The Moduli Space of Bilevel-6 Abelian Surfaces

G.K. Sankaran BJ J.G Spandaw

The moduli space $\mathcal{A}_{t}^{\text {bil }}$ of $(1, t)$-polarised abelian surfaces with a weak bilevel structure was introduced by S. Mukai in $[\mathrm{Mu}]$. Mukai showed that $\mathcal{A}_{t}^{\text {bil }}$ is rational for $t=2,3,4,5$. More generally, we may ask for birational invariants, such as Kodaira dimension, of a smooth model of a compactification of $\mathcal{A}_{t}^{\text {bil }}$: since the choice of model does not affect birational invariants, we refer to the Kodaira dimension, etc., of $\mathcal{A}_{t}^{\text {bil }}$.

From the description of $\mathcal{A}_{t}^{\text {bil }}$ as a Siegel modular 3-fold $\Gamma_{t}^{\mathrm{bil}} \backslash \mathbb{H}_{2}$ and the fact that $\Gamma_{t}^{\mathrm{bil}} \subset \operatorname{Sp}(4, \mathbb{Z})$ it follows, by a result of L. Borisov [Bo], that $\kappa\left(\mathcal{A}_{t}^{\text {bil }}\right)=3$ for all sufficiently large t. For an effective result in this direction see [Sa]. In this note we shall prove an intermediate result for the case $t=6$.

Theorem A. The moduli space $\mathcal{A}_{6}^{\text {bil }}$ has geometric genus $p_{g}\left(\mathcal{A}_{6}^{\text {bil }}\right) \geq 3$ and Kodaira dimension $\kappa\left(\mathcal{A}_{6}^{\text {bil }}\right) \geq 1$.
The case $t=6$ attracts attention for two reasons: it is the first case not covered by the results of [Mu]; and the image of the Humbert surface $\mathcal{H}_{1}(1)$ in $\mathcal{A}_{t}^{\text {bil }}$, which in the cases $2 \leq t \leq 5$ is a quadric and plays an important role both in $[\mathrm{Mu}]$ and below, becomes an abelian surface (at least birationally) because the modular curve $X(6)$ has genus 1 .

The method we use is that of Gritsenko, who proved a similar result for the moduli spaces of $(1, t)$ polarised abelian surfaces with canonical level structure for certain values of t : see [Gr], especially Corollary 2. We use some of the weight 3 modular forms constructed by Gritsenko and Nikulin as lifts of Jacobi forms in [GN] to produce canonical forms having effective, nonzero, divisors on a suitable projective model X_{6} of $\mathcal{A}_{6}^{\text {bil }}$. A similar method was used by Gritsenko and Hulek in [GH2] to give a new proof that the BarthNieto threefold is Calabi-Yau.

We also derive some information about divisors in X_{6} and linear relations among them.
Acknowledgement: We are grateful to the DAAD and the British Council for financial assistance under ARC Project 313-ARC-
XIII-99/45.

1. Compactification

According to $[\mathrm{Mu}], \mathcal{A}_{t}^{\mathrm{bil}}$ is isomorphic to the quotient $\Gamma_{t}^{\mathrm{bil}} \backslash \mathbb{H}_{2}$, where \mathbb{H}_{2} is the Siegel upper half-plane $\left\{Z \in M_{2 \times 2}(\mathbb{C}) \mid Z={ }^{\top} Z, \operatorname{Im} Z>0\right\}$ and $\Gamma_{t}^{\text {bil }}=\Gamma_{t}^{\natural} \cup \zeta \Gamma_{t}^{\natural} \subset \operatorname{Sp}(4, \mathbb{Z})$ acts on \mathbb{H}_{2} by fractional linear transformations. Here $\zeta=\operatorname{diag}(-1,1,-1,1)$ and, writing \mathbf{I}_{n} for the $n \times n$ identity matrix,

$$
\Gamma_{t}^{\natural}=\left\{\gamma \in \operatorname{Sp}(4, \mathbb{Z}) \left\lvert\, \gamma-\mathbf{I}_{4} \in\left(\begin{array}{cccc}
t \mathbb{Z} & \mathbb{Z} & t \mathbb{Z} & t \mathbb{Z} \\
t \mathbb{Z} & t \mathbb{Z} & t \mathbb{Z} & t^{2} \mathbb{Z} \\
t \mathbb{Z} & \mathbb{Z} & t \mathbb{Z} & t \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t \mathbb{Z}
\end{array}\right)\right.\right\}
$$

We define $H(\mathbb{Z})$ to be the Heisenberg group $\mathbb{Z} \rtimes \mathbb{Z}^{2}$ embedded in $\operatorname{Sp}(4, \mathbb{Z})$ as

$$
H(\mathbb{Z})=\left\{\left.[m, n ; k]=\left(\begin{array}{cccc}
1 & m & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & n & 1 & 0 \\
n & k & -m & 1
\end{array}\right) \right\rvert\, m, n, k \in \mathbb{Z}\right\}
$$

Lemma 1.1. Γ_{6}^{\natural} is neat; that is, if λ is an eigenvalue of some $\gamma \in \Gamma_{6}^{\natural}$ which is a root of unity, then $\lambda=1$. Any torsion element of $\Gamma_{6}^{\text {bil }}$ has order 2 and fixes a divisor in \mathbb{H}_{2}.

Proof: Suppose that $\gamma \in \Gamma_{6}^{\natural}$: then the characteristic polynomial of γ is congruent to $(1-x)^{4} \bmod 6$. If some $\gamma \in \Gamma_{6}^{\natural}$ has an eigenvalue λ which is a nontrivial root of unity, then we may assume that λ is a primitive p th root of unity for some prime p. The minimum polynomial $m_{\lambda}(x)$ of λ over \mathbb{Z} divides the characteristic polynomial of γ; so $p=2,3$ or 5 , since $\operatorname{deg} m_{\lambda}=p-1$. But then $m_{\lambda}(x)=1+x, 1+x+x^{2}$ or $1+x+x^{2}+x^{3}+x^{4}$. The second of these does not divide $(1-x)^{4}$ in $\mathbb{F}_{2}[x]$ and the other two do not divide $(1-x)^{4}$ in $\mathbb{F}_{3}[x]$.

