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Abstract

We introduce an algebraic approach to the problem of constructing

explicit normalized coprime factorizations for retarded delay systems.

A parametrization is given of all the possible factorizations that can

be obtained by solving algebraic equations over the �eld generated by

s and e
�s. This enables us to provide a means of determining when

such factors can be calculated explicitly, and to show that in general

they cannot. Some illustrative examples are given.
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Notation

C + denotes the right half-plane fs 2 C : Re s > 0g.
H1(C+) or H1 denotes the Hardy space of bounded analytic functions

on C + , with kfk1 = sups2C+ jf(s)j.
A(C +) (the half-plane algebra) denotes the subalgebra consisting of all

continuous functions on C + that tend to a unique limit at �i1.

The Laplace transform L is de�ned formally by

Lg(s) =
Z
1

0

e�stg(t) dt s 2 C + :

The notation ĝ is also used for Lg.
W (C +) denotes the Wiener algebra on C + , namely the space of functions

of the form a+ Lg, where a 2 C + and g 2 L1(0;1).
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1 Introduction

Let G(s) be a meromorphic function in the right half-plane C + , and let A
denote one of the algebras H1(C+), A(C +) or W (C +) de�ned above. Often

we regard G as the transfer function of a linear time-invariant system, with

the input{output relation written y = Gu when ŷ(s) = G(s)û(s), for s 2 C + .

In this paper we shall restrict ourselves entirely to functions G that satisfy

G(�s) = G(s), so that in the time-domain real functions u are mapped to

real functions y.

We say G has a coprime factorization over A when G = N=D with N , D

coprime functions in A, in the sense that we can solve the B�ezout identity

XN + Y D = 1 over A. In particular this means that

inf
s2C+

jN(s)j+ jD(s)j > 0:

Further, a coprime factorization G = N 0=D0 is said to be normalized, if

jN 0(s)j2 + jD0(s)j2 = 1 for s 2 iR. It is clear that to normalize a coprime

factorization requires us to �nd a function F 2 A solving the equation

jF (s)j2 = jN(s)j2 + jD(s)j2; s 2 iR;

after which the factorization N 0 = N=F , D0 = D=F will be normalized.

The process of obtaining the function F is usually referred to as spectral

factorization.

Coprime factorizations in general, and normalized coprime factorizations

in particular are of great importance in robust and optimal control. See

[CZ, GS, MG, ZDG].

For proper rational functions G(s) = p(s)=q(s) with deg q � deg p, and p,

q having no common factors, the problem of constructing explicit normalized

coprime factorizations is well-understood, and it may be regarded as a very

special case of the results we present below (see Example 4.1).

For transfer functions in the more general classes de�ned above, analytic

expressions are frequently available for normalized coprime factors, but they

do not in general lead to closed-form expressions.

For example, a construction was given in [MP], which is valid in the

algebra W (C +). This requires writing

log(jN(s)j2 + jD(s)j2) = V (s) + V (s); s 2 iR;

for V (s) 2 W (C +) (this can be done with the aid of the inverse Laplace

transform), after which N exp(�V ) and D exp(�V ) are normalized coprime

factors. On the other hand, Treil [T] has shown that a similar construction

does not exist in A(C +). This alerts us to the fact that approximate con-

structions need a certain level of sophistication: rational approximation in

the uniform norm is not enough, since the process of taking spectral factors
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is discontinuous in this topology. We refer to [JP] for a more systematic

analysis of this question.

The class of in�nite-dimensional systems with which we shall work is

the set of retarded delay systems [BC]. These have transfer functions of the

form

G(s) = h2(s)=h1(s) (1)

where

h1(s) =

n1X
j=0

pj(s)e
��js;

h2(s) =

n2X
k=0

qk(s)e
�
ks;

and 0 � 
0 < 
1 � � � < 
n1 , 0 = �0 < �1 � � � < �n2 , the pj being polynomials

of degree Æj and Æj < Æ0 for j 6= 0 and the qk being polynomials of degree

dk < Æ0 for each k. The technical conditions above guarantee that there

will only be �nitely many poles of G in any right half plane. We make the

standing assumption that h1 and h2 have no common zeroes in C + .

Kamen, Khargonekar and Tannenbaum [KKT] and more recently Brethe

and Loiseau [BL] and Gl�using-L�uer�en [G] considered the existence of co-

prime factorizations of time-delay systems with commensurate time-delays.

