, that is e; = 0, a9 = 2ages, and we arrive at
the following matrix:

0 O 27a9 27 27aq 9a%eg + 27@% 0

1
C = 77 0 27 27Tay 0 —9azes —18ajages + 27a3ez —27eq - -
27 0 18ages 0 27ases 12a§6§ + 5daqases 27e3
—9ases —18aiases + 27&%63
- —27a1eq + 27ase3 3a§e§ — 27@%62 + 5daqiases - - -
27a;1e3 9&%6263 + 27af63

9a3e3 — 27a3aqes + 8laja3es
9aia3e3 — 27a3es + 8lalages
27a1a3ezes3 + 8ases + 27ajes + 27a3el

We now use formulas (7) and (8) to express the 120 Plicker coordinates p; ;
of [ in P (/\3V*) as rational functions of the variables x1, w1, @2, ws, z3. Those
are all the (3 x 3) minors of the matrix C'. After some simplifications, we see
that pi 23 is divisible by 225 and that all the others are divisible by z%7. We
obtain the rational image of the divisor F; by putting x; = 0, which gives the
point [1:0:...:0] € P20, A similar method shows that these are the Pliicker
coordinates of the point Z,. The computation on the chart U 1) is similar.

APPENDIX C. THE SCRIPTS USED IN THIS WORK

We reproduce below the scripts used in this paper. None of our proofs actu-
ally needed computer algebra tools: these only served as a guidance. We used
Macaulay2 [22] and Magma [10].

Remark C.1. Here is a Macaulay2 script used in Remark 2.1 to check that the
variety ¢4 is not a local complete intersection scheme:

loadPackage "InvariantRing"

R = QQ [x1, %2, x3, yi, y2, y3]

M12 = matrix{{0, 1, 0, 0, 0, O},
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{1, o, 0, 0, 0, O},
{0, o0, 1, 0, 0, 0%},
{0, 0, 0, 0, 1, 0%},
{0, 0, 0, 1, 0, OF,
{0, 0, 0, 0, O, 1}}
M123 = matrix{{0, 0, 1, 0, 0, O},
{1, o, 0, 0, 0, 0%},
{0, 1, 0, 0, O, 0%},
{0, 0, 0, 0, O, 1%},
{0, 0, 0, 1, 0, OF,

{0, 0, 0, 0, 1, O}}

L = {M12, M123}

83 = finiteAction(L,R)

g = invariants S3

netlist g

A = QQlx1, x2, x3, yi, y2, y3, f0, f1, f2, £3, f4, £f5, £f6, £f7, £8]

inv = {substitute(g#0, A), substitute(g#l, A), substitute(g#2, A),
substitute(g#3, A), substitute(g#4, A), substitute(g#5, A),
substitute(g#6, A), substitute(g#7, A), substitute(g#8, A)}

I = ideal{f0 - inv#0, f1 - inv#l, f2 - inv#2, £3 - inv#3, f4 - inv#4,

f5 - inv#5, f6 - inv#6, f7 - inv#7, £8 - inv#8}

loadPackage "Elimination"

J = eliminate({x1, x2, x3, y1, y2, y3}, I)

—-- Computation of Sym”"3_0 A : the equations are f0, f1

sym = J + ideal{fO0, f1}

loadPackage "TorAlgebra"

isGorenstein sym

isCI sym

—-- Computation of Sym~3_0 hat A : the equations are f1, £3

model = J + ideal{f1, £3}

isGorenstein model

isCI model

Remark C.2. Here is a Mlagma script to compute the group H defined in §4.2:

G := SymmetricGroup(6);

H := sub<G | [(1, 2), (1, 3)(2, 4, (1, 5)(2, 6)]>;
Order(H);

IsNormal(G, H);

Remark C.3. Here is a Mlagma script to compute the branch locus B in §5.1:

R <el, e2, e3, e4, eb> := PolynomialRing(Rationals(), 5);

A <x, a0, al, a2, a3, a4> := PolynomialRing(R, 6);
f:=x"5-elxx "~ 4-e2x*xx " 3-e3*xx " 2-¢e4 *xx - eb;
=a0 xx - 3 +al xx "~ 2+ a2 x x + a3;

ad "2 x £ - p ~ 2;
Discriminant(r, x) div a4"6;

o KT
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Degree(b) ;

Remark C.4. Here is the Magma script used in §B.1:
A<a2,x1,x2,wl,w2,2z3> := PolynomialRing(Rationals(), 6, "elim", 1);

x3 := - x1 - x2;
vl := wl + z3;
v2 := w2 + z3;
yl = x1 * vi;
y2 = X2 * v2;
y3 := x3 * z3;
D := (x1-x2) * (x1 - x3) * (x2 - x3);
I := ideal<A | x1 * wl + x2 * w2,
D *x a2 - (x2 - x3) * yl - (x3 - x1) * y2 - (x1 - x2) * y3>;
J := ideal<A | x1, x2>;
C := Saturation(I, J) + J;

GroebnerBasis(C) ;
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