So any torsion element of $\Gamma_{6}^{\text {bil }}$ is of the form $\gamma=\zeta \gamma^{\prime}$ for some $\gamma^{\prime} \in \Gamma_{6}^{\natural}$; but then the characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}\left(\gamma-x \mathbf{I}_{4}\right) & =\operatorname{det}\left(\zeta \gamma^{\prime}-x \zeta^{2}\right) \\
& \equiv\left(1-x^{2}\right)\left(1+x^{2}\right) \bmod 6
\end{aligned}
$$

From the classification of torsion elements of $\operatorname{Sp}(4, \mathbb{Z})$ and their characteristic polynomials [Ue], it follows that γ is conjugate in $\operatorname{Sp}(4, \mathbb{Z})$ to either ζ or $\zeta[0,1 ; 0]$. Both these are elements of $\Gamma_{6}^{\text {bil }}$ of order 2; their fixed loci in \mathbb{H}_{2} are the divisors $\left\{\tau_{2}=0\right\}$ and $\left\{2 \tau_{2}+\left(\tau_{2}^{2}-\tau_{1} \tau_{3}\right)=0\right\}$ respectively (Humbert surfaces of discriminants 1 and 4).

In view of Lemma 1.1, the toroidal (Voronoi, or Igusa) compactification $\left(\mathcal{A}_{6}^{\natural}\right)^{*}$ of $\mathcal{A}_{6}^{\natural}=\Gamma_{6}^{\natural} \backslash \mathbb{H}_{2}$ is smooth, cf [SC], pp. 276-7. The action of ζ on $\mathcal{A}_{6}^{\natural}$ extends to $\left(\mathcal{A}_{6}^{\natural}\right)^{*}$, and the quotient X_{6} is a compactification of $\mathcal{A}_{6}^{\text {bil }}$ whose singularities are isolated ordinary double points or transverse A_{1} singularities. Hence X_{6} has canonical singularities. It agrees with the Voronoi compactification $\left(\mathcal{A}_{6}^{\text {bil }}\right)^{*}$ at least in codimension 1.

2. Modular forms and canonical forms

Gritsenko and Nikulin, in [GN], construct the weight 3 cusp forms

$$
\begin{aligned}
F_{3} & =\operatorname{Lift}\left(\eta^{5}\left(\tau_{1}\right) \vartheta\left(\tau_{1}, 2 \tau_{2}\right)\right) \in \mathfrak{M}_{3}^{*}\left(\Gamma_{6}^{+}, v_{\eta}^{8} \times \operatorname{id}_{H}\right) \\
F_{3}^{\prime} & =\operatorname{Lift}_{-1}\left(\eta^{5}\left(\tau_{1}\right) \vartheta\left(\tau_{1}, 2 \tau_{2}\right)\right) \in \mathfrak{M}_{3}^{*}\left(\Gamma_{6}^{+}, v_{\eta}^{16} \times \operatorname{id}_{H}\right) \\
F_{3}^{\prime \prime} & =\operatorname{Lift}\left(\eta^{3}\left(\tau_{1}\right) \vartheta\left(\tau_{1}, \tau_{2}\right)^{2} \vartheta\left(\tau_{1}, 2 \tau_{2}\right)\right) \in \mathfrak{M}_{3}^{*}\left(\Gamma_{6}^{+}, v_{\eta}^{12} \times \operatorname{id}_{H}\right)
\end{aligned}
$$

for the extended paramodular group Γ_{6}^{+}, with character χ_{D} induced from the characters $v_{\eta}^{D} \times \mathrm{id}_{H}$ of the Jacobi group $\mathrm{SL}(2, \mathbb{Z}) \ltimes H(\mathbb{Z})$. Recall (see [GH1], [GN]: for compatibility with [Mu] and other sources we work with the transposes of the groups given in [GN]) that Γ_{6}^{+}is the group generated by the paramodular group

$$
\Gamma_{6}=\left\{\gamma \in \operatorname{Sp}(4, \mathbb{Q}) \left\lvert\, \gamma \in\left(\begin{array}{cccc}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & 6 \mathbb{Z} \\
6 \mathbb{Z} & \mathbb{Z} & 6 \mathbb{Z} & 6 \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & 6 \mathbb{Z} \\
\mathbb{Z} & \frac{1}{6} \mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right)\right.\right\}
$$

and the extra involution

$$
V_{6}=\left(\begin{array}{cccc}
0 & 1 / \sqrt{6} & 0 & 0 \\
\sqrt{6} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{6} \\
0 & 0 & 1 / \sqrt{6} & 0
\end{array}\right)
$$

Proposition 2.1. All three of F_{3}, F_{3}^{\prime} and $F_{3}^{\prime \prime}$ are cusp forms, without character, of weight 3 for $\Gamma_{6}^{\mathrm{bil}}$.
Proof: The character is induced from $v_{\eta}^{D} \times \mathrm{id}_{H}$ by the injective map $j: \mathrm{SL}(2, \mathbb{Z}) \ltimes H(\mathbb{Z}) \rightarrow \Gamma_{6}^{+}$given by

$$
j:\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),[m, n ; k]\right) \mapsto\left(\begin{array}{cccc}
a & m & c & 0 \\
0 & 1 & 0 & 0 \\
b & n & d & 0 \\
n & k & -m & 1
\end{array}\right) .
$$

For $\gamma \in \operatorname{SL}(2, \mathbb{Z})$ we define $j_{1}(\gamma)=j(\gamma,[0,0 ; 0])$, putting γ in the first and third rows and columns in $\operatorname{Sp}(4, \mathbb{Z})$; and similarly $j_{2}(\gamma)$ puts it in the second and fourth.

The character $v_{\eta}^{D} \times \operatorname{id}_{H}$ is trivial on $H(\mathbb{Z})$. In the present cases, where $D=8,16$ or $12, v_{\eta}^{D}$ is trivial on $\pm \Gamma(6)= \pm \operatorname{Ker}(\mathrm{SL}(2, \mathbb{Z}) \rightarrow \mathrm{SL}(2, \mathbb{Z} / 6))$ by $[\mathrm{GN}]$, Lemma 1.2. Since $j\left(-\mathbf{I}_{2},[0,0 ; 0]\right)=\zeta$, we see that

$$
\Gamma_{6}^{\mathrm{bil}} \cap j(\mathrm{SL}(2, \mathbb{Z}) \ltimes H(\mathbb{Z})) \subseteq j(\pm \Gamma(6) \ltimes H(\mathbb{Z})) \subseteq \operatorname{Ker} \chi_{D}
$$

for $D=8,12,16$. If $D=8$ or 16 then, since V_{6} and $I=j_{1}\left(\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right)$ are in Γ_{6}^{+}and have even order and the order of χ_{D} is 3 , we know that $\chi_{D}\left(V_{6}\right)=\chi_{D}(I)=1$. Therefore the element

$$
J_{6}=I V_{6} I V_{6}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -6 \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{6} & 0 & 0
\end{array}\right) \in \Gamma_{6}^{+}
$$

