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Abstract

We give an introduction to toroidal compactification in two ways: first we give
an overview of the origins and uses of the construction, and then we work out many
of the details in the concrete case of quotients of the generalised ball B(a, b) =
U(a, b)/(U(a)× U(b)).

1 Introduction

This article has two aims. In the first part, we give an explanation in general terms
of toroidal compactifications and some of their relatives, intended as an introduction to
the subject but not as a detailed reference. In the second part, we illustrate this by
describing in some detail one case of toroidal compactification, associated with classical
bounded symmetric domains of type I (also known as generalised balls) and the Lie
groups U(a, b).

Nothing in this article is truly new. The description given in Section 2 consists
entirely of basic ideas that are familiar to the experts (to whom they will indeed appear
naive), but our experience with students and with researchers not so close to the subject
has taught us that it is not very easy to acquire an overview of the scope, significance
and content of toroidal compactification, even though it has been in use for almost fifty
years. Similarly, the remainder of the article is nothing more than a specialisation of
the general theory to one particular case, which allows us to exhibit the workings of the
construction in a very concrete, but limited, way.

The practical difficulty faced by a would-be user of toroidal compactification is that
the standard book [AMRT] is simultaneously definitive and unapproachable. Other
sources are available, but they are all written with a specific end in view and handle
special cases: for example [Nam] is concerned with the type III case, associated with
Sp(2g) and with moduli of abelian varieties, and [Sca] is associated with type IV and
SO(2, n), more precisely with SO(2, 19) and the moduli of K3 surfaces. A still more
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specific case is worked out in detail in [HKW], but there the algebraic group is Sp(4)
and the focus is on the details of a particular choice of compactification for a quotient
by some very specific discrete groups.

We aim to provide details more concretely than is done in [AMRT], concentrating
on the case of U(a, b), but still at a sufficient level of generality to allow the reader to
adapt them to other cases as necessary. Thus we also handle a special case, but in a
rather more elementary and, we hope, approachable way. We were motivated to write
this introduction by the discovery that the limited account of the construction included
in our paper [KS] was being found useful as a guide by research students, although that
had not been our aim. For this we thank Nils Scheithauer and Maximilian Rössler.

2 Moduli spaces, locally symmetric varieties and compact-
ifications

In this section we give a quick and rather informal explanation of how and why toroidal
compactification arises in algebraic geometry. The most usual context is moduli prob-
lems: more specifically, coarse moduli spaces of polarised complex algebraic varieties.
More sophisticated matters such as moduli stacks can also be incorporated, but we do
not attempt to do that. In particular, as we work entirely over the complex numbers,
we do not address arithmetic questions of any kind, although much has been written on
the subject, starting perhaps with [FC].

2.1 Motivation for construction of toroidal compactifications

Let us start with the formula, given in Shimura’s book [Shi], for the genus of a compact-
ified modular curve XΓ ⊃ Γ\H:

g(XΓ) = 1 +
µ

12
− ν2

4
− ν3

6
− ν∞

2
.

Here Γ is an arithmetic subgroup of Γ(1) = PSL(2,Z), acting on the upper half-plane
H; the index of Γ in Γ(1) is µ; the numbers ν2 and ν3 count orbits of fixed points with
stabilisers in Γ of orders 2 and 3 respectively; and ν∞ is the number of cusps, which is
the number of orbits of Γ on P1

Q.

Shimura shows this by Hurwitz’s Theorem applied to the map XΓ → XΓ(1)
∼= P1,

and then interprets it via Riemann-Roch as a dimension formula for the space of modular
forms. One could try to go in the other direction and estimate the number of modular
forms first: in higher dimensional cases that is rather more natural, as analytic methods
to find such estimates exist, whereas a canonical bundle formula for coverings, analogous
to Hurwitz’s Theorem, is much harder to describe if the branching is complicated.

Roughly speaking the contribution µ comes from the modular forms and there are
correction terms for torsion and cusps: the “singularities” coming from 2- and 3-torsion,
giving ν2 and ν3, and also implicitly (the choice to use Γ ⊂ PSL(2,Z) rather than
Γ ⊂ SL(2,Z)) the “generic singularity” caused by ±I; and then a correction for the
compactification, measured by ν∞.
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XΓ is typically the coarse moduli space of elliptic curves with some level structure;
but we are parametrising the elliptic curves via their periods. In other words, we are
using a Torelli theorem for genus 1 curves. A genus 1 curve has an infinite group of
automorphisms so we shouldn’t expect a decent moduli space of genus 1 curves. We
get a coarse moduli space nevertheless because a genus 1 curve E is non-canonically
isomorphic to its own Jacobian JE = Pic0(E), which is an elliptic curve (i.e. it has a
distinguished point 0 = [OE ]).

We are also using surjectivity of the period map. In this case that is trivial, because
there is nothing else that the image could be; but we do rely on knowing what the period
domain is (in this case H) a priori.

Very roughly, H is a parameter space for Hodge structures on the cohomology of E.
The curve E itself is determined uniquely by its Hodge structure up to Hodge isometry
(this is the Torelli theorem); all Hodge structures occur (surjectivity of the period map)
and the Hodge isometries are given by Γ, which we are also requiring to preserve some
supplementary structure.

The other thing that we are using is that Γ\H does have an algebraic compactification.
This is slightly less trivial. It is only a complex manifold: a priori it could be something
like a disc. To show that it is in fact algebraic we need to use elliptic modular forms.

Once we move to higher-dimensional cases we have in principle a further possible
cause of trouble: we might find that we can compactify but that the resulting space is not
projective. In fact this can really happen, but only with a bad choice of compactification.
The spaces we are looking at will always be Moishezon manifolds, i.e. will always have
plenty of meromorphic functions. Even so, if we make the wrong choices we can find
that the resulting compact space fails to be Kähler, and thus fails to be projective; but
good choices, yielding a projective compactification, always exist.

The higher-dimensional cases arise as soon as we look at the cohomology of algebraic
varieties more complicated topologically than elliptic curves. In general the period map
is neither injective nor surjective, but in several important cases it is surjective, and
either is injective or is sufficiently well understood that the failure of injectivity (i.e.
of Torelli) can be controlled. This happens, for example, in the case of hyperkähler
manifolds. In situations of this type, one has a classifying space for Hodge structures,
which is the target of the period map, and the (coarse) moduli space will be a quotient
of this classifying space by a discrete group.

A symmetric space of non-compact type is a quotient D = G/K of a non-compact
(linear) semisimple Lie group G, defined over Q, by a maximal compact connected sub-
group K of G acting by right translations (cf. [Hel, Theorem IV.3.3], [BJ, III.1.1]). If the
centre of K is not discrete, then D carries a Hermitian structure and hence the structure
of a complex manifold, in fact a Kähler manifold. In the kind of situation we have been
describing, this will be the target of the period map. It is often convenient to work with
reductive groups rather than semi-simple groups: for instance, later we shall work in
U(a, b) rather than SU(a, b).

By a lattice in G we mean a discrete subgroup of G of finite covolume with respect
to Haar measure. The groups we are interested in are algebraic groups defined over Z,
and it therefore makes sense to speak of the group G(Z) of integer points. A lattice Γ is
said to be arithmetic if Γ ∩G(Z) is of finite index in both Γ and G(Z). It is said to be
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neat if the subgroup of C∗ generated by all eigenvalues of elements of Γ is torsion free.
Evidently, G or any subgroup of G acts from the left on D = G/K. A locally

symmetric variety is the quotient of a Hermitian symmetric space D by a lattice Γ < G.
If X = Γ\D is compact then Γ is said to be cocompact or uniform. Non-uniform lattices
are very common, however, and it is this case that we are concerned with. The coarse
moduli spaces that we have been considering will be (close to) locally symmetric varieties.

(At the risk of stating the obvious, let us mention here a common beginner’s mistake,
which is to confuse this construction with geometric invariant theory quotients. Those
involve actions of algebraic groups or Lie groups, not discrete groups. Both constructions
are used to describe moduli spaces, and both are associated with Mumford.)

In this situation, D is a open subset of a projective variety Ď ⊂ Pn (called the compact
dual) on which G acts, and we can lift this action to the corresponding affine space An+1

and look at the affine cone D• on D. Here “open” means open in the analytic topology,
not the Zariski topology: the prototypical example of D is the upper half-plane in its
compact dual Ď = P1, which arises when G = SL2.

A modular form of weight k and character χ is a holomorphic function F : D• → C
such that

F (tZ) = t−kF (Z) ∀t ∈ C∗

and
F (gZ) = χ(g)F (Z) g ∈ Γ,

where χ : Γ → C∗ is a character and k is an integer (sometimes, but not for us, a half-
integer). In the case of elliptic modular forms, i.e. dimD = 1, an extra condition of
holomorphicity at infinity is needed, but we shall hardly ever be concerned with that
case. It is nevertheless an amusing exercise to see that this does indeed give the usual
definition in terms of Möbius transformations in the case of elliptic modular forms.

