
Fast Matrix Operations in Computer Algebra

Zak Tonks & Gregory Sankaran & James H. Davenport
Departments of Mathematical Sciences and Computer Science

University of Bath, Bath BA2 7AY, United Kingdom
Email: {Z.P.Tonks,G.K.Sankaran,J.H.Davenport}@bath.ac.uk

Abstract—There has been surprisingly little written about
the practical use of Strassen–Winograd (as opposed to
interpolation-based, and therefore oriented towards matrices
of dense polynomials) fast matrix methods in computer alge-
bra. We show that Strassen–Winograd multiplication can be
practically effective. We also derive a fraction-free method of
fast matrix inversion, and investigate its efficiency.

Keywords-matrices; fast matrix; multiplication; inversion;

I. INTRODUCTION

Throughout this paper, we consider operations on n × n
matrices over some commutative ring R, elements of Rn×n,
where we generally assume that n is a power of 2. When
we say a matrix of size n, we mean that it is square,
of dimension n × n. F will be the field of fractions of
R. By “elementary operations” we mean operations on
elements of R. Since the initial appearance in [1] of methods
for multiplying matrices in fewer than O(n3) elementary
operations, there has been an enormous literature on what
are loosely called “fast operations”. The method in [1] was
O(ncS ) where cS = log2(7) ≈ 2.807, for multiplication and
for matrix inversion. Roughly speaking, we can divide this
literature into four classes:

1) developments in the area of inversion, e.g. [2];
2) improved implicit constants in the O notation, e.g. [3];
3) methods that are O(nω) for ω < cS , e.g. [4];
4) investigations into the practical behaviour of these

algorithms, e.g. [5].
This paper falls largely in the fourth category. In particular
we consider the case, common in computer algebra, where
R is an integral domain (or at least a domain where
enough elements are non zero divisors) rather than a field,
and where the costs of operations grow as the elements
grow. Conversely we assume exact arithmetic, and are not
concerned with rounding errors or numerical stability.

II. MATRIX MULTIPLICATION

Rather than [1], we consider [3], which from our point of
view is strictly superior. We can summarise it as:

8A1 perform eight additions of the input matrix ele-
ments, or the results of previous additions;

7M perform seven multiplications of these;
7A2 perform seven additions of these products, or the

results of previous additions.
By contrast, the standard algorithm’s cost is 8M + 4A2.

A. The base case
If we regard M = A1 = A2 (the usual assumptions),

then for 256 × 256 matrices, the elementary method re-
quires 16777216M + 16711680A and Winograd’s method
5764801M + 28496325A.

In practice, of course, we do not recurse down all the way,
and Table I shows the results of using the Naı̈ve method for
2× 2, 4× 4 and 8× 8 matrices. We see that 8× 8 suffices,
as this method is already faster for 16× 16 matrices.

Table I
M = A1 = A2

Size Naı̈ve Winograd Wfrom2x2 Wfrom4x4 Wfrom8x8
2 12 22 12 12 12
4 112 214 144 112 112
8 960 1738 1248 1024 960

16 7936 13126 9696 8128 7680
32 64512 95722 71712 60736 57600
64 520192 685414 517344 440512 418560

128 4177920 4859338 3682848 3145024 2991360
256 33488896 34261126 26025696 22260928 21185280
512 268173312 240810922 183162912 156809536 149280000

Table of weighted number of operations for each algorithm against matrix
dimension, where here we take M = A1 = A2. Note, “Wfromnxn” means
Winograd recursing as usual until matrix size n, then naı̈ve.

B. Linear Polynomials
Now let us suppose that the entries of M are univariate

linear polynomials, so that an A1 costs two coefficient op-
erations, a multiplication costs M = 5

2A1, and A2 = 3
2A1.

Table II shows the effect of these data.