is in Ker χ_{D}. If $D=12$ then $\chi_{12}\left(J_{6}\right)=\chi_{12}\left(I V_{6}\right)^{2}=1$ so again $J_{6} \in \operatorname{Ker} \chi_{D}$. Now we proceed as in [Gr], Lemma 2.2, and show that the group generated by $j(\Gamma(6) \ltimes H(\mathbb{Z}))$ and J_{6} includes Γ_{6}^{\natural}. To see this, we work with the conjugate groups $\tilde{\Gamma}_{6}^{\natural}=\nu_{6}\left(\Gamma_{6}^{\natural}\right)$ and $\tilde{\Gamma}_{6}=\nu_{6}\left(\Gamma_{6}\right)$, where ν_{6} denotes conjugation by $R_{6}=\operatorname{diag}(1,1,1,6)$. Note that $\nu_{6}\left(J_{6}\right)=R_{6} J_{6} R_{6}^{-1}=\left(\begin{array}{cc}0 & -\mathbf{I}_{2} \\ \mathbf{I}_{2} & 0\end{array}\right)$. If $\tilde{\gamma} \in \tilde{\Gamma}_{6}^{\natural}$ then its second row $\tilde{\gamma}_{2 *}$ is $(0,1,0,0) \bmod 6$. Suppose first that $\tilde{\gamma}_{22}=1$ and put

$$
\tilde{\beta}=\nu_{6}\left(J_{6}\left[\tilde{\gamma}_{21} / 6, \tilde{\gamma}_{23} / 6 ; \tilde{\gamma}_{24} / 6\right] J_{6}^{-1}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & \tilde{\gamma}_{23} / 6 \\
\tilde{\gamma}_{21} & 1 & \tilde{\gamma}_{23} & \tilde{\gamma}_{24} \\
0 & 0 & 1 & \tilde{\gamma}_{23} / 6 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Now $(0,1,0,0) \tilde{\beta}=\tilde{\gamma}_{2 *}$ so the second row of $\tilde{\gamma} \tilde{\beta}^{-1} \in \tilde{\Gamma}_{6}^{\natural}$ is $(0,1,0,0)$. Such a matrix is in $\nu_{6}(j(\Gamma(6) \ltimes H(\mathbb{Z})))$.
It remains to reduce to the case $\tilde{\gamma}_{22}=1$. Certainly the vector $\tilde{\gamma}_{2 *}$ is primitive, since $\operatorname{det} \tilde{\gamma}=1$, and since $\tilde{\gamma} \in \tilde{\Gamma}_{6}^{\natural}$ we have $\operatorname{gcd}\left(6, \tilde{\gamma}_{21}, \tilde{\gamma}_{23}\right)=6$. In the proof of [FS], Satz 2.1 it is shown that there are integers λ, μ such that $\tilde{\gamma}^{\prime}=\tilde{\gamma} \nu_{6}\left([\mu, 0 ; 0] J_{6}[0, \lambda ; 0] J_{6}^{-1}\right)$ has $\operatorname{gcd}\left(\tilde{\gamma}_{21}^{\prime}, \tilde{\gamma}_{23}^{\prime}\right)=6$, so the second row of $\tilde{\gamma}^{\prime}$ is $\left(6 x_{1}, 6 x_{2}+1,6 x_{3}, 6 x_{4}\right)$ with $\operatorname{gcd}\left(x_{1}, x_{3}\right)=1$. But then the $(2,2)$-entry of $\tilde{\gamma}^{\prime} \nu_{6}([m, n ; 0])$ is $6\left(m x_{1}+n x_{3}+x_{2}\right)+1$ which is equal to 1 if we choose m and n suitably.

Proposition 2.2. The differential forms $\tilde{\omega}=F_{3} d \tau_{1} \wedge d \tau_{2} \wedge d \tau_{3}, \tilde{\omega}^{\prime}=F_{3}^{\prime} d \tau_{1} \wedge d \tau_{2} \wedge d \tau_{3}$ and $\tilde{\omega}^{\prime \prime}=F_{3}^{\prime \prime} d \tau_{1} \wedge$ $d \tau_{2} \wedge d \tau_{3}$ give rise to canonical forms $\omega, \omega^{\prime}, \omega^{\prime \prime} \in H^{0}\left(K_{X_{6}}\right)$.
Proof: By Proposition 2.1, $\tilde{\omega}, \tilde{\omega}^{\prime}$ and $\tilde{\omega}^{\prime \prime}$ are all $\Gamma_{6}^{\text {bil }}$-invariant, so they give rise to forms $\omega, \omega^{\prime}, \omega^{\prime \prime}$ on $\mathcal{A}_{6}^{\text {bil }}$. Since F_{3}, F_{3}^{\prime} and $F_{3}^{\prime \prime}$ are cusp forms, if any of ω, ω^{\prime} and $\omega^{\prime \prime}$ are holomorphic on $\mathcal{A}_{6}^{\text {bil }}$ they extend holomorphically to the cusps of $\left(\mathcal{A}_{6}^{\text {bil }}\right)^{*}$. Since X_{6} agrees with $\left(\mathcal{A}_{6}^{\text {bil }}\right)^{*}$ in codimension 1 and has canonical singularities it follows that these forms can be thought of as 3-forms on X_{6} holomorphic at infinity. We need to check that ω, ω^{\prime} and $\omega^{\prime \prime}$ are holomorphic everywhere. But this is a well-known result of Freitag([Fr], Satz II.2.6).

3. Divisors in the moduli spaces.

In this section we shall describe the canonical divisors $\operatorname{Div}_{X_{6}}(\omega), \operatorname{Div}_{X_{6}}\left(\omega^{\prime}\right)$ and $\operatorname{Div}_{X_{6}}\left(\omega^{\prime \prime}\right)$ in X_{6} and give some detail about the branching locus in X_{6} arising from torsion in $\Gamma_{6}^{\text {bil }}$.
$\Gamma_{6}^{\mathrm{bil}}$ is a subgroup both of the paramodular group Γ_{6} and of Γ_{6}^{+}. Hence there is a finite morphism $\sigma: \mathcal{A}_{6}^{\text {bil }} \rightarrow \mathcal{A}_{6}^{+}$. We denote the projection map $\mathbb{H}_{2} \rightarrow \mathcal{A}_{6}^{\text {bil }}$ by $\pi_{6}^{\text {bil }}$ and $\operatorname{similarly} \pi_{6}, \pi_{6}^{+}$, etc.

