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Abstract. In our earlier work [I1], we combined the CAD methods of McCallum [5] and
Lazard [4] so as to produce an efficient algorithm for decomposing a hypersurface rather than
the whole of R™ (exploiting an equational constraint f = 0). That method, however, fails if
f is nullified (in the terminology of [5]): we call the set where this happens a curtain. Here
we provide a further modification which, at the cost of a trade off in terms of complexity as
compared to [I1], is valid for any hypersurface, including one containing curtains.

1 Introduction

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of a semi-algebraic set S C R™
(for any n) into semi-algebraic sets (also known as cells) homeomorphic to R™, where 0 < m < n,
such that the projection of any two cells onto the first k£ coordinates is either the same or disjoint.
We generally want the cells to have some property relative to some given set of input polynomials,
often referred to as constraints. For example, we might require sign-invariance, i.e. the sign of each
input polynomial is constant on each cell, as in the original algorithm of [2].

CAD algorithms have many applications: epidemic modelling [I], artificial intelligence to pass
exams [12], financial analysis [10], and many more, so efficient algorithms are of more than theo-
retical interest.

If S is contained in a subvariety of R™ it is clearly wasteful to compute a decomposition of R™.
McCallum, in [6], adapts his earlier algorithm [5] to this this situation. To explain this idea more
precisely, we need some terminology.

Definition 1. A Quantifier Free Tarski Formula (QFF) is made up of atoms connected by the
standard boolean operators A,V and —. The atoms are statements about signs of polynomials f €
Rlz1,...,2n], of the form f x 0 where x € {=,<,>} (and by combination also {>,<,#}).

Strictly speaking we need only the relation <, but this form is more convenient because of the
next definition.

Definition 2. [J] An Equational Constraint (EC) is a polynomial equation logically implied by a
QFF. If it is an atom of the formula, it is said to be explicit; if not, then it is implicit. If the
constraint is visibly an equality one from the formula, i.e. the formula @ is f = 0 A D', we say the
constraint is syntactically explicit.
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Although implicit and explicit ECs have the same logical status, in practice only the syntactically
explicit ECs will be known to us and therefore be available to be exploited.

Ezample 1. [3] Let f and g be two real polynomials.

The formula f =0 A g > 0 has an explicit EC, f = 0.

The formula f =0V g = 0 has no explicit EC, but the equation fg = 0 is an implicit EC.
The formula f2 4 g% < 0 also has no explicit EC, but it has two implicit ECs: f =0 and g = 0.
The formula f = 0V f2 + g2 < 0 logically implies f = 0, and the equation is an atom of the
formula which makes it an explicit EC according to the definition. However, since this deduction
is semantic rather than syntactic, it is more like an implicit EC rather than an explicit EC.

Ll

Definition 3. Let A be a set of polynomials in Rlxy,...,x,] and P: Rlzq,...,z,] X R = X a
function to some set X. If C C R™ is a cell and P(f,a) is independent of o € C' for every f € A,
then A is called P-invariant over that cell. If this is true for all the cells of a decomposition, we say
the decomposition is P-invariant.

Much work has been done on sign-invariant CADs, but we first focus our attention on the
algorithm for lex-least invariant CADs introduced by Lazard [4] (for a validity proof, see [§]).
Unlike the algorithm in [5] it works in the presence of curtains (see Definition below), and
has some complexity advantages also. In [I1] we adapted [4] to the case of an EC, analogously to
the adaptation of [5] in [6], but in doing so we reintroduced the problem of curtains. This paper
revisits [?] and in provides a hybrid algorithm, which we believe to be the first one that gives a
CAD of the variety defined by an EC rather than of R™, and yet is valid even on curtains.

In Section [3] we analyse the reasons why curtains are a problem, and explain how the previous
literature has concentrated on valuations rather than curtains themselves. Section [l consists of the
complexity analysis of our algorithm. As in [II], this algorithm cannot be used recursively because
the projection operator used in the first stage of projection would output a partial CAD which is
a hybrid between sign-invariant and lex-least invariant on curtains of the equational constraint.

2 Lex-least valuation and its applications in CAD

In order to understand lex-least valuation, let us recall lexicographic order >)ex on N where n > 1.