It is a theorem of Baily and Borel [BB] that locally symmetric varieties are always
algebraic varieties, not just complex analytic spaces. In fact the argument of [BB] treats
only arithmetic lattices: the case of non-arithmetic lattices is dealt with by Mok [Mok].

To prove that a complex manifold is an algebraic variety we need to produce an ample
line bundle. We use the bundle L on X whose local sections are modular forms for Γ of
weight one (and character det), sometimes called the Hodge line bundle. In general it is
only a Q-line bundle, but that does not affect us for now. Then we take X∗ = ProjMΓ,
where MΓ =

⊕
kH

0(L⊗k) is the ring of all modular forms of all weights for Γ with
character detk. The essential content of [BB] is that L is indeed ample on X, so that X
is identified with a Zariski-open subset of X∗. The compactification X∗ is known as the
Baily-Borel or Satake-Baily-Borel compactification of X: for historical reasons, in the
Sp(2g) case, in connection with the moduli of abelian varieties, X∗ is often called the
Satake compactification. (As the referee pointed out, this last usage, though standard, is
potentially misleading as several other compactifications and compactification procedures
are also due to Satake.)

A consequence of this is that modular forms know everything about the birational
geometry of X. Getting them to tell us what they know is quite challenging. A first
difficulty is that X itself will in general be singular (more precisely, the quotient map
D → X may be ramified): one avoids this if the lattice Γ is torsion free or, better still,
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neat (which also avoids certain singularities in the boundary, as we shall see shortly).
However, although one can achieve neatness by replacing Γ by a finite index subgroup,
this is often undesirable and one must instead work with the singularities or ramification
and compute the consequences: the correction terms ν2 and ν3 in Shimura’s formula are
examples of this. In good cases one can prove that the singularities are canonical: this
means, approximately, that they have no effect on top-degree differential forms.

A more serious difficulty is that except in a few trivial cases the boundary X∗rX is
usually of high codimension. A particular case of this is that the Satake compactification
of the moduli space Ag of principally polarised abelian g-folds, which corresponds to the
case G = Sp(2g), has as its largest boundary component a copy of Ag−1, which is of codi-
mension g: there is a stratification that decomposesA∗g = Ag

∐
Ag−1

∐
Ag−2

∐
. . .
∐
A0.

In almost all cases X∗ has bad singularities at the boundary, though they are far from
arbitrary: for example, it is pointed out in [Ale1] that they are log canonical. Moreover,
if X is a moduli space, it is usually hard to attach much geometric meaning to the
boundary points. In the case of Ag a boundary point in Ag−1 corresponds to an abelian
(g − 1)-fold, and one may interpret this as saying that a curve passing through that
point corresponds to a family of abelian varieties degenerating to a semi-abelian variety
whose abelian part is that (g−1)-fold, but other information (the extension class), which
depends on the curve chosen, is lost.

In such a situation one naturally wants to blow up the boundary, both to resolve the
singularities and to distinguish different families approaching the boundary. At a general
point of Ag−1 ⊂ A∗g one blow-up does indeed achieve these aims, but even at a point of
Ag−2 ⊂ A∗g−1 the situation is much more complicated and there are choices to be made.

2.2 Outline of the construction of toroidal compactification

One way to describe toroidal compactification is to say that it is a way of specifying
a blow-up of X∗ at the boundary: of course there are many possible blow-ups and
correspondingly many possible toroidal compactifications. However, it is probably better
to think of it in the first instance as a different approach to compactification, in which
one adds a boundary divisor to X so as to obtain a much less singular compactification
XΣ.

In fact, the construction of XΣ does not use modular forms and X∗ at all. Only once
the construction is complete does one show that there is a map XΣ → X∗, which is proper
and, sometimes, projective, and use this to deduce the compactness and, sometimes,
projectivity of XΣ.

To explain how the process works we assume that G is a reductive group, whose
quotient G/Z(G) by its centre Z(G) is simple. This is by no means necessary and
indeed many interesting spaces, such as Hilbert modular varieties, arise from non-simple
cases G, but the essentials are the same. As in Section 2.1 above, we think of the
symmetric space D as an open subset (in the Euclidean topology) of the compact dual
Ď. The closure D of D in Ď decomposes into boundary components, one of which is D
itself: two points belong to the same boundary component if they can be joined by a
complex curve. Each boundary component F corresponds to a real maximal parabolic
subgroup P ⊂ G, the stabiliser of F , and is in fact itself a symmetric space, associated

5



with a factor of the reductive part of P .
The Langlands decomposition of P represents P = (UP o VP ) o [G1,l(P )×G1,h(P )]

as a product of subgroups, where G1,l(P ) and G1,h(P ) are reductive Lie groups and
NP = UP o VP is the 2-step nilpotent unipotent radical of P . More precisely, UP is
the centre of NP , and VP = NP /UP and UP are both abelian Lie groups, and thus
isomorphic as groups to their own Lie algebras. This induces a diffeomorphic realisation
(called horospherical decomposition) D = Lie(UP )× Lie(VP )× CP × FP and a fibration
πP : D → Lie(VP ) × FP over the product of the complex vector space Lie(VP ) and the
bounded symmetric domain FP = G1,h(P )/[G1,h(P ) ∩K].

For toroidal compactification of Γ\D we consider only the Γ-rational parabolic sub-
groups, which are the ones for which ΓP = P ∩ Γ is a lattice in P . In that case, πP
descends to a fibration ΓP \D → ΓP \(Lie(VP )× FP ), and the fibres of this map appear
as (Euclidean) open subsets in a torus (that is, a copy of (C∗)r for some r), which is in
fact the quotient of UP ⊗ C by Υ = Γ ∩ UP . Thinking of UP ⊗ C as UP ⊕ iUP (as real
vector spaces), the condition for a point in Υ\(UP⊗C) to lie in Υ\D is that its imaginary
part should lie in a certain cone CP , which has a natural embedding in iLie(UP ). In the
case of the upper half-plane H (when F is the infinite point i∞), the cone is the positive

half-line R>0 and if Γ = SL(2,Z) then Υ consists of the matrices

(
1 k
0 1

)
for k ∈ Z.

Equivariant partial compactifications of (C∗)r are well-known. These are toric vari-
eties: references for them include [Ful, Oda, CLS]. We shall need a slightly more general
version, treated in [Oda], in that we do want to allow non-Noetherian schemes rather
than just varieties. We shall get back to the Noetherian world very soon, as we still
need to take a quotient by an infinite group. In general, a toric variety is determined
by some combinatorial data. This consists of a free abelian group N of rank r, a cone
C in N ⊗ R, and a fan ∆, which is a decomposition of C into relatively open rational
polyhedral cones satisfying some simple boundary compatibilities. With this data, one
has a variety TV(∆) of dimension r that contains TN = (N ⊗ C)/N ∼= (C∗)r as a dense
open subset. In other words, N is the cocharacter lattice of the torus: it is standard in
toric geometry to use this notation, and to use M to denote the character lattice.

For us, the toric varieties will appear once we have made a choice of a rational
boundary component and thus a parabolic subgroup P . The role of the free abelian
group N (not to be confused with the unipotent radical NP ) will be played by Υ, the
fan will be called ΣP and the cone that it decomposes will be the cone CP that defined
D as above. We shall use Σ to denote the collection {ΣP } of all the ΣP .

The compactification now proceeds as follows: for each rational maximal parabolic
subgroup P (or rational boundary component F ) we choose a fan ΣP and we take a
partial compactification (Υ\D)P by taking the interior of the closure of Υ\D ⊂ TΥ in
TV(ΣP ). This is really just Υ\D but with the boundary of TV(ΣP ) added on. Then
the compactification XΣ arises from taking quotients by Γ and identifying the different
copies of Γ\D that are contained in these various partial compactifications. For this to
be possible the collection Σ must satisfy some conditions, which we now describe.

Two boundary components are said to be adjacent if one is contained in the closure
of the other. In order to maintain this relationship when we pass to the quotients
and identify, the collection Σ = {ΣP } must be chosen to satisfy some compatibility
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conditions. We also need to account for the action of Γ. Elements of Γ that do not
preserve P will simply move us to a different boundary component, corresponding to a
conjugate of P : we should choose Σ = {ΣP } compatibly with this. The normaliser of P ,
on the other hand, will act on TV(ΣP ) as long as we have chosen ΣP to be Γ-invariant.
A collection of fans that is compatible both with the action of Γ and with adjacencies
among boundary components is called an admissible collection. Admissible collections
do exist, but they are far from unique. They can also be chosen so that the variety
constructed by the whole process is projective.