For discriminant $\Delta=1,4$ we put

$$
\mathcal{H}_{\Delta}(k)=\left\{\left.\left(\begin{array}{cc}
\tau_{1} & \tau_{2} \\
\tau_{2} & \tau_{3}
\end{array}\right) \in \mathbb{H}_{2} \right\rvert\, \frac{1}{24}\left(k^{2}-\Delta\right) \tau_{1}+k \tau_{2}+6 \tau_{3}\right\}=0
$$

where $k \in \mathbb{Z}$ is chosen so that $\frac{1}{24}\left(k^{2}-\Delta\right) \in \mathbb{Z}$. The irreducible components of the Humbert surfaces H_{1} and H_{4} of discriminants 1 and 4 in \mathcal{A}_{6} are $\pi_{6}\left(\mathcal{H}_{1}(k)\right)$ and $\pi_{6}\left(\mathcal{H}_{4}(k)\right)$ for $0 \leq k<6$: the statements of [vdG], Theorem IX.2.4 and of [GH1], Corollary 3.3 are wrong because $\mathcal{H}_{\Delta}(-k)$ is Γ_{t}-equivalent to $\mathcal{H}_{\Delta}(k)$. Nevertheless the irreducible components of the Humbert surfaces of discriminants 1 and 4 in \mathcal{A}_{6}^{+}are as stated in [GN], namely $\pi_{6}^{+}\left(\mathcal{H}_{1}(1)\right)$ and $\pi_{6}^{+}\left(\mathcal{H}_{1}(5)\right)$ for discriminant 1 and $\pi_{6}^{+}\left(\mathcal{H}_{4}(1)\right)$ for discriminant 4.

The calculation of the divisors uses the product expansion of the modular forms F_{3}, F_{3}^{\prime} and $F_{3}^{\prime \prime}$ given in [GN]. We have chosen to work with the transposes of the matrices given in [GN], so we have to write $q=e^{2 \pi i \tau_{1}}, r=e^{2 \pi i \tau_{2} / 6}$ and $s=e^{2 \pi i \tau_{3} / 36}$ for these expansions to be correct. This is because ${ }^{\top} \Gamma_{t}=$ $\operatorname{diag}\left(1, t, 1, t^{-1}\right) \Gamma_{t} \operatorname{diag}\left(1, t^{-1}, 1, t\right)$ (for any $t \in \mathbb{N}$), and $\operatorname{diag}\left(1, t, 1, t^{-1}\right):\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \rightarrow\left(\tau_{1}, t \tau_{2}, t^{2} \tau_{3}\right)$. A similar correction is needed in [GH2].

By [GN], equations (4.12)-(4.14), correcting a minor misprint, we have

$$
\begin{aligned}
& F_{3}=\operatorname{Exp}-\operatorname{Lift}\left(5 \phi_{0,3}^{2}-4 \phi_{0,2} \phi_{0,4}\right)=\operatorname{Exp}-\operatorname{Lift}\left(\phi_{3}\right) \\
& F_{3}^{\prime}=\operatorname{Exp}-\operatorname{Lift}\left(\phi_{0,3}^{2}\right)=\operatorname{Exp}-\operatorname{Lift}\left(\phi_{3}^{\prime}\right) \\
& F_{3}^{\prime \prime}=\operatorname{Exp}-\operatorname{Lift}\left(3 \phi_{0,3}^{2}-2 \phi_{0,2} \phi_{0,4}\right)=\operatorname{Exp}-\operatorname{Lift}\left(\phi_{3}^{\prime \prime}\right)
\end{aligned}
$$

($\phi_{3}, \phi_{3}^{\prime}$ and $\phi_{3}^{\prime \prime}$ are defined by these formulae.)
By [GN], Example 2.3 and Lemma 2.5, we have

$$
\begin{aligned}
\phi_{0,2} & =\left(r^{ \pm 1}+4\right)+q\left(r^{ \pm 3}-8 r^{ \pm 2}-r^{ \pm 1}+16\right)+O\left(q^{2}\right) \\
\phi_{0,3} & =\left(r^{ \pm 1}+2\right)+q\left(-2 r^{ \pm 3}-2 r^{ \pm 2}+2 r^{ \pm 1}+4\right)+O\left(q^{2}\right) \\
\phi_{0,4} & =\left(r^{ \pm 1}+1\right)+q\left(-r^{ \pm 4}-r^{ \pm 3}+r^{ \pm 1}+2\right)+O\left(q^{2}\right)
\end{aligned}
$$

where the notation $r^{ \pm k}$ means $r^{k}+r^{-k}$.
Proposition 3.1. The divisors in \mathbb{H}_{2} of the cusp forms are

$$
\begin{aligned}
\operatorname{Div}\left(F_{3}\right) & =\left(\pi_{6}^{+}\right)^{-1}\left(\pi_{6}^{+}\left(\mathcal{H}_{1}(1)+5 \mathcal{H}_{1}(5)+\mathcal{H}_{4}(1)\right)\right) \\
\operatorname{Div}\left(F_{3}^{\prime}\right) & =\left(\pi_{6}^{+}\right)^{-1}\left(\pi_{6}^{+}\left(5 \mathcal{H}_{1}(1)+\mathcal{H}_{1}(5)+\mathcal{H}_{4}(1)\right)\right) \\
\operatorname{Div}\left(F_{3}^{\prime \prime}\right) & =\left(\pi_{6}^{+}\right)^{-1}\left(\pi_{6}^{+}\left(3 \mathcal{H}_{1}(1)+3 \mathcal{H}_{1}(5)+\mathcal{H}_{4}(1)\right)\right)
\end{aligned}
$$

Remark. This corrects the coefficients given in [GN], Example 4.6: for instance, it is easy to see, by considering the effect of an element of order 2 fixing an Humbert surface, that the coefficients of $\mathcal{H}_{1}(1)$, $\mathcal{H}_{1}(5)$ and $\mathcal{H}_{4}(1)$ must be odd.

Proof: Write $\phi_{3}=\sum f(n, l) q^{n} r^{l}$, and similarly for ϕ_{3}^{\prime} and $\phi_{3}^{\prime \prime}$. By [GN], Theorem 2.1, the coefficient of $\pi_{6}^{+}\left(\mathcal{H}_{\Delta}(b)\right)$ in \mathcal{A}_{6}^{+}is

$$
m_{\Delta, b}=\sum_{d>0} f\left(d^{2} a, d b\right)
$$

where $b^{2}-24 a=\Delta$. So to calculate $m_{1,1}$ we may take $b=1$ and $a=0$, so $m_{1,1}=\sum_{d>0} f(0, d)$. From the formulae above, $\phi_{3}=\left(r^{ \pm 2}+6\right)+O(q)$, so $m_{1,1}=f(0,2)=1$. Similarly we have $\phi_{3}^{\prime}=\left(r^{ \pm 2}+4 r^{ \pm 1}+6\right)$ so $m_{1,1}^{\prime}=5$ and $\phi_{3}^{\prime \prime}=\left(r^{ \pm 2}+2 r^{ \pm 1}+6\right)$ so $m_{1,1}^{\prime \prime}=3$.