In particular, in [BL] there is an algorithm to compute the coprime factor-

izations for such delay-systems. An explicit formula for the B�ezout factors

was given in [BP, P], in the case of arbitrary time-delays.

Since these functions all have coprime factorizations over the algebra

W (C +), the existence of normalized coprime factorizations over W (C +) is

guaranteed. It would be desirable to extend the algebraic approach to the

construction of explicit normalized coprime factors, and this is what we shall

do in the next section. However, in order to limit the number of algebraically

independent variables to two, we shall only analyse the case when the delays

are commensurate. We conclude with some examples.

2 Construction of normalized coprime factors

We begin with the observation that the transfer function G(s) = h2(s)=h1(s)

de�ned in (1) has many explicit coprime factorizations, such as N(s) =

h2(s)=p(s) and D(s) = h1(s)=p(s), where p(s) is any polynomial of degree

d = Æ0, all of whose zeroes lie in the open left half plane C � . A convenient

choice is p(s) = (s+ 1)d.

We shall assume that the delays are commensurate, so that each �j and


k is an integer multiple of some � > 0. Now we regard z = e��s as an

independent variable. We have functions N(s; z), D(s; z) 2 R(s)[z] and
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want jN j2 + jDj2 = jF j2 on the line s 2 iR. Since N(s; z) = N(�s; 1=z)
when s = iy and je�sj = 1, we try to solve

N(s; z)N(�s; 1=z) +D(s; z)D(�s; 1=z) = F (s; z)F (�s; 1=z)

for F , given the positive de�niteness condition infy2R jF (iy)j > 0.

We de�ne an involution � on R(s; z) by the relation f�(s; z) = f(�s; 1=z).
Algebraically, we therefore wish to solve the equation F �F = N�N +D�D.

Accordingly we make the change of coordinates

t =
1� z

1 + z
= �2 tanh�s:

It is helpful to note that t 2 C + precisely when s 2 C + . Now R(s; z) �=
R(s; t) and the involution has the more convenient form g�(s; t) = g(�s;�t).
We write M = N�N +D�D.

If mi = �ni=� then mi is the z-degree of hi(s; z) 2 R(s)[z]) and we have

N = N(s; t) = (1 + s)�d(1 + t)�m1N0(s; t)

D = D(s; t) = (1 + s)�d(1 + t)�m2D0(s; t)

with N0;D0 2 R[s; t]. Now we de�ne M0 by

M = NN� +DD�

=
N0N

�

0

(1� s2)d(1� t2)m2
+

D0D
�

0

(1� s2)d(1� t2)m1

= (�1)d�2(1� s2)�d(1� t2)�mM0(s; t)

where � 2 R is the leading coeÆcient of p0(s) and m = maxfm1;m2g. If we
do this then M0 2 R[s; t] � R(t)[s] is a polynomial in s of degree 2d, with

coeÆcients in R(t), satisfying M�

0 = M0. In fact M0 = (1 � t2)nM1 with

M1 2 R(t)[s] a monic polynomial in s, for a suitable n.

The denominator ��2(1�s2)d(1�t2)m can be factorized as EE� withE 2
R[s; t] simply by taking E(s; t) = ��1(1 + s)d(1 + t)m. This is holomorphic

and nonzero in the right half-plane, so we want to factorize M0 similarly. In

this section, we seek to do this by regarding M0 as a polynomial in s. More

precisely, we seek a �nite �eld extension K : R(t) such that � : R(t) ! R(t)

extends to a Galois involution � : K ! K over R and a factorization

(�1)dM0 = HH�; H 2 K[s]:

As a general reference for Galois theory we use [S].

