\documentclass{article} \pagestyle{empty} \usepackage{amssymb} \usepackage{latexsym} \title{Pan African Mathematical Olympiad 2000} \author{Paper 1 Solutions} \date{} \begin{document} \maketitle \begin{enumerate} \item Solve the trigonometric equation \[ \sin^3 x (1 + \cot x)+ \cos^3 x (1 + \tan x) = \cos 2x.\] \noindent {\bf Solution } {\em \[ \begin{array}{rl} & \sin^3 x (1 + \cot x)+ \cos^3 x (1 + \tan x) = \cos 2x\\ \Rightarrow & \sin^2 x (\sin x + \cos x) + \cos^2 x(\cos x + \sin x) = \cos^2 x - \sin^2 x\\ \Leftrightarrow & (\sin^2 x + \cos^2 x)(\sin x + \cos x)= ( \cos x + \sin x)(\cos x - \sin x)\\ \Leftrightarrow & 0 = (\cos x + \sin x)(\cos x - \sin x -1)\\ \Leftrightarrow & 0 = (\sin \pi/4 \cdot \cos x + \cos \pi/4 \cdot \sin x) (\sin \pi/4 \cdot \cos x - \cos \pi/4 \cdot \sin x - \sqrt 2/2)\\ \Leftrightarrow & 0 = [\sin(\pi/4 + x)][\sin(\pi/4 -x) - \sqrt 2/2]. \end{array}\] Thus $\sin(\pi/4 + x) = 0$ or $\sin(\pi/4 -x) = \sqrt 2/2$ The sine function takes the value 0 at and only at multiples of $\pi$, so the solutions to the first case are of the form $k\pi - \pi/4$, for $k \in \mathbb Z$. These solutions give $1 + \cot x = 0,$ $1 + \tan x = 0$ and $\cos 2x =0,$ so they clearly satisfy the original problem. We now examine the other candidate solutions. Now $\sin x = \sqrt 2/2$ at and only at $\pi/4$ and $5\pi/4$ if $x \in [0,2\pi]$. Thus the solutions of $\sin (\pi/4 -x) = \sqrt 2/2$ are of the form $2k\pi$ and $2k\pi -\pi/2$ for $k \in \mathbb Z$. None of these are solutions to the original problem, since they give $\cot x$ or $\tan x$ as undefined.} \item Let the polynomials $P_0, P_1, P_2, \ldots$ be defined by \[ P_0(x) = x^3 + 213x^2 - 67x -2000\] and \[ P_n(x) = P_{n-1}(x-n) \mbox{ for }n =1, 2, 3, \ldots\] What is the coefficient of $x$ in $P_{21}(x)$? \newline \noindent {\bf Solution } {\em \[ \begin{array}{rcl} P_{21}(x) & = & P_{20}(x-21)\\ &=& P_{19}(x-21 -20)\\ &\vdots& \\ &=& P_0(x-21 -20 - \cdots -1)\\ &=& P_0(x - 231)\\ &=& (x-231)^3 + 213(x-231)^2 -67(x-231) - 2000. \end{array}\] The coefficient of $x$ in each term can be found from the binomial theorem, so the coeffiient of $x$ is \[ 3 \cdot 231^2 - 213 \cdot 2 \cdot 213 -67 = 61610.\]} \item Prove that if \[ \frac{p}{q} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}+ \ldots -\frac{1}{1334} + \frac{1}{1335}\] where $p$ and $q$ are natural numbers, then 2003 divides $p$.\newline \noindent{\bf Solution } {\em Firstly note that 2003 is a prime number (easily checked by trial division by all prime numbers less than $\sqrt{2003}$, i.e. all prime number up to 43. \[ \begin{array}{rcl} 1 - 1/2 + \cdots + 1/1335 & = & 1 + 1/2 + \cdots + 1/1335 -2(1/2 + 1/4 + \cdots + 1/1334)\\ & = & 1 + 1/2 + \cdots + 1/1335 - (1 + 1/2 + \cdots + 1/667)\\ & = & 1/668 + 1/669 + \cdots + 1/1335\\ & = & (1/668 + 1/1335) + (1/669 + 1/1334) + \cdots + (1/1001 + 1/1002)\\ & = & 2003( 1/(668 \times 1335) + 1/ (669 \times 1334) + \cdots + 1/(1001 \times 1002)). \end{array}\] Now the denomominator of \[1/(668 \times 1335) + 1/ (669 \times 1334) + \cdots + 1/(1001 \times 1002)\] in simplest form is coprime to 2003. This is because 2003 is prime and the numbers 668 to 1335 are all smaller than 2003, so their product cannot be a multiple of 2003. Thus the sum is $p/q$ in simplest form where $2003 \mid p$.} \end{enumerate} \end{document}