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Abstract. We construct a birational model of the generalised Kummer four-

fold of the Jacobian of a genus two curve, based on a geometric interpretation

of the addition law on this Jacobian, obtained by the properties of the linear
system of conics on that curve. We show that our model has mild singularities

and that it admits a finite ramified covering to the four-dimensional projective
space.
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1. Introduction

An irreducible holomorphic symplectic manifold, abbreviated to IHS manifold,
is a simply-connected compact complex manifold X such that H2,0(X) is gen-
erated by an everywhere nondegenerate 2-form. If X is an IHS manifold then
H2(X,Z) naturally carries a nondegenerate integral quadratic form qX of signature
(3, b2(X)− 3) (see [5]), the Beauville–Bogomolov–Fujiki quadratic form. We denote
by ⟨−,−⟩X the associated bilinear form. In all the known deformation types, the

lattice
(
H2(X,Z), qX

)
is even, but not unimodular, except when X is a K3 surface.

All the IHS manifolds that we consider will furthermore be projective. A polar-
isation of X is a primitive ample class L in the Néron–Severi group NS(X) of X.
The degree of the polarisation is the positive integer d := qX(L) and its divisibility
is the integer γ such that ⟨H2(X,Z), L⟩X = γZ.

Gritsentko, Hulek and Sankaran [25] constructed coarse moduli spaces of po-
larised pairs (X,L) of a given deformation type: these moduli spaces are quasi-
projective varieties. Our initial motivation in this paper is to search for concrete
geometric descriptions of the generic elements in some of these moduli spaces M.
In practice, in most cases, such a description of a generic object can be used to con-
struct a dominant rational map PN 99K M for some integer N , so that M would
be unirational.

In general it is hard to decide whether a given moduli space M is unirational or
not. The general philosophy is that these moduli spaces may be unirational for low
values of the numerical invariants but will be of general type when the numerical
invariants are high. For example this is the case for K3 surfaces (see [24]) and for
any putative class of IHS manifolds whose moduli space is of large dimension (see
[38]), and analogous statements hold for moduli of curves and of abelian varieties.

Instead of unirationality one could ask for related properties such as being ra-
tional (stronger) or uniruled, stably rational or rationally connected (weaker). In
Appendix A we summarise the currently known results about the birational types
of moduli spaces of polarised IHS manifolds.

Except for K3 surfaces, each of the known moduli spaces is named after a codi-

mension one family. For instance, the four-dimensional moduli spaces Md,γ
Kum2 that

feature in this paper parametrise polarised IHS manifolds of Kummer type, i.e.
deformation equivalent to the second generalised Kummer variety of an abelian
surface, of degree d and divisibility γ.

Most of the unirationality results for moduli of polarised IHS manifolds concern
the deformation class of Hilbert type. For the other known types, the question is
relatively unexplored, apart from the recent results of Barros, Beri, Flapan and
Williams [3] for the generalised Kummer and OG6 cases. In this paper, we focus
on the deformation type of the second generalised Kummer variety of a polarised
abelian surface. In order to attack the unirationality question in this deformation
class, our first objective, which we achieve in the present paper, is to construct
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and to study a birational model of a generalised Kummer fourfold using only ra-
tional tools. Our second objective, which is still work in progress, will then be
to understand how this construction may deform. Benedetti, Manivel and Tan-
turri [7] worked on a similar question, from a different point of view, using Coble
hypersurfaces to get models of generalised Kummer fourfolds as flag varieties, but
their construction does not deform. Very recently another construction of a similar
nature has been given by Agostini, Beri, F. Giovenzana and Ŕıos Ortiz in [1].

By the general philosophy on the moduli spaces, we guess that to lower the
discrete invariants it is wise to lower the polarisation. We therefore consider princi-
pally polarised abelian surfaces, and study the codimension 1 family of generalised
Kummer fourfolds over Jacobians of a genus two curve. It might also be interesting
to study the other principally polarised case, products of elliptic curves, which will
give a codimension 2 family.

Our original intuition is to fix a genus 2 curve C and look at projective coordi-
nates on Jac(C) in a model where addition is well described. Such models are used
in cryptography, for instance by Flynn [19] and Leitenberger [37], whose works on
the addition law inspired the present paper. Our main results are:

Theorem 1.1 (Corollary 5.2). Let C be a smooth genus two curve. The linear
system of cubics embeds C in (P4)∨ and the dual variety C∗ ⊂ P4 of C is a degree 14
irreducible hypersurface. The second generalised Kummer variety Kum2(Jac(C)) of
the Jacobian of C is birational to a degree 15 covering of P4 branched along C∗.

We denote by GC the degree 15 covering of P4 branched along C∗ mentioned in
the above statement, whose definition is given in Definition 2.1 and §4.3, and by:

γC : GC 99K Kum2(Jac(C))

the birational map in question, whose definition is given in Formula (2).

Proposition 1.2 (Proposition 4.4). The variety GC is normal and Gorenstein, and
with quotient singularities.

In particular, GC is Cohen-Macaulay.

Proposition 1.3 (Propositions 2.3 and 2.4). The birational map γC contracts
one divisor to the noncurvilinear point of Kum2(Jac(C)) supported at the origin of
Jac(C), and a second divisor to the Kummer surface Kum1(Jac(C)).

Proposition 1.4 (Proposition 4.5). The Galois closure of the covering GC → P4

is a local complete intersection scheme.

In this paper, the term “variety” denotes an integral separated noetherian scheme
of finite type over the field of complex numbers. The term “curve” means an
irreducible projective variety of dimension 1.

In §2 we construct the variety GC under more general assumptions, starting
from any abelian surface A. We study the contraction to the generalised Kummmer
fourfold Kum2(A) in this general setup. Then in §3 we specialise to the case where A
is the Jacobian of a genus two curve and we study the properties of the linear system
of cubics on the curve. We apply this geometry in §4 to realise GC as a finite cover
of P4. Finally in §5 we study the branch locus of this cover. Several Appendices
contain some backgrounds, alternative or complementary views and proofs of some
results used in the main text, as such as some helpful computer algebra scripts.
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2. A rational contraction to the generalised Kummer fourfold

We consider a polarised abelian surface (A, c1(H)), with origin OA ∈ A, where
H ∈ Pic2t(A) is an ample divisor of degree H2 = 2t with t ≥ 1, whose first Chern
class c1(H) is primitive in H2(A,Z).

2.1. The second generalised Kummer variety of an abelian surface. For
any integer m ≥ 0, we denote the Hilbert scheme of 0-dimensional subschemes of A
of length m by Hilbm(A), the Chow quotient by Symm(A), and the Hilbert–Chow
morphism by:

hA : Hilbm(A) → Symm(A).

The addition law on A defines the following morphisms:

(1) Am
αA //

πA

��

A

Symm(A)

ᾱA

::

We restrict to the case m = n + 1 for an n ≥ 0 and denote by Symn+1
0 (A) :=

α−1
A ({OA}) the fibre over the origin of the addition map αA and by Kumn(A) the
n-th generalised Kummer variety of A, defined as the fibre over the origin of αA◦hA:

Kumn(A) := (ᾱA ◦ hA)−1(OA) ⊂ Hilbn+1(A),

The restriction h◦A of the Hilbert–Chow morphism hA to the generalised Kummer
variety is still birational. It is a resolution of the singularities of the Chow quotient
Symn+1

0 (A). It is well known ([5]) that the variety Symn+1
0 (A) has symplectic

singularities and that Kumn(A) is an irreducible holomorphic symplectic manifold
of dimension 2n.

The variety Kum1(A) is the classical Kummer surface associated to A, i.e. the
minimal resolution of the quotient A/±1.

In this paper, we are mostly interested in the second generalised Kummer variety
Kum2(A). Its second integral cohomology group decomposes as follows. There
exists a natural injection H2(A,Z) ↪→ H2(Kum2(A),Z) and we have:

H2(Kum2(A),Z) = H2(A,Z)⊕ Zδ,

where δ is half the class of the exceptional divisor of the Hilbert–Chow morphism in-
tersected with Kum2(A). This decomposition is orthogonal with respect to the lat-
tice structure on H2(Kum2(A),Z) given by the Beauville–Bogomolov–Fujiki (BBF)
form, and the isometry class of the lattice is computed in [47]:

H2(Kum2(A),Z) ∼= U⊕3 ⊕ ⟨−6⟩,

where U is the hyperbolic plane.
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By the decomposition above, we have a splitting of the Néron–Severi lattice:

NS(Kum2(A)) = NS(A)⊕ Zδ.

We denote by h ∈ NS(Kum2(A)) the image of c1(H), which is a big and nef
divisor. By a result of Debarre and Macr̀ı [15, Corollary 4.11] the classes ah− bδ,
with a, b > 0, are ample when b/a < 1/3. If (A,H) is generic, meaning that
NS(A) = Zc1(H), we have NS(Kum2(A)) = Zh ⊕ Zδ. Furthermore, A. Mori [41],
has shown that if H is a principal polarisation, i.e. t = 1, then the ample cone
is precisely the interior of the cone generated by the classes h and 2h − δ. The
smallest possible polarisation degree with respect to the Beauville–Bogomolov–
Fujiki quadratic form is thus given by the smallest integer d such that ℓ := ah− bδ
is an ample class with qKum2(A)(ℓ) = d = 2e.

The smallest integer e such that e = a2 − 3b2 with a, b ∈ N and b/a < 1/2 is
e = 6, obtained for (a, b) = (3, 1), so the minimal polarisation is ℓ = 3h − δ, of
degree d = 12. It is easy to check that ⟨NS(Kum2(A)), ℓ⟩ = 6Z. But since the
embedding of NS(Kum2(A)) in H2(Kum2(A),Z) sends the class h to an element
of the unimodular lattice U⊕3, there exists u ∈ U⊕3 such that ⟨u, h⟩ = 1 and
this implies that ⟨H2(Kum2(A),Z), ℓ⟩ = 3Z. The divisibility is thus γ = 3 and

(Kum2(A), ℓ) ∈ M12,3
Kum2 . This space does not appear in [3] and nothing is known

about its birational geometry.

2.2. The birational model. Consider the blowup of the origin of A:

βA : Ã := BlOA
A −→ A,

with exceptional divisor EA := β−1
A (OA). First, using the summation maps defined

in Diagram (1) we put:

A3
0 := α−1

A (OA),

and we denote by π◦
A the restriction of the Chow quotient:

A3
0
� � //

π◦
A

��

A3

πA

��

αA // A

Sym3
0(A)

� � // Sym3(A)

ᾱA

;;

We do similarly starting with Ã; we define Ã3
0 as the fibre over the origin of the

morphism:

Ã3 β×3
A−−→ A3 αA−−→ A,

and we finally define the main object of interest in this paper:

Definition 2.1. We denote by GA the scheme-theoretic fibre over the origin of the
morphism:

Sym3(Ã)
Sym3(βA)−−−−−−→ Sym3(A)

ᾱA−−→ A,

that is: GA := Sym3
0(Ã) := (ᾱA ◦ Sym3(βA))

−1(OA).

The morphism Sym3(βA) is clearly birational and its restriction to GA is still
birational since it is an isomorphism above the open subset of triples of nonzero
points on A whose sum is zero. We are interested in the birational map:

γA := h−1
A ◦ Sym3(βA)

∣∣
GA

: GA 99K Kum2(A).(2)
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All the relevant maps are shown in the diagram (3) below:

(3) Ã3

πÃ

��

Ã3
0

π◦
Ã

��

β×3
A |

Ã3
0 //? _oo A3

0

π◦
A

��

� � // A3

πA

��
Sym3(Ã) GA?

_oo
Sym3(βA)|

GA //

γA
))

Sym3
0(A)

� � // Sym3(A)

Kum2(A)

h◦
A

OO

� � // Hilb3(A)

hA

OO

Proposition 2.1. The scheme GA is reduced. It is a normal projective variety of
dimension 4, Cohen–Macaulay and Q-factorial with quotient singularities, and it is
birational to Kum2(A).

