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Abstract—This paper is part of our ongoing research and
collaboration on understanding the relations between CAD algo-
rithms, equational constraints and curtains. Our previous work
manages to circumvent the curtain problem in the single equa-
tional constraint by taking advantage of the Lex-least valuation
(even in the presence of curtains). That method however fails
to take full advantage of multiple equational constraints. In this
paper we provide further clarification of McCallum’s work to
validate the use of restricted projection operator at 2 levels. We
also discuss the close relationship between order invariant and
lex-least invariant CAD’s.

Index Terms—Cylindrical Algebraic Decomposition, Equa-
tional Constraints, Lex-Least Invariance, Order Invariance

I. INTRODUCTION

A Cylindrical Algebraic Decomposition (CAD) is a decom-
position of a semi-algebraic subset of Rn (for any n) into
semi-algebraic sets (also known as cells) homeomorphic to
Rm, where 0 ≤ m ≤ n, such that the projection of any
two cells onto the first k coordinates is either the same or
disjoint. We generally want the cells to have some property
relative to some given set of input polynomials, often used to
form constraints using sign conditions. Within the context of
this paper we will primarily speak about order and lex-least
invariance.

Definition 1: A Quantifier Free Tarski Formula (QFF) is
made up of atoms connected by the standard boolean oper-
ators ∧,∨ and ¬. The atoms are statements about signs of
polynomials f ∈ R[x1, . . . , xn], of the form f ∗ 0 where
∗ ∈ {=, <,>} (and by combination also {≥,≤, 6=}).

Strictly speaking we need only the relation <, but this form
is more convenient because of the next definition.

Definition 2: [4] An Equational Constraint (EC) is a poly-
nomial equation logically implied by a QFF. If it is an atom of
the formula, it is said to be explicit; if not, then it is implicit.
If the constraint is visibly an equality constraint one from the
formula, i.e. the formula Φ is f = 0∧Φ′, we say the constraint
is syntactically explicit.

In order to understand lex-least valuation, let us recall
lexicographic order ≥lex on Nn, where n ≥ 1.

Definition 3: We say that v = (v1, . . . , vn) ≥lex

(w1, . . . , wn) = w if and only if either v = w or there exists
an i ≤ n such that vi > wi and vk = wk for all k in the range
1 ≤ k < i.
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Definition 4: [9, Definition 2.4] Let n ≥ 1 and suppose that
f ∈ R[x1, . . . , xn] is non-zero and α = (α1, . . . , αn) ∈ Rn.
The lex-least valuation να(f) at α is the least (with respect to
≥lex) element v = (v1, . . . , vn) ∈ Nn such that f expanded
about α has the term

c(x1 − α1)v1 · · · (xn − αn)vn ,

where c 6= 0.
Note that να(f) = (0, . . . , 0) if and only if f(α) 6= 0.

[10] proposed some geometric terminology to describe
the conditions under which a polynomial is nullified in the
terminology of [7].

Definition 5: A variety C ⊆ Rn is called a curtain if,
whenever (α1, . . . , αn) ∈ C, then (α1, . . . , αn−1, β) ∈ C for
all β ∈ R.

Definition 6: Suppose f ∈ R[x1, . . . , xn] and S ⊆ Rn−1.
We say that f has a curtain over S if for all (α1, . . . , αn−1) ∈
S and β ∈ R we have f(α1, . . . , αn−1, β) = 0.

Remark 1: Lazard delineability differs from delineability as
in [2] and [7] in two important ways. First, we require lex-
least invariance on the sections. Second, delineability is not
defined on curtains, but Lazard delineability is.
For background information on lex-least valuation, Lazard’s
original algorithm and curtains, see [11].

We focus on exploiting syntactically explicit equational
constraints. For further details we refer to [10].

Section II discusses some steps towards producing an algo-
rithm that exploits equational constraints, as in [8], but using
lex-least invariance instead of order invariance.

Section III examines the relationship between order invari-
ance and lex-least invariance with reference to [9]. Section IV
states a strengthened version of Theorem 4.1 in [8] and
outlines its proof.

II. DEVELOPMENTS IN LEX-LEAST VALUATION

In this section we discuss the stages of development of
the relationship between equality constraints and lex-least
invariant CADs.

Our first result (see Theorem 1 and Theorem 2 below)
allowed us to exploit an equational constraint to produce
a sign-invariant CAD. We begin with some notation and
definitions.

We fix an order x1 ≺ x2 · · · ≺ xn on the variables
in R[x1, . . . , xn] and we write x = (x1, . . . , xn−1). For



f, g ∈ R[x1, . . . , xn] we define lf (x), tf (x), Df (x) to be,
respectively, the leading coefficient, trailing coefficient and
discriminant of f , and Rf,g(x) to be the resultant resxn(f, g).
These are all elements of R[x].