2.3 Properties of toroidal compactifications

From the above description, we see that local structure of the compactification is that
each point may be regarded as having a neighbourhood that is contained in a quotient
of a toric variety. Although the toric variety may, if we wish, be chosen to be smooth, by
taking a suitable Σ, the action of the normaliser of P will in general have fixed points, so
we cannot always ensure that XΣ is smooth, even if Γ\D is smooth. If Γ is neat, we can
ensure this, and indeed that the quotient maps by the normalisers of P are unbranched.

The freedom to choose any admissible Σ is both a strength and a weakness of toroidal
compactification. It makes the construction non-canonical in general: we cannot expect
to have toroidal compactification functors, nor can we expect that a point of a toroidal
boundary will have a geometric meaning extending the geometric meaning of the points
of Γ\D if it is a moduli space. On the other hand, we can sometimes choose a compact-
ification for which we can assign such a meaning: for instance, this is done in [Ale2] for
the second Voronoi compactification of Ag. Alternatively, we could choose a compacti-
fication for which XΣ has good properties viewed as a projective variety: for instance,
this is done in [S-B] where it is shown that the first Voronoi compactification of Ag is
the canonical model in the sense of birational geometry. Notice that [Ale2] and [S-B]
involve different choices of toroidal compactification.

Because toroidal compactification is very concrete, and much information is encoded
combinatorially in the data Σ, it has proved to be a very effective tool for studying
the global geometry and topology of the moduli spaces. One of the first applications
was the result of Tai [Tai], who interpreted modular forms as differential forms with
poles at the boundary of a toroidal compactification and showed thereby that Ag is
of general type for g ≥ 7. The same idea has been used to prove general-type results
for moduli of K3 surfaces [GHS1] and some hyperkähler manifolds (see [GHS2]), and
for almost all locally symmetric varieties associated with O(2, n) [Ma]. The concrete-
ness and combinatorial nature of toroidal compactification also allows computation of
topological invariants: among many such works, we mention [GHT]. Finally, we should
mention a further generalisation due to Looijenga [Loo1, Loo2], who gave compactifica-
tions or partial compactifications intermediate between toroidal and Baily-Borel, which
have recently been related also to GIT compactifications in some specific cases [LO].
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3 Background on Hermitian symmetric domains

Before we begin the more detailed description of toroidal compactification for generalised
balls in Section 4, we collect here some basic notions about Hermitian symmetric domains
and linear algebraic groups. As general references we mention [Hel, P-S, BJ, KW].

3.1 Bounded symmetric domains

Definition 1. A symmetric domain is a connected complex manifold D such that every
z ∈ D is an isolated fixed point of a holomorphic involution of D. If D has a Hermitian
structure we say that D is a Hermitian symmetric space; if D is a bounded open subset
of some Cn we say that D is a bounded symmetric domain.

If D is a Hermitian symmetric space we may identify D with G/K, where G is the
identity component of the group of holomorphic isometries of D and K is the stabiliser
of a point. Moreover, D is said to be of compact or of noncompact type according
to whether G is compact or noncompact. By the Harish-Chandra embedding theo-
rem, the bounded symmetric domains are precisely the Hermitian symmetric spaces of
noncompact type [Hel, Theorem VIII.7.1]; according to [Hel, Theorem VIII.6.1(i)], the
irreducible Hermitian symmetric spaces are the ones that arise when G is simple and K
is a maximal compact subgroup of G with non-discrete centre. Equivalently, if we view
D = G̃/K̃ as a quotient of a non-compact reductive Lie group, then D is irreducible if
the quotient G̃/Z(G̃) is simple.

The bounded symmetric domains are therefore classified as part of the classification
of Riemannian symmetric spaces: see [Hel, X.6.2, Table V] and [Hel, X.6.3]. There
are four classical types and two exceptional bounded symmetric domains. One of the
exceptional ones is associated with E6 and has (complex) dimension 16; the other is
associated with E7 and has dimension 27. The classical types are:

Iab SU(a, b)/S(U(a)×U(b)) = B(a, b) (the generalised balls), of dimension ab;

IIn SO∗(2n)/U(n), of dimension n(n− 1)/2;

IIIn Sp(n,R)/U(n) = Hn (the Siegel upper half-spaces), of dimension n(n+ 1)/2;

IVn SO0(2, n)/(SO(2)× SO(n)), of dimension n.

Here SO∗(2n) is the subgroup of SO(2n,C) that preserves a skew-Hermitian form.
From the point of view of moduli problems in algebraic geometry the most prominent

of these are IIIn which is the period domain for polarised abelian varieties of dimension n;
and IVn, in particular IV19 which is the period domain for polarised K3 surfaces.

3.2 Langlands decomposition

Let D = G/K be an irreducible bounded symmetric domain, represented as a quotient
of a non-compact reductive Lie group G, and let Q be a maximal parabolic subgroup
of G. We make use of the refined Langlands decomposition of Q, which parallels the
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Iwasawa decomposition of G itself. Let NQ be the unipotent radical of Q and let LQ be
a Levi subgroup of Q, i.e. a reductive complement of NQ in Q = NQ o LQ.

We can decompose further the unipotent radical NQ of Q. Since NQ is a 2-step
nilpotent group, i.e. [[NQ, NQ], NQ] = 0, the centre UQ of NQ coincides with the commu-
tator subgroup [NQ, NQ]. We may identify UQ with its Lie algebra Lie(UQ) ∼= Rm, for
m = dimR UQ. The quotient VQ = NQ/UQ is also an abelian group, naturally isomorphic
to Cn (see for instance [BJ, (III.7.10)]) and NQ = UQ o VQ is a semi-direct product of
UQ and VQ.

The reductive group LQ is a product LQ = G1,l(Q)×G1,h(Q) of reductive Lie groups
with simple quotients G′1,l(Q) = G1,l(Q)/Z(G1,l(Q)) and G′1,h(Q) = G1,h(Q)/Z(G1,h(Q))
by the corresponding centres. The centre Z(G) of G coincides with the ineffective kernel
of the G-action on D, and Z(G) is contained in LQ. There is a decomposition Z(LQ) =
Z(G)×AQ for a 1-dimensional real torus AQ ∼= (R>0, .), called the split component of Q.
Moreover, AQ is a subgroup of G1,l(Q), and we have Z(G1,l(Q)) = [Z(G)∩G1,l(Q)]×AQ
and Z(G1,h(Q) = Z(G) ∩ G1,h(Q). The G1,h(Q)-orbit of the origin is an irreducible
Hermitian symmetric space

D1,h(Q) = G1,h(Q)/[G1,h(Q) ∩K] = G′1,h(Q)/[G′1,h(Q) ∩K]

of non-compact type, called the boundary component of D, associated with Q [BJ,
(III.7.8)]. The orbit

D′1,l(Q) = G′1,l(Q)/(G′1,l(Q) ∩K)

of the simple part G′1,l(Q) of G1,l(Q) is an irreducible Riemannian symmetric space of
non-compact type. The split component AQ has trivial intersection with K, and the
G1,l(Q)-orbit

CQ = G1,l(Q)/(G1,l(Q) ∩K) = (AQ ×G′1,l(Q))/(G′1,l(Q) ∩K) = AQD
′
1,l(Q)

of the origin coincides with the AQ-orbit of D′1,l(Q). Note that CQ is an open strongly
convex homogeneous cone with base D′1,l(Q). Altogether, the LQ-orbit of the origin is

LQ/(LQ ∩K) = CQ ×D1,h(Q).

Definition 2. The decomposition

Q = (UQ o VQ) o [Z(G)×AQ ×G′1,l(Q)×G′1,h(Q)] (1)

of a maximal parabolic subgroup Q of G is called the refined Langlands decomposition.

Note also that G = QK and Q ∩ K = LQ ∩ K, so that the refined Langlands
decomposition (1) induces a diffeomorphic refined horospherical decomposition

D = Q/(Q ∩K) = NQ × [LQ/(LQ ∩K)] = UQ × VQ × CQ ×D1,h(Q)

of the Hermitian symmetric space D of non-compact type.
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4 Generalised ball quotients

We intend to describe the procedure leading to the construction of toroidal compact-
ifications for the case of U(a, b)/U(a) × U(b), the generalised ball B(a, b) (see Defini-
tion 3). The quotients Γ\B(a, b) are known as generalised ball quotients or Picard mod-
ular varieties. The space B(a, b) is naturally embedded in the Siegel upper half-space
Ha+b = Sp(a + b,R)/U(a + b) and may be thought of as a period domain for abelian
(a+ b)-folds with a type (a, b) involution [vanG].

Definition 3. Fix a Hermitian form χ on Ca+b of signature (a, b): for convenience we
always assume that a ≤ b. The generalised ball of signature (a, b) is the set B(a, b) of
a-dimensional subspaces S ⊂ Ca+b such that the restriction χ|S is positive definite.