Proof. Let a → A be the natural cover where a is the (abelian) Lie algebra of
A. By choosing linear coordinates (x,y) on a, we get an identification a → C2

and thus a cover C2 → A of groups (in the category of complex manifolds). The
linear coordinates (x,y) induce local coordinates on A around each point, up to
a choice of an element in the kernel of C2 → A. Near OA, we always make this
choice such that the coordinates of OA become (0, 0). Around a point a ∈ A,

with a ̸= OA, the coordinates (x,y) are also local coordinates of Ã at the point

ã := β−1
A (a). Around the point a = OA, local coordinates of Ã near the exceptional

divisor EA = β−1
A (OA) are x, z with relation y = xz (or with the roles of x and y

exchanged). The map βA is then locally given by βA(x, z) = (x,xz).
With this convention, around each point a ∈ A the local coordinates are such

that the addition law is the standard one. That is, around a point (a1, a2, a3) ∈ A3,
the local coordinates (x1,y1), (x2,y2), (x3,y3) are such that the subvariety A3

0 is
locally given by the relations x1 + x2 + x3 = 0 and y1 + y2 + y3 = 0. This

allows us to analyse the singularities of Ã3
0 by computing local equations of Ã3

0

using the morphism β×3
A . Again the local equations of Ã3

0 are x1 + x2 + x3 = 0
and y1 + y2 + y3 = 0, but yi is in degree 1 if ai ̸= OA and in degree 2 if ai = OA.

Therefore, unless a1 = a2 = a3 = OA the ideal defining Ã3
0 in the local ring is

generated by two elements with independent linear parts, so Ã3
0 is smooth. If

a1 = a2 = a3 then Ã3
0 is locally a linear section (by x1 + x2 + x3 = 0) through

a rank 3 quadric cone x1z1 + x2z2 + x3z3 = 0, which is again a quadric cone in
A5, of rank 2. Indeed, a local equation is x1w1 + x2w2 = 0, in local coordinates
x1, x2,w1 := z1 − z3, w2 := z2 − z3, z3.

It follows that Ã3
0 is normal and has hypersurface singularities, so it is Goren-

stein [17, Corollary 21.19], and it is connected and irreducible by Zariski’s Main
Theorem.

Since GA is the quotient of Ã3
0 by the action of the symmetric group S3 acting by

permutation of the factors, we deduce easily that GA is reduced, normal, connected
and irreducible. Moreover, GA is geometrically Cohen-Macaulay by the Hochster–
Roberts theorem [30, Main Theorem and Remark 2.3] and it is Q-Gorenstein (see
the argument in the proof of [35, Lemma 5.16]. We can even be more specific

here: since Ã3
0 has transversal nodal singularities, it has in particular quotient
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singularities, so GA too. It follows that GA is Q-factorial with rational singularities
(see [35, Proposition 5.15]). □

Remark 2.1. The variety Ã3
0 is not locally factorial. Consider for instance the

divisor F1 = Sym3(EA) and its pre-image F̃1 := (π◦
Ã
)−1(F1). In the local chart used

in the proof above, the divisor EA has equation x = 0, so F̃1 has equations x1 =

x2 = 0 inside Ã3
0: it is not a Cartier divisor. Computations with Macaulay2 [22]

indicate that Sym3
0(Ã) and GA are not local complete intersection schemes. They

indicate also that GA is Gorenstein: we will prove it in Proposition 4.4 under the
assumption that A is the Jacobian of a genus two curve. The script is given in
Remark C.1.

2.3. The divisorial contraction to the Chow quotient. To fully describe the
geometric relation between GA and Sym3

0(A), we exhibit two meaningful divisors

F1, F2 on GA that parametrise special configurations of triples of points on Ã.

Recall that EA ⊂ Ã is the exceptional divisor of the blowup βA : Ã → A. As in
Remark 2.1 we define the prime divisor

F1 := Sym3(EA) ⊂ GA.(4)

Since EA ∼= P1, the divisor F1 is isomorphic to P3.
Denote by τ : A → A, a 7→ −a the sign involution and by ā ∈ A/τ the class of

a ∈ A. There is an embedding of A/τ in Sym3
0(A) given by ā 7→ a + (−a) + OA.

The surface A/τ contains in particular the point 3OA. The sign involution τ on

A lifts to Ã as an involution denoted τ̃ , making the blowup morphism βA : Ã→ A
equivariant, that is βA◦τ̃ = τ ◦βA, and leaving the exceptional divisor EA pointwise
fixed. We then define the second prime divisor F2 ⊂ GA as the image of the
morphism

Ã/τ̃ × EA → GA, (ã, e) 7→ ã+ τ̃(ã) + e,

that is:

F2 :=
{
ã+ τ̃(ã) + e | (ã, e) ∈ Ã/τ̃ × EA

}
⊂ GA.(5)

Proposition 2.2. The birational morphism Sym3(βA) : GA → Sym3
0(A) contracts

the divisor F1 to the point 3OA, and it contracts the divisor F2 to the surface A/τ .
It is 1 : 1 outside of these two divisors.

Proof. The divisor F1 is contracted to the point 3OA since βA(E) = OA. Similarly,
with the same notation as above,

Sym3(βA)(ã+ τ̃(ã) + e) = a+ (−a) +OA,

so the divisor F2 is contracted to the surface A/τ . Take a point a+b+c ∈ Sym3(A).
If none of these points is the origin of A, it has a unique preimage by Sym3(βA).
If c = 0, then b = −a and the fibre over this point belongs to the divisor F2. If
b = c = 0, then a = 0 and the fibre over this point is the divisor F1. So Sym3(βA)
is an isomorphism outside of these two divisors. □

Note that F1 and F2 intersect along the big diagonal of Sym3(EA) parametrising
0-cycles with at least one double point.
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2.4. The rational contraction. We now study the birational map γA : GA 99K
Kum2(A). Since the variety GA is normal by Proposition 2.1 and since Kum2(A)
is a projective variety, the indeterminacy locus of γA is a subset of codimension at
least two of GA [29, Lemma V.5.1].

We first analyse the behaviour of γA around the divisor F1. For this we introduce
the 2-dimensional Briançon variety B3

OA
parametrising the locus of nonreduced

subschemes in Kum2(A) supported at OA. As the indeterminacy locus of γA is
of codimension at least 2, and since the morphism Sym3(βA) contracts F1 to the
point 3OA, by restriction we have a rational map

γA|F1
: F1 99K B3

OA
,

so the divisor F1 is contracted by γA. Its rational image is the centre of F1 for γA:
our goal is to compute this centre.

For this, let us recall the geometry of the variety B3
OA

, following [36, §2]. This
depends only on the local geometry of A near OA, so in the proof of Proposi-
tion 2.1 and Remark 2.1, we take local coordinates x,y at the origin OA ∈ A.
This identifies the tangent space TA,OA

with C2, compatibly with addition: hence
for the purpose of local computation we may replace A by C2. The curvilinear
subschemes supported at the origin arise as limit points of triples of points that
move along a smooth curve. Their ideals have the form ⟨y + αx+ βx2,x3⟩ or sim-
ilarly with x and y exchanged. They form a line bundle over P1, where the base
P1 parametrises the tangent direction of the curve at the origin (encoded by the
parameter α) and the fibre depends on the parameter β that encodes the curvature
of the curve. The Briançon variety B3

OA
is obtained by compactifying this affine

bundle by adding as point at infinity the non-curvilinear subscheme Z∞ that arises
as the limit of triples of points going to the origin from three different directions:
its ideal is I∞ := ⟨x2,xy,y2⟩.

Proposition 2.3. The birational map γA contracts the divisor F1 to the point Z∞.

Proof. The behaviour of γA at the divisor F1 is a local property over a neighbour-
hood of the origin OA of A so we can study it by computing a local model of
the variety GA in the neighbourhood of the divisor F1, as we did in the proof of
Proposition 2.1. Instead of directly computing γA|F1

, it is equivalent, but more
convenient, to study the composite rational map

g : Ã3
0

π◦
Ã−−→ GA

γA
99K Kum2(A) ↪→ Hilb3(A).

We denote by F̃1 the preimage of F1 in Ã3
0. The rational map g is defined at the

generic point of F̃1, and we want to compute its image and the indeterminacy locus

of the restriction of g to F̃1.
The local coordinates. As in the proof of Proposition 2.1 and Remark 2.1, we

take local coordinates x,y at the origin OA ∈ A. This identifies the tangent
space a = TA,OA

with C2, compatibly with addition: hence for the purpose of

local computation near F̃1 we may replace A by C2, and in particular Hilb3(A) by
Hilb3(C2).

Again as in Proposition 2.1 and Remark 2.1, with coordinates (x1,y1), (x2,y2),
(x3,y3) on C6, using the relations yi = xizi and introducing w1 := z1 − z3 and

w2 := z2 − z3 we get down to five variables x1,x2,w1,w2, z3 where Ã3
0 is defined

by the single relation x1w1 + x2w2 = 0 and F̃1 has local equations x1 = x2 = 0.
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The open covering. In what follows, the notation I ∈ Hilb3(C2) means that
I ⊂ C[x,y] is the ideal of the corresponding length three subscheme of Hilb3(A).
Following Haiman [28], the Hilbert scheme Hilb3(C2) is covered by three affine
charts labelled by the partitions of the integer 3, as follows. Let

B(1,1,1) := {1,x,x2}, B(2,1) := {1,x,y}, B(3) := {1,y,y2},

and for any partition µ of the integer 3, define the subset

Uµ :=
{
I ∈ Hilb3(C2) | Bµ spans C[x,y]/I

}
.

By [28, Proposition 2.1], the subsets Uµ are open affine subvarieties that cover

Hilb3(C2). They cover the Briançon subvariety B3
OA

of Hilb3(C2) parametrising
length 3 subschemes supported at the origin, as follows: the curvilinear subschemes
of the form ⟨y + αx+ βx2,x3⟩ belong to U(1,1,1), similarly the curvilinear sub-

schemes of the form ⟨y + αx+ βx2,x3⟩ belong to U(3), whereas the noncurvi-

linear point Z∞ belongs to U(2,1), and since it is unique, we have Hilb3(C2) \(
U(1,1,1) ∪ U(3)

)
= {Z∞}.

The Hilbert–Chow morphism in coordinates. Following [28, pp. 210–214], the
coordinate ring of the chart U(1,1,1) is C[e1, e2, e3, a0, a1, a2], and an ideal I(e,a) ∈
U(1,1,1), with coordinates (e, a) := (e1, e1, e3, a0, a1, a2) is given by

I(e,a) := ⟨x3 − e1x
2 + e2x− e3,y − (a0 + a1x+ a2x

2)⟩.

Whenever e = (e1, e2, e3) = 0 and a = (0, a1, a2), we get an element I(0,a) ∈ B3
OA

of the Briançon variety. The meaning of these affine coordinates is that if the zero
locus V(I(e,a)) consists of three points of C2 of coordinates (x1,y1), (x2,y2) and
(x3,y3), repeated with multiplicity, then in this chart we use the Viète formula

x3 − e1x
2 + e2x− e3 =

3∏
i=1

(x− xi),(6)

so that the coordinates ei are the elementary symmetric functions in the variables
x1,x2,x3, whereas the coordinates ai are the coefficients of the Lagrange interpo-
lation polynomial ϕa(x) = a0+a1x+a2x

2 such that yi = ϕa(xi) for i = 1, 2, 3. We
see that the coordinates a0, a1, a2 are well defined only when the three coordinates
x1,x2,x3 are different, that is when I(e,a) is a reduced subscheme.

The Chow quotient Sym3(C2) is A3/S3, where any element σ of the symmetric
group S3 acts by σ(xi,yi) = (xσ(i),yσ(i)) for any i = 1, 2, 3. The Hilbert–Chow
morphism

h|U(1,1,1)
: U(1,1,1) → Sym3(C2)

is defined by

h(e, a) = ((x1,y1), (x2,y2), (x3,y3)),

where xi are the roots (not necessarily distinct) of the polynomial x3 − e1x
2 +

e2x− e3, and yi = ϕa(xi) as above.
In this chart we can describe the birational inverse map

h−1 : Sym3(C2) 99K Hilb3(C2) :

the coordinates (e1, e2, e3) are always defined by formula (6), even when the points
(xi,yi) are not distinct, but the coordinates (a0, a1, a2) are not well defined when
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x1,x2,x3 are not distinct. More precisely, the interpolation yi = ϕa(xi) means
that these coordinates are defined by Cramer’s rule:

(7) a0 =

∣∣∣∣∣∣
y1 x1 x2

1

y2 x2 x2
2

y3 x3 x2
3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣
, a1 =

∣∣∣∣∣∣
1 y1 x2

1

1 y2 x2
2

1 y3 x2
3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣
, a2 =

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣
.