To calculate the coefficients of $\pi_{6}^{+}\left(\mathcal{H}_{4}(1)\right)$ we note that $\mathcal{H}_{4}(1)$ is Γ_{6}^{+}-equivalent to $\mathcal{H}_{4}(2)$, so we may as well work with that and calculate $m_{4,2}$. For this purpose we can take $b=2$ and $a=0$; so $m_{4,2}=$ $\sum_{d>0} f(0,2 d)=1$, and $m_{4,2}^{\prime}=m_{4,2}^{\prime \prime}=1$ also.

To calculate $m_{1,5}$ we take $b=5$ and $a=1$, so $m_{1,5}=\sum_{d>0} f\left(d^{2}, 5 d\right)$. The Fourier coefficient $f(n, l)$ depends only on $24 n-l^{2}$ and on the residue class of $l \bmod 12$ (see [GN]); that is, in our case, on d^{2} and on $d \bmod$ 12. If $d \not \equiv \pm 1 \bmod 6$ then $5 d \equiv \pm d \bmod 12$, so $f\left(d^{2}, 5 d\right)=f(0, \pm d)$ which is zero unless $d= \pm 2$ or $d=0$. Since we are only interested in $d>0$ the only contribution for $d \not \equiv \pm 1 \bmod 6$ arises from $d=2$, when $f(4,10)=f(0,-2)=1$. If $d \equiv \pm 5 \bmod 12$ then $f\left(d^{2}, 5 d\right)=f\left(\frac{-d^{2}+1}{24}, \pm 1\right)$ which vanishes because $f(n, l)=0$ for $n<0$. If $d \equiv \pm 1 \bmod 12$ then $f\left(d^{2}, 5 d\right)=f\left(\frac{-d^{2}+25}{24}, \pm 5\right)$ which vanishes except possibly when $d=1$. So $m_{1,5}=1+f(1,5)$ and from the expansions of $\phi_{0,2}, \phi_{0,3}$ and $\phi_{0,4}$ we calculate $f(1,5)=4$. Similarly $m_{1,5}^{\prime}=1+f^{\prime}(1,5)=1$ and $m_{1,5}^{\prime \prime}=1+f^{\prime \prime}(1,5)=3$.

Brasch $[\mathrm{Br}]$ has studied the branch locus of $\pi_{t}^{\text {lev }}: \mathbb{H}_{2} \rightarrow \mathcal{A}_{t}^{\text {lev }}$ for all t : for $t \equiv 2 \bmod 4$ the divisorial part has five irreducible components. They are $\pi_{6}^{\mathrm{lev}}\left(\mathcal{H}_{\zeta_{i}}\right)$ for $0 \leq i \leq 4$, where $\mathcal{H}_{\zeta_{i}} \subset \mathbb{H}_{2}$ is the fixed locus of ζ_{i} and

$$
\begin{gathered}
\zeta_{0}=\zeta, \quad \zeta_{1}=\zeta^{\top}[-6,0 ; 0], \quad \zeta_{2}=\left(\begin{array}{cccc}
-7 & 4 & 0 & 0 \\
-12 & 7 & 0 & 0 \\
0 & 0 & -7 & -12 \\
0 & 0 & 4 & 7
\end{array}\right), \\
\zeta_{3}=\zeta[1,0 ; 0], \quad \zeta_{4}=\left(\begin{array}{cccc}
-1 & -1 & 0 & 6 \\
0 & 1 & -6 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right) .
\end{gathered}
$$

These are all elements of $\Gamma_{6}^{\text {bil }}$. Their fixed loci are

$$
\begin{gathered}
\mathcal{H}_{\zeta_{0}}=\left\{\tau_{2}=0\right\}, \quad \mathcal{H}_{\zeta_{1}}=\left\{6 \tau_{1}-2 \tau_{2}=0\right\}, \quad \mathcal{H}_{\zeta_{2}}=\left\{6 \tau_{1}-7 \tau_{2}+2 \tau_{3}=0\right\}, \\
\mathcal{H}_{\zeta_{3}}=\left\{2 \tau_{2}+\tau_{3}=0\right\}, \quad \mathcal{H}_{\zeta_{4}}=\left\{2 \tau_{2}+\tau_{3}-6=0\right\},
\end{gathered}
$$

of discriminants $1,4,1,4,4$ respectively. Thus three of the components have discriminant 4 and therefore map to $\pi_{6}^{+} \mathcal{H}_{4}(1) \subset \mathcal{A}_{6}^{+}$(they correspond to bielliptic abelian surfaces). $\mathcal{H}_{\zeta_{0}}=\mathcal{H}_{1}(1)$ corresponds to product surfaces $E \times E^{\prime}$ with polarisation given by $\mathcal{O}_{E}(1) \boxtimes \mathcal{O}_{E^{\prime}}(6)$, and $\mathcal{H}_{\zeta_{2}}$ maps to $\pi_{6}^{+}\left(\mathcal{H}_{1}(5)\right)$, corresponding to abelian surfaces $E \times E^{\prime}$ with polarisation $\mathcal{O}_{E}(2) \boxtimes \mathcal{O}_{E^{\prime}}(3)$.

Proposition 3.2. The branch locus of $\pi_{6}^{\mathrm{bil}}: \mathbb{H}_{2} \rightarrow \mathcal{A}_{6}^{\text {bil }}$ has seven irreducible components, each with branching of order 2. They are $\pi_{6}^{\mathrm{bil}}\left(\mathcal{H}_{\zeta_{i}}\right)$ and two other components $\pi_{6}^{\mathrm{bil}}\left(\mathcal{H}_{\zeta_{1}^{\prime}}\right), \pi_{6}^{\mathrm{bil}}\left(\mathcal{H}_{\zeta_{1}^{\prime \prime}}\right)$, which are equivalent to $\pi_{6}^{\mathrm{bil}}\left(\mathcal{H}_{\zeta_{1}}\right)$ in $\mathcal{A}_{6}^{\text {lev }}$.

Proof: It follows from Lemma 1.1 that the branch locus consists of divisors only and that the branching is of order 2.