Note that B(1, b) is the usual ball in Cb. The generalised ball is a classical (type I)
irreducible Hermitian symmetric space of non-compact type. The associated reductive
group is the indefinite unitary group G = GLC(Ca+b, χ) = U(a, b), which acts transitively
on B(a, b) with stabiliser U(a) × U(b). (We could instead work with the simple group
SU(a, b) and the stabiliser S(U(a)×U(b)) but working with U(a, b) simplifies the notation
somewhat.)

From here on, we regard χ (and hence a and b) as fixed. Terms such as isotropic,
orthogonal, etc. are to be understood as meaning “with respect to χ”. Note that a
coincides with the real rank of G, also denoted rank(G) or rankB(a, b).

4.1 Langlands decomposition of maximal parabolics

In this section we describe the Langlands decomposition of maximal parabolic subgroups
in detail.

The maximal parabolic subgroups of G = U(a, b) are the stabilisers P = StabG(E)
of the isotropic subspaces E ⊂ Ca+b. Any such E is of dimension s = dimC(E) ≤
a = rank(G) and has an isotropic conjugate space Ě ⊂ Ca+b, with E ∩ Ě = {0} and
dimC(Ě) = s, such that the restriction χ|E⊕Ě is a non-degenerate form of signature

(s, s). The restriction χ1 of χ to the orthogonal complement F of E ⊕ Ě in Ca+b is a
non-degenerate Hermitian form of signature (a − s, b − s). Let us put t = dimC(F ) =
(a− s) + (b− s).

Our first aim is to describe the components of the Langlands decomposition of P =
StabG(E). We want to do this in matrix terms, so we first choose a suitable basis for
our calculations.

Definition 4. A basis {e1, . . . , es, f1, . . . , fa−s, f
′
1, . . . , f

′
b−s, ě1, . . . , ěs} of Ca+b is said to

be E-adapted if e = {e1, . . . , es} and ě = {ě1, . . . , ěs} are bases of E and Ě respectively,
such that

χ(ei, ěj) = χ(ěj , ei) = δij ,

and f = {f1, . . . , fa−s, f
′
1, . . . , f

′
b−s} is a basis for F such that

χ(fi, fj) = δij = −χ(f ′i , f
′
j) and χ(fi, f

′
j) = 0.

10



Because χ is nondegenerate, we can extend an arbitrary C-basis e = {e1, . . . , es} of
E to an E-adapted basis {e, f , ě} with respect to which the matrices of χ and χ1 are

χ =

 0 0 Is
0 χ1 0
Is 0 0

 and χ1 =

(
Ia−s 0

0 −Ib−s

)
. (2)

We begin with the unipotent part of P , described with respect to an E-adapted basis.

Proposition 5. The unipotent radical NP of P has Lie algebra

Lie(NP ) =


0 −µ>χ1 λ

0 0 µ
0 0 0

 ∣∣∣λ ∈Ms×s(C), µ ∈Mt×s(C), λ
>

= −λ


with respect to e, f , ě. The Lie group NP is

NP =


Is −µ>χ1 ν

0 It µ
0 0 Is

 ∣∣∣ ν ∈Ms×s(C), µ ∈Mt×s(C), ν + ν> + µ>χ1µ = 0


and the exponential map exp: Lie(NP )→ NP and its inverse are given by

exp

0 −µ>χ1 λ
0 0 µ
0 0 0

 =

Is −µ>χ1 λ− 1
2µ
>χ1µ

0 It µ
0 0 Is


and

exp−1

Is −µ>χ1 ν
0 It µ
0 0 Is

 =

0 −µ>χ1 ν + 1
2µ
>χ1µ

0 0 µ
0 0 0

 .

Fundamental to the whole construction is the centre of the unipotent radical. If
the parabolic subgroup P of G is maximal then NP is a 2-step nilpotent group, i.e.,
[[NP , NP ], NP ] = 0. The centre UP of NP coincides with the commutator subgroup
[NP , NP ]. Note that UP and VP are isomorphic as groups to their respective Lie algebras,
so we may writeNP = UPoVP but also, often more conveniently, NP = Lie(UP )oLie(VP )
as groups.

For λ ∈Ms×s(C) and µ ∈Mt×s(C) we put

u(λ) =

0 0 λ
0 0 0
0 0 0

 and v(µ) =

0 −µ>χ1 0
0 0 µ
0 0 0

 . (3)

Proposition 6. The centre of NP agrees with the commutator subgroup UP = [NP , NP ]
of NP and has Lie algebra

Lie(UP ) = {u(λ) | λ ∈Ms×s(C), λ
>

= −λ}. (4)

The quotient VP = NP /UP is an abelian Lie group with Lie algebra

Lie(VP ) = Lie(NP )/Lie(UP ) = {v(µ) + Lie(UP ) | µ ∈Mt×s(C)}. (5)

11



In particular Proposition 6 shows that Lie(VP ) is isomorphic to the space of C-linear
maps Hom(F, Ě) and Lie(UP ) is isomorphic to the space Homχ(E, Ě) of infinitesimally
χ-Hermitian C-linear maps E → Ě.

Our convention is that the matrices of linear transformations are multiplied on the
left with the coordinates of the vectors from Ca+b.

Having described the unipotent part, we move on to the reductive part LP of P . It is a
product LP = G1,l(P )×G1,h(P ) of reductive groups G1,l(P ) and G1,h(P ) of noncompact
type, where G1,h(P ) is the subgroup corresponding to a Hermitian symmetric space [BJ,
(III.7.8)]. Note that LP is a quotient of P , but the extension is split so we may view it as
a subgroup, the Levi subgroup, defined up to conjugacy. In this case the Lie algebras do
not help us and we work directly with the Lie groups. For ξ ∈ GL(s,C) and ζ ∈ GL(t,C),
we put

g(ξ) =

ξ 0 0
0 It 0

0 0 (ξ
>

)−1

 and h(ζ) =

Is 0 0
0 ζ 0
0 0 Is

 . (6)

Proposition 7. The Levi subgroup of P is the direct product LP = G1,l(P )×G1.h(P ),
where

G1,l(P ) = {g(ξ) | ξ ∈ GL(s,C)} ∼= GL(s,C), (7)

and

G1,h(P ) = {h(ζ) | ζ ∈ GL(t,C), ζ
>
χ1ζ = χ1} = U(F, χ1) ∼= U(a− s, b− s). (8)

The centre of LP is

Z(LP ) =


peiϕIs 0 0

0 eiψIt 0
0 0 p−1eiϕIs

 ∣∣∣ϕ,ψ ∈ R, p ∈ R>0

 .

The proof of these propositions is not difficult, but we want to write out some of the
details. With respect to an E-adapted basis of Ca+b, the stabiliser P = StabG(E) of E
in G = U(Ca+b, χ) ∼= U(a, b) consists of the matrices

p =

ξ µ′ λ
0 ζ µ
0 ν ξ′

 with p>χp = χ for ξ ∈ GL(s,C), λ, ξ′ ∈Ms×s(C),

µ′, ν ∈Ms×t(C), µ ∈Mt×s(C), ζ ∈Mt×t(C).

In other words,

p =

ξ −ξµ>χ1ζ λ
0 ζ µ

0 0 (ξ
>

)−1

 (9)

with ζ
>
χ1ζ = χ1 and (ξ−1λ) + (ξ−1λ)

>
+ µ>χ1µ = 0.

Now the homomorphism

p 7−→

ξ 0 0
0 ζ 0

0 0 (ξ
>

)−1


12



has kernel NP and image LP , which immediately gives the descriptions of NP and LP
as well as Z(LP ) above. Similarly the Lie algebra Lie(P ) consists of the matrices

Y =

ξ µ′ λ
0 ζ µ
0 ν ξ′

 with Y
>
χ+ χY = 0 for ξ, λ, ξ′ ∈Ms×s(C),

µ′, ν ∈Ms×t(C), µ ∈Mt×s(C), and ζ ∈Mt×t(C).

For convenience, given ξ, λ ∈Ms×s(C), µ ∈Mt×s(C) and ζ ∈Mt×t(C) we set

Y (ξ, ζ, λ, µ) =

ξ −µ>χ1 λ
0 ζ µ

0 0 −ξ>

 . (10)

Then a straightforward verification shows that

Lie(P ) = {Y (ξ, ζ, λ, µ) | ζ>χ1 + χ1ζ = 0, λ
>

= −λ}. (11)

Everything now follows by simple calculations once we observe that X = Y (0, 0, λ, µ) ∈
Lie(NP ) satisfies

exp(X) = Ia+b +X +
1

2
X2 =

Is −µ>χ1 λ− 1
2µ
>χ1µ

0 It µ
0 0 Is


with (

λ− 1

2
µ>χ1µ

)
+

(
λ− 1

2
µ>χ1µ

)>
+ µ>χ1µ = 0.