Table II
LINEAR POLYNOMIALS: M = 5

2
A1 ,A2 = 3

2
A1

Size Naı̈ve Winograd Wfrom2x2 Wfrom4x4 Wfrom8x8
2 26 36 26 26 26
4 232 326 256 232 232
8 1952 2578 2088 1920 1952

16 16000 19230 15800 14624 14848
32 129536 139346 115336 107104 108672
64 1042432 994366 826296 768672 779648

128 8364032 7036338 5859848 5456480 5533312
256 67010560 49557470 41322040 38498464 39036288
512 536477696 348114706 290466696 270701664 274466432

Table of weighted number of operations for each algorithm against matrix
dimension, where here we take linear polynomials.

As the degree increases, the disparities in costs will
increase.



C. Experimental Data

Table III
THEORY WITH M = 3.8A1 ,A2 = 2A1

Size Naı̈ve Winograd Wfrom2x2 Wfrom4x4 Wfrom8x8
2 38 49 38 38 38
4 339 428 357 339 339
8 2842 3349 2850 2726 2842

16 23245 24854 21355 20493 21299
32 188006 179609 155118 149082 154726
64 1512243 1279788 1108357 1066099 1105613

128 12130714 9048629 7848610 7552806 7829402
256 97176781 63700854 55300715 53230093 55166259
512 777938534 447347769 388546798 374052442 387605606

Table of weighted number of operations for each algorithm per matrix
dimension, where here we take M = 3.8A1, A2 = 2A1, such as for the
polynomials used in experiments that produced the results in Table IV.

Table IV
RESULTS OF EXPERIMENTATION

Size Naı̈ve Winograd Wfrom2x2 Wfrom4x4 Wfrom8x8
8 0.094 0.172 0.047 0.032 0.046

16 0.391 1.34 0.5 0.391 0.359
32 3.02 9.13 3.36 2.80 2.64
64 23.6 64.6 24.8 19.7 20.2

128 204 463 185 150 158
256 1690 3500 1360 1100 1110
512 14300 25600 10000 8310 8900

CPU time (in seconds) to three significant figures for Naı̈ve and Winograd
variants per matrix dimension. Such matrices had entries that were polyno-
mials in two variables, of degree 7 with 5 terms. Thus we might expect the
timings of these multiplication algorithms on matrices of these polynomials
to imitate the shape of Table III.

All the following experimentation was performed in
Maple 20161. Table IV shows the results of experimenta-
tion in the form of a table showing the CPU time taken
to complete the relevant variants of these multiplication
algorithms on two matrices of size n. Such matrices were
over (randomly generated) polynomials of degree 7, of 5
terms, in two variables. These sparse polynomials obtained
an experimental ”MA ratio“ of ≈ 3.8, i.e. here we have that
a multiplication of two of these polynomials takes ≈ 3.8×
as much work as an addition of the same. It can be seen that
Winograd recursing down to 4×4 matrices largely pairwise
outperforms the other variants, and in fact this data for the
most part reflects what can be seen in Table III, bar some
anomalies where Winograd recursing to 8 × 8 outperforms
the rest.

Note that Table III and IV together indeed suggest that in
this case we should recurse down to 4× 4 matrices.

III. INVERSION

[1] also explains how to invert a matrix. This assumes
that the matrix is over a field, and that operations have unit
cost. This is a much more dubious assumption in computer
algebra, as if M is a matrix whose elements are polynomials

1See https://doi.org/10.15125/BATH-00460 for implementations of all
algorithms & testing procedures.

of degree d, then the elements of M−1 are, generically,
quotients of polynomials of degree (n − 1)d and nd. We
in fact use the description in [2], which has the advantage
of being applicable to solution of linear equations directly.

A. Schur Complements

We consider a block matrix A =

(
A1,1 A1,2

A2,1 A2,2

)
, and

assume A1,1 is invertible (see section V). Then(
I 0

−A2,1A
−1
1,1 I

)(
A1,1 A1,2

A2,1 A2,2

)
=

(
A1,1 A1,2

0 ∆

)
where ∆ = A2,2 − A2,1 · A−11,1 · A1,2 is known as the
Schur Complement (See [6] for the history) of A1,1 in A.
In particular

Det(A) = Det(A1,1)Det(∆) (1)

since the premultiplier has determinant 1.