Once we have found such a factorization we have to �nd out whether

the resulting H determines a holomorphic function on C + , and whether the

extension of � still satis�es H(s; z) = H�(�s; 1=z) for je�sj = 1.
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Theorem 2.1 Suppose K0 : R(t) is a �nite �eld extension with an involu-

tion � : K0 ! K0 over R extending � : R(t) ! R(t). If P 2 K0[s] is a monic

polynomial of even degree 2d or odd degree 2d � 1 and P � = P , then there

is a �nite �eld extension K : K0 and an extension of � to � : K ! K such

that in K[s] we can write

(�1)dP =
Y
i

PiP
�

i

Y
j

Lj

where Pi (which is monic) and P �i have the same splitting �eld over K and

Lj = �j � s, ��j = ��j.
Proof: We proceed by induction on d (which explains why we introduced

K0 and allowed odd degree: in applications we shall have K0 = R(t) and

P = M1). Over K0[s] we write P as a product of monic irreducibles, P =Q
Qk. Certainly Q

�

k = (�1)degQkQk0 for some k0, since this expression for P

is unique. If the only �xed points of the permutation (of order 2) � : k 7! k0

correspond to linear factors, then we already have a factorization of the type

required, though without the condition on the splitting �elds yet: if the ith

transposition in � , written as a product of disjoint cycles, is (kk0) then we

take Pi = Qk, and if the jth �xed point is k then we take Lj = �Qk.

Suppose then that some nonlinear factor is preserved up to sign by �,
say Q1 = �Q�1. Then we de�ne a �eld extension K1 : K0 by adjoining a

zero of Q1: we put

K1 = K0[x]=Q1(x)K0[x]:

We extend � to K0[x] by � : x 7! �x. Then the principal ideal Q1(x)K0[x]

is �-invariant and consequently � extends to K1. Since Q1 has the linear

factor s� [x] in K1 we can reduce to lower degree.

It remains to show that we can also arrange for the condition on the split-

ting �elds. Suppose then that there are no more nonlinear factors preserved

up to sign by �. Choose (if possible) a nonlinear factor Q1 and suppose that

�(1) = 2, so Q�1 = �Q2. Suppose that Q1 and Q2 have di�erent splitting

�elds over K0. As before we put

K1 = K0[x]=Q1(x)K0[x];

which need not now have an extension of �. Similarly we put

K 0

1 = K0[x]=Q2(x)K0[x];

and then

K2 = K1[x
0]=Q2(x

0)K1[x
0]:

Generally for a commutative ring R with ideals I, J one has (R=I)=fI(J) �=
(R=J)=fJ (I) �= R=(I + J), where fI : R ! R=I denotes the quotient map,
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so

K1[x
0]=Q2(x

0)K1[x
0] �= K0[x; x

0]=Q1(x)K0[x; x
0] +Q2(x

0)K0[x; x
0]

�= K 0

1[x]=Q1(x)K
0

1[x]:

The allows us to extend � to an involution on K2 by putting � : x 7! x0,

since the ideal Q1(x)K0[x; x
0] +Q2(x

0)K0[x; x
0] is �-invariant.

We claim that K2 is a �eld. If not then Q2 is reducible over K1 and is

therefore reducible over the splitting �eld KQ1
of Q1, which contains K1.

But then Q2 splits completely over KQ1
because KQ1

, being a splitting �eld,

is normal. Similarly Q1 splits completely over the splitting �eld KQ2
of Q2:

so KQ1
= KQ2

.

To apply this result to our present purpose we take K0 = R(t) and

P = M1 and consider the resulting factorization. (Notice that the proof of

the theorem constructs K by an explicit algorithm.)

If the Lj actually occur then the algebraic method has failed: there is no

�eld extension in which (�1)dM0 = HH�. This can happen: it is analogous

to a real polynomial f of even degree having a pair of distinct real roots, in

which case it cannot be written over C as f = g�g. Indeed one should expect

such polynomials to form a set of positive measure in the real vector space

of �-invariant polynomials of �xed even degree.

If the Lj do not occur then we can take, for instance, H =
Q
Pj. Of

course there is no preferred choice of which factor is labelled Pj and which

P �j so there will be many ways of doing this: we would select one which gives

an H which is holomorphic in the right half-plane, if such a choice exists.

There may not be any such choice (see below), in which case the method

fails to produce normalized factors.

The involution � that we have constructed on K is not the only possible

one extending R(t). If 
 : K ! K is an element of the Galois group

Gal
�
K : R(t)

�
then 
�1 Æ�Æ
 would do as well. However, the correct choice

of involution will be determined by the requirement that P �j should agree

with P j when we set z = e�s and s is purely imaginary.