We also want to write down the group law in P . It is convenient to use the group
isomorphism between an abelian Lie group and its Lie algebra and write the unipotent
radical in term of Lie algebras: namely, we have group isomorphisms

P ∼= NP o LP = (UP o VP ) o [G1,l(P )×G1,h(P )]
∼= [Lie(UP ) o Lie(VP )] o [G1,l(P )×G1,h(P )]

and we use the last formulation. Then the group law is given by

(u(λ1), v(µ1), g(ξ1), h(ζ1))(u(λ2), v(µ2), g(ξ2), h(ζ2)) = (u(λ), v(µ), g(ξ1ξ2), h(ζ1ζ2))
(12)

where

λ = λ1 + ξ1λ2ξ1
>

+
1

2
(ξ1µ2

>ζ1
>
χ1µ1 − µ1

>χ1ζ1µ2ξ1
>

), (13)

and µ = µ1 + ζ1µ2ξ1
>

.
Note that an isotropic subspace E ⊂ Ca+b does not determine uniquely its conjugate

Ě. Likewise, P = StabG(E) determines E only up to translation by an element of P .
On the other hand, P is uniquely determined by the boundary component

D1,h(P ) = U(F, χ1)/(U(F, χ1) ∩K).
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Suppose that {α, β} = {α1, . . . , αa, β1, . . . , βb} is an orthonormal basis of Ca+b: that

is, one such that the matrix of χ is

(
Ia 0
0 −Ib

)
. Such a basis determines a maximal

compact subgroupKα,β = U(SpanC(α))×U(SpanC(β)) ∼= U(a)×U(b) ofG ∼= U(a, b), and
thus a base point in B(a, b). We fix a maximal compact subgroup K and an orthonormal
basis {α, β} such that Kα,β = K.

Now D1,h(P ) determines the subspace F ⊂ Ca+b and, therefore, its χ-orthogonal
complement E ⊕ Ě. If E1 ⊂ E ⊕ Ě is a maximal isotropic subspace then dimC(E1) =
s = dimC(E) and there exists g ∈ G1,l(P ) with E1 = g(E). The corresponding maximal
parabolic subgroup

StabG(E1) = StabG(g(E)) = g StabG(E)g−1 = gPg−1 = P

coincides with P = StabG(E).

4.2 Compatibility with integral structure

Next we need to verify that the Langlands decomposition respects the integral structure.
In general we want to work with an arithmetic lattice Γ, but for the sake of definiteness
we will state the result for the special case Γ = GZ, where we denote by I the Gaussian
integers Z + iZ and define GZ = G ∩GL(a+ b, I).

Proposition 8. Suppose that E ⊂ Ca+b is a GZ-rational χ-isotropic subspace, {e, f , ě} ⊂
Ia+b is an integral E-adapted basis of Ca+b, and P = StabG(E) is the associated maximal
parabolic subgroup of G = U(Ca+b, χ). Then GZ = G ∩ GL(a + b, I) is the arithmetic
lattice preserving SpanZ{e, f , ě}, and

P ∩GZ ∼= [Lie(UP )Z o Lie(VP )Z] o [G1,l(P )Z ×G1,h(P )Z]

where Lie(UP )Z = Lie(UP )∩M(a+b)×(a+b)(I) and G1,l(P )Z = G1,l(P )∩GL(a+ b, I), and

similarly for Lie(VP )Z and G1,h(P )Z.

This is a straightforward verification. Notice that Proposition 8 is written in terms
of the Lie algebras of UP and VP , but if n(λ, µ) ∈ Lie(NP ) ∩M(a+b)×(a+b)(I) we do not

have exp(n(λ, µ)) ∈ M(a+b)×(a+b)(I) in general because of the 1
2 in the exponential (see

Proposition 5).

4.3 Horospherical decomposition

Horospherical decomposition is the name given to the decomposition of the symmet-
ric space (in this case, B(a, b)) induced by the Langlands decomposition of a maximal
parabolic subgroup.

The choice of an orthonormal basis {α, β} and a maximal compact subgroup K =
Kα,β of G = U(a, b) determines a maximal flag E1 ⊂ . . . ⊂ Es ⊂ . . . ⊂ Er of isotropic
subspaces of Ca+b, and our purpose is to describe the horospherical decompositions of
B(a, b) with respect to Ps = StabG(Es) by means of convenient matrix realisations.
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Lemma 9. Given a maximal compact subgroup K < G = U(a, b) and an orthonormal
basis {α, β} with Kα,β = K, define

ei =
1√
2

(αi + βi) and ěi =
1√
2

(αi − βi), for 1 ≤ i ≤ a = rankB(a, b).

For 1 ≤ s ≤ a, put Es = SpanC{ei | 1 ≤ i ≤ s} and Ěs = SpanC{ěi | 1 ≤ i ≤ s}. Then
E1 ⊂ . . . ⊂ Es ⊂ . . . ⊂ Ea is a maximal flag of isotropic subspaces of Ca+b, the space Ěs
is conjugate to Es and, for a fixed s, if we also set fj = αs+j and f ′j = βs+j, the basis

{e, f , ě}Es = {e1, . . . , es, f1, . . . , fa−s, f
′
1, . . . , f

′
b−s, ě1, . . . , ěb} (14)

is an Es-adapted basis of Ca+b.

This is a straightforward verification: the factor 1√
2

is unimportant but will simplify

notation later.
We keep the notation of Lemma 9 and recall the definition of the matrices Y (ξ, ζ, λ, µ)

from (10).

Proposition 10. The maximal parabolic subgroup P = StabG(Es) has Levi subgroup
LP = G1,l(P )×G1,h(P ) satisfying

Lie(P ∩K) = Lie(LP ∩K) = Lie(G1,l(P ) ∩K)× Lie(G1,h(P ) ∩K).

With respect to the basis {e, f , ě}Es, these factors are the matrix Lie algebras

Lie(G1,l(P ) ∩K) = Lie(G1,l(P )) ∩ Lie(K)

=


ξ 0 0

0 0 0
0 0 ξ

 ∣∣∣ ξ ∈Ms×s(C), ξ
>

= −ξ

 (15)

= {Y (ξ, 0, 0, 0) | ξ> = −ξ}

and

Lie(G1,h(P ) ∩K) = Lie(G1,h(P )) ∩ Lie(K)

=

{
Y (0, ζ, 0, 0)

∣∣∣ ζ =

(
ζ1 0
0 ζ2

)
, ζj
>

= −ζj
}
, (16)

where ζ1 ∈M(a−s)×(a−s)(C), and ζ2 ∈M(b−s)×(b−s)(C).

Corresponding to the Langlands decomposition of any maximal parabolic subgroup
P we have the horospherical decomposition of B(a, b). In the first place

B(a, b) = PK/K ∼= P/(P ∩K)

and since NP has no nontrivial compact subgroups that gives

B(a, b) = (NP × LP )/(LP ∩K)
∼= UP × VP × [G1,l(P )/(G1,l(P ) ∩K)]× [G1,h(P )/(G1,h(P ) ∩K)] .
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Proposition 11. If P = StabG(Es), then

B(a, b) = UP × VP × CP ×D1,h(P ).

The factor CP may be identified with the the cone of positive definite Hermitian (s× s)-
matrices. In the coordinates given by the basis (e, f , ě)Es in equation (14), using the
notation from (6),

CP = {g(ξ) | ξ ∈Ms×s(C), ξ
>

= ξ, ξ > 0}
= {g(cc>) | c ∈ GL(s,C)}, (17)

whose real tangent space at any point o ∈ CP is

TR
o CP =

Y (ξo, 0, 0, 0) =

ξo 0 0
0 0 0
0 0 −ξo

 ∣∣∣ ξo ∈Ms×s(C), ξo
>

= ξo

 . (18)

The other factor is the generalised ball

D1,h(P ) = G1,h(P )/(G1,h(P )∩K) ∼= U(a−s, b−s)/U(a−s)×U(b−s) = B(a−s, b−s),

whose real tangent space at the origin is

TR
o D1,h(P ) =

{
Y (0, ζ, 0, 0)

∣∣∣ ζ =

(
0 ζ12

ζ12
>

0

)
, ζ12 ∈M(a−s)×(b−s)(C)

}
. (19)

The proof of Proposition 10 is a straightforward computation: one has to write down
the transition matrices between the two bases {α, β} and {e, f , ě}, and use the fact that

Lie(K) consists (with respect to {α, β}) of the matrices

(
Y1 0
0 Y2

)
, with Y1 ∈Ma×a(C),

Y2 ∈Mb×b(C), and Yj
>

= −Yj .
The proof of Proposition 11 is only slightly less elementary. The open strongly convex

homogeneous cone
CP = G1,l(P )/(G1,l(P ) ∩K)

is a Cartan-Hadamard manifold and can be identified with the image of its tangent
space TR

o CP under exp: TR
o CP → CP . However, TR

o CP = (Lie(G1,l(P ) ∩ K))⊥ is the
orthogonal complement of Lie(G1,l(P ) ∩ K) in LieG1,l(P ) with respect to the Killing
form 〈X,Y 〉 = Tr[X,Y ]. This, together with (15) and the description of Lie(K) above,
gives (18) immediately and implies that the exponential map of CP coincides with the
exponential of a matrix. Applying exp to the matrices in (18) gives (17): one has
exp(ξo) = ξ.