We get a very similar picture on the chart U(3), simply by exchanging the roles
of the variables x and y. The coordinate ring of the third chart U(2,1) is slightly
different. Its coordinate ring is C[a1, a2, b1, b2, c1, c2], and an ideal I(a,b,c) ∈ U(2,1)

with coordinates (a, b, c) = (a1, a2, b1, b2, c1, c2) is given by

I(a,b,c) := ⟨x2 − a0 − a1x− a2y,xy − b0 − b1x− b2y,y
2 − c0 − c1x− c2y⟩.

with the following formulae, patiently deduced from [28, (2.16) and (2.17)]:

a0 = a2(b1 − c2) + b2(b2 − a1), b0 = a2c1 − b1b2, c0 = c1(b2 − a1) + b1(b1 − c2).

Restriction to the fibre over the origin. Let us restrict the computation to the
variety Kum2(A). On the chart U(1,1,1) the condition x1 + x2 + x3 = 0 gives

e1 = 0, and the condition y1 + y2 + y3 = 0 gives 3a0 + a2(x
2
1 + x2

2 + x2
3) = 0, so

3a0 − 2a2e2 = 0: the local equations of Kum2(A) are thus e1 = 0 and a0 = 2
3a2e2.

On the variety Ã3
0, we have the relations

(8)
x3 = −x1 − x2, y1 = (w1 + z3)x1, y2 = (w2 + z3)x2,

x2w2 = −x1w1, y3 = z3x3 = −(x1 + x2)z3,

and we interpret the coordinates ai as rational maps ãi : Ã
3
0 99K C. An elementary

computation, starting from Formula (7) gives:

ã1(x1,w1,x2,w2, z3) = z3 +w1w2
w2

1 +w2
2 − 4w1w2

(w1 − 2w2)(2w1 −w2)(w1 +w2)
,(9)

ã2(x1,w1,x2,w2, z3) =
−3w1w

2
2(w1 −w2)

x1(w1 − 2w2)(2w1 −w2)(w1 +w2)
.(10)

We see that ã1 defines a rational function on F̃1, but ã2 does not, because of its pole

along x1 = 0. Let G ⊂ F̃1 be the support of the 1-cycle defined by the numerator
of this function: that is,

G := V
(
w1w

2
2(w1 −w2)

)
red

⊂ F̃1.(11)

The fact that the coordinate function ã2 cannot be extended to F̃1 \G means that
the rational image of F1 by γA does not land in the open subset U(1,1,1)∩Kum2(A).
By exchanging the roles of the variables x and y, we get that it does not land in
the open subset U(3) ∩Kum2(A) either. Since Hilb3(A)∖

(
U(1,1,1) ∪ U(3)

)
= {Z∞},

the conclusion is that γA contracts the generic point of F1 to Z∞, so the restriction
γA|F1

extends to the whole of F1 and contracts it to the noncurvilinear point

(however, γA itself is not defined on the whole F1). This concludes the proof. □

In Appendix B we give three alternative arguments, the first one using saturation
of ideals, the second one using the computation on the chart U(2,1) to see more
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explicitly the contraction of the divisor F1 and the third one using explicit projective
coordinates.

We now analyse the behaviour of γA around the divisor F2. The fixed locus of
the natural involution Kum2(τ) induced by τ on Kum2(A) consists of the Kummer
surface Kum1(A), embedded in Kum2(A) as the locus of subschemes supported on
0-cycles of the form a + (−a) + OA ∈ Sym3

0(A), plus 36 isolated points (see for
instance [9, §4.3.1]). This embedding of the Kummer surface yields the following
diagram:

Kum1(A)
� � //

ε

��

Kum2(A)

hA

��
A/τ �

� // Sym3
0(A)

Proposition 2.4. The birational map γA contracts the divisor F2 to the Kummer
surface Kum1(A) embedded in Kum2(A).

Proof. Under the embedding of Kum1(A) in Kum2(A), if a ∈ A is a nonzero 2-
torsion point with image ā ∈ Kum1(A), the exceptional fibre ε−1(ā) is sent to the
curve h−1

A (2a + OA) parametrising the nonreduced length two subschemes of A
supported at a (the third support point being the origin). This is a rational curve
as it is isomorphic to the Briançon variety B2

a
∼= P1. The embedding of the fibre

ε−1(OA) in B
3
OA

is similar, and can be computed as follows, using the same method
as in the proof of Proposition 2.3. We compute, locally over the origin, the image
of the composite map on the first row:

Ã
2:1 //

βA

��

Kum1(A)
� � //

ε

��

Kum2(A)

hA

��
A

2:1 // A/τ �
� // Sym3

0(A)

Let x,y be local coordinates around the origin of A and (x, z) be local coor-
dinates around β−1

A (OA), with y = xz. Using notation as above, we put a =
(x1,y1) = (x,y), then −a = (x2,y2) = (−x,−y) and (x3,y3) = (0, 0). Thus, on
the chart U(1,1,1), the coordinate functions are

e1 = 0, e2 = x2, e3 = 0, a0 = 0, a1 = z, a2 = 0.

Putting x = 0, we see that the image of ε−1(OA) in Kum2(A) consists of the rational
curve in B3

OA
parametrising the subschemes with zero curvature, i.e. where β = 0

in the description given above.
The minimal resolution morphism ε is the blowup of the classes of the sixteen

2-torsion points of A. Since the morphism βA blows up the class of the origin, it
factorises through the blowup ε′ of the classes of the fifteen nonzero ones:

Kum1(A)

ε

$$
ε′

��
Ã/τ̃

βA // A/τ

(12)

To show that the map γA contracts the divisor F2 to the Kummer surface, we first
observe that this map is dominated by the embedding of Kum1(A) in Kum2(A),
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as shown in the following diagram, where pr1 denotes the projection to the first
factor:

Kum1(A)× EA
pr1 //

ε̃×id

��

Kum1(A) �
� // Kum2(A)

hA

��
Ã/τ̃ × EA // F2

γA|F2

88

Sym3(βA)

// Sym3
0(A)

But this is not enough to show that the map γA contracts the divisor F2, so we use
a similar computation as in the proof of Proposition 2.3. That is, we compute the

rational map g in a neighbourhood of the premiage F̃2 of F2 in Ã3
0, which is given

as the image of the morphism:

Ã× E1 → Ã3
0, (ã, e) 7→ (ã, τ̃(ã), e).

Taking local coordinates (x1,y1), (x2,y2), (x3,y3) of A3 and yi = x1zi, the
divisor F2 is given by the relations x1 + x2 = 0 and y1 + y2 = 0, so in the

local coordinates x1,x2,w1,w2, z3 of Ã3
0, it has local equations x1 + x2 = 0 and

w1 − w2 = 0. In the chart U(1,1,1), we observed that the local coordinates of the

variety Kum2(A) in Hilb3(A) are (e2, e3, a1, a2). The coordinate e3 = 0 is zero

along F̃2 and we see with Equation (9) that the function ã2 extends generically to

zero along F̃2. This shows that γA contracts F2 to the surface of local equations
e1 = a2 = 0: these are the local equations of Kum1(A) that we computed above. □

3. The genus two curves

Let C be a smooth projective curve of genus g. For any n ≥ 0, we denote by
Symn(C) the symmetric product of C, by Φn : C

n → Symn(C) the Chow quotient,
by Picn(C) the moduli space of isomorphism classes of degree n line bundles on
C and by Hilbn(C) the Hilbert scheme parametrising length n zero-dimensional
subschemes of C.

For n ≥ 1 and for any (p1, . . . , pn) ∈ Cn, we denote by p1 + · · ·+ pn ∈ Symn(C)
the formal sum, which we interpret, depending on the context, as an element of
the Chow quotient, as a divisor on C or as a length n subscheme of C, since the
Hilbert–Chow morphism Hilbn(C) → Symn(C) is an isomorphism. We denote by
∆n ⊂ Symn(C) the locus of nonreduced subschemes.

For any p1+ · · ·+ pn ∈ Symn(C), we denote by OC(p1+ · · ·+ pn) ∈ Picn(C) the
corresponding isomorphism class of line bundles, or equivalently linear equivalence
class of divisors on C. We denote by ∼ the linear equivalence relation between divi-
sors on C. We define the Jacobian Jac(C) of C as the group Pic0(C) of isomorphism
classes of degree zero line bundles on C.

From now on, we assume that C is a genus two curve and we put A = Jac(C).
All notation introduced above and indexed by an abelian surface A will be indexed
by C for more readibility. That is:

GC := GJac(C), hC := hJac(C), γC := γJac(C), EC := EJac(C), ᾱC = ᾱJac(C).

3.1. The Jacobian of a genus two curve. Let C be a genus two curve. It is
hyperelliptic: we denote the hyperelliptic involution by σ and the associate ramified
canonical double covering by π : C → P1. The ramification locus consists of six
distinct points, the Weierstrass points of C. The curve C thus admits an equation
of the form z2 = f(x, y), where f is a degree six homogeneous polynomial vanishing
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at the six branch points, so we may consider C as a curve in the weighted projective
plane P113 with homogeneous coordinates [x : y : z]. We denote this embedding
of C by ι : C ↪→ P113.

With respect to these coordinates, for [x : y : z] ∈ C we have π([x : y : z]) = [x :
y] and σ([x : y : z]) = [x : y : −z]. We may choose coordinates on P1 such that the
branch points of π are [1 : 0], [0 : 1], [1 : 1] and three other distinct points [λi : 1].
Then the equation of C in P113 is

z2 = xy(x− y)(x− λ1y)(x− λ2y)(x− λ3y) =: f(x, y).(13)

We denote by ∞ := [1 : 0 : 0] ∈ C the ramification point over [1 : 0].
Every element of Jac(C) has a unique representative, called a reduced divisor

(see [43, Chapter 3, §2]), which is one of

(1) OC(p1 + p2 − 2∞) with pi ∈ C \ {∞}, p1 ̸= p2 and p1 ̸= σ(p2);
(2) OC(2p− 2∞) with p ∈ C \ {∞} and p ̸= σ(p);
(3) OC(p−∞) with p ∈ C \ {∞};
(4) OC .

In particular, p+σ(p) ∼ 2∞ for all p ∈ C. It is a classical result, see for instance [42,
Lecture 3], that the Abel–Jacobi map

AJ2 : Sym
2(C) → Jac(C), p1 + p2 7→ OC(p1 + p2 − 2∞)(14)

is the blowup βC of the origin of Jac(C), that is Ã = J̃ac(C) ∼= Sym2(C). The
exceptional divisor of the blowup is thus

(15) EC := {p+ σ(p) | p ∈ C} ⊂ Sym2(C).

The sign involution on Jac(C) is given by τ(L) = L−1. For any p1, p2 ∈ C we have

p1 + p2 + σ(p1) + σ(p2) ∼ 4∞,

so OC(p1 + p2 − 2∞)−1 = OC(σ(p1) + σ(p2) − 2∞) ∈ Jac(C). It follows that

τ = σ∗ and that the involution τ̃ on Sym2(C) = J̃ac(C) introduced in 2.3 is given
by τ̃(p1 + p2) = σ(p1) + σ(p2).

By the Poincaré formula [8, 11.2.1], the theta divisor giving the principal po-
larisation of Jac(C) is the image of the Abel–Jacobi map C → Jac(C), that is
Θ := {p − ∞ | p ∈ C}, and Θ2 = 2. If C is generic in its moduli space,
then NS(Jac(C)) = ZΘ. Following §2.1, we denote by h the image of Θ in
Kum2(Jac(C)) and we observed above that the minimal possible polarisation degree
of Kum2(Jac(C)) is qKum2(Jac(C))(3h− δ) = 12.