Write $G=\Gamma_{6}^{\text {lev }} \triangleright H=\Gamma_{6}^{\text {bil }}$ and let G act on $\Omega=G / H \cong \operatorname{PSL}(2, \mathbb{Z} / 6) . \operatorname{By}[\mathrm{Br}]$, Corollary 1.3, the number of irreducible divisors in $\mathcal{A}_{6}^{\text {bil }}$ mapping to $\pi_{6}^{\text {lev }}\left(\mathcal{H}_{\zeta_{i}}\right)$, which is equal to the number of H-conjugacy classes in the G-conjugacy class of ζ_{i}, is $\left|G: H . C_{G}\left(\zeta_{i}\right)\right|$. (If $\xi \in G$ for some group G then $C_{G}(\xi)$ denotes the centraliser of ξ in G.) Moreover, for fixed i, these divisors are permuted transitively by Ω so they all have the same branching behaviour: $\pi_{6}^{\text {bil }}$ is branched of order 2 above each one.
$\left|G: H . C_{G}\left(\zeta_{i}\right)\right|=\left|G / H: C_{G}\left(\zeta_{i}\right) /\left(H \cap C_{G}\left(\zeta_{i}\right)\right)\right|$, which is the index of the image of $C_{G}\left(\zeta_{i}\right)$ in Ω. For $i=0,1,2,3$ the centraliser $C_{\operatorname{Sp}(4, \mathbb{Q})}\left(\zeta_{i}\right)$ is described in [Br], Lemma 2.1, and $C_{G}\left(\zeta_{i}\right)=C_{\operatorname{Sp}(4, \mathbb{Q})}\left(\zeta_{i}\right) \cap G$.

For ζ_{0}, if $\gamma \in \operatorname{PSL}(2, \mathbb{Z} / 6) \cong \Omega$ and $\tilde{\gamma} \in \operatorname{SL}(2, \mathbb{Z})$ is some lift of γ then $j(\tilde{\gamma},[0,0 ; 0]) \in C_{G}\left(\zeta_{0}\right)$ so the index is 1 .

For ζ_{1}, if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z} / 6)$ and b is even then

$$
\left(\begin{array}{cccc}
\tilde{a} & 0 & \tilde{b} & 3 \tilde{b} \\
3(\tilde{a}-1) & 1 & 3 \tilde{b} & 0 \\
\tilde{c} & 0 & \tilde{d} & 3(\tilde{d}-1) \\
0 & 0 & 0 & 1
\end{array}\right) \in C_{G}\left(\zeta_{1}\right)
$$

for a lift $\tilde{\gamma}$; and this is a necessary condition for such an element to exist since if $\beta=\beta_{i j} \in C_{G}\left(\zeta_{1}\right)$ then $3 \beta_{13} \equiv 0 \bmod 6$. So $C_{G}\left(\zeta_{1}\right) /\left(C_{G}\left(\zeta_{1}\right) \cap H\right) \subset \operatorname{PSL}(2, \mathbb{Z} / 6)$ is the reduction $\bmod 6$ of ${ }^{\top} \Gamma_{0}(2)$, i.e. the preimage of $\left\{\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z} / 2)\right\}$, which is of index 3 because it is the stabiliser of $(1,0)$ when $\operatorname{SL}(2, \mathbb{Z} / 2)$ acts as the symmetric group on the nonzero vectors in \mathbb{F}_{2}^{2}.

For ζ_{2}, any two elements $\gamma, \gamma^{*} \in \operatorname{SL}(2, \mathbb{Q})$ determine an element $\beta\left(\gamma, \gamma^{*}\right) \in C_{\operatorname{Sp}(4, \mathbb{Q})}$ (see [Br], Lemma 2.1 and the preceding discussion), namely

$$
\beta\left(\gamma, \gamma^{*}\right)=\left(\begin{array}{cccc}
4 \gamma_{11}-3 \gamma_{11}^{*} & -2 \gamma_{11}+2 \gamma_{11}^{*} & 4 \gamma_{12}+\gamma_{12}^{*} & 6 \gamma_{12}+2 \gamma_{12}^{*} \\
6 \gamma_{11}-6 \gamma_{11}^{*} & -3 \gamma_{11}+4 \gamma_{11}^{*} & 6 \gamma_{12}+2 \gamma_{12}^{*} & 9 \gamma_{12}+4 \gamma_{12}^{*} \\
4 \gamma_{21}+9 \gamma_{21}^{*} & -2 \gamma_{21}-6 \gamma_{21}^{*} & 4 \gamma_{22}-3 \gamma_{22}^{*} & 6 \gamma_{22}-6 \gamma_{22}^{*} \\
-2 \gamma_{21}-6 \gamma_{21}^{*} & \gamma_{21}+4 \gamma_{21}^{*} & -2 \gamma_{22}+2 \gamma_{22}^{*} & -3 \gamma_{22}+4 \gamma_{22}^{*} \\
\cdot & & &
\end{array}\right)
$$

In particular we choose

$$
\beta=\beta\left(\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right),\left(\begin{array}{cc}
10 & 9 \\
11 & 10
\end{array}\right)\right)=\left(\begin{array}{cccc}
-18 & 14 & 25 & 42 \\
-42 & 31 & 42 & 72 \\
107 & -70 & -18 & -42 \\
-70 & 46 & -14 & 31
\end{array}\right)
$$

and

$$
\beta^{\prime}=\beta\left(\left(\begin{array}{cc}
11 & 4 \\
8 & 3
\end{array}\right),\left(\begin{array}{ll}
7 & 9 \\
3 & 4
\end{array}\right)\right)=\left(\begin{array}{cccc}
23 & -8 & 25 & 42 \\
24 & -5 & 42 & 72 \\
59 & -34 & 0 & -6 \\
-34 & 20 & -6 & 7
\end{array}\right)
$$

β and β^{\prime} both belong to $\Gamma_{6}^{\text {lev }}$, and their images in $\operatorname{PSL}(2, \mathbb{Z} / 6)$ are $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)$. These two elements generate $\operatorname{PSL}(2, \mathbb{Z} / 6)$ because their lifts generate $\operatorname{SL}(2, \mathbb{Z})$, so the index we want is 1 .