Notice in particular that TR
o CP is isomorphic to the space Homχ(Ěs, Ěs) of infinites-

imally χ-Hermitian C-linear operators on Ěs.
Similarly, the generalised ball

D1,h(P ) = G1,h(P )/G1,h(P ) ∩K
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is the image of exp: TR
o D1,h(P ) → D1,h(P ). Using ζ

>
χ1 + χ1ζ = 0 (from (11)) and

writing ζ =

(
ζ1 ζ12

ζ21 ζ2

)
, with ζ1 ∈M(a−s)×(a−s)(C) and ζ2 ∈M(b−s)×(b−s)(C), we obtain

ζj
>

= −ζj and ζ12
>

= ζ12. Computing the Killing form, we find that the subspace
TR
o D1,h(P ) = Lie(G1,h(P ) ∩K)⊥ of LieG1,h(P ) is given by ζ1 = ζ2 = 0, yielding (19).

Again, TR
o D1,h(P ) to D1,h(P ) can be identified with the space Homχ(Fs, Fs) of in-

finitesimally χ-Hermitian C-linear operators on Fs.
So far we have worked only with isotropic subspaces Es arising from the filtrations as-

sociated with a choice of K and {α, β}. There is, however, no practical loss of generality
in doing so, because G acts transitively on the set of isotropic subspaces of dimen-
sion s. Thus, if E is another such subspace, the associated maximal parabolic subgroup
P = StabG(E) of G is conjugate to some Ps = StabG(Es), and P inherits a Langlands
decomposition and induces a horospherical decomposition of B(a, b), as in Proposition 11.

4.4 Siegel domain decomposition

The horospherical decomposition of Section 4.3 is a diffeomorphism, but there is a com-
plex structure to be considered as well. By (4) we have

iLie(UP ) = {u(iλ) = Y (0, 0, iλ, 0) | λ ∈Ms×s(C), λ
>

= −λ}

= {u(ξo) = Y (0, 0, ξo, 0) | ξo ∈Ms×s(C), ξo
>

= ξo}.

So iLie(UP ) is parametrised by the Hermitian (s× s)-matrices and there is a canonical
isomorphism of R-linear spaces

κP : TR
o CP −→ iLie(UP ),

given by κP (Y (ξo, 0, 0, 0)) = Y (0, 0, ξo, 0). It transforms the open strongly convex homo-
geneous cone CP ⊂ TR

o CP into an open strongly convex homogeneous cone κP (CP ) ⊂
iLie(UP ) and realises

SP = Lie(UP ) + κP (CP ) ⊂ Lie(UP ) + iLie(UP ) = Lie(UP )⊗R C

as a Siegel domain of first kind. After application of the Lie group isomorphism VP ∼=
(Lie(VP ),+), we obtain a diffeomorphic realisation D[P ] of B(a, b), which is the product

D[P ] = SP ×BP , (20)

where BP = Lie(VP )×D1,h(P ).
On the other hand, we also have the classical holomorphic Siegel domain realisation

D(P ) of of B(a, b) associated with P , which is a holomorphic fibration

πP : D(P ) −→ BP = Lie(VP )×D1,h(P ) (21)

by Siegel domains π−1
P (v, z) of the first kind (see [P-S]), each diffeomorphic to the central

fibre π−1
P (0, o) = UP + iCP = SP . This is described in [BJ, Proposition III.7.12]: for

any point z ∈ D1,h(P ) there is a Hermitian vector-valued quadratic form

hz : Lie(VP )× Lie(VP ) −→ Lie(UP )C = Lie(UP )⊗R C, (22)
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which depends real-analytically on z. (There is a slight inaccuracy in [BJ, Proposi-
tion III.7.12], where it is said that hz depends holomorphically on z. In [P-S, Section 1.3],
the Siegel domains of third kind are defined by Hermitian vector-valued forms hz, which
depend real-analytically on z. See also [Wolf, Section 2] or [AMRT, Section 4.3(iv)].)

If κP (CP ) ⊂ iLie(UP ) is the closure of κP (CP ) in iLie(UP ), then ihz(v, v) ∈ κP (CP )
for all v ∈ Lie(VP ).

The fibres of the holomorphic projection πP are

π−1
P (v, z) = {u1 + iu2 ∈ Lie(UP )C | iu2 − ihz(v, v) ∈ κP (CP )}. (23)

For any fixed b = (v, z) ∈ BP the map

δbP : SP = π−1
P (o) −→ π−1

p (v, z), (24)

given by δbP (u1 + iu2) = u1 + i(u2 + hz(v, v)), for u1 ∈ Lie(UP ) and iu2 ∈ κP (CP ), is a
biholomorphism. By dropping the requirement iu2 ∈ κP (CP ), we get a biholomorphism
δbP : Lie(UP )C → Lie(UP )C, which depends diffeomorphically on v ∈ Lie(VP ) and on z ∈
D1,h(P ). Hence these fibrewise maps {δbP }b∈BP

are the restrictions of a diffeomorphism

δP : [Lie(UP ) + κP (CP )]× Lie(VP )×D1,h(P ) −→ D ⊂ Lie(UP )C × Lie(VP )×D1,h(P ),

given by
δP (σ, v, z) = (δbP (σ), v, z) = (σ + ihz(v, v), v, z)

depending holomorphically on σ ∈ SP .

5 A partial compactification at a cusp

Next we concentrate on a single boundary component and build the partial compactifi-
cation there.

5.1 Maximal parabolic subgroups and toric varieties

Let P = StabG(Es) be a maximal parabolic subgroup of G and let

{e, f , ě} = {e1, . . . , es, f1, . . . , fa−s, f
′
1, . . . , f

′
b−s, ě1, . . . , ěs}

be an Es-adapted basis of Ca+b, and Γ be an arithmetic lattice in G = U(Ca+b, χ).
Recall that the exponential map

exp: (Lie(UP ),+) −→ UP

of the abelian Lie group UP is a group isomorphism and denote by

ΥP := exp−1(UP ∩ Γ)

the preimage of the lattice UP ∩ Γ of UP . The quotient

T(P ) = ΥP \Lie(UP )C
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is an algebraic torus over C.
A closed, strongly convex polyhedral cone τ in Lie(UP ) ∼= (Rs2 ,+) is a subset of the

form τ = R≥0u1 + . . . + R≥0ud for some ui ∈ Lie(UP ). One says that τ is ΥP -rational,
or just rational, if all the ui can be chosen to belong to ΥP .

A collection Σ(P ) of closed, strongly convex polyhedral cones is a fan if any face of a
cone τ ∈ Σ(P ) belongs to Σ(P ), and τ1 ∩ τ2 ∈ Σ(P ) if τi ∈ Σ(P ). A fan Σ(P ) is rational
if all of its cones are rational.

A ΥP -rational fan Σ(P ) is Γ-admissible if the cone

κP (CP ) ⊆
⋃

σ∈Σ(P )

iσ

and the lattice Γ ∩G1,l(P ) < G1,l(P ) acts on Σ(P ) with finitely many orbits.
Let Σ(P ) be a Γ-admissible fan. For any τ ∈ Σ(P ) we define T(τ) = ΥP \(τC + ΥP );

this is the subgroup of T(P ) generated by the complex span τC = SpanC(τ) of τ .
The quotient group T(P/τ) = T(P )/T(τ) still has a (left) action of T(P ) coming

from the multiplication action of T(P ) on itself, and the quotient map T(P )→ T(P/τ)
is equivariant. In this situation the fan Σ(P ) and the lattice ΥP determine a toric variety
TV(Σ(P )) (which, as a set, is

∐
σ∈Σ(P )

T(P/σ)), on which T(P ) acts with an open dense

orbit.
There is a vast literature on toric varieties. Two standard references are [CLS]

and [Ful], but they deal with finite fans (so the resulting toric varieties are Noetherian
schemes). The fan Σ(P ) will not be finite, only admissible. For the slightly greater
generality that we need, we refer to [Oda], where infinite fans are allowed. In the notation
of [Oda], the toric variety TV(Σ(P )) is the object denoted by TΥP

emb(Σ(P )).
In order to define the partial completion ZΣ(P ) = (ΥP \D)Σ(P ) at the cusp associated

with P , we use the holomorphic Siegel domain realisation of D arising from P and the
canonical projection

πP : D −→ BP = Lie(VP )×D1,h(P ).