Remark 3.1. In this setup, Diagram (12) has rich and famous geometric proper-
ties. Recall the situation:

Kum1(Jac(C))

ε

''
ε̃

��
Sym2(C)/τ̃

AJ2 // Jac(C)/τ

The double covering π : C → P1 induces a 4 : 1 covering

Sym2(π) : Sym2(C) → Sym2(P1) ∼= P2,
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which factors through τ̃ to a double covering Sym2(C)/τ̃ → P2 whose branch locus
is the union of the six lines

{w + x | x ∈ P1} ∈ Sym2(P1),

where w is one the six branch points of π. Each of these curves defines a line in P2

and the branch locus is thus a sextic curve in P2 that consists of six lines tangent
to a conic, meeting in 15 points that are blown up by ε̃ (see for instance [20, §10.2],
with a complementary point of view).

3.2. The linear system of cubics. The linear system of cubics in P113 is 5-
dimensional:

H0(P113,OP113
(3)) = Span(x3, x2y, xy2, y3, z).

We put L := ι∗OP113(3), so |L| is the complete linear system of cubics on the curve
C. We have h0(C,L) = 5 by Riemann–Roch (see also the simple part of Mattuck’s
argument in the proof below) and so H0(C,L) = H0(P113,OP113

(3)) with |L| ∼= P4.
Any divisor D ∈ |L| has an equation of the form:

α0x
3 + α1x

2y + α2xy
2 + α3y

3 + α4z = 0,(16)

with αi ∈ C, so a generic D cuts the curve C in six distinct points (see Figure 1). It
follows that deg(L) = 6, so the line bundle L is very ample [29, Corollary IV.3.2].

Figure 1. A genus 2 curve (in blue) and a cubic interpolation (in
red) intersecting in 6 points on the affine chart y = 1 of coordinates
x (abscissa) and z (ordinate).

Lemma 3.1. We have |L| = |6∞| and π∗L ∼= OP1 ⊕OP1(3).

Proof. The equality |L| = |6∞| is an application to our situation of classical results
of Mattuck and Mumford. If C is a smooth curve of genus g, and if n > 2g − 2,
then Mattuck [39] shows that the divisor class map

δ : Symn(C) → Picn(C), p1 + · · ·+ pn 7→ OC(p1 + · · ·+ pn)

is a Pn−g bundle. For completeness we give the part of Mattuck’s argument that we
need: we do not need the local triviality, which is harder. Writing ξ := p1+· · ·+pn ∈
Symn(C), the fibre of δ over OC(ξ) is by definition the complete linear system
|ξ|. Since deg(KC − ξ) = 2g − 2 − n < 0, we have h0(X,KC − ξ) = 0, hence
h0(C, ξ) = n − g + 1 by the Riemann–Roch theorem. Thus |ξ| ∼= Pn−g and this
dimension does not depend on ξ.
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We apply this result with g = 2, for the genus two curve C introduced above,
and we keep the same notation as above.

Secondly, by a result of Mumford [43, Chapter 3,§2], if D is a degree d irreducible
curve D in P113 and by p1, . . . , pk are the not necessarily distinct intersection points
of D with the genus two curve C, then the divisor p1+ · · ·+pk is linearly equivalent
to (2d)∞. In particular, we have k = 2d. Again we recall the proof for completeness.
The curveD has equation g(x, y, z) = 0, with g a weighted homogeneous polynomial

of degree d, and the curve C is given by the equation (13). The quotient g(x,y,z)
yd

thus defines a rational function on C whose divisor is:

p1 + · · ·+ pk − (2d)∞.

Since this divisor has degree zero, we have k = 2d. We apply this result with g = 2
and d = 3 and k = 6, this gives |L| = |6∞|.

The computation of the direct image π∗L is a straightforward application of the
cyclic covering methods [4, §I.17]. Since the canonical sheaf of C is ωC ∼= OC(2∞),
by the first assertion we get that L ∼= ω⊗3

C . The double covering π is branched at the
six Weierstrass points, so it is determined by the line bundle L = OP1(3) such that
L⊗2 ∼= OP1(6) and π∗OC

∼= OP1 ⊕L−1. We have ωC ∼= π∗(ωP1 ⊗L) ∼= π∗OP1(1), so
by the projection formula

π∗ω
⊗3
C

∼= π∗π
∗OP1(3) ∼= OP1(3)⊗ π∗OP1 ∼= OP1 ⊕OP1(3). □

The Abel–Jacobi map is the map

AJn : Sym
n(C) → Jac(C), p1 + · · ·+ pn 7→ OC(p1 + · · ·+ pn − n∞),(17)

By Lemma 3.1 we have |L| ∼= AJ−1
6 ({OC}). Let us rephrase this: all length 6

zero-dimensional subschemes of C that admit a cubic interpolation belong to the
fibre over OC of the Abel–Jacobi map AJ6. But since the linear system on C cut
out by the cubics has the correct dimension, this is a characterisation of this fibre.

3.3. Interpretation of the linear system of cubics as a degeneracy locus.
Let us describe the linear system |L| differently. Consider a length 6 subscheme
ξ ⊂ C, that is ξ ∈ Sym6(C). Start with the exact sequence

0 −→ Iξ −→ OC −→ Oξ −→ 0,

and tensor by L:
0 −→ L⊗ Iξ −→ L −→ L⊗Oξ −→ 0.

Since deg(L) > deg(KC), we have by Serre duality h1(C,L) = 0, so we get a four
terms exact sequence in cohomology:

(18) 0 → H0(C,L ⊗ Iξ) → H0(C,L) resξ−−→ H0(C,L ⊗Oξ) → H1(C,L ⊗ Iξ) → 0.

Since Iξ ∼= OC(−ξ), the sheaf L(−ξ) := L ⊗ Iξ is a degree zero line bundle. We
are interested in the restriction morphism resξ, whose rank is at most 5:

resξ : C5 ∼= H0(C,L) → H0(ξ,L|ξ) ∼= C6.

Proposition 3.2. We have |L| = {ξ ∈ Sym6(C) | rk(resξ) = 4}, and there is no

ξ ∈ Sym6(C) such that rk resξ < 4.
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Proof. For any ξ ∈ Sym6(C), the exact sequence (18) says that

rk(resξ) = 5− h0(C,L(−ξ)),
so rk(resξ) = 4 means that h0(C,L(−ξ)) = 1. Since L(−ξ) has degree zero, this is
equivalent to L(−ξ) ∼= OC , or equivalently to ξ ∈ |L|. Moreover, if rk resξ < 4 then
h0(C,L(−ξ)) ≥ 2: this is not possible since L(−ξ) has degree zero. □

Proposition 3.2 means that for every length 6 subscheme of C, there exists at
most one cubic interpolation. In what follows, we will frequently interpret the
identification AJ−1

6 ({OC}) = |L| as the isomorphism

AJ−1
6 ({OC}) // |L| ∼= PH0(C,L)

ξ
� // ker(resξ)

(19)

that sends a length 6 subscheme admitting a cubic interpolation to the equation of
this uniquely defined cubic.

Remark 3.2. By Proposition 3.2, there exists at most one cubic interpolation
for every given length 6 subscheme of C. Although this is expected for general
subschemes, it is remarkable that it holds for all of them. The basic general obser-
vation is that a cubic interpolation can never factor as conic and a “nonvertical”
line (this expression makes sense in the affine chart y = 1 with coordinates (x, z),
see Figure 2), because of shape of the equation and the fact that the variable z has
degree 3. If the cubic contains a “vertical line” x = α, then its equation does not
contain the variable z and it thus factors as a product of three vertical lines.

3.4. The linear system of conics. Similarly as in §3.2, the linear system of conics
in P113 is 3-dimensional:

H0(P113,OP113
(2)) = Span(x2, xy, y2).

We put C := ι∗OP113(2). Let ξ ∈ Sym4(C). Similarly as in §3.3, to study the
cubic interpolations that pass through four points we make use of the restriction
morphism

resξ : C5 ∼= H0(C,L) → H0(ξ, L|ξ) ∼= C4.

This time, ker(resξ) is never zero so there exists at least one cubic interpolation at
ξ, and it is unique if and only if h0(C,L(−ξ)) = 1.

We now characterise those length four subschemes of C that admit a conic inter-
polation, and we relate this to the extent to which the cubic interpolations passing
through these points fail to be unique.

Lemma 3.3. Let ξ := p1 + p2 + p3 + p4 ∈ Sym4(C). The following assertions are
equivalent:

(1) ξ ∼ 4∞.
(2) There exists K ∈ |C| such that K ∩ C = p1 + · · ·+ p4.
(3) Up to permutation of the points, p2 = σ(p1) and p4 = σ(p3).
(4) h0(C,L(−ξ)) = 2.

Proof. Since the equation of a conic K ∈ |C| does not contain the variable z,
within the affine chart y = 1 it consists of two vertical lines (or one double line).
Therefore it cuts C in four points, which form two orbits under the action of the
involution σ, so up to reordering the points, we conclude that p2 = σ(p1) and
p4 = σ(p3). Since the converse is clear, this proves (2)⇔(3). Moreover, any line of
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equation ax+ by = 0, with (a : b) ∈ P1, completes this conic to cubic interpolation
that consisting of three vertical lines. This means that there is a pencil of cubics
intersecting C at ξ, so h0(C,L(−ξ)) = 2. This proves (2)⇒(4). Since p+σ(p) ∼ 2∞
for any p ∈ C (see [43, Chapter 3, §2]), we get

p1 + · · ·+ p4 ∼ 4∞.

Conversely, if four points p1, . . . , p4 satisfy the relation p1 + · · ·+ p4 ∼ 4∞, arguing
similarly as in the proof of Lemma 3.1, we see that |C| = |4∞| and we deduce that
these four points admit a unique conic interpolation. This proves (1)⇔(2).

It remains to show that (4)⇒(2). Suppose that (2) does not hold, so at least
three of the x-coordinates of the points pi are distinct.

First assume that the x-coordinates of the four points are all different from one
another and from ∞, so that we may write them as pi = (xi : 1 : zi). There exists
a unique cubic interpolation g(x, z) at these points, defined by the four conditions
g(xi) = zi, so h

0(C,L(−ξ)) = 1. If instead one of the points is ∞, there is still
a cubic interpolation, but it has no x3-term and it is uniquely determined by the
interpolation at the three remaining points.

If only three of the x-coordinates are distinct, we may assume that p2 = σ(p1)
and that the coordinates x1, x3, x4 are distinct. To construct a cubic interpolation
at these four points, we first need to take the line joining p1 and p2. Then the
only way to interpolate C at p3 and p4 with a conic is to take the lines joining
p3 to σ(p3) and p4 to σ(p4), so these points admit a unique cubic interpolation and
h0(C,L(−ξ)) = 1. □

4. A degree 15 covering of the linear system of cubics

4.1. Covering maps and Galois closure. Inequivalent notions of covering map
coexist in the literature. We follow [23, §3] and make the definition below. Note
that we do not require a covering map to be étale.

Definition 4.1. A covering map is a finite surjective morphism f : X → X ′ be-
tween normal projective varieties. A covering map f is called Galois if there exits a
finite group G ⊂ Aut(X) such that f is isomorphic to the quotient map X → X/G.

Let f : X → X ′ be a morphism between normal projective varieties. The sup-
port R of the sheaf of relative Kähler differentials

ΩX/X′ := coker (f∗ΩX′ → ΩX) ,

endowed with its structure of a closed subscheme of X, is the ramification scheme
of f . Its image B := f(R), defined as a closed subscheme of X ′, is the branch
scheme of f . When X is normal and X ′ is nonsingular, by the Zariski–Nagata pu-
rity theorem [44, 53], R and B are divisors on X and X ′ respectively (see also [54,
Theorem 2.4]). The terms ramification locus and branch locus refer to the under-
lying sets of closed points.

Theorem 4.1. [23, Theorem 3.7] Let f : X → X ′ be a covering map between quasi-

projective varieties. There exists a normal, quasi-projective variety X̂ and a finite

surjective morphism f̂ : X̂ → X, called the Galois closure of f , such that

(1) there exist finite groups H ⊂ G such that the morphisms F := f ◦ f̂ and f̂
are Galois coverings with respective groups G and H.