If X and Y are subsets of R[x1, . . . , xn] we define
ldcf(X) = {ldcfx(f) | f ∈ X} to be the set of leading
coefficients from X , and trcf(X) and disc(X) similarly. We
also define res(X,Y ) = {Rf,g(x) | f ∈ X, g ∈ Y }.

Definition 7: [11] Let A ⊂ R[x1, . . . , xn] be a set of
polynomials. Let E ⊆ A, and define the projection operator
PLE(A) as

PLE(A) = ldcf(E) ∪ trcf(E) ∪ disc(E) ∪ res(E,E)

∪ res(E,A \ E).

We will be comparing this to Lazard’s projection operator
PL(A) defined in [9]. In the practical use of the operator, the
set E corresponds to equational constraints.

Theorem 1: [9] Suppose that f(x, xn) ∈ R[x1, . . . , xn] is
of positive degree in xn, and that Df (x) is not identically
zero. Let S be a connected subset of Rn−1 in which Df (x),
lf (x) and tf (x) are all lex-least invariant. Then f is Lazard
delineable on S, and hence f is lex-least invariant in every
Lazard section and sector over S.

Theorem 2: [11] Let n ≥ 2 and let f, g ∈ R[x1, . . . , xn] be
of positive degrees in the main variable xn. Suppose that f is
Lazard delineable on a connected subset S ⊂ Rn−1, in which
Rf,g is lex-least invariant, and f does not have a curtain over
S. Then g is sign-invariant in each section of f over S.

Theorem 1 improves the result in [7] because it uses
Lazard’s algorithm, which does not have any problem with
curtains. Unfortunately the problem reappears when lifting
from lex-least to sign invariance as in Theorem 2, if the
equational constraint has a curtain. The improvement comes
from not being concerned about non-equality constraints hav-
ing curtains.

We further proceeded, in [12], by modifying Lazard’s algo-
rithm to deal with curtains on equational constraints.

Our current work looks at producing a new projection
operator and clarifying the relationship between order invariant
CAD and lex-least invariant CAD.

Theorem 3: Suppose f, g ∈ R[x1, . . . , xn] both have pos-
itive degree in xn, and that Dg is not identically zero. Let
S ⊂ Rn−1 be a connected subset such that f does not have
a curtain over S. If Dg(x), lg(x), tg(x) and Rf,g(x) are all
lex-least invariant over S, then g is lex-least invariant on every
section of f over S.
Proof: This is a direct consequence of [9, Theorem 5.1]. �

Remark 2: In Theorem 3 we are only concerned with the
sections of f and not the sectors. This is because when we
are exploiting equational constraints, we are only interested in
when they are zero, i.e. their sections.

Definition 8: Let A ⊂ R[x1, . . . , xn] be a set of polynomi-
als. Let E ⊆ A, and define the projection operator PL∗E(A)
as

PL∗E(A) = ldcf(A) ∪ trcf(A) ∪ disc(A) ∪ res(E,E)

∪ res(E,A \ E).

Theorem 4: Let A ⊂ R[x1, . . . , xn] be a set of irreducible
polynomials and let E ⊂ A. Let S be a connected submanifold
of Rn−1 such that every element of PL∗E(A) is lex-least
invariant in S. Then each element of E either vanishes
identically on S or is Lazard delineable on S. The sections of
any f ∈ E that does not vanish identically over S are pairwise
disjoint, and each element of A \ E is lex-least invariant in
every such section.

Proof: The resultants are only needed to split cells with
respect to sectors of f ∈ E and the curtains of f ∈ E.
From Theorem 3 we know that every element of A \ E is
independently lex-least invariant on every section of f ∈ E.
Since every element of res(E,A \E) is invariant on S, every
element of A\E is simultaneously lex-least invariant on every
section of f ∈ E. �

Remark 3: The difference between this result and Theorem
2.2 [8] is that in Theorem 4 the inequality constraints may
vanish identically over S. This is because we are looking
at lex-least invariance and Lazard’s algorithm allows one to
decompose curtains. Unfortunately, this refers only to the cur-
tains in non-equational constraints. If the equational constraint
contained a curtain, this method would fail to decompose it.

Remark 4: Note that in practice set E in Definitions 7 and
8 is a singleton set.

III. ORDER VERSUS LEX-LEAST

This section looks at the relation between order invariant
and lex-least invariant CADs. Let us recall the relation estab-
lished from [9].