For ζ_{3}, as for $\zeta_{0}, j(\tilde{\gamma},[0,0 ; 0]) \in C_{G}\left(\zeta_{3}\right)$ so the index is 1 .
For ζ_{4}, note that $\zeta_{4}={ }^{\top}[0,0 ; 6] \zeta_{3}\left({ }^{\top}[0,0 ; 6]\right)^{-1}$ so $C_{\mathrm{Sp}(4, \mathbb{Q})}\left(\zeta_{4}\right)=^{\top}[0,0 ; 6] C_{\mathrm{Sp}(4, \mathbb{Q})}\left(\zeta_{3}\right)\left(^{\top}[0,0 ; 6]\right)^{-1}$. It happens that ${ }^{\top}[0,0 ; 6] j(\tilde{\gamma},[0,0 ; 0])\left({ }^{\top}[0,0 ; 6]\right)^{-1}=j(\tilde{\gamma},[0,0 ; 0])$, so again the index is 1 .

Next we look at the boundary divisors of X_{6}. These correspond to 1-dimensional subspaces of \mathbb{Q}^{4} up to the action of $\Gamma_{6}^{\text {bil }}$. We may think of such a space as being given by a unique, up to sign, primitive vector $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in \mathbb{Z}^{4}$. It is shown in [FS], Satz 2.1, that the Γ_{6}-orbit of \mathbf{v} is determined by $r=\operatorname{gcd}\left(6, v_{1}, v_{3}\right)$, so \mathcal{A}_{6} has four corank 1 cusps (or boundary divisors in the toroidal compactification). However, the cusps $r=1$ and $r=6$ are interchanged by V_{6}, as are the cusps $r=2$ and $r=3$, so \mathcal{A}_{6}^{+}has just two corank 1 cusps. Since F_{3}, F_{3}^{\prime} and $F_{3}^{\prime \prime}$ are modular forms (with character) for Γ_{6}^{+}, the order of vanishing of any of them at a cusp of X_{6} given by \mathbf{v} depends only on which cusp of \mathcal{A}_{6}^{+}it lies over, i.e. on whether r is or is not a proper divisor of 6 .

We write D_{1} for the divisor in X_{6} which is the sum of all the boundary components with $r=1$ or $r=6$, and D_{2} for the sum of all the components with $r=2$ or $r=3$. By modifying the argument of [FS, Satz 2.1] as in [Sa], it can be shown that D_{1} has 28 irreducible components and D_{2} has 12 , but we shall not make any use of this.

Theorem 3.3. The divisors of ω, ω^{\prime} and $\omega^{\prime \prime}$ in X_{6} are

$$
\begin{aligned}
\operatorname{Div}_{X_{6}}(\omega) & =4 \pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta_{2}}\right)+D_{1}+D_{2}, \\
\operatorname{Div}_{X_{6}}\left(\omega^{\prime}\right) & =4 \pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta_{0}}\right)+3\left(D_{1}+D_{2}\right), \\
\operatorname{Div}_{X_{6}}\left(\omega^{\prime \prime}\right) & =2 \pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta_{0}}\right)+2 \pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta_{2}}\right)+2\left(D_{1}+D_{2}\right) .
\end{aligned}
$$

Proof: If $\pi_{6}^{\text {bil }}$ is branched along the irreducible divisors B_{α} with ramification index e_{α}, then $d \tau_{1} \wedge d \tau_{3} \wedge d \tau_{3}$ acquires poles of order $e_{\alpha} / 2$ along B_{α}. So by Proposition 3.1

$$
\begin{aligned}
\operatorname{Div}_{X_{6}}(\omega) & =\sigma^{-1} \pi_{6}^{+}\left(\mathcal{H}_{1}(1)+5 \mathcal{H}_{1}(5)+\mathcal{H}_{4}(1)\right)-\frac{1}{2} \sum e_{\alpha} B_{\alpha}+D, \\
\operatorname{Div}_{X_{6}}\left(\omega^{\prime}\right) & =\sigma^{-1} \pi_{6}^{+}\left(5 \mathcal{H}_{1}(1)+\mathcal{H}_{1}(5)+\mathcal{H}_{4}(1)\right)-\frac{1}{2} \sum e_{\alpha} B_{\alpha}+D^{\prime}, \\
\operatorname{Div}_{X_{6}}\left(\omega^{\prime \prime}\right) & =\sigma^{-1} \pi_{6}^{+}\left(3 \mathcal{H}_{1}(1)+3 \mathcal{H}_{1}(5)+\mathcal{H}_{4}(1)\right)-\frac{1}{2} \sum e_{\alpha} B_{\alpha}+D^{\prime \prime},
\end{aligned}
$$

where D, D^{\prime} and $D^{\prime \prime}$ are effective divisors supported on the boundary $X_{6} \backslash \mathcal{A}_{6}^{\text {bil }}$. The form of the branch locus part of the divisors follows now from Proposition 3.2 and the discriminants of $\mathcal{H}_{\zeta_{i}}$.

It remains to calculate the vanishing orders of the forms at each boundary divisor. For each form, we need only consider two boundary components, one from D_{1} and one from D_{2}. We use the components $D\left(\mathbf{v}_{1}\right.$, $D\left(\mathbf{v}_{2}\right)$ corresponding to $\mathbf{v}_{1}=(0,0,1,0)$ and $\mathbf{v}_{2}=(0,0,2,1)$. The first step in constructing the toroidal compactification near $D\left(\mathbf{v}_{1}\right)$ is to take a quotient by the lattice $P_{\mathbf{v}_{1}}^{\prime}\left(\Gamma_{6}^{\text {bil }}\right)$ (see for instance [GH2], pp.925-926 or for a full explanation [HKW], Section I.3D). As in [HKW], Proposition I.3.98, $P_{\mathbf{v}_{1}}^{\prime}\left(\Gamma_{6}^{\text {bil }}\right)$ is generated by $j_{1}\left(\left(\begin{array}{ll}1 & 6 \\ 0 & 1\end{array}\right)\right)$; so a local equation for $D\left(\mathbf{v}_{1}\right)$ at a general point is $t_{1}=0$, where $t_{1}=e^{2 \pi i \tau_{1} / 6}=q^{1 / 6}$. Using the values of $f(0, l)$ calculated above and the Fourier expansion given in [GN], Theorem 2.1, we see that the
expansions of F_{3}, F_{3}^{\prime} and $F_{3}^{\prime \prime}$ begin $q^{1 / 3} r s^{2}, q^{2 / 3} r^{3} s^{4}$ and $q^{1 / 2} r^{2} s^{3}$ respectively, so their orders of vanishing along D_{1} are 2, 4 and 3. The form $d \tau_{1} \wedge d \tau_{2} \wedge d \tau_{3}$ contributes a simple pole at the boundary so the coefficients of D_{1} in the divisors of ω, ω^{\prime} and $\omega^{\prime \prime}$ are 1,3 and 2.

