Problem Sheet 2

UK IMO squad training camp, Bath 2001

1. (Israel) Find all solutions of the pair of simultaneous equations

$$\begin{cases} x_1 + x_2 + \dots + x_{2000} = 2000 \\ x_1^4 + x_2^4 + \dots + x_{2000}^4 = x_1^3 + x_2^3 + \dots + x_{2000}^3 \end{cases}$$

2. (Israel) Given 2001 real numbers $x_1, x_2, \ldots, x_{2001}$ such that $0 \le x_n \le 1$ for each $n = 1, 2, \ldots, 2001$, find the maximum value of

$$\left(\frac{1}{2001}\sum_{n=1}^{2001}x_n^2\right) - \left(\frac{1}{2001}\sum_{n=1}^{2001}x_n\right)^2.$$

Where is this maximum attained?

3. (Hungary) Let t and r be the area and the inradius of the triangle ABC. Let r_a denote the radius of the circle touching the incircle, AB and AC. Define r_b and r_c in a similar fashion. The common tangent of the circles with radii r and r_a cuts a little triangle from ABC with area t_a . Quantities t_b and t_c are defined in a similar fashion. Prove that

$$\frac{t_a}{r_a} + \frac{t_b}{r_b} + \frac{t_c}{r_c} = \frac{t}{r}.$$

- 4. (Hungary-Israel competition) In this question, G_n is a simple undirected graph with n vertices, K_n is the complete graph with n vertices, and $e(G_n)$ is the number of edges of the graph G_n . Let C_n denote circle with n vertices.
 - (i) The edges of K_n , $n \ge 3$ are coloured with n colours, and every colour appears at least once. Prove that one can find a triangle whose sides are coloured with 3 different colours.

- (ii) Suppose that $n \ge 5$ is given. If $e(G_n) \ge n^2/4 + 2$, prove that there exist two triangles which have exactly one common vertex.
- (iii) Suppose that $e(G_n) \ge \frac{n\sqrt{n}}{\sqrt{2}} + n$. Prove that G_n contains C_4 .
- 5. (Israel) 2001 lines are given in the plane. No two of them are parallel and no three meet in a point. These lines partition the plane into some *regions* (not necessarily finite) bounded by segments of these lines. is called a *map*. Two regions on the map are called *neighbours* if they share a side. The set of intersection points of lines is called the set of *verticies*. Two vertices are called neighbours if they are found on the same side.

A legal colouring of the regions (one colour per region) must have neighbouring regions coloured differently. A legal colouring of the vertices (one colour per vertex) must have neighbouring vertices coloured differently.

- (i) What is the minimum number of colours required for the legal colouring of any map?
- (ii) What is the minimum number of colours required for the legal colouring of the vertices of any map?
- 6. (Israel) Triangle ABC in the plane Π is said to be *good* if it has the following property: for any point D in space, out of the plane Π , it is possible to construct a triangle with sides of lengths |AD|, |BD| and |CD|. Find all the good triangles.
- 7. (Israel) Find a pair of integers (x, y) such that $15x^2 + y^2 = 2^{2000}$. Does there exist such a pair (x, y) with x odd?