Definition 4. We say that v = (v1,...,Vn) Zlex (W1,...,wy) = w if and only if either v = w or
there exists an i < n such that v; > w; and vy, = wy for all k in the range 1 < k < 1.

Definition 5. [J, Definition 2.4] Let n > 1 and suppose that f € R[xy,...,x,] is non-zero and
a=(a,...,a,) € R". The lex-least valuation v, (f) at « is the least (with respect to >1ex) element
v = (v1,...,0,) € N such that f expanded about o has the term

c(z1 —ar)" - (2 — )™,
where ¢ # 0.

Note that v, (f) = (0,...,0) if and only if f(«) # 0. The lex-least valuation is referred to as the
Lazard valuation in [9].
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Example 2. If n = 1 and f(z1) = a3 — 223 + 21, then 1p(f) = 1 and v1(f) = 2. If n = 2 and
f(@1,22) = @1 (22 — 1), then v(g,0)(f) = (1,0), v(2,1)(f) = (0,2) and v(o1)(f) = (1,2).

Definition 6. [J] Let n > 2, and suppose that f € R[x1,...,2,] is non-zero and that 8 € R"~1.
The Lazard residue fg € Rlzy] of f at 8, and the lex-least valuation Ng(f) = (v, ..., vn—1) of f
above 8 are defined to be the result of Algorithm[1]

Algorithm 1 Lazard residue

Input: f € R[z1,...,2,] and § € R™ %
Output: Lazard residue f3 and Lex-least valuation of f above f.
s fe f
:fori< 1ton—1do
v; < greatest integer v such that (z; — 8;)"|f5.

1
2
3
4 fa < fa/(mi— Bi)".
5
6
7

fo < f8(Bi,ix1,...,Tn)
: end for
: return fg, (v1,...,Vn-1)

Do not confuse the lex-least valuation Ng(f) € Z"~! of f above 8 € R"~! with the lex-least
valuation vo(f) € Z™ at o € R", defined in Definition |5l Notice that if & = (8,b,) € R™ then
Vo (f) = (Ng(f), vy) for some integer v,,: in other words, Ng(f) consists of the first n—1 coordinates
of the valuation of f at any point above (.

Definition 7. [J, Definition 2.10] Let S C R and f € Rlx1,...,2,]. We say thatf is Lazard
delineable on S if:

i) The lex-least valuation of f above [ is the same for each point 5 € S.
it) There exist finitely many continuous functions 0;: S — R, such that 01 < ... < 0 if k > 0 and
such that for all € S, the set of real roots of fg is {61(5),...,0k(B)}.
1) If k = 0, then the hypersurface f = 0 does not pass over S. If k > 1, then there exist positive
integers myq, ..., my such that, for all B € S and for all 1 <1 < k, m; is the multiplicity of
0:(B) as a root of fa.

Definition 8. [J, Definition 2.10] Let f be Lazard delineable on S C R"~t. Then

i) The graphs 0; are called Lazard sections and m; is the associated multiplicity of these sections.
it) The regions between consecutive Lazard sectiomﬂ are called Lazard sectors.

Remark 1. If f is Lazard delineable on S and the valuation of f above any point in S is the zero
vector, then the Lazard sections of f are the same as the sections of f defined as in [2] and [0].

Remark 2. We can use Algorithm [I] to compute the lex-least valuation of f at o € R™. After the
loop is finished, we proceed to the first step of the loop and perform it for i = n and the n-tuple
v1i,...,V, is the required valuation.

" Including fp = —o00 and 0441 = +00.
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Definition 9. [T1] Let A C Rlz1,...,zy,] be a set of polynomials. Let E C A, and define the
projection operator PLg(A) as follows

PLg(A) =1dcf(E) Utrcef(E) Udisc(E) U {res, (f,9) | f € E, g€ A\ E}.

Here ldcf(E) and tref(FE) are the sets of leading and trailing coefficients of elements of E. We will
be comparing this to Lazard’s projection operator PL(A) defined in [9].