In practice one expects that M0 will be irreducible and will have the full

symmetric group as its Galois group. In this case most of the procedure

outlined above is redundant, because as soon as we adjoin a zero of M0 it

will split completely into linear factors. If this happens we at once know all

possible factorizations (�1)dM0 = HH�. Only exceptionally will we have

to repeat the procedure at all, or be left with nonlinear factors.

The result as stated above is formulated so as to break down P as far

as possible: if all we want is some factorization (�1)dP = HH� we do not

need the second reduction step that gives the condition on the splitting �eld

of the factors.
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3 More general extensions

We sacri�ced some generality in the last section, in the intersts of easy

calculation, by regarding M0 as a polynomial in s and allowing only �eld

extensions of R(t). For instance, we could just as well have worked in R(s)[t].

In this section we will allow �nite extensions of R(s; t).

Take M0 and M1 = (1 � t2)�nM0 as before, so that M0 2 R[s; t] �
R(s; t) = K satis�es M�

0 =M0 and (�1)dM1 is monic in s of degree 2d. We

seek, �rst of all, a �nite extension ~K : K with an extension of � : K ! K to

� : ~K ! ~K (so � 2 Gal( ~K : R), and a factorization M0 = HH� with H 2 ~K.

We put L = R(s2 ; t2; st), which is the �xed �eld of the automorphism � ofK.

Notice that L is the �eld of fractions of R[s2 ; t2; st] = R[s; t] \ L and that

M0 2 R[s2 ; t2; st]. We can always make ~K bigger if we wish, so let us assume

that ~K : L is Galois. We let ~L be the �xed �eld of � in ~K: then [ ~K : ~L] = 2

so ~K = ~L(s) = ~L(t).

Since we are dealing with the general case, we may as well assume

that M0 is absolutely irreducible; that is, it is irreducible in C [s; t]. Then

K(
p
M0) is a �eld with an extension of �, namely

K(
p
M0) = K[x]=(x2 �M0)

and x� = x. We may suppose that ~K � K(
p
M0), and then ~L � L(

p
M0):

in particular, (
p
M0)

� =
p
M�

0 =
p
M0.

Theorem 3.1 Any factorization M0 = HH� is of the form H = X + sY ,

H� = X � sY , where X;Y 2 ~L and there is a Z 2 ~L such that

X =
p
M0

�
s2Z2 + 1

s2Z2 � 1

�
; Y = 2

p
M0

�
Z

s2Z2 � 1

�
:

Thus

H =
p
M0

�
sZ + 1

sZ � 1

�
:

Proof. The map H 7! HH� = Q(H) is a quadratic form on the vector space
~K = ~L:1 + ~L:s over ~L. If we write H = X + sY , with X;Y 2 ~L, then

Q(H) = (X + sY )(X � sY ) = X2 � s2Y 2. We want to know whether Q

represents M0 2 L � ~L and if so to �nd all solutions in ~L to the equation

Q(H) =M0. One such solution is immediately to hand: by our choice of ~K,

Q(
p
M0) =M0. From this we can �nd all the solutions by a simple and well-

known procedure. If we put X0 =
p
M0 and Y0 = 0 then the point (X0; Y0)

lies on the quadric (the hyperbola) X2 � s2Y 2 = M0 in the X{Y -plane

A 2(~L) over ~L. Suppose (X1; Y1) is another solution and X0 6= X1: then the

line joining (X0; Y0) and (X1; Y1) has slope (Y1 � Y0)=(X1 �X0) 2 ~L.

Let ` be a line in A 2(~L) of slope Z 2 ~L, passing through (X0; Y0). The

equation of ` is Y = Z(X �X0) and it meets the hyperbola where

X2 � s2Z2(X �X0)
2 =M0:
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Since X0 =
p
M0 this gives

(X �X0)(X +X0)� s2Z2(X �X0)
2 = 0

and since we are looking for solutions with X 6= X0 we obtain

X +X0 � s2Z2(X �X0) = 0

and henceX =
p
M0

�
s2Z2+1
s2Z2�1

�
and Y = 2

p
M0

�
Z

s2Z2�1

�
. If insteadX = X0

then we have s2Y 2 = 0 so Y = 0 and we do not �nd any more solutions

(this corresponds to case where ` is the line X = X0, which is tangent to

the hyperbola and therefore does not meet it again).