(2) The branch loci of F and f are equal.
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4.2. Organising six points on the curve into three pairs.

Definition 4.2. We denote by H the subgroup of the symmetric group S6 gener-
ated by the permutations (1, 2), (1, 3)(2, 4) and (1, 5)(2, 6).

The group H has order 48 and hence index 15 in S6, but it is not normal.

Lemma 4.2. The Chow quotient Φ6 : C
6 → Sym6(C) factorises through a finite

morphism φ : Sym3(Sym2(C)) → Sym6(C) of degree 15, as follows:

Φ6 : C6 φ̂ // Sym3(Sym2(C))
φ // Sym6(C)

(p1, . . . , p6)
� // [p1 + p2] + [p3 + p4] + [p5 + p6]

� // p1 + · · ·+ p6.

The morphism φ̂ is the Galois closure of φ.

I have to admit that I do not really like the notation with the parentheses. The
deeper problem is that we overload the “+”. In some instances it is associative,
in others, it isn’t. Do we want to use something else such as [p1 + · · · + pk] for

elements of Symk(C) throughout, then? If so, we must do it carefully and fully. It
may be the best thing. I changed [p1 + p2] in the definition, but not the notation
for 0-cycle everywhere. Later we use pi,j = pi + pj , maybe this could be better?

Proof. The morphism φ is quasi-finite, hence finite by Stein factorisation since
all varieties involved are projective. Its degree is 15 = 1

3!

(
6
2

)(
4
2

)
and it is clearly

surjective. It is also flat since Sym6(C) is nonsingular and Sym3(Sym2(C)) is
Cohen–Macaulay (see [17, 18.17]). The Chow quotient Φ6 : C

6 → Sym6(C) is a
Galois covering with group the symmetric group S6. It is easy to check that φ̂ is the
quotient of C6 by the group H introduced in Definition 4.2. This group permutes
the three pairs and the position of the points in each pair. Since Sym3(Sym2(C))
is normal, the morphism φ is a covering map in the sense of Definition 4.1 but it is
not a Galois covering since H is a nonnormal subgroup of S6. The morphism φ̂ is
the Galois closure of φ in the sense of Theorem 4.1. □

The ramification scheme of Φ6 is the big diagonal D6 ⊂ C6, i.e. the union of the
closed subschemes defined by the equalities pi = pj for p = (p1, . . . , p6) ∈ C6. It is

a reduced and reducible divisor. The branch scheme Φ6(D6) = ∆6 ⊂ Sym6(C) is
the locus of nonreduced subschemes: it is a reduced and irreducible divisor, and it
is clearly the branch scheme of φ. We study now the ramification scheme of φ.

Remark 4.1. Let us describe the fibres of φ explicitly. For any point (p1, . . . , p6) ∈
C6, we write for short pi,j := pi + pj ∈ Sym2(C). The fibre of φ over a generic

point p1 + · · ·+ p6 ∈ Sym6(C) is the following set of 15 points in Sym3(Sym2(C)):

p1,2 + p3,4 + p5,6 p1,2 + p3,5 + p4,6 p1,2 + p3,6 + p4,5
p1,3 + p2,4 + p5,6 p1,3 + p2,5 + p4,6 p1,3 + p2,6 + p4,5
p1,4 + p2,3 + p5,6 p1,4 + p2,5 + p3,6 p1,4 + p2,6 + p3,5
p1,5 + p2,3 + p4,6 p1,5 + p2,4 + p3,6 p1,5 + p2,6 + p3,4
p1,6 + p2,3 + p4,5 p1,6 + p2,4 + p3,5 p1,6 + p2,5 + p3,4
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Over a generic point of ∆6, say for instance when p1 = p2, this fibre contains only
nine closed points:

p1,1 + p3,4 + p5,6 p1,1 + p3,5 + p4,6 p1,1 + p3,6 + p4,5
p1,3 + p1,4 + p5,6 p1,3 + p1,5 + p4,6 p1,3 + p1,6 + p4,5
p1,4 + p1,5 + p3,6 p1,4 + p1,6 + p3,5 p1,5 + p1,6 + p3,4

(20)

In the scheme-theoretic fibres, the first three points, on the top line of the list (20),
are nonreduced subschemes with a length two subscheme supported at p1. The
remaining six points are (generically) reduced subschemes obtained when the point
p1 is in the support of two different summands p1,i and p1,j at the same time.

From Remark 4.1 we deduce that a generic fibre of φ consists of nine distinct
points that belong to two distinct divisors R1 and R2, defined below. We will
see shortly that only R2 is indeed a ramification divisor. Consider first the Chow
quotient:

q : Sym2(C)× Sym2(C)× Sym2(C) → Sym3(Sym2(C))

and define

R1 := q
(
∆2 × Sym2(C)× Sym2(C)

)
.(21)

It is an irreducible divisor parametrising unordered triples of effective degree 2
divisors on C such that at least one of them is nonreduced. Over a generic point of
∆6, three points of the fibre of φ belong to R1 (for instance those on the top line
of (20)).

Let us now introduce the double incidence subvariety:

Ξ := {(x, ξ1, ξ2) ∈ C × Sym2(C)× Sym2(C) | x ∈ Supp(ξ1) ∩ Supp(ξ2)},
where Supp(ξ) is the set-theoretic support of the subscheme ξ. The locus Ξ is a
codimension 2 irreducible subvariety of the product variety. Denote the projection
by

π : C × Sym2(C)× Sym2(C) → Sym2(C)× Sym2(C), (x, ξ1, ξ2) 7→ (ξ1, ξ2)

and define

R2 := q
(
π(Ξ)× Sym2(C)

)
.(22)

Over a generic point of ∆6, six points of the fibre of φ belong to R2 (for instance
those not on the top line of (20)).

Lemma 4.3. We have φ∗∆6 = R1 + 2R2. The ramification scheme of φ is the
reduced and irreducible divisor R2.

Proof. The ramification divisor of φ decomposes as a sum of irreducible components
with multiplicity as r1R1 + r2R2. Denote by ei, i = 1, 2 the local degrees (or
branching orders) of φ at generic points of Ri, so that φ∗∆6 = e1R1 + e2R2. By
symmetry, these degrees do not depend on the choice of one of the three (for i = 1),
respectively six (for i = 2) preimage points in Ri. Since φ is generically 15 : 1,
we have 3e1 + 6e2 = 15, and this gives two possibilities: either (e1, e2) = (1, 2) or
(e1, e2) = (3, 1).

Let us exclude the second possibility. We use the notation of Remark 4.1. It is
enough to consider one point in R2, say for instance p1,3 + p1,4 + p5,6. This point
is obtained as the limit point of the two reduced subschemes p1,3 + p2,4 + p5,6 or
p2,3 + p1,4 + p5,6 when p2 goes to p1, so the local degree is two. In comparison,
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a point p1,1 + p3,4 + p5,6 in R1 is the limit of p1,2 + p3,4 + p5,6 when p2 goes to
p1, but there is only one limit direction since C is a smooth curve, so there is
no ramification there. It follows that e1 = 1 and e2 = 2. We conclude using [4,
Lemma I.16.1] that the ramification divisor is R2. □

Let us rephrase the upshot of the above proof: the preimage by φ of the branch
divisor ∆6 is the union of the divisors R1 and R2, but the preimage points in R1 are
not ramification points, whereas the premiage points in R2 are ramification points
with branching order 2. The ramification divisor is thus the reduced divisor R2.

4.3. The degree 15 covering. Recall that we denote by GC := GJac(C) the variety

Sym3
0(Sym

2(C)) introduced in Definition 2.1, using the identification J̃ac(C) ∼=
Sym2(C) explained in (14).

Proposition 4.4. The morphism φ : Sym3(Sym2(C)) → Sym6(C) restricts to a
degree 15 finite morphism ψ : GC → |L| ∼= P4. The variety GC is normal, geometri-
cally Cohen–Macaulay, Q-factorial and Gorenstein, with quotient singularities.

Proof. The isomorphism (19) can be formulated equivalently as a closed embedding
|L| ↪→ Sym6(C) sending a cubic D to the subscheme D ∩C considered as a formal
sum of points, where the multiplicity of D ∩ C at a point p is the length of the
artinian ring Op,D∩C . It is easy to check that the morphism AJ6 ◦φ factorises by

Sym3(βC), that is:

Sym3(Sym2(C))
φ //

Sym3(βC)

��

Sym6(C)
AJ6 // Jac(C)

Sym3(Jac(C))

ᾱC

33

Since |L| = |6∞| ∼= AJ−1
6 (OC), this shows that GC is the fibre of φ over |L|. We

denote by ψ the restriction of φ to GC . Since a generic cubic interpolation cuts C
in 6 points, the generic fibre of ψ is reduced, so the morphism ψ : GC → |L| = P4 is
finite of degree 15.

The surface Sym2(C) is nonsingular, so the symmetric quotient Sym3(Sym2(C))
has rational singularities. Since the group S3 acts on it without quasi-reflections,
the quotient is Gorenstein (see for instance [33] and references therein). We know
by Proposition 2.1 that GC is normal, Cohen–Macaulay, Q-factorial with quotient
singularities. Since Sym6(C) is nonsingular, the finite morphism φ is Gorenstein,
meaning that its relative dualising sheaf is locally free. Since its formation com-
mutes with base change, the fibre GC over |L| is Gorenstein (see for instance [11,
§1]). □

Definition 4.3. We denote by MC the scheme-theoretic fibre over the origin of
the morphism:

C6 Φ6−−→ Sym6(C)
AJ6−−→ Jac(C),

that is, MC := (AJ6 ◦Φ6)
−1

({OC}).
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Let us summarise the situation in the following diagram, where, as we proved
above, we have GC = (AJ6 ◦φ)−1

({OC}):

MC
� � //

ψ̂

��
Ψ

��

C6

φ̂

��
Φ6

xx

GC
� � //

ψ

��

Sym3(Sym2(C))

φ

��
P4 = |L| �

� //

��

Sym6(C)

AJ6

��
{OC} �

� // Jac(C)

(23)

Proposition 4.5.

(1) The scheme MC is a local complete intersection. It is a normal variety of
dimension 4, Cohen–Macaulay and Gorenstein.

(2) The morphism ψ̂ : MC → GC is the Galois closure of ψ and ψ̂ is the quotient
map by the group H, that is GC = MC/H.

(3) The morphism Ψ: MC → |L| is syntomic.

We recall that syntomic means a flat local complete intersection morphism of
locally finite presentation, see [50, Definition 29.30.1].

Proof. For any p := (p1, . . . , p6) ∈ C6, we consider the restriction morphism resΦ6(p)

introduced above:

resΦ6(p) : C
5 ∼= H0(C,L) → H0(Φ6(p), L|Φ6(p)

) ∼= C6.

By definition, the closed points of MC are those sextuples of points on C that
are interpolated (with multiplicity if necessary) by a cubic. The finite surjective
morphism Ψ: MC → |L| maps any p ∈ MC(C) to ker(resΦ6(p)), using the isomor-
phism (19). It follows that MC is equidimensional of dimension 4. By Proposi-
tion 3.2, the cubic interpolation is always unique whenever it exists since the locus
of points p ∈ C6 such that rk(resϕ6(p)) < 4 is empty, so we have:

MC = {p ∈ C6 | ∃s ∈ H0(C,L), Z(s) = Φ6(p)}
= {p ∈ C6 | rk(resΦ6(p)) ≤ 4},

where Z(s) means the zero scheme of s (we refer to [2] for the definition of this
scheme structure).

The local equations of MC at a point p are thus the six 5×5 minors of any 6×5
matrix R associated to resΦ6(p). At least one 4× 4 minor, say the determinant |R′|
of the 4× 4 submatrix R′, is nonzero at p since the matrix has rank 4.

The determinants of the two 5× 5 submatrices containing R′ vanish at p and by
basic linear algebra, this forces the vanishing at p of all the 5 × 5 minors. So MC

is locally given by two equations in the nonsingular variety C6, hence it is a local
complete intersection. It thus satisfies Serre’s condition Sk for any k ≥ 1.