B. Bunch–Hopcroft Algorithm
This inversion algorithm (Algorithm 1) recurses on itself,

inverting submatrices of half the size in any one iteration.
Namely, the submatrices A1,1 and ∆ = A2,2 −A2,1 ·A−11,1 ·
A1,2 are to be inverted, and we assume these are invertible
(i.e. Det(A1,1),Det(∆) 6= 0) for every iteration. Note that,
in general, ∆ will already be a matrix of fractions, because
it involves A−11,1.

Algorithm 1 Bunch Hopcroft Inversion. Inverts a matrix A
over a field F . The matrices A1,1 and ∆ required to be non
singular at every iteration.

Input: A ∈ Fn×n

Output: B ∈ Fn×n such that A ·B = B ·A = I

begin algorithm BHInversion(A)
if n = 1 then
B ← 1

A1,1

else

A =

(
A1,1 A1,2

A2,1 A2,2

)
A−11,1 ← BHInversion(A1,1)
∆← A2,2 −A2,1 ·A−11,1 ·A1,2

∆−1 ← BHInversion(∆)
λ← ∆−1 ·A2,1 ·A−11,1

ε← A−11,1 ·A1,2

B ←

(
A−11,1 + ε · λ −ε ·∆−1

−λ ∆−1

)
end if
end algorithm
return B

The correctness of Algorithm 1 can be verified by direct
computation of B ·A.



C. Towards a fraction-free version

The first thing to observe is that, although M−1 is a
matrix of fractions, these are not random fractions. Rather,(
M−1

)
i,j

= (Adj(M))i,j /Det(M), where the adjugate
Adj(M) is defined by (Adj(M))i,j being the determinant
of M with row i and column j deleted (and hence is a
polynomial if the entries of M are polynomials).

Hence, rather than work with elements of Fn×n, we will
consider abstractly the localisation (Rn×n)R† where R† is
the non zero-divisors of R, or more concretely equivalence
classes of pairs (M,d) ∈ Rn×n×R† under the equivalence
relation for fractions: (M1, d1) ∼ (M2, d2) precisely when
d2M1 − d1M2 = 0. For convenience we call this structure
Rn×n† . We have the usual rules

(M1, d1) · (M2, d2) = (M1M2, d1d2) (2)

(M1, d1) + (M2, d2) = (d2M1 + d1M2, d1d2), (3)

except that an important optimisation is that, if we know a
common factor c of d1, d2, the second can be replaced by

(M1, d1) + (M2, d2) = (
d2
c
M1 +

d1
c
M2,

d1
c
d2). (4)

In addition, (M,d)−1 = (d ·Adj(M),Det(M)). Henceforth,
when we say “fraction–free inverse” of M , we mean the pair
(Adj(M),Det(M)), and likewise “fraction–free inversion”
means the method that produces this pair from M .

D. A fraction-free algorithm

The fraction-free form of Algorithm 1 is given in Al-
gorithm 2. A slight subtlety is that we have written B1,1,
which in Algorithm 1 is A−11,1 + ε ·λ, rather as (Aadj1,1 , a

adj
1,1 ) ·[

(I
n
2×

n
2 , 1) + (A1,2, 1) · (Λ, λ)

]
to recognise the common

factor of A−11,1, and to avoid (3) generating unnecessarily
large denominators. In practice we would use (4), knowing
that aadj1,1 was a common factor.

Theorem 1: Algorithm 2 is correct, and all the computa-
tions in it are fraction-free.
Since Algorithm 2 is a translation of Algorithm 1, which is
correct, the correctness follows (and can also be verified by
direct manipulation).