Theorem 5: Let f ∈ R[x1, x2] be a non-zero element and
S ⊂ R2 be connected. If f is lex-least invariant in S then f
is order invariant in S.
Proof: Since a polynomial is (order or lex-least) invariant if
and only if its irreducible factors are invariant, we may assume
that f is irreducible.

If S is a singleton then we are done, so assume otherwise.
Suppose first that f has positive degree in x2. We know that
the valuation of f in S is (0, 1) for all but finitely many
points. Since S is infinite and f is valuation invariant in S,
the valuation must be (0, 1). Hence, f is order invariant in S
with order 1.

If f has zero degree in x2 it has no multiple roots (because
it is irreducible), so hence it has valuation (0, 1) in S and
again f is order invariant in S with order 1. �

Remark 5: [9] This is not true for n > 2. For example,
consider f = x23 + x1x2 ∈ R[x1, x2, x3] and take S =
{(t, 0, 0) | t ∈ R}. Then f is lex-least invariant in S, with
valuation (0, 0, 2), but the order of f is 2 at the origin and 1
at all other points of S.

Note that although this example shows that lex-least invari-
ance does not imply order invariance for functions, it says
nothing about the relation between order invariance and lex-
least invariance for CADs.

Theorem 6: Let A be a set of polynomials and D the corre-
sponding order invariant CAD computed through McCallum’s



projection P (A). Then D is also lex-least invariant on cells
that do not have curtains.

Proof: In Lazard’s algorithm, the lifting phase consists of
finding the roots of residues of polynomials computed at
sample points. In McCallum’s algorithm, however, the poly-
nomials’ roots are found after substituting the sample points.
This returns zero on curtains, so McCallum’s algorithm fails in
that case. Away from curtains, we know that PL(A) ⊂ P (A),
so the roots obtained from Lazard’s algorithm form a subset of
the roots obtained from McCallum’s algorithm. This implies
that the cells of D are obtained by subdivision from cells
computed by Lazard’s algorithm, but these are already lex-
least invariant. �

This gives rise to an open question: is it possible to have
a CAD that is order-invariant for a set of polynomial but is
not lex-least invariant for them? We note that it is possible to
have fairly perverse CADs, that no known algorithm would
construct but which actually obey the definition [3].

IV. CLARIFICATION ON ORDER INVARIANCE AND
EQUATIONAL CONSTRAINTS

In this section we present a delineability condition subject
to equational constraints. We use intersection multiplicities,
which we define following the procedure in [1]. For this
purpose, we temporarily pass to complex coefficients.

Let f, g ∈ C[x1, . . . , xn] be coprime and nonconstant, and
and let p ∈ Cn. By an affine change of coordinates we may
assume that p is the origin and that f(0, xn) is not identically
zero so it vanishes at xn = 0 to some finite order m. Then
by Hensel’s lemma (see [1, Lecture 12]) there exist unique
elements q(x, xn) and h(x, xn) of C[[x]][xn], with h monic of
degree m, such that f(x, xn) = q(x, xn)h(x, xn), h(0, xn) =
xmn and q(0, 0) 6= 0. We define the intersection order of f and
g at p to be the order of the resultant resxn(h, g) of h and g
with respect to xn.

Geometrically, this is the same as taking a general plane
section Π through p and asking for the intersection mutiplicity
at p of the plane curves (f = 0) ∩Π and (g = 0) ∩Π.

Remark 6: With the help of this new concept, we can
observe a slight strengthening of an existing result from the
literature. Namely, consider Theorem 2.2 of [7], which is the
main “lemma” of that work. We can right away strengthen
the conclusion of that theorem to be: “Then f and g are
intersection order invariant in each section of f over S.” No
change to the hypotheses is needed. Nor is anything more
required in the existing proof, since the last paragraph of
the proof already deduces that the analytic function P , the
resultant of h and g, is order invariant in S near the origin.
By definition, this immediately implies that f and g are
intersection order invariant in σ near the origin.
We could similarly define the concept of intersection lex-least
valuation of f and g at p, which is the lex-least valuation of
the resultant resxn

(h, g) of h and g with respect to xn.
Theorem 7: Let e, f ∈ R[x1, . . . , xn] be real polynomials

of positive degree in xn. Put d = Df and suppose that
resxn−1

(e, d) is not identically zero. Let T be a connected

submanifold of Rn−2 on which e is analytic delineable, and
let σ be a section of e over T which contains no singular point
of the hypersurface e = 0. Suppose that f is degree invariant
and does not vanish identically on σ, and that d and e are
intersection order invariant in σ. Then f is analytic delineable
on σ.

Proof: By the invariance, d vanishes on σ either everywhere
or nowhere: in the latter case f is analytic delineability on σ
by [6, Theorem 2]. So we assume that d vanishes identically
on σ.