Using these local equations, we show that MC is regular in codimension zero
(Serre’s condition R0). Since a generic cubic cuts C in six points whose images
under the double covering π : C → P1 are distinct, each irreducible component of

https://stacks.math.columbia.edu/tag/01UB
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MC contains a dense open subset of points p = (p1, . . . , p6) ∈ MC such that the
x-coordinates of all pi are distinct. Let us show that MC is nonsingular at these
points. Without loss of generality, we may assume that none of these points is ∞,
so we denote their coordinates by pi = [xi : 1 : zi] with xi distinct. The matrix of
resΦ6(p) is the 6× 5 matrix

R :=

x
3
1 x21 x1 1 z1
...

...
...

...
...

x36 x26 x6 1 z6

 .

We may take R′ to be the top left 4×4 submatrix, so that |R′| is the Vandermonde
determinant V (x1, x2, x3, x4), which is nonzero because the xi are distinct. Hence,
as discussed above, the two local equations of MC at p are

M5 :=

∣∣∣∣∣∣∣∣∣
x31 x21 x1 1 z1
...

...
...

...
...

x34 x24 x4 1 z4
x36 x26 x6 1 z6

∣∣∣∣∣∣∣∣∣ = 0 and M6 :=

∣∣∣∣∣∣∣∣∣
x31 x21 x1 1 z1
...

...
...

...
...

x34 x24 x4 1 z4
x35 x25 x5 1 z5

∣∣∣∣∣∣∣∣∣ = 0.

These satisfy

∂M5

∂z5
=
∂M6

∂z6
= 0,

∂M5

∂z6
=
∂M6

∂z5
= |R′| ≠ 0,

so the Jacobian matrix of (M5,M6) at p has rank 2. This shows that MC is
nonsingular at p. Since MC is R0 and S1, it is reduced.

The same argument as in Lemma 4.3 (the computation of the local degrees) shows
that the ramification scheme R2 ∩MC of ψ is reduced, so the branch scheme B :=
ψ(R2 ∩MC) is reduced (see [50, Lemma 29.6.7]). Locally over P4, the variety MC

is given by a polynomial equation of the form

P (x, y1, . . . , y4) = x15 +

14∑
i=0

ai(y1, . . . , y4)x
i = 0,

where ai are regular functions on affine charts of P4 with coordinates (y1, . . . , y4).
The branch scheme B is the vanishing locus of the discriminant D(y1, . . . , y4) of
the polynomial P . Since B is reduced, its singularities are given by the equations

D(y1, . . . , y4) = 0,
∂D

∂yi
(y1, . . . , y4) = 0, ∀i = 1, . . . , 4.

A point with local coordinates (x, y1, . . . , y4) is a singular point of MC if

P (x, y1, . . . , y4) = 0,
∂P

∂x
(x, y1, . . . , y4) = 0

and
∂P

∂yi
(x, y1, . . . , y4) = 0, ∀i = 1, . . . , 4.

An explicit computation shows that these conditions imply that (y1, . . . , y4) is a
singular point of B, see [49, Theorem 4.2]. This means that MC is regular in
codimension one (condition R1). Since it is S2, it is normal by Serre’s criterion [29,
Proposition II.8.23].

https://stacks.math.columbia.edu/tag/056B
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Since MC is a local intersection scheme, it admits a Koszul complex providing a
locally free finite resolution K• → OMC

of its structure sheaf considered as a OC6 -
module. A standard argument (see for instance [2]) produces a spectral sequence

Ep,q1 = Hq(C6,Kp) ⇒ Hp+q(MC ,OMC
),

from which we deduce that H0(MC ,OMC
) is a quotient of H0(C6,OC6), which

is 1-dimensional since C is connected. It follows that MC is connected. Since
MC is normal and connected, using Zariski’s Main Theorem we deduce that it
is irreducible. Finally, MC/S6

∼= P4. As MC is a local complete intersection
scheme, it is Cohen–Macaulay and Gorenstein [17, Corollary 21.19]. This proves
assertion (1).

The variety GC is normal by Proposition 4.4 and it follows from Lemma 4.2

and Diagram (23) that the morphism ψ̂ : MC → GC is the Galois closure of ψ,
that is, GC = MC/H; this proves assertion (2). The morphism Ψ: MC → P4 is
a finite, hence flat, morphism from a normal local complete intersection variety to
a regular variety, by “magic flatness” (see [17, 18.17]). It follows that Ψ is also a
local complete intersection morphism, hence syntomic (see [50, Lemma 37.62.8 and
Lemma 37.62.12]); this proves assertion (3). □

4.4. The rational contraction, revisited. We know from Propositions 2.3 and
2.4 that the birational map γC : GC 99K Kum2(Jac(C)) contracts the divisor F1 de-
fined in Equation (4) to the noncurvilinear point 3OC , and contracts the divisor F2

defined in Equation (5) to the Kummer surface Kum1(Jac(C)) naturally embedded
in Kum2(Jac(C)). In this setup, these two divisors have very nice and concrete
descriptions since they parametrise the possible configurations of triples of pairs
of points that are interpolated by cubics consisting of three “vertical” lines (see
Figure 2).

(1) The comb. Recall that the exceptional divisor EC ⊂ Sym2(C) consists of
the 0-cycles of the form p+ σ(p) for p ∈ C, so

F1 = {[p1 + σ(p1)) + [p2 + σ(p2)] + [p3 + σ(p3)] | p1, p2, p3 ∈ C}.

(2) The cross. Similarly

F2 = {[p1 + σ(p2)] + [p2 + σ(p1)] + [p3 + σ(p3))] | p1, p2, p3 ∈ C}.

Given p1, p2 ∈ C, consider the curve:

ℓp1,p2 := {[p1 + σ(p2)] + [p2 + σ(p1)] + [p3 + σ(p3)] | p3 ∈ C}.

Clearly ℓp1,p2
∼= EC is a rational curve and the divisor F2 is ruled by these

rational curves.

Consider the birational inverse γ−1
C : Kum2(Jac(C)) 99K GC . A general point

of the exceptional divisor Ξ of the Hilbert–Chow morphism h◦C is a nonreduced
subscheme ξ of length 3, consisting of a length 2 subscheme supported at L1 ∈
Jac(C) and a reduced point L2 ∈ Jac(C). Taking them general enough, these
points are represented in reduced forms as L1 = OC(p1 + p2 − 2∞) and L2 =
OC(p3 + p4 − 2∞). The condition of defining a point in the generalised Kummer
fourfold of Jac(C) is that L⊗2

1 ⊗L2
∼= OC : that is, 2p1 +2p2 + p3 + p4 ∼ 6∞. This

means that the cubic interpolation at these four points is bitangent to C.
This shows that the rational map γ−1

C sends the general element of Ξ to the big

diagonal ∆ of Sym3
0(Sym

2(C)), consisting of nonreduced 0-cycles: in the case above

https://stacks.math.columbia.edu/tag/068E
https://stacks.math.columbia.edu/tag/068E
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Figure 2. A genus 2 curve (in blue) and a cubic interpolation (in
red) intersecting consisting in three vertical lines intersecting in 6
points on the affine chart y = 1 of coordinates x (abscissa) and z
(ordinate).

ξ is mapped to 2[p1 + p2] + [p3 + p4], and so this is the limit point when a general
nonreduced subcheme, defining a cubic interpolation whose image under π consists
six different points, goes to ξ (the point ξ is not sent, say to [p1+p3]+[p1+p4]+2p2).

The conclusion of this analysis is that γ−1
C contracts the exceptional divisor Ξ

to the codimension two locus ∆ in GC .

4.5. The Galois closure, revisited. Consider the projection to the first four
factors pr1 : C

6 = C4×C2 → C4 and its restriction to MC , still denoted pr1 : MC →
C4. The quotient C4 × C2 → C4 × Sym2(C), restricted to MC , induces a double

covering MC → MC , which is the Stein factorisation of the projection map

pr1 : MC
2:1−−→ MC → C4.

To see this, observe that any four points (p1, . . . , p4) ∈ C4 admit a cubic interpola-
tion, as we observed in Section 3.4, so there exist p5, p6 such that p1+· · ·+p6 ∼ 6∞.
The projection pr1 : MC → C4 is thus surjective. If p1 + · · · + p4 ̸∼ 4∞, then by
Lemma 3.3 these four points are interpolated by a unique cubic so the remain-
ing intersection points p5, p6 with C are uniquely determined. This shows that
(p1, . . . , p4) ∈ C4 has a unique preimage in MC . If p1+· · ·+p4 ∼ 4∞, by Lemma 3.3
these four points admit a conic interpolation and there is a pencil of cubic interpo-
lations obtained by adding a line joining a point p ∈ C to the point σ(p). The fibre

of (p1, . . . , p4) ∈ C4 in MC is thus C/⟨σ⟩ = P1.
Consider the composition of the Chow quotient with the Abel–Jacobi map:

AJ4 ◦Φ4 : C
4 → Sym4(C) → Jac(C)

and define the closed subscheme W ⊂ C4 parametrising quatruples of points that
admit a conic interpolation:

W := (AJ4 ◦Φ4)
−1 ({OC}) =

{
p ∈ C4 | Φ4(p) ∼ 4∞

}
.
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The locus W is exactly where the fibre of the morphism MC → C4 is P1. In fact,
it is is simply the blowup of W .

Proposition 4.6. There is an isomorphism MC
∼= BlW C4.

Proof. A similar argument as in §3.3 and Proposition 3.2 shows that

W = {p ∈ C4 | rk resΦ4(ξ) ≤ 2}.
As in the proof of Proposition 4.5, it follows thatW is locally given by two equations
in C4. Consider the two projections from MC :

MC

2:1
��

pr1

��

pr2

��

MC

π1}}
π2 $$

C4 Sym2(C)

Recall from (15) that Sym2(C) contains the exceptional divisor EC = {p + σ(p) |
p ∈ C}. The inverse ideal sheaf π−1

1 IW · OMC
defines the locus of those points

(p1, . . . , p4, p5+p6) ∈ C4×Sym2(C) such that {p1, . . . , p4} admits a conic interpola-
tion and {p1, . . . , p6} admits a cubic one. As observed above, the only possibility is
that p6 = σ(p5): that is, p5 + p6 ∈ EC . This means that π−1

1 IW · OMC

∼= π∗
2IEC

∼=
π∗
2OSym2(C)(−EC) is an invertible sheaf. By the universal property of blowup, there

exists a morphism h : MC → BlW C4 factoring π1 through the blowup morphism:

BlW C4

��
MC

h

::

π1 // C4

Concretely, every point p = (p1, . . . , p4, p5+p6) ∈ MC such that π2(p) ∈W encodes
the equation of a vertical line ux−vy = 0 intersecting C at p5 and p6. The morphism
h locally maps p to (π2(p), (u : v)) ∈ C4 × P1. The inverse morphism is clear. The

morphism h is thus birational and bijective, and MC is normal since MC is normal
by Proposition 4.5, so by Zariski’s Main Theorem, h is an isomorphism. □

Remark 4.2. The quotient MC → MC is the quotient by the involution (56) ∈ H,

so the quotient morphism ψ̂ : MC → GC factorises as:

MC

ψ̂

��

2:1 //MC/(56) = MC

vv
GC = MC/H

The morphism MC → GC is not a Galois covering since ⟨(56)⟩ is not normal in H.

Remark 4.3. The morphism W → P2 = |C| that sends four points admitting a
conic interpolation to the equation of this conic is 24 : 1 and it is ramified when the
conic is tangent to C at one of its Weierstrass points. At each such point w, the
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conic interpolation is given by the tangent line to C at w and a second vertical line
intersecting C at some points q and σ(q). The branch locus in P2 is thus a sextic
defined by six rational curves, each of them corresponding to the tangent line to C
at a Weierstrass point.

5. The branch locus of the covering of the linear system of cubics

5.1. Computation of the branch locus. We focus on the 15 : 1 covering map
ψ : GC → |L|. By the Zariski–Nagata purity theorem, the branch scheme B :=
∆6 ∩ |L| is a divisor in |L| ∼= P4. It parametrises those cubics that intersect the
curve C with at least one multiple point. Said differently, identifying |L| with
PH0(C,L) we have

B = {[s] ∈ |L| | Z(s) is nonreduced},

where Z(s) ⊂ C is the zero scheme of the section s of L.