For our purpose we want to know whether we can choose ~K in such a

way that some choice of Z 2 ~L will yield an H as above which de�nes a

holomorphic function on C + if we put t = �2 tanh�s.

Theorem 3.2 For general M0 no such choice is possible.

Proof: The idea is this: we consider H2. It is a multiple of M0 but not, on

the face of it, of M2
0 . So if we take its square root we shall be left with ap

M0 and this will not give a holomorphic function in the case that M0 has

simple zeros s 2 C + . To make this argument precise, we use the machinery

of discrete valuation rings (DVRs): our reference for this is [AM].

Consider the real aÆne algebraic surfaces V = A 2 (R) and W = fxy =

z2g � A 3(R). Their rings of algebraic functions are OV = R[s; t] and OW =

R[s2 ; t2; st] respectively, and their function �elds are k(V ) = K and k(W ) =

L. Choose integrally closed subrings O ~V � ~K and O ~W � ~L such that ~K

and ~L are the �elds of fractions of O ~V and O ~W , and put ~V = SpecO ~V ,
~W = SpecO ~W . We may assume that the rings are included in one another

in the same way as the �elds, so that there are diagrams of �elds and of

normal surfaces

L

K

~L

~K

�
�
�
�

�
�
�
�

W

V

~W

~V

?

�
�
�
��

�
�
�
��

?

�

~�

 

Let p 2W be the generic point over R of the subvariety W0 � W given

by the equation M0 = 0. This exists because M0 is absolutely irreducible:

irreducibility in R[s; t] is not enough. For the necessary details we refer

to [W], especially the Introduction and Chapters I.1 and IV.1. Put V0 =

��(W0) � V , ~W0 =  �(W0) � ~W , and ~V0 = ~�� �(W0) � ~V , and let the

generic points be q, ~p and ~q. (Strictly we should just take an irreducible
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component in each case, but in the most general case the varieties will all

be absolutely irreducible anyway.)

It can even be shown that, for each �xed positive degree in s and t, the

set of those M0 which are absolutely irreducible is dense in the set of all

possibleM0 of that degree. However, we shall not discuss this point further.

Since
p
M0 62 K (otherwise M0 would be reducible) � is unbranched

along V0.  is branched along V0 of even order 2d (d = 1 if ~L contains no

other roots of M0). Denote by Op, etc., the local ring at p 2 V and by Ôp

its completion with respect to the maximal ideal mp � Op. These are DVRs

(with valuations vp, etc.): by the branching conditions, vq(a) = vp(a) and

v~q(a) = v~p(a) for a 2 Ôp; Ô~p, but v~p(a) = 2dvp(a) and similarly for q. Let

k̂p be the �eld of fractions of Ôp, so that vp extends to a valuation on k̂�p ,

and similarly for q, ~p and ~q.

We may regard H2 as an element of k̂~q. We claim that it is not the

square of any element of Ôp. We have

H2 =M0

�
sZ + 1

sZ � 1

�2

;

so that

v~q(H
2) = v~q(M0) + 2v~q(sZ + 1)� 2v~q(sZ � 1) = v~q(M0);

since v~q(a) = v~q(a
�) for all a 2 k̂�~q , and (sZ + 1)� = (�sZ + 1). Hence

v~q(H
2) = v~q(M0) = 2dvp(M0) = 2d:

However, if H 2 Ôp then v~q(H
2) = 2v~p(H) = 4dvp(H), which is congruent

to zero mod 4d. Hence H 62 Ôp.

This proves that there is no global analytic functionH =
p
M0

�
sZ+1
sZ�1

�
2

Rfs; tg, because no such function exists even in Ôq, that is, as a formal power

series near the generic point of V0.

Now, if we set t = �2 tanh�s, then H2(s; t) = 0 in�nitely often because

there is an essential singularity at s = 1; and in the general situation H2

will have zeros in C + . If we could �nd a local analytic function H in s near

one of these zeros then by analytic continuation we would be able to �nd a

local analytic H in s and t in a neighbourhood of the zero, and hence on an

open set (in the Hausdor� topology) in V0. But then we could choose p to

be in this open set, contradicting the argument above.

4 Examples

We give three examples to illustrate the arguments above. The �rst is

classical, the second an example when algebraic spectral factorization is

possible, the third an example when it is not.
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Example 4.1 Let G(s) = e�sR(s), where R is rational and proper with

denominator degree d.