Since T , and hence σ, is connected, it suffices to show
that f is analytic delineable on σ near an arbitrary point of
σ, which we may assume to be the origin. Since e = 0 is
nonsingular there, we may also assume that ∂e/∂xn−1 6= 0
at the origin, by making a linear change of coordinates in
Rn−1. For σ is assumed to contain no singular point of the
hypersurface in Rn−1 defined by e = 0, so ∂e/∂xi 6= 0 at the
origin, for some i. Let πi : Rn−1 → Rn−2 be the projection
πi(x1, . . . , xn−1) = (x1, . . . , x̂i, . . . , xn−1). It is not difficult
to show (with the help of the implicit function theorem) that
Ti := πi(σ) is a connected submanifold of Rn−2 near the
origin, on which e is analytic delineable near the origin. Hence
we may simply interchange the xi and xn−1 coordinates, and
adjust the submanifold T as needed, to obtain ∂e/∂xn−1 6= 0
at the origin (in particular, e is of positive degree), with all
the other assumptions still valid.

We denote the (n− 2)-tuple (x1, . . . , xn−2) by ξ. Let

e(ξ, xn−1) = a0(ξ)xkn−1 + a1(ξ)xk−1n−1 + · · ·+ ak(ξ).

Now the order of e(0, xn−1) is 1 since ∂e/∂xn−1 6= 0 at
the origin. Therefore, by an extension of Hensel’s lemma
(exercise on page 95 of [1], or [7, Theorem 3.1] for the 3
variable case), there is an open box B about the origin in Rn−2
and elements q(ξ, xn−1) = b0(ξ)xk−1n−1 + · · · + bk−1(ξ) and
h(ξ, xn−1) = xn−1− c(ξ) of R[[ξ]][xn−1], whose coefficients
bi and c are real power series in ξ, absolutely convergent in B,
such that e(ξ, xn−1) = q(ξ, xn−1)h(ξ, xn−1), h(0, xn−1) =
xn−1, and q(0, 0) 6= 0. Since a function defined as the sum of
a convergent power series is analytic the coefficients bi of q
and c of h are analytic in B. Since q(0, 0) 6= 0 at the origin
and q is analytic – hence continuous – near the origin, there
exists ε > 0 and an open box B′ ⊂ B about the origin such
that q 6= 0 throughout all of B′ × (−ε, ε). In the open box
B′ × (−ε, ε), therefore, the real variety of e is identical with
the graph of the real analytic function xn−1 = c(ξ).

For ξ ∈ B′, put

f1(ξ, xn) = f(ξ, c(ξ), xn).

Then f1 is a polynomial in xn whose coefficients are real
analytic functions defined in B′: put d1 = Df1 . Then
d1(ξ) = d(ξ, c(ξ)) for all x ∈ B′. Indeed, we have d1(ξ) =
resxn−1(h, d) for all ξ ∈ B′, by [5, Theorem 1]. Furthermore,

resxn−1(e, d) = resxn−1(q, d) resxn−1(h, d)

for all ξ ∈ B′, by [5, Theorem 3]. Since resxn−1
(e, d)

is a nonzero polynomial by assumption, it follows that



resxn−1
(h, d) = d1 is also a nonzero polynomial. Moreover,

the assumptions directly imply that f1 is degree invariant and
not identically vanishing on T ∩ B′, and that d1 is order
invariant in T ∩B′. Hence, by [8, Theorem 7.1] applied to f1,
f1 is analytic delineable on T ∩ B′. Therefore, f is analytic
delineable on σ, near the origin. �

Remark 7: The example presented in Section 6 of [8]
provides a contradiction to the strengthening of the result
presented there and its analogous version with respect to lex-
least valuation. This generalization hopes to solidify the results
stated in [8] in order to provide a base for further research
concerning equational constraints and lex-least valuation.

Remark 8: Our generalization is presented here with the
hope and expectation that it may be applicable for the first
and second projections for quantifier elimination involving
arbitrarily many variables.

V. CONCLUSION AND FURTHER RESEARCH

Theorem 6 provides a clear relation between order invariant
and lex-least invariant CADs as we construct them (because
of [3]). A polynomial that is order invariant on some set
does not have to be lex-least invariant there, as an example
in [9] shows, nor conversely, as Example 3 shows. However,
one important CAD algorithm in fact produces a CAD that
is simultaneously order invariant and lex-least invariant. We
are currently extending this approach and combining it with
the machinery of Theorem 7 with the aim of finding a better
projection operator than the one in Definition 8, able to deal
with curtains present in equational constraints.
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