Proposition 5.1. The linear system of cubics embeds C in (P4)∨ and the branch
locus B ⊂ P4 of ψ is the dual variety of C, which is a reduced and irreducible
hypersurface of degree 14.

Proof. Since the line bundle L on C is very ample, it defines an embedding C ↪→
|L|∨ ∼= (P4)∨ in the dual projective space. The conormal variety [34] of C for this
embedding is

VC := {(p,D) | TpC ⊂ D} ⊂ |L|∨ × |L|.
The hyperplanes D in the projective space |L| are the cubics in P113 and it is easy
to check that the condition TpC ⊂ D means that the cubic defined by D is tangent
to the curve C at the point p, so in the definition of the branch locus B, the cubics
that intersect the curve C with at least one multiple point correspond here to the
hyperplane sections of |L|∨ that are tangent to the embedding of C in |L|∨. By
definition, the dual variety C∗ of C is the projection of VC to |L|, so with respect
to this embedding the branch locus B is the dual variety C∗ ⊂ P4 of C. It is thus
reduced (we already observed this in the proof of Proposition 4.5). Its irreducibility
is proved in [51, p.7]. Its degree can be computed using the general formula [51,
Theorem 6.2(i)], which reduces in our case to

degB =

∫
C

c1(T
∨
C ) + 2

∫
C

L.

Here T∨
C = KC is a divisor of degree 2, and

∫
C
L = 6, so degB = 14 (see also [51,

Example 10.3]). □

Remark 5.1. It may be instructive to compute the degree of the branch divisor B
with elementary tools. To do so, we compute the number of intersection points of B
with the pencil of cubics D[a:b] with equation ax3 − bz = 0, which is the number of

points [a : b] ∈ P1 such that D[a:b] intersects the curve C with at least one multiple
point. Clearly [a : b] = [1, 0] is a solution that counts with multiplicity 4 since the
cubic x3 = 0 cuts C at two points of multiplicity 3 (so each point counts twice).
For the other solutions we may put b = 1. We may also restrict to the chart y = 1,
avoiding the point ∞ = [1 : 0 : 0] ∈ C, because ∞ ∈ D[0:1] and D[0:1] ∩ C consists
of the six Weierstrass points, which are distinct.
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Substituting y = 1 and z = ax3 into the equation (13) of C, we find that the
points [x : 1 : ax3] of C ∩D[a:1] satisfy an equation of the form P (x) = 0, where

P := a2x6 − x5 + ε1x
4 + · · ·+ ε4x+ ε5.

We need the number of values of a such that this polynomial has repeated roots.
This is given by the degree of the discriminant of P as a polynomial in a. The
resultant of P and P ′ is the following 11× 11 determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε5 ε4 ε3 ε2 ε1 −1 a2

. . .
. . .

. . .
. . .

. . .
. . .

ε5 ε4 ε3 ε2 ε1 −1 a2

ε4 2ε3 3ε2 4ε1 −5 6a2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

ε4 2ε3 3ε2 4ε1 −5 6a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This determinant has degree 12 in a, so the discriminant of P has degree 10. In
total we have 14 intersection points, so the hypersurface B has degree 14.

Corollary 5.2. Let C be a smooth genus two curve. The linear system of cubics
embeds C in (P4)∨ and the dual variety C∗ ⊂ P4 of C is a degree 14 irreducible hy-
persurface. The second generalised Kummer variety Kum2(Jac(C)) of the Jacobian
of C is birational to a degree 15 covering of P4 branched along C∗.

This corollary is simply a summary of Propositions 2.1, 4.4 and 5.1.

Proposition 5.3. Let z2 = f(x) be the equation of the curve C in the chart y = 1
of P113, as in Equation (13). The branch locus B in P4 of coordinates (α0 : · · · : α4)
has equation:

1

α6
4

Discrx

(
α2
4f(x)−

(
α0x

3 + α1x
2 + α2x+ α3

)2)
.

Proof. We compute on the affine chart y = 1 of P113. The curve C has equation
z2 = f(x) and we consider a cubic D with equation as in (16):

g(x, z) = α0x
3 + α1x

2 + α2x+ α3 + α4z.

Let p = [a : 1 : b] ∈ P113. The intersection multiplicity of C and D at p is by
definition the dimension as a complex vector space of the localisation of the quotient
C[x, z]/⟨z2 − f(x), g(x, z)⟩ at the maximal ideal of the point p. It is well known that
if α4 ̸= 0, this number is the order of vanishing at x = a of the resultant R(x) :=

Resz(z
2 − f(x), g(x, z)). In fact R(x) = α2

4f(x)−
(
α0x

3 + α1x
2 + α2x+ α3

)2
. We

deduce that D is tangent to C when R has a multiple root, so the branch locus B
is an irreducible component of the locus of vanishing of the discriminant Discrx(R).
Computation shows that Discrx(R) has a factor of α6

4. When α4 = 0, the cubic
D consists of three vertical lines, and R has three double roots that correspond to
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tangencies between C andD only when the lines pass through one of the Weierstrass
points. So the factor α6

4 is irrelevant for the branch locus B, hence the result. □

Remark 5.2. An explicit computation of the equation of B is given in Remark C.3.
We proved that the branch locus B is an irreducible component of the locus in P4

where the polynomial R(x) = α2
4f(x)−

(
α0x

3 + α1x
2 + α2x+ α3

)2
has a multiple

root in the variable x. Here R is not monic but we may simply consider R̄(x) =

α2
4f(x) −

(
x3 + α1x

2 + α2x+ α3

)2
, compute the discriminant of R, divide by α6

4

and homogeneise with respect to the variable α0 to recovering the branch locus B.
Following Arnold (see [45] and references therein), the branch locus is stratified in
closed subschemes Bλ, where λ is a partition of the integer 6. The main strata are
the caustic stratum B3,1,1,1 and the Maxwell stratum B2,2,1,1.

Recalling the divisors R1, R2 defined in Equations (21) and (22), that describe
the ramification of the morphism ϕ, let us introduce the following divisors on GC :

R0
i := Ri ∩ GC , i = 1, 2.(24)

We denote by H the pullback H := ψ∗L, where L ⊂ P4 is a hyperplane. Since ψ
is finite and L is (very) ample, the divisor H is ample. From the properties of the
covering ψ : GC → P4, we deduce some useful geometric information on GC :

Corollary 5.4.

(1) The divisor R◦
2 is very ample.

(2) 14H = R◦
1 + 2R◦

2.
(3) The canonical divisor is KGC

= −5H +R◦
2.

Proof. By Proposition 4.4, the morphism ψ is Gorenstein so we can apply the
general theory of [11, Theorem 2.1(ii)]: the Tschirnhausen bundle E∨ of ψ gives an
embedding j : GC ↪→ P(E) such that the ramification divisor R◦

2 of ψ satisfies

OGC
(R◦

2)
∼= ωGC/P4 ∼= OGC

(1) := j∗OP(E)(1).

It follows that R◦
2 is very ample. By Lemma 4.3, we have ψ∗B = R◦

1 + 2R◦
2 and

by Proposition 5.1 we have B = 14L, so 14H = R◦
1 + 2R◦

2. By Lemma 4.3 again,
ψ has simple ramification along R◦

2, so KGC
= ψ∗KP4 +R◦

2 = −5H +R◦
2. □

Remark 5.3. The covering ψ : GC → P4 satisfies some of the assumptions defining
a general multiple space in [18, Definition 2.2]. It would thus be interesting to
know whether R◦

2 is nonsingular and whether the restriction ψ|R◦
2
: R◦

2 → B is the
normalisation map. This covering is not Galois and has relatively high degree,
making it hard to understand its possible deformations. Moreover, we noted in
Remark 2.1 that GC is not a local complete intersection, so the relative cotangent
complex of ψ is not perfect, making it harder to compute the deformations of
the covering ψ. Our interest in proving Proposition 4.5 is that the Galois closure
Ψ: M → P4 of the covering has perfect cotangent complex, so the study of its
deformations should behave more nicely: this is work in progress.

Appendix A. Moduli spaces of polarised IHS manifolds

For a more detailed survey, see [14].
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A.1. The moduli spaces Md
K3: they parametrise degree d polarised K3 surfaces,

and their dimension is 19. One easy example is the projective family of smooth
quartic surfaces in P3, which is also 19-dimensional. Since the moduli space is
irreducible, this shows that M4

K3 is unirational. The known results can be sum-
marised as follows: the moduli spaces M2e

K3 are unirational for 1 ≤ e ≤ 12 and
e = 15, 16, 17, 19 (see [27, §4] and references therein). Unirationality properties can
be also obtained for moduli of lattice-polarised K3 surfaces, see for instance [48,
Proposition 3.9]. In the other direction, it was shown in [24]I don’t find it. Sure
that it is e ≥ 40, not 2e ≥ 20? that M2e

K3 has non-negative Kodaira dimension if
e ≥ 40, with four possible exceptions, and is of general type for e ≥ 62 and a few
smaller numbers.

A.2. The moduli spaces Md,γ
Hilbn : they parametrise polarised IHS manifolds of

Hilbert type, i.e. deformation equivalent to the Hilbert scheme of n points on a K3
surface, with n ≥ 2, of degree d and divisibility γ. Their dimension is 20, whereas
the families of Hilbert schemes of n points on polarised K3 surfaces have dimension
19. Gritsenko, Hulek and Sankaran [25, Theorem 4.1] proved that M2e,1

Hilb2 is of
general type if e ≥ 12. Otherwise:

• M2,2
Hilb2 is unirational since it contains a 20-dimensional family using double

coverings of EPW-sextics (see O’Grady [46] and [27, Example 4.3]).

• M6,1
Hilb2 is unirational since it contains a 20-dimensional family using Fano

varieties of lines on cubic fourfolds (see Beauville and Donagi [6] and [27,
Example 4.2]).

• M38,2
Hilb2 is unirational: Iliev and Ranestad [32] constructed a 20-dimensional

family (see [27, Example 4.4] and [40, Proposition 1.4.16]).

• M22,2
Hilb2 is unirational: Debarre and Voisin [16] constructed a 20-dimensional

family (see [27, Example 4.5]).

• M4,2
Hilb3 is unirational: Iliev, G. Kapustka, M. Kapustka and Ranestad [31]

constructed a 20-dimensional family called EPW cubes.

A.3. The moduli spaces Md,γ
Kumn : they parametrise polarised IHS manifolds of

Kummer type, i.e. deformation equivalent to the n-th generalised Kummer variety
of an abelian surface, with n ≥ 2, of degree d and divisibility γ. Their dimension is 4,
whereas the families of polarised abelian surfaces have dimension 3. By Dawes [13,

Theorem 3.6] we know that M2d,1
Kum2 is of general type if d ≫ 0. See also [12].

Otherwise:

• M2,1
Kumn is uniruled if n ≥ 15 or n = 17, 20 (see [3, Theorem 7.5]).

• M2,2
Kumn is uniruled if n = 4t − 2 with t ≤ 11 or t = 13, 15, 17, 19 (see [3,

Theorem 7.5]).

• M2,2
Kum2 is rational (see [52, Theorem 5.4] and [3, Theorem 7.6]).

A.4. The moduli spaces Md,γ
OG6: these 6-dimensional spaces parametrise po-

larised IHS manifolds of type OG6, i.e. deformation equivalent to an O’Grady
IHS sixfold, of degree d and divisibility γ. Following [3, Theorem 7.2] we have:

• M2d,1
OG6 is uniruled if d ≤ 12;

• M4t−1,2
OG6 is uniruled if t ≤ 10 or t = 12;

• M4t−2,2
OG6 is uniruled if t ≤ 9 or t = 11, 13.
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• The moduli space M6,2
OG6 and M2,1

OG6 are rational (see [52, Theorem 5.4]
and [3, Theorem 7.6]).