This case reduces to the classical Fej�er{Riesz theorem [RS]. Because e�s

is an inner function, it plays no role in the normalization of the coprime

factors. There is a coprime factorization of the form

N(s) =
p(s)e�s

(s+ 1)d
; D(s) =

q(s)

(s+ 1)d
;

where p and q are real polynomials, and we arrive at M = NN� + DD�,

where

M(s; t) =
p(s)p(�s) + q(s)q(�s)

(1� s2)d
= c

dY
k=1

(s� ak)(�s� ak)

(1� s)(1 + s)
;

with c > 0 and a1; : : : ; ad 2 C + . It is clear now that a normalized coprime

factorization is

N(s) =
c�1=2p(s)e�s

r(s)
; D(s) =

c�1=2q(s)

r(s)
;

where r(s) =
Qd

k=1(s+ ak).

In this case we have made a �eld extension K : R(t) as in section 2,

namely K = C (t) = R(t)(
p�1). Then M0 factorizes immediately as M0 =�Qd

k=1(s � ak)
��Qd

k=1(s � ak)
�
�

and this gives us a normalized coprime

factorization. The argument in section 3 does not apply here because it is

not true thatM0 is absolutely irreducible: over C it splits into linear factors.

The generic points used in section 3 do not exist.

In this situation the covers ~V ! V and ~W ! W are not branched: ~V

and ~W are simply two isomorphic (over C ) copies of V and W respectively,

and all we have to do is to make a �eld extension big enough to enable us

to see the two components separately.

Example 4.2 Let

G(s) =
1 + e�s=2

s+ 1 + e�s
=

1 + z=2

1 + s+ z
:

Using the coprime factorization

N =
1 + z=2

1 + s
; D =

1 + s+ z

1 + s
;

and the substitution t = (1� z)=(1 + z), we arrive at

M(s; t) = �
�
s2(t2 � 1) + 4st+ (25 � t2)=4

(1� s2)(1 � t2)

�
: (2)
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Factorizing the numerator and denominator as the product of polynomials

we see that

M(s; t) =
[s+ (4t+ t2 � 5)=(2(t2 � 1))] [�s+ (�4t+ t2 + 5)=(2(t2 � 1))]

(1 + s)(1� s)
;

so that M = F �F , where

F (s; t) =
s+ (t2 + 4t� 5)=(2(t2 � 1))

1 + s
=
s+ 3=2 + z

1 + s
;

which is analytic and nonzero in C + . This gives the normalized coprime

factorization

N =
1 + z=2

s+ 3=2 + z
; D =

1 + s+ z

s+ 3=2 + z
:

In this case the argument of section 3 fails at the last step: it just

happens that the polynomial M0, the numerator of (2), has no zeros in the

right half-plane; thus we can take its square root as an analytic function.

Now M0 factorizes as HH�, where H(s; t) = (t2 � 1)s + (t2 + 4t � 5)=2.

Moreover, we can write H =
p
M0(sZ + 1)=(sZ � 1), where

Z =
H +

p
M0

s(H �pM0)
2 ~L:

Example 4.3 Let

G(s) = 1=(s� e�s) = 1=(s� z):

Using the coprime factorization

N =
1

1 + s
; D =

s� z

1 + s
;

we now evaluate M = NN� +DD� to obtain

M = �
�
s2(t2 � 1)� 4st+ 2(1� t2)

(1� s2)(1 � t2)

�
:

Clearly the only problem is how to factorize the numerator. In this case M0

has many simple zeros in C + so according to section 3 we should be unable

to do this satisfactorily.

We illustrate this failure by attempting to apply the simple method of

section 2. Solving for s we obtain the factors

Y"
s� 2t�

p
2t4 + 2

t2 � 1

#
:

The next thing to do is to examine whether either factor is an analytic

function in the right half plane. Now we obtain a branch point of either

11



factor if t is a 4th root of �1, of which there are two in C + , corresponding

to z = i(�p2�1). Thus the only possible algebraic factorization ofM gives

functions which are inadmissible as spectral factors, and we conclude that

there is no algebraic expression for the normalized coprime factorization.

One arrives at a similar conclusion on solving for t in terms of s, when

the factors become Y"
t� 2s�

p
s4 + 4

s2 � 2

#
:
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