Theorem 1. [§] Let f(z,z,) € Rz, x,] have positive degree d in x,, where x = (x1,...,Tpn_1).
Let D(x), l(x) and t(z) denote the discriminant, leading coefficient and trailing coefficient (with
respect to x,) of f, respectively, and suppose that each of these polynomials is non-zero (as an
element of R[z]). Let S be a connected analytic subset of R"~% in which D(z), I(x) and t(z) are
all lex-least invariant. Then f is Lazard delineable on S, and hence f is lex-least invariant in
every Lazard section and sector over S. Moreover, the same conclusion holds for the polynomial

f(xyxn) =z f(z, zy).
Remark 3. In practice we will choose E to consist of polynomials occurring in equational constraints.

Theorem 2. [T1] Let n > 2 and let f, g € Rlz1,...,x,] be of positive degrees in the main variable
xp. Suppose that f is Lazard delineable on a connected subset S C R"™1, in which R = res,,, (f, )
is lex-least invariant, and f does mot have a curtain on S (see Definition below). Then g is
sign-invariant in each section of f over S.

3 Implications of curtains on CAD

We propose some geometric terminology to describe the conditions under which a polynomial is
nullified in the terminology of [6].

Definition 10. A variety C C R™ is called a curtain if, whenever (z,x,) € C, then (x,y) € C for
all y € R.

Definition 11. Suppose f € Rlz1,...,2,] and W C R"~1. We say that f has a curtain at W if
forallz € W and y € R we have f(z,y) = 0.

Remark 4. Lazard delineability differs from delineability as in [2] and [6] in two important ways.
First, we require lex-least invariance on the sections. Second, delineability is not defined on curtains,
but Lazard delineability is because the Lazard sections are of fg rather than f.

The algorithms in [6] and [7] exploit ECs but both rely on order-invariant. Because order is
not defined on curtains, these algorithms fail there. It is therefore natural to try to use Lazard’s
algorithm, which does not have this issue when used to construct a full CAD of R™. However, when
we try to exploit an EC, a difficulty does still arise if the EC has a curtain.

Example 3. Let f = 22 +y? — 1 (which we assume to be an EC), g1 =2 —x—1land go =2 —y—1
(which we assume are not ECs). Then res(f,g1) = 2% + y? — 1 = res(f, g2), and this gives us no
information about res(gi, g2). In such cases, when the EC has a curtain, it becomes impossible to
use PLg to detect the intersections of the other constraints on that curtain. Because of this, we
must resort to a general-purpose projection such as the one in [2], which includes these resultants,
when we are on a curtain contained in the hypersurface defined by the EC.
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In one common case we can avoid this complication.

Definition 12. We say that f € Rlzy,...,7,] has a point curtain at o € R"™ if N, (f) #
(0,...,0) and there exists a neighbourhood U of  such that N (f) = (0,...,0) for allo' € U\{a}.

In this case we do not need to consider the resultants between the non-equational constraints A\{f}
when projecting.

Theorem 3. Let f € Rlxy,...,x,] and let « € R If f is an equational constraint and has a
point curtain at «, then PLg is sufficient to obtain a sign-invariant CAD.

Indeed, if f has a curtain on a set S of positive dimension, we need the resultants of the non-
equational constraints to determine sample points in R®*~! above which two such constraints meet,
as in Example For a point curtain, there is only one sample point in R”~!, namely o. We calculate
the roots of Lazard residues of all constraints to determine the sample points on the curtain (which
is the fibre above «), and nothing more is needed: the algorithm still produces a lex-least invariant
CAD.

For this to be useful we need to be able to detect and classify curtains (i.e. tell whether or not
they are point curtains). The following describes an algorithm to do this.

Algorithm 2 Detecting and Classifying Curtains
(B) < PC(f,I,A,n)
Input = Set of indices I, set of sample points S with respect to the indices I, equational constraint
f € R[.I?l, ce ,:L’n_‘_ﬂ.
Output = B, B, where B is the set of sample points that are point curtains and B’ is the set of sample
points that are curtains (but not point curtains).
1: B < Empty List
: B’ + Empty List
: for . € A do
if v,(f) # 0 then
Check if the nearest 1-cell neighbours have zero valuation.
If all neighbours are zero valuation add « to B otherwise add it to B’
end if
end for
return (B,B’)

© XD WY
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Algorithm 3 Partial CAD for Curtains

(I',S"Yy « DCBS(A,I,S,C,n)
Input = Set of indices I, set of sample points S with respect to the indices I, set of polynomials A, C is
a list of tuples of sample points that are curtains and their respective indices and n the dimension of our
space.
Output = I’, S’ list of sample points and their indices for sections of the equational constraints that are
curtains.

