Pan African Mathematical Olympiad 2000

Paper 1 Solutions

1. Solve the trigonometric equation

$$
\sin ^{3} x(1+\cot x)+\cos ^{3} x(1+\tan x)=\cos 2 x
$$

Solution

$$
\begin{array}{ll}
& \sin ^{3} x(1+\cot x)+\cos ^{3} x(1+\tan x)=\cos 2 x \\
\Rightarrow & \sin ^{2} x(\sin x+\cos x)+\cos ^{2} x(\cos x+\sin x)=\cos ^{2} x-\sin ^{2} x \\
\Leftrightarrow & \left(\sin ^{2} x+\cos ^{2} x\right)(\sin x+\cos x)=(\cos x+\sin x)(\cos x-\sin x) \\
\Leftrightarrow & 0=(\cos x+\sin x)(\cos x-\sin x-1) \\
\Leftrightarrow & 0=(\sin \pi / 4 \cdot \cos x+\cos \pi / 4 \cdot \sin x)(\sin \pi / 4 \cdot \cos x-\cos \pi / 4 \cdot \sin x-\sqrt{2} / 2) \\
\Leftrightarrow & 0=[\sin (\pi / 4+x)][\sin (\pi / 4-x)-\sqrt{2} / 2] .
\end{array}
$$

Thus $\sin (\pi / 4+x)=0$ or $\sin (\pi / 4-x)=\sqrt{2} / 2$ The sine function takes the value 0 at and only at multiples of π, so the solutions to the first case are of the form $k \pi-\pi / 4$, for $k \in \mathbb{Z}$. These solutions give $1+\cot x=0$, $1+\tan x=0$ and $\cos 2 x=0$, so they clearly satisfy the original problem.
We now examine the other candidate solutions. Now $\sin x=\sqrt{2} / 2$ at and only at $\pi / 4$ and $5 \pi / 4$ if $x \in[0,2 \pi]$. Thus the solutions of $\sin (\pi / 4-x)=$ $\sqrt{2} / 2$ are of the form $2 k \pi$ and $2 k \pi-\pi / 2$ for $k \in \mathbb{Z}$. None of these are solutions to the original problem, since they give $\cot x$ or $\tan x$ as undefined.
2. Let the polynomials $P_{0}, P_{1}, P_{2}, \ldots$ be defined by

$$
P_{0}(x)=x^{3}+213 x^{2}-67 x-2000
$$

and

$$
P_{n}(x)=P_{n-1}(x-n) \text { for } n=1,2,3, \ldots
$$

What is the coefficient of x in $P_{21}(x)$?

Solution

$$
\begin{aligned}
P_{21}(x) & =P_{20}(x-21) \\
& =P_{19}(x-21-20) \\
& \vdots \\
& =P_{0}(x-21-20-\cdots-1) \\
& =P_{0}(x-231) \\
& =(x-231)^{3}+213(x-231)^{2}-67(x-231)-2000 .
\end{aligned}
$$

The coefficient of x in each term can be found from the binomial theorem, so the coeffient of x is

$$
3 \cdot 231^{2}-213 \cdot 2 \cdot 213-67=61610
$$

3. Prove that if

$$
\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots-\frac{1}{1334}+\frac{1}{1335}
$$

where p and q are natural numbers, then 2003 divides p.
Solution Firstly note that 2003 is a prime number (easily checked by trial division by all prime numbers less than $\sqrt{2003}$, i.e. all prime number up to 43 .

$$
\begin{aligned}
1-1 / 2+\cdots+1 / 1335 & =1+1 / 2+\cdots+1 / 1335-2(1 / 2+1 / 4+\cdots+1 / 1334) \\
& =1+1 / 2+\cdots+1 / 1335-(1+1 / 2+\cdots+1 / 667) \\
& =1 / 668+1 / 669+\cdots+1 / 1335 \\
& =(1 / 668+1 / 1335)+(1 / 669+1 / 1334)+\cdots+(1 / 1001+1 / 1002) \\
& =2003(1 /(668 \times 1335)+1 /(669 \times 1334)+\cdots+1 /(1001 \times 1002)) .
\end{aligned}
$$

Now the denomominator of

$$
1 /(668 \times 1335)+1 /(669 \times 1334)+\cdots+1 /(1001 \times 1002)
$$

in simplest form is coprime to 2003. This is because 2003 is prime and the numbers 668 to 1335 are all smaller than 2003, so their product cannot be a multiple of 2003. Thus the sum is p / q in simplest form where $2003 \mid p$.

