Cusp forms: a clarification

G.K. Sankaran, 18th June 2008

It is necessary to check that the cusp forms constructed in [GHS1] are indeed cusp forms in the strong sense, i.e. that on the toroidal compactification they vanish to order at least 1 on every boundary component.

Lemma 1.1 Let $L=2 U \oplus L_{0}$ be a lattice of signature $(2, n)$ containing two hyperbolic planes and let f be a modular form with character det or trivial character that vanishes at every cusp. Then f is a cusp form, vanishing to order at least 1 on every toroidal boundary component.

Proof. It is clearly sufficient to show that the order of vanishing of f along any boundary component F is an integer. If f is of weight k then near the boundary component F we have

$$
f(g Z)=j(g, Z) \chi(g) f(Z)
$$

where $Z \in \mathcal{D}_{L}(F)$ and $g \in U(F)_{\mathbb{Z}}$, for some factor of automorphy j and χ the character of the modular form f. If the factor $j(g, Z) \chi(g)$ is equal to 1 for every $g \in U(F)_{\mathbb{Z}}$ then f is a section of a line bundle near F and its order of vanishing along F is therefore an integer.

Under the hypotheses of the lemma, we do indeed have $\chi(g)=1$ because g is unipotent and therefore has trivial determinant. It therefore remains to check that the factor of automorphy $j(g, Z)$ is also trivial for $g \in U(F)_{\mathbb{Z}}$.

If F is of dimension 1 then according to [GHS1, Lemma 2.25] we have

$$
U(F)=\left\{\left.\left(\begin{array}{llc}
I & 0 & \left(\begin{array}{cc}
0 & e x \\
-x & 0
\end{array}\right) \tag{1}\\
0 & I & 0 \\
0 & 0 & I
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\} .
$$

But the automorphy factor is given by the last $((n+2)$-th) coordinate of $g(p(Z)) \in \mathcal{D}_{L}$, where

$$
\begin{align*}
p: \mathcal{H}_{n} & \longrightarrow \mathcal{D}_{L} \tag{2}\\
Z=\left(z_{n}, \ldots, z_{1}\right) & \longmapsto\left(-\frac{1}{2}(Z, Z)_{L_{1}}: z_{n}: \cdots: z_{1}: 1\right)
\end{align*}
$$

is the tube domain realisation of \mathcal{D}_{L} : see [GHS2, Section 3] or [G, Section 2]. From this description it is immediate that $j(g, Z)=1$ for $g \in U(F)_{\mathbb{Z}}$.

If F is of dimension 0 then F corresponds to some isotropic vector $\mathbf{v} \in L$, and $U(F)$ is the centre of the unipotent radical of the stabiliser of \mathbf{v}. With respect to a basis of $L \otimes \mathbb{Q}$ in which \mathbf{v} is the last $((n+2)$-th) element,
the penultimate $((n+1)$-th $)$ element \mathbf{w} is also isotropic and the remaining elements span the orthogonal complement L^{\prime} of those two, we have

$$
U(F)=\left\{\left.\left(\begin{array}{ccc}
I_{n} & \mathbf{b} & 0 \tag{3}\\
0 & 1 & 0 \\
\mathbf{c} & x & 1
\end{array}\right) \right\rvert\, L^{\prime} \mathbf{b}+\alpha \mathbf{c}=0,{ }^{t} \mathbf{b} L^{\prime} \mathbf{b}+2 \alpha x=0\right\}
$$

Here \mathbf{b} and \mathbf{c} are column vectors, $x \in \mathbb{R}$ and $\alpha=(\mathbf{w}, \mathbf{v})_{L}$: compare [Ko, (2.7)]. In this case the tube domain is contained in \mathbb{C}^{n} and is identified with a subset of the locus $z_{n+1}=1 \subset \mathcal{D}_{L}^{\bullet}$. The automorphy factor $j(g, Z)$ is therefore equal to the $(n+1)$-th coordinate of $g(p(Z))$, where $p(Z)_{n+1}=1$; but this is 1 as $p(Z)$ is a column vector.

From the proof it follows that any cusp form f for an arithmetic subgroup $\Gamma<\mathrm{O}(L)$ vanishes to order at least 1 along a toroidal divisor unless the character χ associated with f is non-trivial (and not det) on $U(F)_{\mathbb{Z}}=$ $U(F) \cap \Gamma$. The existence of such a character appears to be a strong condition on Γ : see [GHS3].

References

[G] V. Gritsenko, Modular forms and moduli spaces of abelian and K3 surfaces. Algebra i Analiz 6, 65-102; English translation in St. Petersburg Math. J. 6 (1995), 1179-1208.
[GHS1] V. Gritsenko, K. Hulek \& G.K. Sankaran, The Kodaira dimension of the moduli of K3 surfaces Invent. Math. 167 (2007), 519-567.
[GHS2] V. Gritsenko, K. Hulek \& G.K. Sankaran, Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type Documenta Math. 13 (2008), 1-19.
[GHS3] V. Gritsenko, K. Hulek \& G.K. Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties J . Algebra 322 (2009), 463-478.
[Ko] S. Kondo, Moduli spaces of K3 surfaces. Compositio Math. 89 (1993), 251-299.