Bearing in mind that ΥP \SP ⊂ T(P ) ⊂ TV(Σ(P )) since SP = Lie(UP ) + κP (CP ), one
takes YΣ(P ) = Int(ΥP \SP ), the interior of the closure of ΥP \SP inside TV(Σ(P )).

In terms of the holomorphic Siegel domain realisation D(P ) of D, the partial comple-
tion of ΥP \D at P is

ZΣ(P ) =
∐

(v,z)∈BP

Int(ΥP \(SP + ihz(v, v))).

Note that ΥP acts on the fibres of πP , as they are translates in an imaginary direction of
π−1
P (o) = SP . So ZΣ(P ) is a family of spaces YΣ(P ), partially compactifying the fibration

of ΥP \D over BP fibrewise.
If D[P ] = SP × Lie(VP ) × D1,h(P ) is the diffeomorphic Siegel domain realisation,

then
ΥP \D[P ] = [ΥP \SP ]× Lie(VP )×D1,h(P )

and

ZΣ(P )
∼= Int(ΥP \SP )× Lie(VP )×D1,h(P ) = YΣ(P ) × Lie(VP )×D1,h(P ).
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5.2 Group actions

The action of G on Ca+b induces a transitive action on the set of isotropic subspaces of
any fixed dimension s. Thus, for an arbitrary s-dimensional isotropic subspace E ⊂ Ca+b

there exists g ∈ G = U(a, b) with E = g(Es) and P = StabG(E) = g StabG(Es)g
−1.

We are now concerned with the Γ-action, and in practice we shall be only concerned
with rational isotropic subspaces. Corollary 12 does not address the question of transi-
tivity, but simply observes that the constructions we have made so far are Γ-invariant.

Corollary 12. We use the notation of Lemma 9. Then Γ acts on the set of isotropic
subspaces of Ca+b, and if E = gs(Es) ⊂ Ca+b with gs ∈ Γ is an isotropic subspace in the
Γ-orbit of Es then the diffeomorphism

η̃sP : D[Ps] −→ D[P ]

given by

η̃sP (us + κPs(cs), vs, zs) = (gsusg
−1
s + κP (gscsg

−1
s ), gsvsg

−1
s , gszsg

−1
s )

induces a diffeomorphism

ηsP : TV(Σ(Ps))× Lie(VPs)×D1,h(Ps) −→ TV(gsΣ(Ps)g
−1
s )gsΓg−1

s × Lie(VP )×D1,h(P )

which restricts to a diffeomorphism ηsP : ZΣ(Ps) → ZΣ(P ).

The proof is immediate.
Next, we describe the action of P on the associated holomorphic Siegel domain

realisation of B(a, b) and the action of Γ∩P on ΥP \B(a, b), on the toric variety TV(Σ(P ))
and on the closure ΥP \B(a, b) of ΥP \B(a, b) in TV(Σ(P )).

In the notation from Lemma 9, let P = StabG(Es) be a standard maximal parabolic
K-adapted subgroup of G. According to (21) and (23), we may write the associated
holomorphic Siegel domain realisation of D = B(a, b) as

D(P ) =
{
d(λ, µ, ξ, z) =

(
u(λ) + κP (g(ξ)) + ihz

(
v(µ), v(µ)

)
, v(µ), z

)}
(25)

⊂ Lie(UP )C × Lie(VP )×D1,h(P ) (26)

where (v(µ), z) ∈ BP = LieVP ×D1,h(P ) and u(λ) ∈ Lie(UP ), and g(ξ) ∈ CP for some

ξ = ξ
> ∈Ms×s(C).

Corollary 13. In the coordinates given by (25), the action of P on D(P ) is as follows:
if

p = ((u(λ0), v(µ0), g(ξ0), h(ζ0)) ∈ [Lie(UP ) o Lie(VP )] o [G1,l(P )×G1,h(P )] ∼= P

as in Proposition 6 and Proposition 7, then

p : d(λ, µ, ξ, z) −→ d(λ′, µ′, ξ′, z′)

where

λ′ = λ0 + ξ0λξ0
>

+
1

2
(ξ0µ

>ζ0
>
χ1µ0 − µ0

>χ1ζ0µξ0
>

), ξ′ = ξ0ξξ0
>
, (27)
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and
µ′ = µ0 + ζ0µξ0

>
, z′ = ζ0z. (28)

Moreover, if p ∈ Γ ∩ P then this action descends to an action on ΥP \B(a, b), and if
furthermore τ ∈ Σ(P ) for a Γ-admissible fan Σ(P ) then it descends to an action on
T(P/τ) = Lie(UP )C/ SpanC(τ) + ΥP .

Proof. The action of P on the holomorphic Siegel domain realisation D(P ) = P/P ∩K
arises from the group multiplication in P as given in (13). The only thing to be taken

care of is the action of ξ0 ∈ GL(s,C) on g(ξ) ∈ CP by the rule g(ξ) 7→ g(ξ0ξξ0
>

) and the
action of ζ0 ∈ U(F, χ1) on z ∈ D1,h(P ) = U(F, χ1)/K ∩ U(F, χ1) by z 7→ ζ0z: the latter
is immediate and the former follows from (17).

6 Assembling the toroidal compactifications

Now we consider the identifications that we need to make among the partial compacti-
fications defined in Section 5.

6.1 Two adjacent boundary components

In the situation of Lemma 9, we choose 1 ≤ s < q ≤ r. We denote the corresponding
parabolic subgroups by Ps and Pq, and we define Esq = SpanC{ei | s < i ≤ q} and

Ěsq = SpanC{ěi | s < i ≤ q}, so that Eq = Es ⊕ Esq .
Then if we consider the subspace Fs = SpanC{αi, βi | i > s} we have a decomposition

Fs = Esq ⊕Fq ⊕ Ěsq , in which Esq is a χ-isotropic subspace of Fs. It thus corresponds to a
maximal parabolic subgroup P sq = StabG1,h(Ps)(E

s
q) of G1,h(Ps) = U(Fs, χ|Fs). We also

write Ss
q = SP s

q
and similarly Ss and Sq, and V s

q = VP s
q

and similarly Vs and Vq.
We now have two ways to decompose B(a, b), as in (20), into a product one of whose

factors is D1,h(Pq). One is to use (20) directly, with P = Pq, and the other is to use (20)
twice, first with P = Ps and then to decompose D1,h(Ps) as well. To each of these
there corresponds also a holomorphic fibration as in (21), and we can glue the partial
compactifications ZΣ(Pq) and ZΣ(Ps) by identifying these two fibrations.

Proposition 14. With notation as above, we have diffeomorphic decompositions

D1,h(Ps) ∼= Ss
q × Lie(V s

q )×D1,h(Pq), (29)

Lie(Vs) ∼= Hom(Esq ⊕ Ěsq , Ěs)×Hom(Fq, Ěs) (30)

Sq
∼= Ss ×Ss

q ×Hom(Esq ⊕ Ěsq , Ěs) (31)

Lie(Vq) ∼= Lie(V s
q )×Hom(Fq, Ěs). (32)

Proof. The decomposition (29) comes from the diffeomorphic Siegel domain decomposi-
tion (20), which gives

D1,h(Ps)
[P s

q ] = Ss
q × Lie(V s

q )×D1,h(P sq ).
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The χ-orthogonal complement of Esq⊕ Ěsq to Fs = Esq⊕Fq⊕ Ěsq is Fq, so that G1,h(P sq ) =
U(Fq, χ|Fq) = G1,h(Pq). Hence

D1,h(P sq ) = G1,h(P sq )/G1,h(P sq ) ∩K = G1,h(Pq)/G1,h(Pq) ∩K = D1,h(Pq),

which gives (29).
The decompositions (30) and (32) come from Proposition 6. Namely, Lie(Vs) ∼=

Hom(Esq⊕Fq⊕Ěsq , Ěs) = Hom(Esq⊕Ěsq , Ěs)×Hom(Fq, Ěs), and Lie(Vq) ∼= Hom(Fq, Ěs⊕
Ěsq) = Lie(V s

q )×Hom(Fq, Ěs).
We write vs(µ) for v(µ) in (3), as we are dealing with Vs, and decompose µ = µ1 ⊕

µ2 ⊕ µ′1 with µ1 ∈ M(q−s)×s(C) ∼= Hom(Esq , Ěs), and µ′1 ∈ M(q−s)×s(C) ∼= Hom(Ěsq , Ěs)

and µ2 ∈M(a+b−2q)×s(C) ∼= Hom(Fq, Ěs), where the isomorphisms come from the choice
of basis that we have already made.