The statement about the fraction-free nature is more sub-
tle: there are four divisions d

b1,1
etc. occurring in Algorithm

2. However, we are not asserting that these divisions, in
isolation, are exact, and indeed sometimes they are not.
Rather, we are asserting that the entries of the matrix
B1,1 = d

b1,1
B

′

1,1 etc. are free of fractions, i.e. lie in R. This
statement is now obvious: since A ·B = d1 · d2 · In×n, the
elements of B are d1 times the elements of Adj(A), and
therefore lie in R.

Algorithm 2 Fraction free formulation of Bunch-Hopcroft
Inversion of a matrix A over a ring R. The matrices A1,1

and ∆ are required to be non singular at every iteration.
Input: (A, d1) ∈ Rn×n ×R†

Output: (B, d2) ∈ Rn×n×R† such that A ·B = B ·A =

d1d2I

begin algorithm FFBHInversion(A)
if n = 1 then
B ← (d1), d2 ← A1,1

else

A =

(
A1,1 A1,2

A2,1 A2,2

)
(Aadj1,1 , a

adj
1,1 )← FFBHInversion(A1,1, 1)

(∆, δ)← (A2,2, 1)+(−A2,1, 1) ·(Aadj1,1 , a
adj
1,1 ) ·(A1,2, 1)

(∆adj , δadj)← FFBHInversion(∆, δ)
(Λ, λ)← (∆adj , δadj) · (A2,1, 1) · (Aadj1,1 , a

adj
1,1 )

(B
′

1,1, b1,1) ← (Aadj1,1 , a
adj
1,1 ) ·

[
(I

n
2×

n
2 , 1) + (A1,2, 1) ·

(Λ, λ)
]

(B
′

1,2, b1,2)← (−Aadj1,1 , a
adj
1,1 ) · (A1,2, 1) · (∆adj , δadj)

d2 ← Det(A)

d← d1d2

B1,1 ← d
b1,1

B
′

1,1

B1,2 ← d
b1,2

B
′

1,2

B2,1 ← −d
λ Λ

B2,2 ← d
δadj ∆adj

B ←

(
B1,1 B1,2

B2,1 B2,2

)
end if

E. Experimental Data

Fig. 1 shows the results of experimentation on Algo-
rithm 2 using Winograd and naı̈ve for matrix multiplica-
tion respectively, and an implementation of inversion via
Gaussian Elimination using Dodgson-Bareiss (see [7]) for
exact cancellations. Dodgson-Bareiss also lends a way of
calculating the determinant of the matrix in the process, thus
giving an implementation that gives an equivalent output to
Algorithm 2. Where Winograd’s multiplication was used,
recursion on Winograd until matrix size 4 was used, as this
was established as sufficient in Section II.

The matrices inverted in these experiments were over
integers for purposes of testing. We acknowledge that it
would be preferred to do these experiments over matrices
of sparse multivariate polynomials as per Section II.C, and
that there are approaches to inverting matrices of integers
modulo small primes. Despite this, we present these results
to demonstrate that Algorithm 2 works on matrices of



integers, and outperforms a fraction-free approach using
Gaussian Elimination in this case. The intention, of course, is
to use the algorithm on matrices of sparse multivariate poly-
nomials, using Winograd’s fewer multiplications to achieve
less cost. However in particular the authors must point to
one shortcoming of the current formulation, that lends itself
to a potential improvement. For a matrix M of size n with
entries being polynomials of degree d, we have that Adj(M)
is a matrix of size n with entries of polynomials of degree
d(n − 1). In particular, we must draw attention to the fact
that the matrix ∆ = aadj1,1A2,2−A2,1A

adj
1,1A1,2 is a matrix of

size n
2 with entries that are polynomials of degree d(n2 + 1)

due to matrix multiplication, and we need to compute the
fraction-free inverse of this! Clearly the cost of the problem
is more than expected in this case. This of course also raises
memory concerns. Integers suffer less from this bloat, and
as such experiments to produce Fig. 1 completed reliably.