We put

$$
\theta=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \in \operatorname{Sp}(4, \mathbb{Z})
$$

so that $\mathbf{v}_{2}=\mathbf{v}_{1} \theta$. Then $\mathcal{P}_{\mathbf{v}_{2}}=\theta^{-1} \mathcal{P}_{\mathbf{v}_{1}} \theta$ (where, as in [HKW], $\mathcal{P}_{\mathbf{v}}$ denotes the stabiliser of \mathbf{v} in $\operatorname{Sp}(4, \mathbb{Q})$), and from this one readily calculates that

$$
P_{\mathbf{v}_{2}}^{\prime}\left(\Gamma_{6}^{\mathrm{bil}}\right)=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & 4 n & 2 n \\
0 & 1 & 2 n & n \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, n \equiv 0 \bmod 36\right\} .
$$

So the cusp D_{2} is given by $t_{2}=0$, where $t_{2}=e^{2 \pi i\left(\tau_{1} / 144+\tau_{2} / 72+\tau_{3} / 36\right)}=q^{1 / 144} r^{1 / 12} s$. The number of times this term divides the expressions for F_{3}, F_{3}^{\prime} and $F_{3}^{\prime \prime}$ is in fact equal to the power of s that occurs, namely 2 , 4 and 3 respectively; so we get the same orders of vanishing along D_{2} as along D_{1}.

This calculation shows directly (without appealing to Freitag's result in $[\mathrm{Fr}]$) that ω, ω^{\prime} and $\omega^{\prime \prime}$ are all holomorphic.

Remark. Notice that $\operatorname{Div}_{X_{6}}(\omega)+\operatorname{Div}_{X_{6}}\left(\omega^{\prime}\right)=2 \operatorname{Div}_{X_{6}}\left(\omega^{\prime \prime}\right)$, reflecting the fact (easily seen from [GN]) that $F_{3} F_{3}^{\prime}=\left(F_{3}^{\prime \prime}\right)^{2}$.

Theorem A now follows at once from the following observation.
Proposition 3.4. ω, ω^{\prime} and $\omega^{\prime \prime}$ are linearly independent elements of $H^{0}\left(K_{X_{6}}\right)$.
Proof: Suppose that $\lambda \omega+\lambda^{\prime} \omega^{\prime}+\lambda^{\prime \prime} \omega^{\prime \prime}=0$. At a general point of $\pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta_{0}}\right), \omega^{\prime}$ and $\omega^{\prime \prime}$ vanish but ω does not. Therefore $\lambda=0$. Similarly $\lambda^{\prime}=0$, considering a general point of $\pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta_{2}}\right)$. Finally, $\lambda^{\prime \prime} \neq 0$ because $F_{3}^{\prime \prime}$ is not identically zero.

We want to remark that $\kappa\left(\mathcal{A}_{6}^{\text {bil }}\right) \geq 1$ can be deduced from the existence of ω^{\prime} alone. The divisor $\operatorname{Div}_{X_{6}}\left(\omega^{\prime}\right)$ is effective and $\pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta}\right) \subset \operatorname{Supp}_{\operatorname{Div}}^{X_{6}}\left(\omega^{\prime}\right)$. Since X_{6} has canonical singularities, K is effective on any smooth model of X_{6}, and hence also on any minimal model X_{6}^{\prime} of X_{6}. Any surfaces contracted by the birational map $X_{6} \rightarrow X_{6}^{\prime}$ must be birationally ruled. But $\pi_{6}^{\text {bil }}\left(\mathcal{H}_{\zeta}\right)$ is not birationally ruled: it is isomorphic to $X(6) \times X(6)$, since \mathcal{H}_{ζ} is isomorphic to $\mathbb{H} \times \mathbb{H}$ and is preserved by the subgroup $\Gamma(6) \times \Gamma(6)$ embedded in $\Gamma_{6}^{\text {bil }}$ by $\left(j_{1}, j_{2}\right)$. Thus its closure is birationally an abelian surface, since $X(6)$ has genus 1 . So the canonical divisor of X_{6}^{\prime} is effective and nontrivial; so, by abundance, some multiple of it moves and therefore $\kappa\left(\mathcal{A}_{6}^{\text {bil }}\right) \geq 1$.

References

[SC] A. Ash, D. Mumford, M. Rapoport \& Y. Tai, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, Mass., 1975.
[Br] H.-J. Brasch, Branch points in moduli spaces of certain abelian surfaces, in: Abelian Varieties, Egloffstein 1993, de Gruyter, Berlin 1995, 27-54.
[Bo] L.A. Borisov, A finiteness theorem for subgroups of $\operatorname{Sp}(4, \mathbb{Z})$, Algebraic geometry, 9. J. Math. Sci. (New York) 94 (1999), 1073-1099.
[FS] M. Friedland \& G.K. Sankaran, Das Titsgebäude von Siegelschen Modulgruppen vom Geschlecht 2, Math. Abh. Sem. Univ. Hamburg 71 (2001), 49-68.
[Fr] E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissenschaften Bd. 254, Springer-Verlag, Berlin, 1983.
[vdG] G. van der Geer, Hilbert Modular Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete Bd. 16, Springer-Verlag, Berlin-New York, 1988.
[Gr] V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces, in: Abelian Varieties, Egloffstein 1993, de Gruyter, Berlin 1995, 63-84.
[GH1] V. Gritsenko \& K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123 (1998), 461-485.
[GH2] V. Gritsenko \& K. Hulek, The modular form of the Barth-Nieto quintic, Internat. Math. Res. Notices 17 (1999), 915-937.
[GN] V. Gritsenko \& V. Nikulin, Automorphic forms and Lorentzian Kac-Moody Algebras II, Internat. J. Math. 9 (1998), 201-275.
[HKW] K. Hulek, C. Kahn \& S. Weintraub, Moduli spaces of abelian surfaces: Compactification, degenerations and theta functions, de Gruyter 1993.
[Mu] S. Mukai, Moduli of abelian surfaces, and regular polyhedral groups, in: Moduli of algebraic varieties and the monster, Sapporo 1999 (I. Nakamura, Ed.), 68-74.
[Sa] G.K. Sankaran, Abelian surfaces with odd bilevel structure, preprint 2002, math. AG/0209192.
[Ue] K. Ueno, On fibre spaces of normally polarized abelian varieties of dimension 2. II. Singular fibres of the first kind, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 163-199.
G.K. Sankaran
Department of Mathematical Sciences
University of Bath
Bath BA2 7AY
ENGLAND
gks@maths.bath.ac.uk
J.G. Spandaw

Institut für Mathematik
Universität Hannover
Postfach 6009
D-30060 Hannover
GERMANY
spandaw@math.uni-hannover.de