Similarly, we write vq(µ̃) and µ̃ = µ0 ⊕ µ2, with µ0 ∈ M(a+b−2q)×(q−s)(C) ∼= Lie(V s
q )

and µ2 ∈ M(a+b−2q)×s(C) ∼= Hom(Fq, Ěs). In terms of matrices, if χ1 = χ|Fq then one
has

vs(µ) =


0 −µ′1

>
µ2
>χ1 −µ1

> 0
0 0 0 0 µ1

0 0 0 0 µ2

0 0 0 0 µ′1
0 0 0 0 0

 and vq(µ̃) =


0 0 −µ2

>χ1 0 0
0 0 −µ0

>χ1 0 0
0 0 0 µ0 µ2

0 0 0 0 0
0 0 0 0 0


with respect to the blocks given by Es ⊕ Esq ⊕ Fq ⊕ Ěsq ⊕ Ěs for vs(µ) (thus reordering
the basis so that ěs+1, . . . , ěq precede ě1, . . . , ěs, and thereby changing the matrix χ) and
with respect to the blocks given by Es ⊕ Esq ⊕ Fq ⊕ Ěs ⊕ Ěsq for vq(µ̃).

For (31) it is more convenient to use the basis in its original order, so that χ has
matrix as in (2). Then we describe Lie(Uq) using Proposition 6, and decompose the skew-

Hermitian matrix λ ∈M skHerm
q×q (C) = Homχ(Es⊕Esq , Ěs⊕Ěsq) as λ =

(
λ11 λ12

λ21 λ22

)
. Then

the matrices λ11 ∈M skHerm
s×s (C) = Homχ(Es, Es) ∼= Lie(Us) and λ22 ∈M skHerm

(q−s)×(q−s)(C) =

Homχ(Esq , Ě
s
q)
∼= Lie(U sq ) are both skew-Hermitian and

λ21 = −λ12
> ∈M(q−s)×s(C) = Hom(Esq , Ěs)

∼= [Hom(Es, Ě
s
q) + Hom(Esq , Ěs)]

χ.

Hence, using Proposition 6 again, we have a decomposition Lie(Uq) ∼= Lie(Us)×Lie(U sq )×
Hom(Esq , Ěs).

Instead of decomposing κPq(Cq), we decompose the real tangent space TR
o Cq to Cq

at the origin. This is sufficient since Cq is a Cartan-Hadamard manifold and the expo-
nential map exp: TR

o Cq → Cq is a global diffeomorphism, as is κPq : Cq → κPq(Cq). But
Proposition 11 identifies TR

o Cq with the space MHerm
q×q (C) = Homχ(Ěs ⊕ Ěsq , Ěs ⊕ Ěsq)

of q × q Hermitian matrices ξo by the map ξo 7→ Y (ξ0, 0, 0, 0) as in (18), and we de-

compose that as ξo =

(
ξ11 ξ12

ξ21 ξ22

)
, with ξ11 ∈ MHerm

s×s (C) = Homχ(Ěs, Ěs) ∼= TR
o Cs and

ξ22 ∈MHerm
(q−s)×(q−s)(C) = Homχ(Ěsq , Ě

s
q)
∼= TR

o C
s
q both Hermitian and

ξ21 = ξ12
> ∈M(q−s)×s(C) ∼= Hom(Ěsq , Ěs)

∼= [Hom(Ěsq , Ěs) + Hom(Ěs, Ě
s
q)]

χ.
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Now we have a decomposition

TR
o Cq

∼= TR
o Cs × TR

o C
s
q ×Hom(Ěsq , Ěs).

Since Sq = Lie(Uq)× κPq(Cq) and similarly for the other Siegel domains, we have Sq
∼=

Ss ×Ss
q ×Hom(Esq , Ěs)×Hom(Ěsq , Ěs)

These diffeomorphisms together with (20) give decompositions of B(a, b):

B(a, b) ∼= D[Ps] = Ss × Lie(Vs)×D1,h(Ps)
∼= Ss ×Hom(Esq ⊕ Ěsq , Ěs)×Hom(Fq, Ěs)×Ss

q × Lie(V s
q )×D1,h(Pq);

B(a, b) ∼= D[Pq ] = Sq × Lie(Vq)×D1,h(Pq)
∼= Ss ×Ss

q ×Hom(Esq ⊕ Ěsq , Ěs)×Hom(Fq, Ěs)× Lie(V s
q )×D1,h(Pq).

The second products are isomorphic to the first but do not coincide identically.
The first of these comes from (29) and (30), the second from (31) and (32).
Before we use these identifications they must be modified so as to become holomorphic

fibrations as in (21). This is straightforward but we need to fix some notation.

If σq ∈ Sq we write σq = (σs, σ
s
q , λ21 ⊕ ξ21);

If zs ∈ D1,h(Ps) we write zs = (σsq + ihzq(vsq , v
s
q), v

s
q , zq);

If vs ∈ Lie(Vs) we write vs =
(
vs(µ1 ⊕ 0⊕ µ′1), vs(0⊕ µ2 ⊕ 0)

)
+ Lie(Us);

If vq ∈ Lie(Vq) we write vq =
(
(vq(µ0 ⊕ 0), vq(0⊕ µ2)

)
+ Lie(Uq).

Corollary 15. There is a holomorphic map µ̃sq : D(Ps) → D(Pq), given by

µ̃sq(σs + ihzs(vs, vs), vs, zs) = (σq + ihzq(vq, vq), vq, zq).

with λ21 = µ1 and ξ21 = −µ′1. It descends to a holomorphic map

µsq : Υs\D(Ps) → Υq\D(Pq),

and µsq extends to µsq : ZΣ(Ps) → ZΣ(Pq).

6.2 Toroidal compactification

From Corollary 15 it immediately follows that if for some g1, g2 ∈ G = U(a, b) and
1 ≤ s < q ≤ a = rankB(a, b) we have g1(Es) ⊂ g2(Eq), then, writing P1 and P2

for the corresponding stabilisers, there is a holomorphic map µP1
P2

: (Γ ∩ UP1)\D(P1) →
(Γ ∩ UP2)\D(P2) with a holomorphic extension µP1

P2
: ZΣ(P1) → ZΣ(P2).

Let Γ be a lattice of G and let Υ be the subgroup of Γ generated by ΥP = Γ ∩ UP
as P runs through the set MPar(Γ) all the Γ-rational maximal parabolic subgroups. Let
Γ0 be a normal subgroup of Γ, containing Υ. (In almost all cases one takes Γ0 = Γ.)

Theorem 16. If Σ is Γ-admissible then there exists a holomorphic equivalence relation
∼Γ0 and a complex analytic variety, the toroidal compactification,

(Γ0\B(a, b))Σ =

 ∐
P∈MPar(Γ)

ZΣ(P )

 / ∼Γ0
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containing Γ0\B(a, b) as an open dense subvariety. If Γ0 = Γ then (Γ0\B(a, b))Σ is
compact.

This is a very mild generalisation of the construction in [AMRT], in that we allow
some subgroups of Γ of infinite index as long as the index is finite in the centres of
the unipotent radicals of the parabolic subgroups, so that the toric construction is still
available. For general such Γ0 the varieties obtained may be viewed as non-Noetherian
schemes or as complex analytic spaces, but are not algebraic varieties. This extension
was used in [San] to construct universal covers of some toroidal compactifications, but
the idea is already implicit in [Oda] and some of the references there.

Here is the definition of the equivalence relation ∼Γ0 , taken directly from [AMRT].
If z1 and z2 belong to the disjoint union above, then for i = 1, 2 there exist gi ∈ G
and integers qi with 1 ≤ qi ≤ a such that Pi = Stab(gi(Eqi)) ∈ MPar(Γ). In that case
z1 ∼Γ0 z2 if and only if there exist an element γ ∈ Γ0, a maximal parabolic subgroup
P = StabG(g(Es)) ∈ MPar(Γ) and a point z ∈ ZΣ(P ), such that g(Es) ⊆ g1(Eq1) and

g(Es) ⊆ γg2(Eq2), and µPP1
(z) = z1, and µPγP2γ−1(z) = γz2.

If a = rankB(a, b) ≥ 2 then by a result of Margulis, any lattice Γ of G = U(a, b)
is arithmetic. It is shown in [AMRT] that under these circumstances (Γ\B(a, b))Σ is
compact (and Σ may be chosen so as to ensure that it is a projective algebraic variety),
containing Γ\B(a, b) as an open dense subset (with respect to the analytic topology). If
rankB(a, b) = a = 1 there are non-arithmetic lattices Γ of U(1, b), but the same results
hold [Mok] even in this case.
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