A.5. The moduli spaces Md,γ
OG10: these 21-dimensional spaces parametrise po-

larised IHS manifolds of type OG10, i.e. deformation equivalent to an O’Grady IHS
tenfold, of degree d and divisibility γ. As far as the authors know, no unirationality
result is known for these spaces. It is conjectured in [26] that M24,3

OG10, M
60,3
OG10 and

M96,3
OG10 are uniruled, and it is shown that Md,1

OG10 is of general type unless d is a
power of 2.

Appendix B. Alternative views on the proof of Proposition 2.3

B.1. Saturation. In this proof, we are interested in the locus inside F̃1 where
the rational function ã2 can be extended, keeping the Cramer relation true. In
the polynomial ring C[x1,x2,w1,w2, z3, ã2], we consider the ideal I defining the
Cramer relation satisfied by the rational function ã2 and the ideal J defining the
divisor F1. The locus inside F1 where ã2 extends is the intersection with the Zariski
closure V(I) \ V(J) ∩ V(J).

It is a classical result that this is the zero locus of the saturation (I : J∞) + J
of the ideal I with respect to J . A Gröbner basis computation (see Remark C.4)
gives

(I : J∞) + J = ⟨w1w
2
2(w1 −w2)⟩.

We recover the locus G defined in (11).

B.2. Computations in the chart U(2,1). Following the notation of the proof,
in the chart U(2,1) the coordinate functions are a0, a1, a2, b0, b1, b2, c0, c1, c2 with
the relations given in the proof. To compute them in terms of a triple of points
(x1,y1), (x2,y2), (x3,y3) we use the generators of the ideal I(a,b,c). The generator

x2 − a0 − a1x− a2y means that:1 x1 y1

1 x2 y2

1 x3 y3

a0a1
a2

 =

x1

x2

x3

 ,

so the coordinates ai are given by Cramer’s rule:

a0 =

∣∣∣∣∣∣
x2
1 x1 y1

x2
2 x2 y2

x2
3 x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, a1 =

∣∣∣∣∣∣
1 x2

1 y1

1 x2
2 y2

1 x2
3 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, a2 =

∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
,

and similarly

b0 =

∣∣∣∣∣∣
x1y1 x1 y1

x2y2 x2 y2

x3y3 x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, b1 =

∣∣∣∣∣∣
1 x1y1 y1

1 x2y2 y2

1 x3y3 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, b2 =

∣∣∣∣∣∣
1 x1 x1y1

1 x2 x2y2

1 x3 x3y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
,
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and

c0 =

∣∣∣∣∣∣
y2
1 x1 y1

y2
2 x2 y2

y2
3 x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, c1 =

∣∣∣∣∣∣
1 y2

1 y1

1 y2
2 y2

1 y2
3 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, c2 =

∣∣∣∣∣∣
1 x1 y2

1

1 x2 y2
2

1 x3 y2
3

∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
.

The relations three between these nine coordinates, given in the proof, are easy to
check. Substituting as in the proof, we get the following formulas:

ã1 =
x1A1(w1, w2, z3)

w1x22(w1 − w2)
, ã2 =

x1A2(w1, w2, z3)

w1x22(w1 − w2)
,

b̃1 =
x1B1(w1, w2, z3)

w1x22(w1 − w2)
, b̃2 =

x1B2(w1, w2, z3)

w1x22(w1 − w2)
,

c̃1 =
x1C1(w1, w2, z3)

w1x22(w1 − w2)
, c̃2 =

x1C2(w1, w2, z3)

w1x22(w1 − w2)
,

where Ai, Bi, Ci are polynomial expressions. This shows that all the coordinate
functions vanish at x1 = 0 when w1x

2
2(w1 − w2) ̸= 0, so the generic point of the

divisor F1 is sent to the ideal I∞ = ⟨x2,xy,y2⟩. This gives a different proof that
γA contracts the divisor F1 to the point Z∞.

B.3. The projective embedding. We use an explicit projective embedding of
Hilb3(A) following the presentation given by Haiman [28] of the original and general
construction due to Grothendieck. We first recall this construction. Let M be
the set of monomials in the variables x,y of degree at most 3. For any ideal
I ∈ Hilb3(A), by Gordan [21] the quotient C[x,y]/I is generated by M (at this
point, monomials of degree at most two would suffice, but we need degree three
monomials for the projective embedding). Denote by V := Span(M) ⊂ C[x,y] the
vector subspace generated by M . For any I ∈ Hilb3(A), the linear map

πI : V → C[x,y]/I

is surjective, and its kernel ker(πI) has codimension three in V . Instead of work-
ing with a basis of this kernel, it is more convenient to work with its equations,
so we consider its annihilator ker(πI)

⊥ ⊂ V ∗, which has dimension three. By a
result of Grothendieck, we get an embedding in the Grassmannian of 3-dimensional
subspaces of V ∗:

Hilb3(A) ↪→ Grass(3, V ∗), I 7→ ker(πI)
⊥.

The projective embedding of Hilb3(A) inside which we will study the behaviour of
the map g is the Plücker embedding (where we use here the projective space of lines
in

∧
3V ∗):

℘ : Hilb3(A) ↪→ P
(∧3V ∗) , I 7→

∧3
(
ker(πI)

⊥) .
Let E ⊂ Hilb3(A) be the exceptional divisor, parametrising non-reduced sub-

schemes, and ∆ ⊂ Sym3(A) the big diagonal. The Hilbert–Chow morphism hA re-
stricts to an isomorphism between the open subsets Hilb3(A) \ E and Sym3(A) \∆.

The rational map from Ã3 to P
(∧

3V ∗) is regular on the following open subsets:

Ã3 \∆′′ πÃ−−→ Sym3(Ã) \∆′ Sym3(βA)−−−−−−→ Sym3(A) \∆
h−1
A−−→ Hilb3(A) \ E ℘−→ P

(∧3V ∗)
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where ∆′ :=
(
Sym3(βA)

)−1
(∆) and ∆′′ := (πÃ)

−1(∆′). After restricting to the
fibres over the origin, we recover the restriction of the rational map ℘ ◦ g, and we

see that it is regular on an open subset containing (Ã3 \∆′′) ∩ Ã3
0, but this subset

is not optimal since it contains divisors. To compute the image of the divisor F1

contracted by γA, we compute for each partition λ of the integer 3, the morphism

℘ ◦ g : g−1
(
Kum2(A) ∩ Uλ ∩

(
Hilb3(A) \ E

))
→ P

(∧3V ∗) .
Let us compute on the chart U(1,1,1). The vector space V has basis

(1,x,y,x2,xy,y2,x3,x2y,xy2,y3).

For any ideal I := I(e,a) ∈ U(1,1,1) generated by:

I(e,a) := ⟨x3 − e1x
2 + e2x− e3,y − (a0 + a1x+ a2x

2)⟩,
the quotient space C[x,y]/I has basis (1,x,x2) modulo I. The morphism πI defines
a 3×10 matrix A whose coefficients depend on e and a. The kernel of this matrix is
organised as a (7× 10)-matrix B whose rows are the coordinates of the generators
of ker(πI). Interpreting duality as a canonical scalar product, the kernel of B is
organised as a (3 × 10)-matrix whose rows are the coefficients of the equations of
ker(πI)

◦ in the dual basis of V ∗. We restrict to Kum2(A) by inserting the equations
of Kum2(A) in Hilb3(A) in our chart, that is e1 = 0, a0 = 2

3a2e2, and we arrive at
the following matrix:

C =
1

27

 0 0 27a2 27 27a1 9a22e2 + 27a21 0
0 27 27a1 0 −9a2e2 −18a1a2e2 + 27a22e3 −27e2
27 0 18a2e2 0 27a2e3 12a22e

2
2 + 54a1a2e3 27e3

· · ·

· · ·
−9a2e2 −18a1a2e2 + 27a22e3

−27a1e2 + 27a2e3 3a22e
2
2 − 27a21e2 + 54a1a2e3

27a1e3 9a22e2e3 + 27a21e3

· · ·

· · ·
9a32e

2
2 − 27a21a2e2 + 81a1a

2
2e3

9a1a
2
2e

2
2 − 27a31e2 + 81a21a2e3

27a1a
2
2e2e3 + 8a32e

3
2 + 27a31e3 + 27a32e

2
3


We now use formulas (7) and (8) to express the 120 Plücker coordinates pi,j,k
of I in P

(∧
3V ∗) as rational functions of the variables x1,w1,x2,w2, z3. Those

are all the (3 × 3) minors of the matrix C. After some simplifications, we see
that p1,2,3 is divisible by x261 and that all the others are divisible by x271 . We
obtain the rational image of the divisor F1 by putting x1 = 0, which gives the
point [1 : 0 : . . . : 0] ∈ P120. A similar method shows that these are the Plücker
coordinates of the point Z∞. The computation on the chart U(2,1) is similar.

Appendix C. The scripts used in this work

We reproduce below the scripts used in this paper. None of our proofs actu-
ally needed computer algebra tools: these only served as a guidance. We used
Macaulay2 [22] and Magma [10].

Remark C.1. Here is a Macaulay2 script used in Remark 2.1 to check that the
variety GA is not a local complete intersection scheme:

loadPackage "InvariantRing"

R = QQ [x1, x2, x3, y1, y2, y3]

M12 = matrix{{0, 1, 0, 0, 0, 0},
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{1, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 1, 0},

{0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 0, 1}}

M123 = matrix{{0, 0, 1, 0, 0, 0},

{1, 0, 0, 0, 0, 0},

{0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 1},

{0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 1, 0}}

L = {M12, M123}

S3 = finiteAction(L,R)

g = invariants S3

netList g

A = QQ[x1, x2, x3, y1, y2, y3, f0, f1, f2, f3, f4, f5, f6, f7, f8]

inv = {substitute(g#0, A), substitute(g#1, A), substitute(g#2, A),

substitute(g#3, A), substitute(g#4, A), substitute(g#5, A),

substitute(g#6, A), substitute(g#7, A), substitute(g#8, A)}

I = ideal{f0 - inv#0, f1 - inv#1, f2 - inv#2, f3 - inv#3, f4 - inv#4,

f5 - inv#5, f6 - inv#6, f7 - inv#7, f8 - inv#8}

loadPackage "Elimination"

J = eliminate({x1, x2, x3, y1, y2, y3}, I)

-- Computation of Sym^3_0 A : the equations are f0, f1

sym = J + ideal{f0, f1}

loadPackage "TorAlgebra"

isGorenstein sym

isCI sym

-- Computation of Sym^3_0 hat A : the equations are f1, f3

model = J + ideal{f1, f3}

isGorenstein model

isCI model

Remark C.2. Here is a Magma script to compute the group H defined in §4.2:
G := SymmetricGroup(6);

H := sub<G | [(1, 2), (1, 3)(2, 4), (1, 5)(2, 6)]>;

Order(H);

IsNormal(G, H);

Remark C.3. Here is a Magma script to compute the branch locus B in §5.1:
R <e1, e2, e3, e4, e5> := PolynomialRing(Rationals(), 5);

A <x, a0, a1, a2, a3, a4> := PolynomialRing(R, 6);

f := x ^ 5 - e1 * x ^ 4 - e2 * x ^ 3 - e3 * x ^ 2 - e4 * x - e5;

p := a0 * x ^ 3 + a1 * x ^ 2 + a2 * x + a3;

r := a4 ^2 * f - p ^ 2;

b := Discriminant(r, x) div a4^6;
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Degree(b);

Remark C.4. Here is the Magma script used in §B.1:
A<a2,x1,x2,w1,w2,z3> := PolynomialRing(Rationals(), 6, "elim", 1);

x3 := - x1 - x2;

v1 := w1 + z3;

v2 := w2 + z3;

y1 := x1 * v1;

y2 := x2 * v2;

y3 := x3 * z3;

D := (x1-x2) * (x1 - x3) * (x2 - x3);

I := ideal<A | x1 * w1 + x2 * w2,

D * a2 - (x2 - x3) * y1 - (x3 - x1) * y2 - (x1 - x2) * y3>;

J := ideal<A | x1, x2>;

C := Saturation(I, J) + J;

GroebnerBasis(C);

References

1. D. Agostini, P. Beri, F. Giovenzana, and A. D. Ŕıos Ortiz, Coble duality for Jacobian Kummer
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