We see that Algorithm 2 with Winograd outperforms the
other algorithms used here, even if marginally. The marginal
performance improvement of Algorithm 2 with Winograd,
and indeed its lower performance at matrix size 16 can be
attributed to the lower “MA ratio” of integers compared
to polynomials. As such expected number of operations of
multiplications of matrices of integers done within 2 should
be similar to those shown in Table I. In Table I we see
that Winograd recursing to size 4 outperforms Naı̈ve at
size 16 - but Algorithm 2 on matrices of size 16 features
multiplications of matrices of size 8, and hence we can
explain Algorithm 2 with Naı̈ve’s performance at matrix size
16.

IV. A FURTHER IMPROVEMENT

The (∆, δ) in Algorithm 2 is related to the true ∆
of Algorithm 1, henceforth called ∆t, in that every row
has been multiplied by δ = a1,1. Hence Det(∆) =(
aadj1,1

)n/2
Det(∆t). But Det(A) = Det(A1,1)Det(∆) from

(1), and Det(A1,1) = aadj1,1 from Theorem 1. So Det(∆) =(
aadj1,1

)n/2−1
Det(A). Det(∆) crops up as δadj .

Hence the line d2 ← Det(A) can be replaced by d2 ←
δadj/

(
aadj1,1

)n/2−1
, and we can afford2 to cancel a common

factor of
(
aadj1,1

)n/2−1
from (∆adj , δadj).

V. CONCLUSION

Despite initial appearances, it is possible to rewrite the
algorithm from [2] to be fraction-free. There are some non-
trivial improvements that we have yet to evaluate.

All this assumes that the relevant matrices A1,1 and ∆ are
non-singular. Bunch and Hopcroft explain how to handle this
in the case when R is an integral domain, and we propose no

2Further developments on this improvement to be found at https://
researchportal.bath.ac.uk/en/publications/on-fast-matrix-inversion.

Figure 1. Experimental Data for Fraction Free Inversion

A log–log plot of CPU time taken to compute the fraction
free inverse of a matrix A over the integers against matrix
dimension. The methods used include FFBH (Algorithm 2)
with Winograd, FFBH with elementary multiplication, and
a fraction free implementation of Gaussian Elimination.

changes [2]. If R is not an integral domain then the process
would need to be reformulated.

ACKNOWLEDGMENT

We are grateful for support by the Bath Institute for
Mathematical Innovation and the H2020-FETOPEN-2016-
2017-CSA project SC2 (712689).

REFERENCES

[1] V. Strassen, “Gaussian Elimination is not Optimal,” Numer.
Math., vol. 13, pp. 354–356, 1969.

[2] J. Bunch and J. Hopcroft, “Triangular factorization and inver-
sion by fast matrix multiplication,” Mathematics of Computa-
tion, vol. 28, pp. 231–236, 1974.

[3] S. Winograd, “On multiplication of 2 x 2 matrices,” Linear
algebra and its applications, vol. 4, pp. 381–388, 1971.

[4] F. Le Gall, “Powers of Tensors and Fast Matrix Multiplication,”
in Proceedings ISSAC 2014, 2014, pp. 296–303.

[5] P. D’Alberto, M. Bodrato, and A. Nicolau, “Exploiting par-
allelism in matrix-computation kernels for symmetric multi-
processor systems: Matrix-multiplication and matrix-addition
algorithm optimizations by software pipelining and threads
allocation,” ACM Transactions on Mathematical Software,
vol. 38, no. 1, pp. 2:1–2:30, 2011.

[6] R. Cottle, “Manifestations of the Schur Complement,” Linear
Algebra and its Applications, vol. 8, pp. 189–211, 1974.

[7] E. Bareiss, “Sylvester’s Identity and Multistep Integer-
Preserving Gaussian Elimination,” Mathematics of Computa-
tion, vol. 22, pp. 565–578, 1968.