1: If n > 2 then go to step 3.

2: for each (¢,i) € C do

3:  Isolate the Real roots of the irreducible factors of the non-zero elements of A within the limits of

neighbours from c. Construct cell indices I’ and sample points S’ from the real roots. Exit.

end for
B < the square free basis of the primitive parts of all elements of A.
P + cont(A) U PL(B).

(I",8") « DBCS(P,I,S,C,n).

(I',8") < (empty list,empty list).

9: for each a € S” do
10:  Let ¢ be the index of the cell containing «.
11: [« {fa| f € B}.
12:  for each (c,4) € C do

13: Isolate the real roots of all the polynomials in f* within the neighbours of ¢(looking at the nth
coordinate).

14: Construct cell indices and sample points for Lazard sections and sectors of elements of B from i,
a and the isolated real roots of f*.

15: Add the sample points to I and S.

16:  end for

17:  return (I',S5").

18: end for

Ezxample 4. Suppose that the list of sample points obtained when projecting using PLg for the
first stage and PL further to that is described by the diagram. If a curtain is detected over the
cell described by sample point S3 3, then we do the following. First we project all non-equational
constraints using Lazard’s original projection operator. When computing sample points, we only
consider the sample points which lie within the neighbours of the curtain sample point. For example
in our case, at level x1, we calculate all sample points between Sy and S;. We lift these sample
points to level 5. Now when computing sample points at level x5, we consider the points between
S39 and Sz 4. If at any level the index of the sample point is even, we do not need to calculate
roots,but just consider that value as our sample point for lifting.
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4 Complexity Analysis of Curtain solving method

In this section we look at the complexity of the number of cells produced by Algorithm [3] Note
that Algorithm [3| works so to speak on top of the algorithm described in [I1]. The idea is to do a
second decomposition on the sections of the equational constraint that contain curtains.

Theorem 4. Given a set A of m polynomials in n variables with maximum total degree d, Al-
gorithm @ outputs a partial CAD(i.e. a CAD of {f = 0} only) with the number of cells being at
most

22" L m(B3m+1)%" 4 (m— Dm?" ~Ha L (1)
This complexity is an improvement on the existing method of using [4] in full without exploiting
the EC, and unlike [1I] and [6] the algorithm is valid on curtains.

Proof. The first step, using a single equational constraint, has the same complexity as [6]. Further to
this, if the equational constraint has curtains, we need to re-project the non-equational constraints,
thus performing a CAD of m — 1 polynomials of maximum total degree d. Combining these two
gives the bound in .

The following verifies that the modified algorithm is better than [4] in terms of complexity. It
has worse complexity than [IT] but is valid for equational constraints with curtains.

The complexity of [] is 22" 1 (m + 1)2"~2md?"~! so after removing a factor of 22" ~1md?" !
the claim is that

BGm+1)2 T (m—1m¥ 2< (m+ 1)

But m > 2 and n > 2 (otherwise there is nothing to do) so
Bm+ 1% T (m - 1m? T 2 <3 4 1) T ()2
=3 e (m )2

32" -1 4

n—1_
g 3% T4

= (m+ 1)2"—2(3—2" + 3—2"+2"*1+1)
<(m+1)*"2

=(m+1)""2

<(m+1)

since 372" 4 372"H2" 1+l < 374 4 31 = % < 1.

5 Conclusion and Further research

Algorithm [3]is the first partial CAD algorithm which is a hybrid between sign-invariant and lex-least
invariant CAD algorithms. It allows us to exploit equational constraints unconditionally. The novelty
lies in performing a second decomposition of the curtain sections of the equational constraints: the
worst case for the complexity analysis is when the entire equational constraint is a curtain. More
analysis needs to done, as better complexity should be achievable, and we hope to do this the near
future. We are currently looking into extending this approach so as to produce as output a partial
CAD that has a hybrid of order invariance and lex-least invariance. Note that lex-least invariance
over a given region does not imply order invariance, but an order invariant CAD is also lex-least
invariant.
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